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We study under what circumstances a separable bipartite system A-B can or cannot become entangled
through local interactions with a bilocal entangled source S1-S2. We obtain constraints on the general forms
of the interaction Hamiltonians coupling A with S1 and B with S2 necessary for A and B to become
entangled. We are able to generalize and provide nonperturbative insight on several previous no-go
theorems of entanglement harvesting from quantum fields using these general results. We also discuss the
role of communication in the process of entanglement extraction, establishing a distinction between
genuine entanglement extraction and communication-assisted entanglement generation.
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I. INTRODUCTION

One of the most striking differences between classical
and quantum theories is the existence of entanglement in
the latter. The implications of this fact are enormous from
both practical as well as fundamental viewpoints. The
practical importance of entanglement is perhaps most
evident in the advantages that it seems to offer quantum
computers over their classical counterparts [1]. On the more
fundamental side, for example, the presence of entangle-
ment in the vacuum state of a quantum field [2,3] is a key
feature in conjectured solutions to the black hole informa-
tion loss problem [4–7].
Given the relevance of entanglement, both as a resource

for quantum information processing and as a tool in
fundamental studies, it is important that we better under-
stand its dynamical nature. In this context, we analyze the
ability of bipartite systems to extract entanglement from
sources in which entanglement already exists naturally. In
particular, we concern ourselves with the ability of a
separable target system A-B to extract entanglement from
a bipartite source system S ¼ S1-S2 only through bilocal
interactions A-S1, B-S2. More concretely, we ask the
question: given the unitary operator Û which describes
the interaction between target and source, what conditions
must Û obey in order for A and B to become entangled?
We find conditions that are necessary in order to achieve

entanglement extraction with a particular class of generic
target-source interactions. Specifically, we consider inter-
actions where the unitary Û is the exponential of a Schmidt
rank-1 operator. Based on the observation that such inter-
actions give rise to an entanglement-breaking channel from
the source to the target, we show that, in particular,

entanglement extraction requires more than two such inter-
actions (i.e.,more than just one per target).Wegive necessary
conditions for combinations of three or four such couplings
to achieve entanglement extraction. In these cases where A
and B do become entangled, we discuss the origin of this
entanglement. That is, we establish a distinction between the
genuine extraction of preexisting entanglement from S, and
the generation of entanglement between A and B due to
indirect communication via the source S.
These main results apply generally to the framework of

entanglement extraction independent of the physical mani-
festation of the target and source systems. In this paper, we
establish their significance in particular for entanglement
harvesting from relativistic quantum fields: by a direct
application of our main result, we generalize all previously
known no-go results for entanglement harvesting and
provide a simple, unified explanation for why they hold.
In so-called entanglement harvesting, which is a special

case of entanglement extraction, the targetsA andB are a pair
of first-quantized systems, e.g., modeled by Unruh-DeWitt
(UDW) particle detectors [8], and the source S is a relativistic
quantum field. The pioneering works on entanglement
harvesting were by Valentini [9], and later Reznik et al.
[10,11], and they showed that it is possible for particle
detectors A and B to become entangled through local
interactions with the field vacuum, even if the detectors
are spacelike separated. Since spacelike-separated detectors
cannot communicatewith one another, this provided a simple
operational proof of the fundamental fact that the field
vacuum contains entanglement with respect to local modes.
Following these initial works, the entanglement harvest-

ing protocol has been studied in much further detail. For
instance it has been shown that it is possible (albeit more
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difficult) to harvest entanglement from thermal states in
timelike [12,13] and spacelike [14] separation. It has also
been shown that entanglement can be harvested from
coherent [15] scalar field states, as well as from the electro-
magnetic field vacuum using fully featured hydrogen-like
atoms [16]. The sensitivities of the protocol to the proper-
ties [17] and trajectories [18] of the detectors, boundary
conditions of the field [19], nature of the detector-
field couplings [20], as well as the geometry [21] and
topology [22] of the background spacetime have also been
investigated.
Besides their fundamental significance, the above studies

are important in determining the optimal conditions for an
experimental realization of an entanglement harvesting
protocol. On a positive note, it has been suggested that
such a protocol may be within reach using current atomic
and superconducting setups [23–25], and in principle could
provide a constant supply of Bell pairs which could later be
used for quantum information purposes in entanglement
farming protocols [26]. However, many aspects, in par-
ticular with respect to potential implementations, still need
to be explored; one important question is the energetic cost
of entanglement harvesting, which could be particularly
high in a low number of spatial dimensions, as recently
addressed in Ref. [27].
Whereas much of the previous literature focused on

perturbative analyses of entanglement harvesting, the
interaction between particle detectors and relativistic fields
can be analyzed nonperturbatively in certain particular
setups. For example, significant work has been done to
develop tools that allow for the nonperturbative study of
harmonic oscillator detectors in diverse contexts (see, e.g.,
Refs. [28–30]). On the other hand, for finite-dimensional
detectors, nonperturbative time evolution can be computed
when the detector’s Hamiltonian is completely degenerate
(i.e., all detector states have identical energies [12,13,31]),
or when the detector interacts with the field at one instant in
time (i.e., via a Dirac-δ coupling) [32,33]. In particular,
using these approaches, the following no-go entanglement
harvesting theorems were proved: (i) perturbatively, it is not
possible to harvest spacelike vacuum entanglement with
zero-gap detectors [34], and (ii) nonperturbatively it is not
possible to harvest any kind of entanglement (timelike,
lightlike, or spacelike) from a coherent field state using
single δ-coupled detectors [15].
In this paper, using our general result on the inability of

target systems A and B to become entangled with a source S,
wewill nonperturbatively explain the results (i) and (ii) stated
above using a single mathematical formalism, while at the
same time generalizing them to hold for any field state.
This paper is organized by generality. We start in

Sec. II A by outlining the general setup of separable targets
A and B that attempt to become entangled by interacting
with a source S. In Sec. II B we prove that if A and B each
interact with S through a single “simple-generated” unitary

(one that is the exponential of a Schmidt rank-1 operator),
then they cannot become entangled. In Sec. II C, we show
that if one of the targets couples to S through two simple-
generated interactions, then A and B can become entangled
under certain conditions. Then, in Sec. III A we particu-
larize these results to the setup of UDW detectors interact-
ing with a relativistic quantum field, which allows us to
generalize two previous no-go entanglement harvesting
theorems regarding (i) degenerate detectors and (ii) single
Dirac-δ coupled detectors. In Sec. III B we show how two
δ couplings for one of the detectors could lead to entan-
glement harvesting. Surprisingly, and in stark contrast with
previous perturbative studies, we find that for detector-field
couplings in the nonperturbative regime, an increase in
coupling strength leads to a decrease in the amount of
harvested entanglement. Natural units of ℏ ¼ c ¼ 1 are
used throughout.

II. ENTANGLEMENT EXTRACTION WITH
SIMPLE-GENERATED INTERACTIONS

This section presents the central result of the article.
Whereas we later focus on its implications for entangle-
ment harvesting from a relativistic field, the result applies
to the wider, general framework of entanglement extraction
from a source system to two target systems. Therefore, we
begin with a brief review of the general setup.
Our main result refers to the interactions between the

source and target systems having a particular simple shape,
that is, that the unitary describing the interaction is given by
the exponential of a simple tensor product operator. We
show that a single simple-generated interaction of this kind
gives rise to an entanglement-breaking channel from the
source to the target, such that entanglement extraction with
only one interaction per target is impossible. Instead, when
using simple-generated interactions, at least one target has to
couple twice, i.e., at least three interactions in total are
required. We discuss further necessary conditions on this
minimal scenario and illustrate them in terms of toy models.

A. Entanglement extraction from a source

We begin by reviewing the framework of entanglement
extraction. The general idea is that two parties A and B
want to entangle their local quantum systems (the targets)
by extracting correlations that are originally contained in a
third quantum system (the source, S).
For instance, the source might be a spatially extended

quantum system such as a quantum many-body system or a
quantum field. A and B couple to separate parts of S, the
latter being in a state that contains entanglement between
spatially separated degrees of freedom. Examples of such
states include the ground states of interacting lattice
theories or the vacuum state of a quantum field.
The total Hilbert space of the two targets and the source

is the tensor product

SIMIDZIJA, JONSSON, and MARTÍN-MARTÍNEZ PHYS. REV. D 97, 125002 (2018)

125002-2



H ¼ HA ⊗ HS ⊗ HB; ð1Þ

of the Hilbert space of the sourceHS, and of the two targets
HA and HB. The latter two we here assume to be finite
dimensional, while we allow HS to be of any (finite or
infinite) dimension. Initially, before any interactions take
place, the three subsystems start out in a product state

ρ̂0 ¼ ρ̂0;A ⊗ ρ̂0;S ⊗ ρ̂0;B; ð2Þ
and the free dynamics of the system are generated by the
sum of the three free Hamiltonians

Ĥ0 ¼ ĤA þ ĤS þ ĤB; ð3Þ
where ĤS is shorthand for 1A ⊗ ĤS ⊗ 1B, etc.
We suppose that the two parties each only have access to

a limited part of the source, e.g., only to a certain region of
spacetime when the source is a relativistic quantum field.
Their goal is to swap entanglement that is present in the
state ρ̂0;S between their respective regions of access, onto
their local target systems.
To achieve this the two targets A and B locally couple to

the source through time-dependent interaction Hamiltonians
ĤI;AðtÞ and ĤI;BðtÞ [shorthand for ĤI;AðtÞ ⊗ 1B, etc.].
However, no direct interaction Hamiltonian between the
two targets is allowed. Also, we do not assume any classical
communication between the parties.
The interaction between A, B and S is then given by a

unitary operator Û acting on the Hilbert space H.
Calculating this evolution operator is in general difficult.
A common approach, in particular in the context of
perturbation theory, is to write Û as a Dyson expansion.
In the interaction picture, this is

Û¼ 1− i
Z

dtĤIðtÞ−
Z

dt
Z

t
dt0ĤIðtÞĤIðt0Þþ � � � ; ð4Þ

where ĤIðtÞ ≔ ĤI;AðtÞ þ ĤI;BðtÞ. An alternative method of
expressing Û is via the Magnus expansion [35], which
expresses the operator as

Û ¼ exp

�X∞
n¼1

Ω̂n

�
; ð5Þ

where the lowest-order terms read

Ω̂1 ¼ −i
Z

∞

−∞
dtĤIðtÞ;

Ω̂2 ¼ −
1

2

Z
∞

−∞
dt
Z

t

−∞
dt0½ĤIðtÞ; ĤIðt0Þ�; ð6Þ

and the higher-order terms, which are obtained recursively,
contain commutators of the commutators of the interaction
Hamiltonian ĤIðtÞ at increasing orders.
The results and discussion of this section apply to any

system where the unitary Û describing one coupling

between a target (A or B) and the source S has the property
of being the exponential of an operator with Schmidt
rank 1. That is, Û is generated by a Hamiltonian which
is a simple tensor product of two observables:

Û ¼ exp ð−im̂ ⊗ X̂Þ; ð7Þ

with m̂ acting on one of the targets and X̂ acting on the
source system. In the following we will refer to such
interactions either as Schmidt rank-1 generated or just as
simple generated.

B. Single simple-generated interaction yields
entanglement-breaking channel

Wewill now show that no entanglement can be extracted
from the source if both targets each couple to the source
system with only one simple-generated interaction. Instead,
entanglement extraction can only be achieved if at least one
of the targets is coupled to S through at least two simple
interactions.
The reason for this is that when a target (say A) and the

source, which are initially in a product state, interact via a
single simple-generated unitary ÛA, the map from the
source’s initial state to the final state of the target,

ρ̂0;S ↦ ρ̂A ¼ TrS½ÛAðρ̂0;A ⊗ ρ̂0;SÞÛ†
A�; ð8Þ

is an entanglement-breaking quantum channel.
Entanglement-breaking channels are characterized by

the property that when they receive only a part of a larger
system as input, which may be entangled with other
degrees of freedom, then the output of the channel is
always in a separable state with the rest of the larger system.
That is, any entanglement between the input and the
environment is broken and the output is not entangled
with the environment anymore [36].
To see why channels of the form (8) are entanglement

breaking, let us recast the simple-generated unitary ÛA in
the form of a controlled unitary:

ÛA ¼ exp ð−im̂ ⊗ X̂Þ
¼

X
k

exp ð−ixkm̂Þ ⊗ jxkihxkj: ð9Þ

Here we are assuming that the self-adjoint operator X̂,
acting on the source system, has the discrete spectral
decomposition X̂ ¼ P

k xkjxkihxkj with xk ∈ R. This is
true by the spectral theorem if X̂ is a compact (and hence
bounded) operator. The more general case of an unbounded
X̂—which is indeed the case if X̂ is a smeared field operator
acting on the Hilbert space of a quantum field—is treated in
detail in Appendix A.
Writing ÛA in the form of Eq. (9) allows us to

understand the action of ÛA as acting with the unitary

GENERAL NO-GO THEOREM FOR ENTANGLEMENT EXTRACTION PHYS. REV. D 97, 125002 (2018)

125002-3



exp ð−ixkm̂Þ on the target system A, conditional on the
source S being in the state jxki. In this sense, it can even be
understood as a measurement of X̂ on the source by the
target system. Then, from Eq. (8), we see that the final
partial state ρ̂A of A following its interaction with S is

ρ̂A ¼
X
k

hxkjρ̂0;Sjxki exp ð−ixkm̂Þρ̂A;0 exp ðixkm̂Þ: ð10Þ

This is exactly the general form of an entanglement-
breaking quantum channel from the source’s initial state
to the target’s final state [36,37].
In the context of entanglement extraction this means that

if the target system that is the last to interact with the source
is coupling through a single simple-generated unitary, i.e.,
a unitary of the form in Eq. (7), then that target system
always ends up in a separable state with its environment,
where in this case the environment includes the other target
system. Hence, in this general scenario no entanglement
can be extracted by the targets A and B from the source S,
irrespective of the specific details of the interaction.

C. Entanglement extraction by combining
simple-generated couplings

Having seen that it is impossible to entangle the targets A
and B using only two simple-generated couplings, the
question arises whether it is possible to entangle the targets
by combining more than two simple-generated interactions.
In the following we show that it is possible to get the two
targets entangled by coupling one of them once and the
second one twice to the source through simple-generated
interactions, under certain conditions.
Let us denote the unitaries describing the two inter-

actions of target A with the source S by

ÛA1
¼ exp ð−im̂A1

⊗ X̂A1
Þ; ð11Þ

ÛA2
¼ exp ð−im̂A2

⊗ X̂A2
Þ; ð12Þ

and the unitary describing the single coupling of target B
to S by

ÛB1
¼ exp ð−im̂B1

⊗ X̂B1
Þ: ð13Þ

It follows from the previous section that if the interaction
ÛB1

takes place last, then the targets A and B always end up
in a separable space. Hence, A and B can only get
entangled if the coupling between B and S, given by the
unitary ÛB1

, takes place before at least one of A’s couplings.
When target B is coupled to the source first followed by

the two couplings of A, the product of the two couplings
ÛA1

ÛA2
must not yield an entanglement-breaking channel

from the field to target A, otherwise A and B would once
again end up in a separable state. In order for this not to

occur it is necessary that the two observables X̂A1
and X̂A2

do not commute.
To see this, suppose instead that ½X̂A1

; X̂A2
� ¼ 0. Then,

the two observables X̂A1
and X̂A2

can be simultaneously
diagonalized as

X̂A1
¼

X
k

að1Þk jxA;kihxA;kj; ð14Þ

X̂A2
¼

X
k

að2Þk jxA;kihxA;kj: ð15Þ

Therefore the product ÛA1
ÛA2

of the unitaries governing
the interactions between A and S can be expressed as

X
k

exp ð−iað1Þk m̂A1
Þ exp ð−iað2Þk m̂A2

Þ ⊗ jxA;kihxA;kj; ð16Þ

which again has the form of a controlled unitary gate
(performing a unitary on the target system conditional on
the source system’s state) and, therefore, gives rise to an
entanglement-breaking channel from the source to target A.
This observation, together with the fact that it is

necessary to have ½X̂B1
; X̂An

� ≠ 0 in order to obtain
½ÛB1

; ÛAn
� ≠ 0, leads to the conclusion that if more than

one of the three commutators ½X̂A1
; X̂A2

�, ½X̂B1
; X̂A1

� and
½X̂B1

; X̂A2
� vanish, then, regardless of the order in which

they interact with the source S, the targets A and B always
end up in a separable state. This is simply because if two of
these commutators vanish then it is always possible to
rearrange the product of unitaries ÛB1

ÛA1
ÛA2

(or
ÛA1

ÛB1
ÛA2

) such that it ends with an entanglement-
breaking coupling from the system to the corresponding
target.
To demonstrate that entangling two targets via three

simple-generated interactions is possible if one satisfies the
above-described necessary condition, we can construct
simple toy models where both targets as well the source
are modeled by single qubits. In this case we can use the
CNOT gate between two qubits as a simple-generated
interaction between target and source,

ÛCNOT ¼ exp ½−iπð2j0ih0j þ j1ih1jÞ
⊗ ð2jþihþj þ 3j−ih−jÞ�: ð17Þ

Here, we will allow either the target quantum system or the
source quantum system to play the role of the control gate
in the CNOT. Figure 1 shows examples of circuits that
achieve entanglement between the target qubits through an
interaction with a single source qubit. In each of the three
cases a different commutator ½ÛB1

; ÛA1
�, ½ÛB1

; ÛA2
�, or

½ÛA1
; ÛA2

� vanishes.

SIMIDZIJA, JONSSON, and MARTÍN-MARTÍNEZ PHYS. REV. D 97, 125002 (2018)

125002-4



Arguably, the toy models of Fig. 1 do not technically
represent entanglement extraction from the source, since
the very notion of entanglement extraction from a single
qubit onto two qubits does not make sense. Rather, the toy
models are showing a mechanism of entangling the targets
through communication via the source.
In fact, the finding above that at most one pair out of X̂B1

,
X̂A1

, X̂A2
may commute for entanglement extraction to be

possible, implies that three simple-generated interactions
can only entangle the target systems if they could alter-
natively be used to implement a communication channel
from A to B or vice versa. This is because if a commutator
of the form ½X̂B1

; X̂A1
� is nonvanishing, then the corre-

sponding pair of interactions could also be used to send
information from target A to target B [38,39].
There is another observation which suggests that entan-

gling two target systems with three simple-generated inter-
actions really corresponds to correlating them through
communication rather than extracting entanglement from
the source. This is the fact that it is not possible to genuinely
extract entanglement from a source consisting of a pair of
qubits with only three simple-generated interactions.
To see this, we assume that the source is given by a pair of

qubits in some entangled state (cf. Fig. 2, which shows
genuine extraction from this toy model using four inter-
actions).LetBbe the target system that couples onlyonce, and
hence only interacts with one of the source qubits. Then, in
order for A andB to have any chance of extracting preexisting
entanglement from S, the target A needs to use its two
interactions to couple to each of the two source qubits once,
since otherwise the preexisting entanglement between the
source qubitswould not be of any significance to the protocol.

Now, operators that act on only one source qubit
commute with operators that act on the other source qubit.
This implies that the interaction of B with one source
qubit commutes with the interaction of A with the other
source qubit. However, both interactions of A with the
source also commute with each other because they act on
different source qubits. This means that two out of the three
possible pairings of observables generating the interactions,
X̂B1

, X̂A1
, X̂A2

, commute. Thus by the argument above the
targets end up in a separable state.
The only possible way to get the two targets to become

entangled is to use all three couplings to interact with only
one of the source’s qubits. Clearly, such a protocol does not
access the preexisting entanglement in the source at all. In
fact, entanglement between the accessed source qubit and
the other source qubit impedes, rather than facilitates, the
entanglement of the two target systems.
In summary, it is possible to achieve entanglement

between two target systems with three simple-generated
couplings. However, in these scenarios the couplings need
to be such that they could also be used to send information
from one of the targets to the other (not necessarily in both
directions): the source system seems to play the role of a
communication medium which serves to correlate the two
targets. Genuine extraction of preexisting entanglement
from the source system, e.g., by spacelike-separated
observers, seems to require at least four simple-generated
couplings. A toy model example of this is shown in Fig. 2.

III. APPLICATIONS TO ENTANGLEMENT
HARVESTING

A frequently studied physical system to which we will
now apply our results is the entanglement harvesting setup,
in which two qubits (the targets) attempt to become
entangled by interacting with a quantum field (the source).
This will allow us, in Sec. III A, to generalize previous no-
go entanglement harvesting results, as well as provide a
unified explanation for why they hold. Then in Sec. III B
we will nonperturbatively explore the simplest coupling
scenario between qubits and field (i.e., three Dirac-δ

FIG. 1. Qubit toy models for protocols that entangle the target
systems A and B using three CNOT gates with the source S,
which are examples of simple-generated interactions. From the
top to the bottom the commutators ½ÛB1

; ÛA2
�, ½ÛB1

; ÛA1
� and

½ÛA1
; ÛA2

� vanish respectively. The first two examples yield the
final state 1ffiffi

2
p ðj00i þ j11iÞAB ⊗ j0iS whereas the last one yields

1ffiffi
2

p ðj00i þ j11iÞAB ⊗ jþiS.

FIG. 2. Qubit toy model demonstrating that four simple-
generated interactions (here CNOT gates) can extract preexisting
entanglement from a source, which is modeled as a pair of qubits
in the maximally entangled state jΦþiS ¼ 1ffiffi

2
p ðj00i þ j11iÞ. The

circuits swaps the entanglement onto the targets. The final state
reads 1ffiffi

2
p ðj00i þ j11iÞAB ⊗ j00iS.
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couplings) through which the qubits are able to harvest
field entanglement. In particular, and in contrast to pertur-
bative results, we will show that the amount of extracted
entanglement decreases above a certain optimal value for
the coupling strength.
To that end, consider the scalar field ϕ̂ðx; tÞ in (nþ 1)-

dimensional flat spacetime, which can be expanded in
plane-wave modes as

ϕ̂ðx; tÞ ¼
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnjkjp ½â†keiðjkjt−k·xÞ þ H:c:�: ð18Þ

We denote the two qubits (also called detectors) by
ν ∈ fA;Bg, their free ground and excited states by jgνi
and jeνi, and their energy gaps by Ων. Suppose that the two
detector-field system starts out in the arbitrary separable
state

ρ̂ ¼ ρ̂A ⊗ ρ̂ϕ ⊗ ρ̂B; ð19Þ

in the Hilbert space HA ⊗ Hϕ ⊗ HB. We will assume that
the detectors are at rest at positions xν [in the ðx; tÞ
coordinate system in which we performed the field quan-
tization], and we let FνðxÞ be real-valued distributions
(dimensions of L−n) describing the detectors’ spatial
profiles. We allow detector ν to interact with the quantum
field through the interaction Hamiltonian (in the interaction
picture)

ĤI;νðtÞ ¼ λ̃νχνðtÞm̂νðtÞ ⊗
Z

dnxFνðx − xνÞϕ̂ðx; tÞ: ð20Þ

Here λ̃ν is a coupling strength (dimension Lðn−3Þ=2), χνðtÞ is
a dimensionless switching function that describes how the
detector is turned on and off, and m̂ν is the monopole
moment of detector ν,

m̂νðtÞ ¼ jeνihgνjeiΩνt þ jgνiheνje−iΩνt: ð21Þ

The type of interaction between detector and field given by
Eq. (20) is the well-known Unruh-DeWitt interaction [8],
which captures the essential features of the light-matter
interaction when angular momentum exchange can be
ignored [16,40,41].
The result that follows in Sec. III A can straightforwardly

be extended to detectors with arbitrary trajectories, but in
this case care must be taken to specify each detector’s
parameters (energy gap, switching function, smearing
function) in the detector’s own rest frame, and then perform
appropriate coordinate transformations in order to get the
interaction Hamiltonian in the lab frame ðx; tÞ [42]. In order
to avoid going into these details and obscuring our main
objective, we will consider only stationary detectors.

A. Null result for entanglement harvesting

We will now show examples of two classes of Unruh-
DeWitt interactions between two detectors and the field for
which the interaction Hamiltonian in Eq. (20) generates a
time-evolution unitary that is of the “simple” form in
Eq. (7), and therefore, by our general result in Sec. II B,
these interactions are unable to extract entanglement from
the field to the detectors. These two classes of interactions
are (i) the case of degenerate detectors [12,13,34,43], and
(ii) the case of detectors that couple to the field at one
instant in time (i.e., through a Dirac-δ function) [15].
Importantly, both (i) and (ii) are prevalent interactions
considered in the literature, due to their physical signifi-
cance as well as the fact that they allow for nonperturbative
studies of detector-field interactions [15,43], something
that is difficult to do in other regimes.
To that end, suppose now that the interaction

Hamiltonian ĤIðtÞ between the detectors and the field,
given in Eq. (20), is such that the time-evolution unitary Û
of the system, given in Eqs. (4) and (5), reads

Û ¼ ð1A ⊗ ÛBϕÞðÛAϕ ⊗ 1BÞ; ð22Þ

where Ûνϕ is a unitary on the Hilbert space Hν ⊗ Hϕ, and
is given as

Ûνϕ ¼ T exp

�
−i

Z
∞

−∞
dt0ĤI;νðt0Þ

�
: ð23Þ

This form for Û is achieved, for instance, if detectors A and
B are spacelike separated during the times of their
interactions with the field, or, alternatively, if detector A
is finished coupling to the field before detector B couples,
i.e., if suppχAðtÞ ⊆ ð−∞; t̃� and suppχBðtÞ ⊆ ½t̃;∞Þ for
some t̃ ∈ R.
Given the initial separable state ρ̂0 in Eq. (19) for the

detectors-field system, and assuming that the system
evolves according to the unitary Û in Eq. (22), we would
like to determine whether the two detectors can become
entangled (i.e., harvest entanglement) through their inter-
actions with the field.
We see that the system first evolves according to the

unitary ÛAϕ ⊗ 1B, which puts it in a state ρ̂Aϕ ⊗ ρ̂B, where
ρ̂Aϕ is an arbitrary (possibly entangled) state in the Hilbert
space HA ⊗ Hϕ. Now to obtain the final state of the two
detectors, we need to couple Bob to the field by applying
the unitary 1A ⊗ ÛBϕ, and then trace out the field. This
corresponds exactly to applying the channel 1A ⊗ ξ to the
state ρ̂Aϕ, where ξ maps states in Hϕ to states in HB and is
defined by

ξðρ̂ϕÞ ≔ Trϕ½ÛBϕðρ̂ϕ ⊗ ρ̂BÞÛ†
Bϕ�: ð24Þ

Now, notice that if the unitary ÛBϕ is of the form
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ÛBϕ ¼ exp ð−im̂B ⊗ X̂BÞ; ð25Þ

then from the discussion in Sec. II B the channel ξ is
entanglement breaking, and hence the final state of Alice
and Bob is separable. We will now show two example
interactions where ÛBϕ takes the form in Eq. (25), i.e.,
interactions for which Alice and Bob cannot harvest
entanglement from the field.

1. Degenerate detector

The unitary ÛBϕ in Eq. (23) can be expressed in the
Magnus form (5), i.e., as

Û ¼ exp

�X∞
n¼1

Ω̂n

�
; ð26Þ

where the lowest-order terms read

Ω̂1 ¼ −i
Z

∞

−∞
dtĤI;BðtÞ; ð27Þ

Ω̂2 ¼ −
1

2

Z
∞

−∞
dt
Z

t

−∞
dt0½ĤI;BðtÞ; ĤI;Bðt0Þ�; ð28Þ

and the higher-order terms, which are obtained recursively,
contain commutators of the commutators of the interaction
Hamiltonian ĤI;BðtÞ at increasing orders.
In the case of a degenerate Unruh-DeWitt detector B, i.e.,

if ΩB ¼ 0, these higher-order terms all vanish. (Note that
the energy gap ΩB of detector B should not be confused
with the Magnus expansion terms Ω̂i.) To see this, first note
from Eq. (21) that m̂B, the tensor factor of ĤI;BðtÞ
corresponding to the detector, has no time dependence if
ΩB ¼ 0. Hence

ĤI;BðtÞ ¼ λ̃BχBðtÞm̂B ⊗ Φ̂ðtÞ; ð29Þ

where Φ̂ðtÞ is the smeared field observable defined by

Φ̂ðtÞ ≔
Z

dnxFBðx − xνÞϕ̂ðx; tÞ: ð30Þ

Because the commutator of the field with itself is propor-
tional to the identity, we have that ½ĤI;BðtÞ;ĤI;Bðt0Þ�∝
m̂B⊗1ϕ, and hence that all higher-order commutators of
HI;B with itself at different times vanish. Hence Ω̂k is
identically zero for all k ≥ 3. Using Eqs. (26), (27) and (28)
then allows us to write ÛBϕ in the form of Eq. (25), with X̂B

defined as

X̂B ≔
Z

∞

−∞
dtλ̃χBðtÞΦ̂ðtÞ

þ i
2

Z
∞

−∞
dt
Z

t

−∞
dt0λ̃2χBðtÞχBðt0Þ½Φ̂ðtÞ; Φ̂ðt0Þ�: ð31Þ

We therefore arrive at the following conclusion. Suppose
that two UDW detectors A and B interact with the field
such that (i) they are spacelike separated, or (ii) detector A
interacts with the field strictly before detector B. Then, if
detector B is degenerate, the detectors cannot harvest any
entanglement from the field. This is a generalization of the
perturbative result in Ref. [34], where it was shown that
identical, degenerate detectors that satisfy the condition
(i) or (ii), cannot harvest entanglement from the field
vacuum. Here, just by investigating the commutator struc-
ture of the detector-field interaction Hamiltonian (i.e.,
without any lengthy calculations), we have shown that
this is indeed true in the nonperturbative regime, for
nonidentical detectors, and for any field state.

2. Delta-coupled detector

Let us now suppose that the switching function for
(the possibly nondegenerate) detector B is a delta function,

χBðtÞ ¼ ηBδðt − tBÞ: ð32Þ

Here ηB has dimensions of L and it characterizes the
strength of detector B’s coupling to the field. Since this is
the same as the role played by the coupling strength λ̃B, we
will from here on combine the two as an overall coupling
strength λB ≔ λ̃BηB. Hence we are now particularizing our
discussion to interactions where detector B interacts with
the field at only one instant in time, tB, but with an infinite
intensity. Therefore, the total energy exchanged between
detector and field is still finite. Such interactions, which we
will refer to as δ couplings, can be viewed as idealized
limits of highly intense interactions occurring over short
time intervals (see Ref. [15] for a more detailed discussion).
Assuming such a switching function, immediately from

Eq. (23) we see that the unitary ÛBϕ governing the time
evolution of detector B with the field is of the form in
Eq. (25), with m̂B ≔ m̂BðtBÞ and X̂B defined as

X̂B ≔ λB

Z
dnxFBðx − xBÞϕ̂ðx; tBÞ: ð33Þ

We therefore arrive at the following conclusion. Suppose
that two UDW detectors A and B interact with the field
such that (i) they are spacelike separated, or (ii) detector A
interacts with the field strictly before detector B. Then, if
detector B interacts with the field at only one instant in time
(i.e., through a δ function), then the detectors cannot
harvest any entanglement from the field. This is a gener-
alization of the result obtained in Ref. [15], where it was
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shown that detectors that each couple to the field once
cannot harvest entanglement from any coherent state of the
field. Here, just by investigating the commutator structure
of the detector-field interaction Hamiltonian (i.e., without
any lengthy calculations), we have shown that this is indeed
true for a much more general class of coupling setups, and
for any (not necessarily coherent) state of the field.

B. Simplest setup for entanglement
harvesting with δ couplings

The case ofAlice andBob each δ coupling once to the field
has already been studied in Ref. [15]. The results of Ref. [15]
are a particular example of the general result that we
discussed in the previous section: two detectors that each
δ couple to the field once cannot become entangled with one
another. In this section we will show the simplest example
where the detectors can become entangled: Alice (A)
coupling twice and Bob (B) once. The three possible ways
for this to occur are AAB (A first coupling twice, then B
once), ABA, and BAA. As discussed in Sec. III Awe know
that the first of these schemes (AAB coupling) is incapable of
harvesting entanglement, while the harvesting abilities of
detectors in the remaining two coupling setups (ABA and
BAA) are constrained by our general findings in Sec. II C.
For simplicity, let us work in (3þ 1) dimensions and

suppose the detectors and field are each in their free ground
states, so that the initial state of the system, jψ0i, reads

jψ0i ¼ jgAi ⊗ jgBi ⊗ j0i ∈ HA ⊗ HB ⊗ Hϕ: ð34Þ

Furthermore we suppose the detectors are stationary in the
inertial frame in which we performed the field quantization,
and that their centers of mass are located at xA ¼ xB ¼ 0.
We allow the detectors and field to interact according to the
Hamiltonian

ĤIðtÞ ¼ Ĥð1Þ
I;AðtÞ þ Ĥð2Þ

I;AðtÞ þ Ĥð1Þ
I;BðtÞ; ð35Þ

where the ĤðiÞ
I;νðtÞ is defined as

ĤðiÞ
I;νðtÞ ¼ λνδðt − tνiÞm̂νðtÞ ⊗

Z
d3xFνðxÞϕ̂ðx; tÞ: ð36Þ

We will take λA ¼ λB=2 ¼ λ so that detector A (which
couples twice to the field) and detector B (which couples
once) interact with the field with the same overall “total
strength.” The time-evolution unitary Û generated by the
interaction Hamiltonian (35) is given by

Û ¼

8>><
>>:

ÛB1
ÛA2

ÛA1
if tA1

≤ tA2
≤ tB1

;

ÛA2
ÛB1

ÛA1
if tA1

≤ tB1
≤ tA2

;

ÛA2
ÛA1

ÛB1
if tB1

≤ tA1
≤ tA2

;

ð37Þ

where Ûνi is the unitary generated by ĤðiÞ
I;ν.

We will set the detector smearing function FνðxÞ to be

FνðxÞ ¼
3

4πσ3
Θ
�
1 −

jxj
σ

�
; ð38Þ

where Θ is the Heaviside theta function, σ is the spatial
width of the detector, and the prefactor 3=4π is chosen so
that

R
d3xFðxÞ ¼ 1. Notice that the support of Fν is the

sphere of radius σ centered at x ¼ 0. Hence if detectors A
and B interact with the field through unitaries ÛA and ÛB at
times tA and tB, then the detectors are fully timelike
separated during their interactions if and only if
jtA − tBj > 2σ. Note also that in (3þ 1)-dimensional flat
spacetime ½ϕ̂ðxÞ; ϕ̂ðx0Þ� ≠ 0 if and only if x and x0 are null
separated. Therefore for our choice of detector smearing, if
jtA − tBj > 2σ then ÛA and ÛB necessarily commute, and
by the results of the previous section they cannot harvest
entanglement. We will now show to what extent the
detectors can get entangled when they are able to signal
to each other (i.e., when they are not completely timelike
nor spacelike separated).
The time-evolved state of the two detectors after their

interactions with the field, denoted ρ̂AB, is obtained by
applying the unitary Û in Eq. (37) to the initial state jψ0i in
Eq. (34) and tracing out the field, i.e.,

ρ̂AB ¼ TrϕðÛjψ0ihψ0jÛ†Þ: ð39Þ

We carefully evaluate this expression in Appendix B. In the
basis fjgAijgBi; jgAijeBi; jeAijgBi; jeAijeBig, ρ̂AB reads

ρ̂AB ¼

0
BBB@

ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

1
CCCA; ð40Þ

where the entries ρij are dependent on the choice of unitary
in Eq. (37), and are also evaluated in Appendix B.
We will quantify the entanglement of ρ̂AB using the

negativity N , which is an entanglement monotone that
vanishes only for separable states [44,45]. The negativity is
defined as N ≔ −

P
iminðEi; 0Þ, where Ei are the eigen-

values of the partial transpose of ρ̂AB (with respect to either
system A or B). From Eq. (40), we find the Ei to be

E1 ¼
1

2

�
ρ22 þ ρ33 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ22 − ρ33Þ2 þ 4jρ23j2

q �
; ð41Þ
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E2 ¼
1

2

�
ρ22 þ ρ33 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ22 − ρ33Þ2 þ 4jρ23j2

q �
; ð42Þ

E3 ¼
1

2

�
ρ11 þ ρ44 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ11 − ρ44Þ2 þ 4jρ14j2

q �
; ð43Þ

E4 ¼
1

2

�
ρ11 þ ρ44 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ11 − ρ44Þ2 þ 4jρ14j2

q �
: ð44Þ

The eigenvalues Ei of the partial transpose of ρ̂AB, and
hence the negativity N , are functions of the following
parameters: the times tA1

, tA2
, and tB1

at which the detectors
couple to the field, the strength λ with which the detectors
couple to the field, as well as the energy gapsΩA andΩB of
the detectors. We investigate each of these dependencies
below. For simplicity we will set the units of length to be σ,
which is half the spatial width of a detector. Hence the units
of energy and λ (in 3þ 1 dimensions) are σ−1.
First suppose that tA1

≤ tA2
≤ tB1

. With these con-
straints, we are not able to find any parameter values
which give a nonzero negativity. This is, of course,
expected from our result in Sec. III A: the single coupling
between detector B and the field is entanglement breaking,
and hence if B couples last, regardless of the way A couples
the final state of A and B will be separable.
What happens if we constrain the coupling times by

tB1
≤ tA1

≤ tA2
? In this case, we do find parameter values

for which the negativity is nonvanishing, as is shown in
Fig. 3. In this plot we see that the negativity is a periodic
function of the energy gap ΩA of detector A, with period
T ¼ 2π=ðtA2

− tA1
Þ. This is due to the fact that detector A

evolves freely for a time interval tA2
− tA1

between its two
couplings with the field. Adding a multiple of T to the
detector’s free frequencyΩA will not alter the phase it picks

up during its free evolution. Notice also from Fig. 3 that if
the phase difference ΩAðtA2

− tA1
Þ is a multiple of 2π (i.e.,

ΩA ∈ 4πZ for the solid curve, and ΩA ∈ 2πZ for the
dashed curve), then the detectors cannot harvest entangle-
ment. This comes about because such a phase difference
ensures that Alice’s two couplings to the field are through
the same detector observable, and hence they result in a
unitary that is the exponential of a Schmidt rank-1 operator,
which, as we have shown, results in an entanglement-
breaking channel. Reassuringly, we also find the negativity
to be independent of ΩB. This is as expected: since detector
B interacts with the field at only one instant in time, any
observable phenomenon (like the negativity) is indepen-
dent of its free evolution, and thus its frequency ΩB.
These findings allow us to strongly weigh in on the

discussion presented in Ref. [15], where the authors found
that two detectors that each δ couple to the field cannot
extract any entanglement. Two possible physical explan-
ations were suggested: (i) that the sudden δ couplings
induced too much local noise, which is known to have
adverse effects on the amount of harvestable entanglement
[11,17], or (ii) that the lack of harvestable entanglement
was a result of each detector not experiencing any free
dynamics due to the fact that it only couples to the field at
one instant in time. The second explanation is nicely
complemented by the perturbative result that degenerate
detectors, which also experience a lack of free dynamics,
cannot harvest entanglement from the vacuum at leading
order [34]. We now see that this intuition in (ii) seems to be
correct. Namely, we have shown that it is indeed possible to
harvest entanglement by δ coupling to the field (therefore
the noisy nature of δ couplings cannot be a critical
constraint), but it is necessary for at least one of the
detectors to couple more than once to the field (and hence
experience nontrivial free evolution).
Let us now explore the dependence of the negativity on

the coupling strength λ of the detectors to the field. In
Fig. 4, we notice that in the weak-coupling regime λ ≪ 1

(in units of σ−1), N scales as λ2. This is a familiar result
from perturbative studies [17,46], where it has been shown
that the leading-order contribution toN is ofOðλ2Þ. Notice
however, that this trend does not continue into the non-
perturbative (λ≳ 1) regime. In fact, remarkably,N reaches
a maximum and then rapidly drops to zero at a finite value
of λ, remaining zero thereafter. That is, in the strong-
coupling regime, increasing the coupling strength seems to
be detrimental to entanglement harvesting, at least for delta
couplings. It is possible that this phenomenon is due to the
“noisy” nature of δ couplings becoming significant in this
regime, but more work needs to be done to confirm this.
To conclude this section, let us consider how the times at

which the detectors couple to the field affect whether they
can become entangled. Concretely, let us again consider the
BAA coupling scheme, where we set tB1

¼ 0. From Fig. 5,
we see that there is only a finite region in the tA1

− tA2
plane

FIG. 3. Negativity N of a two-qubit system as a function
of the energy gap ΩA of qubit A. Here the coupling scheme is
BAA, tB1

¼ 0, tA1
¼ 0.5, λ ¼ 0.1, and recall that σ is the spatial

width of the detectors. The plot is the same for all values of ΩB
since detector B only couples once. We plot the results for two
values of tA2

. Notice that N is periodic in ΩA with period
2π=ðtA2

− tA1
Þ.
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in which the detectors, by appropriately tuning the energy
gap ΩA, could become entangled. This can be contrasted
with the result in Ref. [17], where it was shown that
(spacelike-separated) detectors with Gaussian switching
profiles can always harvest entanglement by increasing
their energy gaps, regardless of separation distance.
Our result for δ-coupled detectors can be understood by

our result in Sec. II C: in order for two detectors δ coupling
to the field three times in total to become entangled, the
values of tA1

and tA2
(with tB1

fixed) must be such that at
least two of the three unitary commutators ½ÛB1

; ÛA1
�,

½ÛB1
; ÛA2

�, and ½ÛA1
; ÛA2

� are nonvanishing. (Recall that in
3þ 1-dimensional flat spacetime, unitaries ÛA and ÛB at
times tA and tB commute if and only if the detectors at these
times are not in null contact.) Indeed, the shaded region in
Fig. 5 corresponds to values of tA1

and tA2
that satisfy this

property. We notice however that this commutator con-
dition on entanglement extraction is necessary but not
sufficient: there exist values of tA1

and tA2
(for example

tA1
¼ 0.2, tA2

¼ 1.9) for which at least two unitary com-
mutators are nonvanishing, yet for which entanglement
harvesting is not possible.

IV. CONCLUSIONS

We have investigated the reasons why, in the analysis of
entanglement harvesting from quantum fields, there were
known regimes where entanglement harvesting was not
possible. Prompted by these no-go results, we have studied
the more general problem of entangling a bipartite sepa-
rable system through bilocal interactions with a bipartite
entangled source.
Concretely, we have considered the general setup of a

separable target system A-B interacting locally with an
entangled source S. Assuming knowledge of the
Hamiltonian governing the time evolution of the system,
we addressed the pertinent question: under what conditions
does the target system A-B become entangled following the
interaction?
For a general class of Hamiltonians Ĥ that are frequently

considered in the literature, we found a necessary condition
that Ĥ must obey in order for A and B to be able to extract
entanglement from the source. Namely, we showed that if
the time-evolution unitary Û generated by Ĥ is of the form
Û ¼ ð1A ⊗ ÛBSÞðÛAS ⊗ 1BÞ (i.e., target A interacts with
the source before target B), and ÛB is the exponential of a
Schmidt rank-1 operator, then A and B cannot become
entangled via their interactions with the source.
With this result we have generalized all previously

known no-go theorems for entanglement harvesting
[15,34]. The significance of this result arises from the fact
that Hamiltonians satisfying the above conditions are
commonly used in nonperturbative studies of first-
quantized systems interacting with quantum fields
[15,31]. Hence the criterion stated above can be used to
prove nonperturbative results for these systems.
For instance, our general result generalizes one of the

main results of Ref. [34]. There it was shown that, to
leading order in perturbation theory, identical and degen-
erate UDW detectors with nonoverlapping switching func-
tions cannot harvest any entanglement from the field
vacuum in a flat spacetime of any dimensionality. In
Ref. [34] it was also shown that for degenerate detectors
with overlapping switchings, and spherically symmetric
smearings, entanglement harvesting is only possible in
timelike separation. Our result extends this claim to the

FIG. 4. Square root of the negativity N as a function of the
strength λ with which detectors couple to the field. Here the
coupling scheme is BAA, tB1

¼ 0, tA1
¼ 0.5, tA2

¼ 1, ΩA ¼ 3,
and recall that σ is the spatial width of the detectors. The plot is
the same for all values of ΩB since detector B only couples once.
As expected, N ∼ λ2 for λ ≪ 1. Interestingly the dependence is
drastically different in the nonperturbative (λ≳ 1) regime.

FIG. 5. The shaded region indicates values of tA1
and tA2

for
which detectors A and B can become entangled (N > 0) with an
appropriate choice of ΩA. Note that in the entire shaded region
½ÛB1

; ÛA1
� and ½ÛA1

; ÛA2
� are nonzero, while the inset shows that

N > 0 is possible even if ½ÛB1
; ÛA2

� ¼ 0, i.e., if tA2
> 2. The

point at ðtA1
; tA2

Þ ¼ ð0.2; 1.9Þ shows thatN could be zero even if
none of the three commutators vanish. Here the coupling scheme
is BAA, tB1

¼ 0, λ ≪ 1 such that N ∼ λ2, andΩA is arbitrary. The
dashed line in the main plot shows tA1

¼ tA2
.
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nonperturbative regime, for not necessarily identical detec-
tors of any shape, and for any arbitrary field state.
There is an important advantage to the method we used

to achieve these generalizations here: the conclusions
followed from a direct inspection of the system’s
Hamiltonian without the need to first explicitly evaluate
the final state of the detectors.
Similarly, we were able to generalize the result that two

UDW detectors (not necessarily degenerate), each interact-
ingwith the quantum field through a singleDirac-δ coupling,
cannot harvest any entanglement from any coherent field
state [15]. Namely, we find that this is the case for any
arbitrary field state. Again, with our general criterion at hand,
this particular result follows immediately from an inspection
of the system’s Hamiltonian, without the need for laborious
calculations of the system’s time evolution.
Finally, having seen that two δ couplings are not enough

to entangle a pair ofUDWdetectors, we showed the simplest
example of a coupling scheme in which the detectors do
become entangled through δ interactions. For detectors that
are able to communicate, i.e., are timelike separated, three δ
couplings are sufficient (two for detector A, one for detector
B), while for spacelike-separated detectors four δ couplings
are required (two per detector).
For the case of three couplings, we found a remarkable

nonperturbative result: when the coupling strength λ between
the detectors and the field is small (compared to other scales
with the same dimensions), the amount of entanglement
harvested by the detectors grows as λ2. This was expected
from previous perturbative studies [17]. However, as λ exits
the perturbative regime this trend reverses itself: the extracted
entanglement begins to decrease, and for λ larger than some
critical value the detectors are not able to extract any
entanglement from the field at all. We conjecture that
this is due to the “noisy” nature of the sharp and intense
δ-couplings, which may manifest itself only in the non-
perturbative, strong coupling regime.
The results of this article give rise to new questions in the

context of entanglement extraction, in general, and entan-
glement harvesting from quantum fields, in particular. For
instance, our results reveal that it may be necessary to
distinguish between the genuine extraction of preexisting
entanglement from a source, and the generation of entangle-
ment between the targets through communication-assisted
correlation via the source. This was illustrated by the qubit
toy models which demonstrated how two target systems can
become entangled by three simple-generated interaction
unitaries. There, preexisting entanglement in the source
system was not required, and would in fact be a hindrance
to achieving entanglement between the targets. Furthermore
we showed that, in full generality, when no communication
between A and B is possible, i.e., when their couplings to the
source commute with each other, then at least two simple-
generated interactions per target are necessary to achieve
genuine entanglement extraction from the source.

It is particularly interesting to apply these considerations
to entanglement harvesting from relativistic fields, where
the ability to communicate between the targets is deter-
mined by their separation being spacelike, null or timelike.
Here, our earlier discussion implies that δ-coupled detec-
tors that are spacelike separated need at least four inter-
actions to extract entanglement from the field. Protocols
that only use three δ couplings in total, meanwhile, can only
succeed in extracting entanglement if the detectors are
located such that they can communicate via the field. All
these factors together suggest that the triple δ-coupling
protocols, while entangling the targets through detector-
field coupling, may not be an example of genuine harvest-
ing of entanglement from the field. Instead, one would need
to use at least four δ couplings to truly harvest preexisting
entanglement from the field’s degrees of freedom onto the
target detectors.
As a final remark, another direction in which these

results could be extended is to investigate how close to a
simple-generated interaction a target-source interaction can
be in order for it to allow for entanglement extraction. It is
likely that there is a larger class of interactions, containing
the simple-generated interactions, for which entanglement
extraction still is not possible. A concept that may be
useful to achieve this generalization is the class of entan-
glement-annihilating channels [47–49]. In particular, the
entanglement-breaking channels that we considered in this
article are a strict subset of the 2-locally entanglement-
annihilating channels [47]. However, bipartite (or more
generally k-partite) entanglement extraction is impossible
already if the source-target interaction yields a 2-locally (or
generally k-locally) entanglement-annihilating quantum
channel from the initial state of the source to the final
individual partial states of the targets.

ACKNOWLEDGMENTS

The authors would like to thank Vern Paulsen very much
for helpful discussions and insights into the mathematics
behind the proof presented in Appendix A. Thework of P. S.
and E.M.-M. is supported by the Natural Sciences and
Engineering Research Council of Canada through the CGS
M scholarship and the Discovery program. E.M.-M. also
gratefully acknowledges the funding of his Ontario Early
Research Award. R. H. J. acknowledges support by ERC
AdvancedGrantNo. 321029 and by theVILLUMFONDEN
via the QMATH center of excellence (Grant No. 10059).

APPENDIX A: CONTINUOUS VERSION OF
CONTROLLED UNITARY ARGUMENT

Let X be a set,M a σ-algebra of subsets of X,H a Hilbert
space, and μ̂ a BðHÞ-valued measure on σ. Let jϕi ∈ H.
Then it is straightforward to show that μϕ∶M → Rþ
defined by μϕðBÞ ≔ hϕjμ̂ðBÞjϕi is a positive measure
on M.
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Lemma 1: Let ρ̂ ∈ BðHÞ be a density matrix on H.
Then μρ∶M → Rþ defined by μρðBÞ ≔ TrðμðBÞρ̂Þ is a
positive measure on M.
Proof.—Write ρ̂ ¼ P∞

i¼1 αijϕiihϕij with jϕii an ortho-
normal basis, αi ≥ 0, and

P∞
i¼0 αi < þ∞. Then

μρðBÞ ≔ TrðμðBÞρ̂Þ ¼
X∞
j¼1

hϕjjμ̂ðBÞρ̂jϕji

¼
X∞
j¼1

hϕjjμ̂ðBÞ
X∞
i¼1

αijϕiihϕijjϕji

¼
X∞
i¼1

αihϕijμ̂ðBÞjϕii

¼
X∞
i¼1

αiμϕi
ðBÞ: ðA1Þ

Hence μρðBÞ ≥ 0 for all B ∈ M and μð∅Þ ¼ 0 since αi ≥ 0

and since μϕi
is a positive measure for all jϕii. Also

μρ

�
⋃
∞

k¼1

Bk

�
¼

X∞
i¼1

αiμϕi

�
⋃
∞

k¼1

Bk

�
¼

X∞
i¼1

αi
X∞
k¼1

μϕi
ðBkÞ;

ðA2Þ
where in the last step we use the fact that μϕ is a measure.
Since, additionally, μϕ is positive, we can commute the two
summations. Hence

μρ

�
⋃
∞

k¼1

Bk

�
¼

X∞
k¼1

X∞
i¼1

αiμϕi
ðBkÞ ¼

X∞
k¼1

μρðBkÞ: ðA3Þ

Hence μρ is a positive measure. ▪
Lemma 2: Let f∶X → C be a bounded, measurable

function. Then TrðRX fdμ̂ ρ̂Þ ¼ R
X fdμρ.

Proof.—Write ρ̂ ¼ P∞
i¼1 αijϕiihϕij with jϕii an ortho-

normal basis, αi ≥ 0, and
P∞

i¼0 αi < þ∞. Then

Tr

�Z
X
fdμ̂ ρ̂

�
¼

X∞
i¼1

αihϕij
Z
X
fdμ̂jϕii

¼
X∞
i¼1

αi

Z
X
fdμϕi

¼
Z
X
fdμρ; ðA4Þ

where in the second equality we used the definition of an
operator-valued integral (see, e.g., Ref. [50] for details),
and in the last equality we made use of Eq. (A1). ▪

Suppose now that HB is a Hilbert space of dimension
two, and Hϕ is an infinite-dimensional Hilbert space. Note
that the argument presented here is straightforwardly
extended for any finite value of dimHB. Consider a unitary
Û on HB ⊗ Hϕ given by

Û ¼ expð−im̂ ⊗ X̂Þ; ðA5Þ

where both m̂ and X̂ are self-adjoint operators in their
respective Hilbert spaces. Since m̂ is self-adjoint, by the
spectral theorem its eigenvalues span HB, and in this basis
m̂ can be expressed as

m̂ ¼
�
m11 0

0 m22

�
: ðA6Þ

Since X̂ is self-adjoint, by the spectral theorem for
operators on infinite-dimensional Hilbert spaces it can be
expressed as (see, e.g., Ref. [50])

X̂ ¼
Z

λdμ̂ðλÞ; ðA7Þ

where μ̂ is an operator-valued measure on the Borel σ-
algebra of subsets of the spectrum of X̂. For any measurable
function f we define fðX̂Þ to be the operator

fðX̂Þ ≔
Z

fðλÞdμ̂ðλÞ: ðA8Þ

Expanding Û in Eq. (A5) in a power series gives

Û ¼
X∞
n¼0

1

n!
ð−iÞnm̂nX̂n

¼
X∞
n¼0

1

n!
ð−iÞn

�
mn

11X̂
n 0

0 mn
22X̂

n

�

¼
X∞
n¼0

1

n!
ð−iÞn

�mn
11

R
λndμ̂ðλÞ 0

0 mn
22

R̂
λndμ̂ðλÞ

�
;

ðA9Þ
where in the second equality we are representing vectors in
HB in the eigenbasis of m̂, and in the third equality we have
made use of Eq. (A8). By linearity of integration this can be
written as

Û¼
�RP∞

n¼0
1
n!ð−im11λÞndμ̂ðλÞ 0

0
R P∞

n¼0
1
n!ð−im22λÞndμ̂ðλÞ

�
¼
�R

e−im11λdμ̂ðλÞ 0

0
R
e−im22λdμ̂ðλÞ

�
: ðA10Þ

Similarly, the adjoint of Û, denoted Û†, can be expressed as

Û† ¼
�R

eim11λdμ̂ðλÞ 0

0
R
eim22λdμ̂ðλÞ

�
: ðA11Þ
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Consider now the channel ξ which takes states (density matrices) on Hϕ into states on HB and is given by

ξðρ̂ϕÞ ≔ Trϕ½Ûðρ̂B ⊗ ρ̂ϕÞÛ†�; ðA12Þ

where ρ̂B is a density matrix on HB. We can represent ρ̂B in the eigenbasis of m̂ as

ρ̂B ¼
�
b11 b12
b�12 b22

�
: ðA13Þ

Also in this basis, the expression for ξðρ̂ϕÞ takes the form

ξðρ̂ϕÞ ¼ Trϕ

�R
e−im11λdμ̂ðλÞ 0

0
R
e−im22λdμ̂ðλÞ

��
b11ρ̂ϕ b12ρ̂ϕ
b�12ρ̂ϕ b22ρ̂ϕ

��R
eim11λ

0
dμ̂ðλ0Þ 0

0
R
eim22λ

0
dμ̂ðλ0Þ

�

¼ Trϕ

�R
e−im11λdμ̂ðλÞb11ρ̂ϕ

R
eim11λ

0
dμ̂ðλ0Þ R

e−im11λdμ̂ðλÞb12ρ̂ϕ
R
eim22λ

0
dμ̂ðλ0ÞR

e−im22λdμ̂ðλÞb�12ρ̂ϕ
R
eim11λ

0
dμ̂ðλ0Þ R

e−im22λdμ̂ðλÞb22ρ̂ϕ
R
eim22λ

0
dμ̂ðλ0Þ

�

¼
�
Tr

R
e−im11λdμ̂ðλÞb11ρ̂ϕ

R
eim11λ

0
dμ̂ðλ0Þ Tr

R
e−im11λdμ̂ðλÞb12ρ̂ϕ

R
eim22λ

0
dμ̂ðλ0Þ

Tr
R
e−im22λdμ̂ðλÞb�12ρ̂ϕ

R
eim11λ

0
dμ̂ðλ0Þ Tr

R
e−im22λdμ̂ðλÞb22ρ̂ϕ

R
eim22λ

0
dμ̂ðλ0

�
: ðA14Þ

Note that integrals with respect to projection-valued measures have the multiplicative property (see, e.g., Ref. [50])

Z
fðλÞdμ̂ðλÞ

Z
gðλ0Þdμ̂ðλ0Þ ¼

Z
fðλÞgðλÞdμ̂ðλÞ: ðA15Þ

Together with the cyclicity of the trace this simplifies Eq. (A14) to read

ξðρ̂ϕÞ ¼ t

�
Tr

R
b11dμ̂ðλÞρ̂ϕ Tr

R
b12e−iðm11−m22Þλdμ̂ðλÞρ̂ϕ

Tr
R
b�12e

iðm11−m22Þλdμ̂ðλÞρ̂ϕ Tr
R
b22dμ̂ðλÞρ̂ϕ

�

¼
� R

b11dνðλÞ
R
b12e−iðm11−m22ÞλdνðλÞR

b�12e
iðm11−m22ÞλdνðλÞ R

b22dνðλÞ

�
; ðA16Þ

where in the last step we have defined the real-valued measure ν by νð·Þ ≔ Trðdμ̂ð·Þρ̂ϕÞ and made use of Lemma 2. Let us
now define the BðHBÞ-valued function ρ̂BðλÞ so that in the eigenbasis of m̂ it reads

ρ̂BðλÞ ¼
�

b11 b12e−iðm11−m22Þλ

b�12e
iðm11−m22Þλ b22

�
: ðA17Þ

Then Eq. (A16) can be written in a basis-independent manner as

ξðρ̂ϕÞ ¼
Z

ρ̂BðλÞνðλÞ: ðA18Þ

Finally, by Theorem 2 in Ref. [37], we see that the channel ξ is entanglement breaking.

APPENDIX B: CALCULATION OF ρ̂AB

Here we will show the procedure for calculating the expression for the density matrix ρ̂AB for each of the three coupling
setups that we consider: AAB (first Alice couples twice then Bob once), BAA, and ABA. Notice that the first two scenarios
are just limiting cases of the coupling scheme AABB (up to a relabeling of A ↔ B). Similarly the coupling ABA is a
limiting case of the four-delta-coupling ABBA, where we take the two B couplings to be at the same time. We will work out
the details for the AABB coupling, with the calculations for the ABBA setup performed analogously.
Let us therefore consider the case where A and B each delta couple to the field twice, at times tA1

≤ tA2
≤ tB1

≤ tB2
, with

coupling strengths λA ¼ λB ¼ λ=2. The interaction Hamiltonian is
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ĤIðtÞ ¼ Ĥð1Þ
I;AðtÞ þ Ĥð2Þ

I;AðtÞ þ Ĥð1Þ
I;BðtÞ þ Ĥð2Þ

I;BðtÞ; ðB1Þ

with ĤðiÞ
I;νðtÞ defined in Eq. (36). This Hamiltonian generates the time-evolution unitary Û ¼ ÛB2

ÛB1
ÛA2

ÛA1
, with the Ûνi

given by (see Ref. [15] for details)

ÛAi ¼ 1A ⊗ 1B ⊗ ŷþAi þ m̂Ai ⊗ 1B ⊗ ŷ−Ai; ðB2Þ

ÛBi ¼ 1A ⊗ 1B ⊗ ŷþAi þ 1A ⊗ m̂Bi ⊗ ŷ−Ai; ðB3Þ

where m̂νi ≔ m̂νðtνiÞ, ŷþνi ≔ coshðŶνiÞ, ŷ−νi ≔ sinhðŶνiÞ, and Ŷνi ≔ −iðλ=2Þ R dnxFνðxÞϕ̂ðx; tνiÞ. The unitary Û evolves the
initial state jψ0i given in Eq. (34) into the state

Ûjψ0i ¼ jgAi ⊗ jgBi ⊗ ðŷþA2ŷþA1ŷþA2ŷþA1 þ e−iΩAðtA2−tA1 ÞŷþA2ŷ
þ
A1ŷ

−
A2ŷ

−
A1

þ e−iΩBðtB2−tB1 Þŷ−A2ŷ
−
A1ŷ

þ
A2ŷ

þ
A1 þ e−iΩAðtA2−tA1 Þe−iΩBðtB2−tB1 Þŷ−A2ŷ

−
A1ŷ

−
A2ŷ

−
A1Þj0i

þ jgAi ⊗ jeBi ⊗ ðeiΩBtB1 ŷþA2ŷ
−
A1ŷ

þ
A2ŷ

þ
A1 þ e−iΩAðtA2−tA1 ÞeiΩBtB1 ŷþA2ŷ

−
A1ŷ

−
A2ŷ

−
A1

þ eiΩBtB2 ŷ−A2ŷ
þ
A1ŷ

þ
A2ŷ

þ
A1 þ e−iΩAðtA2−tA1 ÞeiΩBtB2 ŷ−A2ŷ

þ
A1ŷ

−
A2ŷ

−
A1Þj0i

þ jeAi ⊗ jgBi ⊗ ðeiΩBtA1 ŷþA2ŷ
þ
A1ŷ

þ
A2ŷ

−
A1 þ eiΩAtA2 ŷþA2ŷ

þ
A1ŷ

−
A2ŷ

þ
A1

þ eiΩBtA1e−iΩBðtB2−tB1 Þŷ−A2ŷ
−
A1ŷ

þ
A2ŷ

−
A1 þ eiΩAtA2e−iΩBðtB2−tB1 Þŷ−A2ŷ

−
A1ŷ

−
A2ŷ

þ
A1Þj0i

þ jeAi ⊗ jeBi ⊗ ðeiΩAtA1eiΩBtB1 ŷþA2ŷ
−
A1ŷ

þ
A2ŷ

−
A1 þ eiΩAtA2eiΩBtB1 ŷþA2ŷ

−
A1ŷ

−
A2ŷ

þ
A1

þ eiΩAtA1eiΩBtB2 ŷ−A2ŷ
þ
A1ŷ

þ
A2ŷ

−
A1 þ eiΩAtA2eiΩBtB2 ŷ−A2ŷ

þ
A1ŷ

−
A2ŷ

þ
A1Þj0i: ðB4Þ

Using this expression we can calculate the time-evolved density matrix ρ̂AB ≔ TrϕðÛjψ0ihψ0jÛ†Þ. For example, in the
basis fjgAijgBi; jgAijeBi; jeAijgBi; jeAijeBig, the (1,1) component of ρ̂AB, denoted ρ11, reads

ρ11 ¼ hðþ þ þþþþþþÞ þ hðþ þ þþþþ −−Þe−iΩAðtA2−tA1 Þ

þ hðþ þ þþ − −þþÞe−iΩBðtB2−tB1 Þ þ hðþ þ þþ − − −−Þe−iΩAðtA2−tA1 Þe−iΩBðtB2−tB1 Þ

þ hð− −þþþþþþÞeiΩAðtA2−tA1 Þ þ hð− −þþþþ −−Þ
þ hð− −þþ − −þþÞeiΩAðtA2−tA1 Þe−iΩBðtB2−tB1 Þ þ hð− −þþ − − −−Þe−iΩBðtB2−tB1 Þ

þ hðþ þ − −þþþþÞeiΩBðtB2−tB1 Þ þ hðþ þ − −þþ −−Þe−iΩAðtA2−tA1 ÞeiΩBðtB2−tB1 Þ

þ hðþ þ − − − −þþÞ þ hðþ þ − − − − −−Þe−iΩAðtA2−tA1 Þ

þ hð− − − −þþþþÞeiΩAðtA2−tA1 ÞeiΩBðtB2−tB1 Þ þ hð− − − −þþ −−ÞeiΩBðtB2−tB1 Þ

þ hð− − − − − −þþÞeiΩAðtA2−tA1 Þ þ hð− − − − − − −−Þ: ðB5Þ

Here hðl1; l2; l3; l4; l5; l6; l7; l8Þ ≔ h0jŷl1A1
ŷl2A2

ŷl3B1
ŷl4B2

ŷl5B2
ŷl6B1

ŷl7A2
ŷl8A1

j0i for li ¼ �1. In order to evaluate h, it is useful write

ŷ�νi ¼ ½expðŶνiÞ � expð−ŶνiÞ�=2. The expression for h then becomes

hðl1; l2; l3; l4; l5; l6; l7; l8Þ ¼
1

28

X
pj¼�1

Y8
i¼1

fðli; piÞKðp1; p2; p3; p4; p5; p6; p7; p8Þ; ðB6Þ

where Kðp1; p2; p3; p4; p5; p6; p7; p8Þ ≔ h0jep1ŶA1ep2ŶA2ep3ŶB1ep4ŶB2ep5ŶB2ep6ŶB1ep7ŶA2ep8ŶA1 j0i, and fðli; piÞ equals −1 if
li ¼ pi ¼ −1 and 0 otherwise. Next we define the commutators iθν1ϕ ≔ ½Ŷν2; Ŷν1� and iθij1ϕ ≔ ½ŶBi; ŶAj�, which evaluate to

θν ¼ i
Z

d3kðαA1
ðkÞα�A2

ðkÞ − c:c:Þ; θij ¼ i
Z

d3kðαAjðkÞα�BiðkÞ − c:c:Þ; ðB7Þ
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where ανiðkÞ is defined by

ανiðkÞ ≔ −
iλ

2
ffiffiffiffiffiffiffiffi
2jkjp F̃�

νðkÞeijkjtνi : ðB8Þ

F̃νðkÞ is the Fourier transform of the smearing function FνðxÞ, given in Eq. (38). Calculating F̃νðkÞ we obtain

F̃νðkÞ ≔
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
Z

d3xFνðxÞeik·x ¼
ffiffiffi
2

π

r
sinðσjkjÞ − σjkj cosðσjkjÞ

ðσjkjÞ3 : ðB9Þ

The expressions for θν and θij then work out to be

θν ¼
9λ2

4π2
Isðtν2 − tν1Þ; θij ¼

9λ2

4π2
IsðtBi

− tAj
Þ; where ðB10Þ

IsðxÞ ≔
Z

∞

0

dk
ðsinðkÞ − k cos kÞ2

k5
sinðkxÞ ¼ π

96
xð2 − jxjÞ2ð4þ jxjÞΘð2 − jxjÞ: ðB11Þ

Using the Baker-Campbell-Hausdorff formula the expression for K becomes

Kðp1; p2; p3; p4; p5; p6; p7; p8Þ ¼ h0jD̂αj0i exp
�
−
i
2
ððp1 − p8Þðp3 þ p6Þθ11 þ ðp2 − p7Þðp3 þ p6Þθ12

þ ðp1 − p8Þðp4 þ p5Þθ21 þ ðp2 − p7Þðp4 þ p5Þθ22
þ ðp1 − p8Þðp2 þ p7ÞθA þ ðp3 − p6Þðp4 þ p5ÞθBÞ

�
; ðB12Þ

where D̂α is the “displacement operator” of amplitude α, given by

D̂α ≔ exp

�Z
d3kðαðkÞa†k − αðkÞ�akÞ

�
; where ðB13Þ

αðkÞ ≔ ðp1 þ p8ÞαA1
ðkÞ þ ðp2 þ p7ÞαA2

ðkÞ þ ðp3 þ p6ÞαB1
ðkÞ þ ðp4 þ p5ÞαB2

ðkÞ: ðB14Þ
D̂α acts on the vacuum state j0i to create a coherent state of amplitude α, which we denote jαi. Thus the factor h0jD̂αj0i is
simply the inner product between j0i (the coherent state of amplitude 0) and jαi. In Appendix A of [15] it was shown how to
calculate the inner product of two coherent states. The result is

h0jD̂αj0i ¼ exp

�
−
1

2

Z
d3kjαðkÞj2

�
: ðB15Þ

Using the definition of αðkÞ in Eq. (B14), this simplifies to

h0jD̂αj0i ¼ exp

�
−

9λ2

16π2

�
1

4
ððp1 þ p8Þ2 þ ðp2 þ p7Þ2 þ ðp3 þ p6Þ2 þ ðp4 þ p5Þ2Þ

þ 2ðp1 þ p8Þðp2 þ p7ÞIcðtA2
− tA1

Þ þ 2ðp1 þ p8Þðp3 þ p6ÞIcðtB1
− tA1

Þ
þ 2ðp1 þ p8Þðp4 þ p5ÞIcðtB2

− tA1
Þ þ 2ðp2 þ p7Þðp3 þ p6ÞIcðtB1

− tA2
Þ

þ 2ðp2 þ p7Þðp4 þ p5ÞIcðtB2
− tA2

Þ þ 2ðp3 þ p6Þðp4 þ p5ÞIcðtB2
− tB1

Þ
�
; ðB16Þ

where IcðxÞ is given by

IcðxÞ ≔
Z

∞

0

dk
ðsinðkÞ − k cos kÞ2

k5
cosðkxÞ

¼

8>>>>><
>>>>>:

1
4

if x ¼ 0;
1
12
ð5 − 8 ln 2Þ if x ¼ �2;

1
96
½24þ 4x2 − 2x2ðx2 − 12Þ ln jxj − 16jxj lnð2þ jxjÞ − 12x2 lnð2þ jxjÞ

þx4 lnð2þ jxjÞ þ jxjðjxj − 2Þ2ð4þ jxjÞ ln jjxj − 2j� otherwise:

ðB17Þ
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Substituting Eqs. (B10) and (B16) into Eq. (B12) gives us an
expression forK, which we can then substitute into Eq. (B6)
to get a concrete expression for h. Therefore we can get an
expression for the matrix element ρ11, which is expressed
in terms of h in Eq. (B5). The remaining elements of the

two-detector density matrix ρ̂AB are calculated analogously.
From the symmetries of the arguments ofh in Eq. (B6) and of
K in Eq. (B12), we can see that if h has an odd number of “−”
arguments then it vanishes. This is the reason why half of the
matrix elements of ρ̂AB in Eq. (40) are zero.
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