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The black hole area theorem implies that when two black holes merge, the area of the final black hole
should be greater than the sum of the areas of the two original black holes. We examine how this prediction
can be tested with gravitational-wave observations of binary black holes. By separately fitting the early
inspiral and final ringdown stages, we calculate the posterior distributions for the masses and spins of the
two initial and the final black holes. This yields posterior distributions for the change in the area and thus a
statistical test of the validity of the area increase law. We illustrate this method with a GW150914-like
binary black hole waveform calculated using numerical relativity, and detector sensitivities representative
of both the first observing run and the design configuration of Advanced LIGO. We obtain a ∼74.6%
probability that the simulated signal is consistent with the area theorem with current sensitivity, improving
to ∼99.9% when Advanced LIGO reaches design sensitivity. An important ingredient in our test is a
method of estimating when the postmerger signal is well fit by a damped sinusoid ringdown waveform.
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I. INTRODUCTION

The black hole area increase law [1,2] is one of the most
celebrated results in exact nonlinear relativity. It applies to
both single black holes and to mergers of multiple black
holes and implies that the total horizon areas should always
increase provided certain assumptions that are expected to
hold for astrophysical black holes. This law suggests an
analogy between the area of the horizon of a black hole and
its entropy [3–5], and is thus one of the central results of
black hole thermodynamics. The observations of gravita-
tional waves from binary black hole coalescence events
[6–11] open up the possibility of carrying out direct tests of
this fundamental law using observational data. In this paper
we present a method to perform such a test based on the
inspiral and on the ringdown stages of simulated binary
black hole coalescences.
Gravitational-wave observations of binary black hole

coalescences correspond to the inspiral of two black holes
that merge together to form a single black hole which then
settles down to a stationary state by a ringdown process.
The areas of the black hole horizons are not directly
observable using gravitational-wave data, so here we make

use of the Kerr metric to relate the black hole horizon area
to its asymptotic massM and dimensionless spin χ. Widely
separated inspiralling black holes are expected to be very
well described by the Kerr metric in some neighborhood of
the horizon. Mass and spin values can be inferred for the
inspiralling black holes by comparison with inspiral gravi-
tational waveforms. The mass and spin of the final black
hole can be inferred by comparison with ringdown wave-
forms of a single Kerr black hole.
If two initially distant Kerr black holes with areas A1, A2

coalesce to form a final Kerr black hole with area Af, then it
follows from the area increase law that

A1 þ A2 ≡ Ai < Af: ð1Þ
Our analysis strategy is similar to the suggestion by

Hughes and Menou [12]; namely, use the early inspiral
regime to measure the parameters of the initial black holes,
and independently use the late-time ringdown regime to
measure the parameters of the final black hole. The end
result of the parameter estimation procedure is a probability
distribution pðΔAÞ for the change in the area ΔA ≔
Af − ðA1 þ A2Þ. This allows us to calculate a probabilityZ

∞

0

pðΔAÞdΔA ð2Þ
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that a particular event is compatible with the area increase
law.
By analyzing the observed gravitational-wave data for

the detected events [6–11], posterior distributions for the
parameters of the initial and final black holes in these
events have been reported in [8–10,13]. However, these
cannot be used as an independent test of the area increase
law because these results use fitting formulas to obtain the
final Mf, χf (and thus Af) as functions of the initial
parameters. These fitting formulas [14–16] are results of
numerical relativity simulations which assume the validity
of vacuum general relativity, and thus implicitly assume
a priori the validity of the area increase law. A true direct
test of the area increase law should independently obtain Ai
and Af from the observed data and then use them to verify
whether or not Eq. (1) holds.
Similarly, tests have been designed to check the consis-

tency between the inspiral and merger-ringdown parts of
gravitational-wave signals [17,18]. When performed on
gravitational-wave observations these tests have found the
signals to be compatible with standard general relativity and
the fitting formulas [6,8–10]. Our proposed test here is
different in that we avoid the use of fitting formulas entirely;
we separate the signal in the time domain rather than the
frequency domain, and crucially we avoid using data from
the near merger portion of the signal. A violation of the area
theorem is perhaps most likely near the merger of the two
black holes where the spacetime is most dynamic. It is this
region where numerical relativity simulations are critical to
following the evolution. We wish to avoid this region and
infer areas for the inspiralling black holes only from the early
inspiral phasewhen the two black holes are clearly separated,
and infer the area of the final black hole only from its simple
ringdown behavior as given by the Kerr metric.
Another result that shows up naturally is an independent

estimate of the energy radiated away during the merger in
the form of gravitational radiation without using any of the
aforementioned numerical relativity fits. Since we obtain
the two initial masses and the final mass, it is straightfor-
ward to compute the difference and obtain a posterior
distribution of the radiated energy. This can be compared
with the numerical relativity prediction and thus offers yet
another test of general relativity.
The various details involved in this calculation are

described in the following sections. The plan for the rest
of the paper is as follows. Section II introduces preliminary
material and notation. Section III presents the details of the
test. Sections IV and V present results on simulated signals
and finally Sec. VI has concluding remarks on the future
prospects of this test.

II. PRELIMINARIES

A. Testing the assumptions

A test of the black hole area increase theorem is a test of
whether the assumptions that go into the theorem’s proof

are valid. Any violation of area increase would be proof that
at least one of the assumptions does not hold. In the test
proposed here, we measure the change in area between two
asymptotic states, well before the merger and well after the
merger, where the relevant black holes can be approximated
by Kerr black holes. It is therefore not a test that the total
horizon area is increasing at all times during the coales-
cence. However, the change in area between these asymp-
totic states can be written as a time integral over the
instantaneous rate of area change and hence our test
depends on the assumptions used to show that the rate
of area change should always be positive. A decrease in the
area between asymptotic states would be a demonstration
that at least one of these assumptions was violated
(although clearly if the overall area change is positive this
does not necessarily preclude that the area was decreasing
at some point during the merger, or indeed that some
of the assumptions were mildly violated but the area still
increases).
There exist in the literature several different proofs of the

area increase law that can be classified according to which
type of horizon they refer to, the main classes being event
horizons and quasilocal horizons based on the notion of
marginally trapped surfaces/apparent horizons. The proofs
of the area increase law make different assumptions in
either of the two cases. In the asymptotic states considered
here, both when the two black holes are far apart and at late
times when the final black hole is in equilibrium, there is no
difference between the areas of the event horizon or
quasilocal horizons. Thus if the overall area change is
measured to be negative then this would be a violation both
of proofs using event horizons and of those using quasilocal
horizons, and therefore at least one of the common
assumptions would most likely be violated (although it
is logically possible that different assumptions are violated
in the two cases).
Proofs of the area increase law for event horizons (see

e.g., [19]) rely on three main ingredients:
(i) The null curvature condition, which says that the

Ricci tensor Rμν must satisfy Rμνξ
μξν ≥ 0 for any

null vector field ξμ. While the area theorem does not
depend on the Einstein equations, in Einstein’s
general relativity this assumption is equivalent to
the requirement that the stress-energy tensor Tab
satisfies the null energy condition Tμνξ

μξν ≥ 0.
(ii) Asymptotic flatness and additional global conditions

which ensure that the spacetime outside the black
hole (including the event horizon) must be predict-
able from suitable data on a Cauchy surface. In
particular, these conditions rule out the presence of
naked singularities (cosmic censorship).

(iii) The proofs use properties of the intrinsic geometry
of event horizons and in particular the geodesic
deviation equation for null geodesics on the event
horizon.
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It can be shown that given the previous conditions, the
congruence of null geodesics generating the event horizon
cannot have negative expansion anywhere and the area is
always increasing. The most general statement and proof of
the area increase law is by Chrusciel et al. [20]. This
includes the cases when the event horizon is not smooth1

and also applies to nonzero values of the cosmological
constant. As expected, cosmic censorship and the null
curvature condition are still required.
Since gravitational-wave observations only probe a finite

region of spacetime, it would seem unreasonable that we
could say anything definite about naked singularities
anywhere in the Universe based on these observations.
This is also an artefact of the well-known global and
teleological features of the event horizon. Thus, should we
have observational evidence that the area increase law is
violated, we can expect the energy condition to be the main
culprit.
This can be seen clearly in alternate formulations of the

area increase law. It is possible to formulate the area
increase law for black holes in a quasilocal framework,
without these global assumptions, relying on marginally
trapped surfaces and the associated notions of dynamical
and trapping horizons [23–25]. Using the Einstein equa-
tions on the horizon, it is possible to obtain a “physical
process” version of the area increase law which relates the
increase in area to the fluxes of in-falling matter and
radiation [26]. These fluxes are manifestly positive if the
dominant energy condition holds.
It is in fact known that energy conditions can be violated

in nature by a number of mechanisms [27]. The question of
whether sufficient energy condition violation occurs during
a binary black hole merge to cause the horizon area to
decrease is one of the main motivations for our test.
In our test of the area increase law, we assume that the

black hole no-hair theorem holds, i.e., that any astrophysi-
cal stationary black hole is completely described by its
mass M and angular momentum J and given by the Kerr
solution. This applies to the two initial black holes and to
the final black hole formed as a result of the coalescence.
Thus, any cross section of the black holes at early and late
times has an area A given by

A ¼ 8πM2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q �
: ð3Þ

Here χ ¼ J=M2 is the dimensionless spin, which can take
values −1 ≤ χ ≤ 1. It is an important goal to test whether
the no-hair theorems are valid and in fact, there is a large
body of work on possible tests of the black hole uniqueness
theorem from binary black hole observations [28–33].

It would be preferable to drop this assumption and design
a joint test of both the area increase law and the uniqueness
theorems, but this is beyond the scope of the present paper.
It is important for us to clearly identify the parts of the
waveform when we cannot assume the no-hair theorem to
hold and this is addressed below in Secs. III B and III C.
As shown by Hawking [1], the constraint derived from

the area increase law can be used to bound the amount of
energy emitted during the coalescence process. For a
coalescence of nonspinning, equal-mass black holes, this
bound limits the emitted energy to be no more than about
29% of the initial rest-mass energy of the two black holes
(see also [34]). Numerical simulations of black hole
collisions show that in reality the amount of energy radiated
by gravitational waves is considerably less than this
theoretical upper bound [35].

B. Estimating the parameters

To extract the mass and spin parameters from the
observations we must examine the nature of the gravita-
tional waves produced. Consider a plane gravitational wave
corresponding to a gravitational metric perturbation hμν.
We can find a frame transverse to the direction of
propagation so that the transverse-traceless part of hμν
can be written in terms of two polarizations,

hþðtÞ ¼ AþðtÞ cosΦðtÞ; ð4Þ

h×ðtÞ ¼ A×ðtÞ sinΦðtÞ: ð5Þ

Here Aþ;× are slowly varying amplitudes and ΦðtÞ is a
rapidly varying phase. The amplitudes depend on the
intrinsic parameters of the source, the distance to the
binary, and the angle between the line-of-sight vector from
the binary to Earth and the orbital angular momentum
vector (inclination angle ι).
The response of an interferometric detector to this wave

depends on the relative orientation between the wave frame
and the detector frame and thus is specified by three angles.
These three angles are typically taken to be the sky location
of the source given by a right ascension α and declination δ
in a geocentric coordinate system, and the so-called
polarization angle ψ defining the relative orientation of
the wave frame with the geocentric coordinate system (see
e.g., [36,37]). Assuming the wavelength of the signal to be
much larger than the detector arms, appropriate for ground-
based detectors and for the kind of signals we are consid-
ering, the strain hðtÞ observed by the detector is

hðtÞ¼Fþðα;δ;ψÞhþðt− t0;ϕ0ÞþF×ðα;δ;ψÞh×ðt− t0;ϕ0Þ:
ð6Þ

Here Fþ;× are the beam pattern functions of the detectors
(assumed to be constant over the duration of the signal), t0

1Generically event horizons are not smooth; cusps are formed
when null geodesics enter the horizon [21]. Numerical relativi-
tists assume that the horizon is regular except for a finite number
of such cusps (see e.g., [22]).
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is a suitably defined arrival time and ϕ0 is the phase at t0. It
is useful to rewrite hðtÞ as

hðtÞ ¼ AðtÞ cosðϕ0 þ ϕðt − t0ÞÞ; ð7Þ

where AðtÞ is a slowly varying amplitude and ϕðt − t0Þ a
rapidly varying phase.
We estimate the source parameters of a gravitational-

wave signal using Bayesian inference, which was the
method used to estimate the parameters of GW150914
and all subsequent events [13]. We wish to know the
properties of the source of a gravitational-wave signal that
exists in some given data sðtÞ. To that end, we use a model
of the signal h that is parametrized by the source properties
fM1; χ1;…g≡ ϑ⃗. We cannot measure these properties to
infinite precision. Instead we seek the probability density
function pðϑ⃗js; hÞ, which quantifies our measurement
uncertainty. According to Bayes’ theorem, pðϑ⃗js; hÞ
(known as the posterior distribution) is proportional to
the likelihood Lðsjϑ⃗; hÞ of observing the data given ϑ⃗ times
a prior probability distribution pðϑ⃗Þ. The prior represents
our knowledge of ϑ⃗ before observing the data. In a network
of Nd gravitational-wave detectors containing uncorrelated
stationary Gaussian noise, the likelihood function is

Lðsjϑ⃗; hÞ ∝ exp

�
−
1

2

XNd

a¼1

hhaðϑ⃗Þ − sa; haðϑ⃗Þ − sai
�
; ð8Þ

where sa is the data in each detector and ha is the model
waveform (or template) as it would be observed in each
detector. The inner product h·; ·i is

hx; yi≡ 4ℜ
Z

∞

0

x̃�aðfÞỹaðfÞ
SðaÞn ðfÞ

df: ð9Þ

Here SðaÞn ðfÞ is the single-sided power spectral density
(PSD) of the noise in the ath detector.
Stochastic samplers based on Markov-chain Monte Carlo

(MCMC) techniques can be used to evaluate Eq. (8) over the
large, multidimensional space of possible parameters and
produce an estimate of pðϑ⃗js; hÞ. This estimate can then be
numerically marginalized to yield Bayesian credible inter-
vals on various parameters.

III. METHOD

Normally, when analyzing the entire signal (and assum-
ing the detector noise truly is stationary and Gaussian), the
parameter estimates produced by the method described in
Sec. II B are unbiased. In other words, if the source
distribution is the same as the prior, then we can expect
that a signal’s true parameters will lie within the X%
credible interval X% of the time.

However, the method described in Sec. II B yields biased
estimates if a parameter-dependent cut is applied to the
template waveforms [38], as we wish to do here. This is due
to the fact that Eq. (8) is derived assuming that the template
is a model for the entire signal; i.e., Lðsjϑ⃗; hÞ is maximized
for parameters that best match the signal averaged over the
entire bandwidth of the detector. Here, however, we wish to
find the parameters that best match the signal only over a
limited portion of the signal, while ignoring the rest.
Crucially, the onset and duration of the part that we wish
to exclude—the merger—is dependent on the signal’s
source parameters. Since this additional, parameter-
dependent condition is not included in pðϑ⃗js; hÞ, a naïve
application of Eq. (8) results in biased measurements, as we
see below.
Further complicating our efforts is our desire to excise a

part of the signal in the time domain rather than the
frequency domain. As discussed below, this effectively
couples the sky location of the signal to the measurement of
the initial and final masses and spins.
In the following we describe a method to overcome these

challenges. To illustrate and test the method, we simulate
a signal using a publicly available waveform produced by
the SXS collaboration [39,40]. We choose a nonspinning,
equal-mass binary black hole2 with total mass Mt ¼
70 M⊙.

3 The signal, which is similar to a signal like
GW150914, is injected in zero noise at a luminosity
distance DL ¼ 500 Mpc.
We compare results using two different detector sensi-

tivities: the PSD published in the LIGO Open Science
Centre [42] for GW150914, which is representative of
Advanced LIGO’s first observing run, and the zero-detuned
high-power (ZDHP) PSD [43], which is representative of
LIGO’s expected sensitivity in the coming years. In this
analysis we only consider the two LIGO detectors.
However, the method can be trivially expanded to include
any number of detectors.
We use the PyCBC Inference framework to estimate

pðϑ⃗js; hÞ [44]. This is a python-based pipeline similar to
the LALInference pipeline [45] used to infer the parameters
of published gravitational waves. PyCBC Inference sup-
ports multiple stochastic sampling engines. In this study we
use kombine [46], which is a MCMC sampler that uses an
ensemble of Markov chains (or walkers) to efficiently
estimate pðϑ⃗js; hÞ.

A. The effect of sky location

An integral part of our analysis is separating the inspiral
part to estimate the initial parameters of the binary and the

2Numerical waveform SXS:BBH:0066, Lev5.
3Since we use waveform templates that do not include sub-

dominant modes, we select only the 22 mode of the numerical
waveform. This is a sensible approach because higher modes are
not expected to be detectable with current sensitivities [28,41].
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ringdown part to estimate the parameters of the final black
hole. The templates used for the parameter estimation are
terminated (or started) at a specific time. This method
complicates the issue of dealing with the sky location since
the sky location affects the arrival time of the signal in the
detectors.
We have found that if the sky location is allowed to vary

in the MCMC, the terminated templates favor sky locations
that get them closer to the merger, yielding biased results.
One could fix the sky location to a single point if it were
known. However, we do not expect to measure the sky
location of a binary black hole merger to sufficient
precision with the current network of gravitational-wave
detectors for this approach to work. Indeed, when doing the
ringdown analysis, we have found that choosing different
fixed points drawn from within the 50% credible interval of
the sky location produced by a full inspiral-merger-
ringdown analysis yields statistically significant different
estimates of the final mass and spin. Thus picking a single
point for the sky location when one is not actually known
results in an underestimate of our uncertainty, and a
potential bias, of these parameters.
To account for this uncertainty, we fix the sky location to

a distribution rather than a single point when doing the
inspiral and ringdown analyses. We do this by assigning
each walker in our MCMC to a different right ascension
and declination. These locations are drawn from a given
sky map that quantifies the uncertainty in the event’s
location. The walker’s positions in the sky remain fixed
throughout the entirety of the parameter estimation routine.
This way, we include all the information obtained from
allowing the sky location to vary without forcing the entire
parameter estimation analysis to remain on one fixed point.
We use the same sky locations for the inspiral and

ringdown analysis. After evolving the MCMC until it is
burned in, each walker in the inspiral (ringdown) analysis
produces a point estimate of the initial (final) area. Taking
the estimates over all of the walkers produces a distribution
of areas. When taking the difference in areas, we only
compare point estimates between the same sky locations in
both runs. Thus, the inspiral and ringdown analyses are
independent in all parameters except for the sky location.
To produce a sky map for this study, we first perform the

parameter estimation analysis on the full signal, using full
inspiral-merger-ringdown IMRPhenomD templates [47,48].
Figure 1 shows the marginalized posterior distribution of the
right ascension (α) and declination (δ) obtained from this
analysis. We only use the sky-location information from this
analysis; no information regarding the GW parameters ϑ⃗ is
kept. Here, we have restricted our analysis to the two LIGO
detectors. However it is trivial to include a third detector,
if available, to improve our measurement of the sky
location [10].
Since the sky location relies primarily on the time of

arrival of the signal at different detectors, it is possible to

estimate the sky location using searches that do not use any
waveform models from general relativity. For example, a
sky map produced using the Coherent WaveBurst pipeline
[49] was published with GW150914 [42]. The sky map
produced by this pipeline may be used when applying our
test to real events.

B. The inspiral analysis

The initial parameters ought to be measured from the
inspiral part of the waveform, with no assumptions or input
from the merger or ringdown. Ideally, one would use post-
Newtonian waveforms [50]. However, full inspiral-merger-
ringdown waveforms such as the IMRPhenomD family
[47,48] have better agreement with numerical relativity
waveforms at higher inspiral frequencies. We use
IMRPhenomD waveforms terminated at the end of the
inspiral to exclude the highly dynamical merger phase and
guarantee that the inspiral analysis is completely indepen-
dent from the merger and ringdown. For compact binaries
with arbitrary masses and spins, the hybrid minimum
energy circular orbit (hybrid MECO) [51] is a proxy for
the end of the inspiral. The hybrid MECO depends on the
mass ratio of the binary and on the spins of the black holes,
and is symmetric under exchange of the individual objects’
parameters.
Naïvely, one might think that to exclude the merger

phase from the analysis, we need only to terminate the
templates at the time at which they pass through hybrid
MECO. However, while this excludes the merger dynamics

FIG. 1. Posterior distribution for the sky location (right ascen-
sion α and declination δ) obtained from the full simulated signal.
The colorbar shows the signal-to-noise ratio (SNR), which is a
function of the likelihood, and the red lines indicate the values
that were injected. The center and outer dashed lines in the
histograms represent the median value and the 90% credible
interval, respectively. These correspond to the values and the
errors given on top of the histograms.
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in the templates, it does not exclude the merger in the
signal. This results in templates with higher spin and mass
matching the signal better than the template that has the
same mass and spin of the signal, leading to biased results.
This is because the hybrid MECO of these templates occurs
at a higher frequency. Effectively, these templates are able
to see more of the signal; the additional SNR they gain in
doing so is enough to offset any mismatch these templates
have with the signal at lower frequencies.
To recover the correct masses and spins it is necessary to

exclude the merger dynamics in both the templates and the
signal. However, because the intrinsic parameters of the
signal are unknown, the time at which the signal passes
through hybrid MECO is also unknown. To estimate this
time we choose a grid of times tgrid < tref , where tref is a
fiducial time chosen arbitrarily in the proximity of the
expected coalescence time of the binary. We perform an
independent parameter estimation analysis for each grid
time. In each analysis, we apply a taper function to the
templates in the time domain that goes to 0 at a time ttaper.
The taper time is varied across parameter space and
between detectors. Specifically, for a given set of param-
eters ϑ⃗ and a detector D,

ttaper ¼ min ½tgrid þ δtðα; δ;DÞ; thMECOðϑ⃗Þ�; ð10Þ

where thMECO is the time at which the template goes
through hybrid MECO. The δtðα; δ;DÞ is an offset applied
to account for the arrival time uncertainty in each detector
arising from the uncertainty in sky location.
When doing the analysis we found that whitening the

template before tapering yielded better results than simply
applying the taper to the waveform and then whitening.
That is, we replace the full IMR template h with

h0ðtÞ ¼ wðt; ttaperÞ½h � gA−1�ðtÞ;

where gA−1ðtÞ is the inverse Fourier transform of
1=

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
; the � indicates convolution. We use half a

Kaiser window with a duration of 10 ms and shape
parameter β ¼ 8 [52] for the taper function wðt; ttaperÞ. A
duration of 10 ms is used because the whitening filtergA−1ðtÞ effectively goes to 0 on this time scale, ensuring that
times t > ttaper are minimally coupled to times t < ttaper via
the convolution. The whitened, tapered template h0ðtÞ is
filtered with the whitened data.
The grid time tgrid prevents the templates from matching

the merger dynamics in the signal. For tgrid times later than
thMECO, results are influenced by the dynamic merger phase
and the posterior distributions yield biased results. As tgrid
approaches thMECO of the signal, the posterior settles around
the parameters of the signal. For tgrid times earlier than the
signal’s thMECO, the posterior remains in the same region of

parameter space, though it begins to widen due to the
decreasing SNR. Therefore, the transition time between
the moving and the growing posterior distributions yields
the best point at which to calculate the initial areas.
It is thus clear that to estimate the transition time, we

need to study how the posterior distributions change as tgrid
is varied. A general notion of the divergence between two
probability distributions p1ðxÞ and p2ðxÞ is provided by the
Kullback-Leibler divergence (see e.g., [53]) which, for
discrete distributions, is defined as

DKLðp1kp2Þ ¼
X
x

p1ðxÞ log
p1ðxÞ
p2ðxÞ

: ð11Þ

HoweverDKLðp1kp2Þ is not symmetric, i.e.,DKLðp1kp2Þ ≠
DKLðp2kp1Þ. In particular, DKL cannot be viewed as a
distance between probability distributions.DKL is an appro-
priate divergence to use when one of the distributions is
privileged for some reason.
In our case, we have no reason to distinguish different

values of tref − tgrid and thus we choose to use instead the
Jensen-Shannon (JS) divergence. Given two probability
distributions p1 and p2, the JS divergence is a symmetric
and smooth version of the Kullback-Leibler (KL) diver-
gence DKLðp1kp2Þ,

DJSðp1kp2Þ ¼
1

2
DKLðp1kqÞ þ

1

2
DKLðp2kqÞ; ð12Þ

where q ¼ 1
2
ðp1 þ p2Þ. It has been shown that DJS can be

turned into a distance measure between probability dis-
tributions [54].
Figure 2 shows the JS divergence between the posterior

distribution of the analysis at tgrid and the analysis at
tgrid þ Δt, which we have chosen to be Δt ¼ 2.5 ms. Since
we are only interested in the masses and spins of the black
holes, we compute the JS divergence using the two-
dimensional marginalized distribution of chirp mass M ¼
ðM1M2Þ3=5=M1=5

t and effective spin χeff¼ðM1χ1þM2χ2Þ=
Mt. While the posterior distribution is still moving, the JS
divergence is changing significantly. The transition time is
given by the maximum inspiral (minimum ringdown) grid
time where the JS divergence is still roughly constant. From
Fig. 2, the transition time is clearly seen to be at the time
tgrid ¼ tref − 27.5 ms. At times closer to the merger, the
difference between consecutive JS divergences increases
significantly.
In doing the analysis shown in Fig. 2, we vary the two

component masses M1;2, two component spins χ1;2,
distance DL, inclination ι, polarization ψ , coalescence
phase ϕ0, and the template’s coalescence time tc. We
use uniform priors for all of these parameters. The prior
range for the parameters of interest isMi ∈ ½10; 80ÞM⊙ and
χi ∈ ½−0.9895; 0.9895Þ. This is the same prior that was
used in the analysis of GW150914 [13].
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C. The ringdown analysis

The late ringdown phase is well described through
perturbation theory. Assuming that the final object is a
Kerr black hole, the ringdown signal consists of a sum of
exponentially damped sinusoids [30]. It is natural to write
the gravitational wave in terms of spin-weighted spheroidal
harmonics,

hþ þ ih× ¼
X
l;m;n

−2Slmðι;φÞAlmneiðΩlmntþϕlmnÞ: ð13Þ

The sum in the above equation is over the
quantum numbers l; m and the overtone n. Thus,

m ¼ −l;−lþ 1;…; 0;…;l for each l ¼ 2; 3;… and
n ¼ 0; 1; 2;…. The angular functions −2Slmðι;φÞ are
the spin-weighted spheroidal harmonics which appear as
the angular eigenfunctions of the equations describing the
gravitational perturbations of a Kerr black hole found by
Teukolsky (see e.g., [56]). These functions depend on the
angular momentum and mass of the Kerr black hole and
reduce to the usual spin-weighted spherical harmonics for
the nonspinning case. The inclination angle ι is the angle
between the line-of-sight vector from the black hole to
Earth and the intrinsic angular momentum of the black
hole, and φ is the azimuth angle of the black hole with
respect to the observer. The amplitudes Almn and the phases
ϕlmn are arbitrary as far as our ringdown analysis is
concerned. In principle they depend on the configuration
of the gravitational perturbation hμν at the beginning of the
ringdown phase (when linear perturbation theory begins to
be applicable) which in turn depends on the initial
configuration of the binary and on the particular gravita-
tional theory. However, we make no assumption relating
the amplitudes or phases to the initial parameters of the
binary. The complex frequencies Ωlmn are the quasinormal
frequencies determined from the Teukolsky equation. They
are the frequencies for which we obtain solutions which are
purely outgoing at infinity and purely ingoing at the
horizon. See [57] for a method of calculating these
frequencies for a Kerr black hole and see e.g., [30,58]
for reviews on black hole ringdown.
The two polarizations of the gravitational waveform are

given by

hþðtÞ¼
X
l;m;n

−2Y
þ
lmðιÞAlmne−t=τlmn cosðωlmntþβlmnÞ;

h×ðtÞ¼
X
l;m;n

−2Y
×
lmðιÞAlmne−t=τlmn sinðωlmntþβlmnÞ: ð14Þ

It is assumed here that the ringdown begins at t ¼ 0 and
instead of the complex frequency Ωlmn we have used the
damping time τlmn and real frequency ωlmn. Here, we have
approximated spin-weighted spheroidal harmonics −2Slmn
by spin-weighted spherical harmonics −2Ylmn [59,60]. The
angle βlmn ¼ ϕlmn þmφ combines the initial ringdown
phase with the azimuthal part of the spherical harmonics,
and we have defined [60]

−2Y
þ
lmðιÞ ¼ −2Ylmðι; 0Þ þ ð−1Þl−2Yl−mðι; 0Þ;

−2Y
×
lmðιÞ ¼ −2Ylmðι; 0Þ − ð−1Þl−2Yl−mðι; 0Þ: ð15Þ

Throughout this paper we use only the fundamental mode
(l ¼ m ¼ 2; n ¼ 0). However, the methods presented here
can be extended to multimode ringdowns once the detec-
tors’ sensitivities allow the detectability of higher order
modes.
The ringdown template assumes hðtÞ ¼ 0 before the start

of the damped sinusoid, but it is unknown in the data when

FIG. 2. (Top) Posterior distribution of the chirp mass and the
effective spin obtained from three different runs. The red cross
indicates the injected values. (Bottom) Jensen-Shannon diver-
gence between consecutive grid runs. The x axis indicates the
corresponding time tgrid and the JS divergence is calculated
between the posterior distributions at tgrid and tgrid þ Δt, where
Δt ¼ 2.5 ms. The colored circles indicate the times correspond-
ing to the posterior distributions in the top figure. The chosen
transition time is tgrid − tref ¼ −27.5 ms.
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the signal waveform starts behaving like a pure damped
sinusoid. Same as for the inspiral phase, we choose a grid of
times tgrid > tref and perform the ringdown analysis for
each time separately, where tref is the same fiducial time
used for the inspiral analysis. Times closer to the coales-
cence of the signal will again show biased results. If tref is
after the coalescence time of the signal, we might have to
use a few times tgrid < tref to find the transition time.
Figure 3 shows the resulting JS divergence between the
posterior distribution of the analysis at tgrid and the analysis
at tgrid þ Δt, which for the ringdown analysis we have
chosen to be Δt ¼ 0.5 ms. The JS divergence is computed

using the two-dimensional marginalized distribution of final
mass Mf and final spin χf. The transition time in the
ringdown analysis happens at the time tgrid ¼ tref þ 0.5 ms.
We find that it is necessary to zero out the data prior to

the grid time in order to accurately recover the final mass
and spin using the damped sinusoid. This is different than
the inspiral analysis, in which only the templates were
modified. As discussed above, the time domain represen-
tation of the whitening filter ˜A−1ðtÞ has nonzero support on
time scales OðmsÞ. This is significant in the ringdown
analysis, in which differences of a few milliseconds can
have large effects on the estimated parameters. Namely, the
convolution of the whitening filter with the signal in Eq. (9)
couples information from the merger with the postmerger
ringdown. Since the damped sinusoid is simply 0 prior to its
onset, the whitening filter has a different effect on it. Thus,
even if the template and the postmerger signal are exactly
the same prior to whitening, they are different afterward.
This difference particularly biases the recovered damping
time, which in turn affects the estimated final mass and
spin. Zeroing out the data prior to whitening decouples the
whitened signal’s merger and ringdown, and causes the
whitening filter to affect the signal and template in the same
way, correcting the bias.
The variable parameters for the ringdown analysis are the

central frequency f220 ¼ ω220=2π, damping time τ220,
amplitude A220, phase β220, inclination ι and polarization
ψ (we drop the 220 label from now onwards). We use
uniform priors for all of these parameters. Using the fitting
formulas in [61], one can obtain the final black hole’s mass
Mf and spin χf from the ringdown frequency and damping
time. The prior range for the parameters of interest is f ∈
½20; 1024Þ Hz and τ ∈ ½0.1; 100Þ ms, with the further
constraint that f and τ have to yield physical masses
and spins (i.e., Mf > 0 and −1 < χf < 1).

IV. COMBINED RESULTS

Avisual representation of the MAP waveforms resulting
from the separated parameter estimation analyses is shown
in Fig. 4, with the template waveforms plotted on top of the
detectors’ whitened strains. The probability distribution for
the change in the area is obtained by combining the
posterior distributions of the initial and final parameters
from the selected inspiral and ringdown results.
The simulated binary black hole signal used in this paper

is bound to agree with the area theorem by design. Using
the fitting formulas in [47] we can estimate the expected
area increase for the signal. Two nonspinning black holes
with masses M1 ¼ M2 ¼ 35 M⊙ yield a final black hole
with mass Mf ≃ 66.6 M⊙ and spin χf ≃ 0.69, which trans-
lates into an expected area increase Af=Ai ≃ 1.56.
The top panel in Fig. 5 shows the measured area

increase, with the expected value indicated by a red line.
With current gravitational-wave detectors sensitivities

FIG. 3. (Top) Posterior distribution of the final massMf and the
final spin χf obtained from three different runs. The red cross
indicates the injected values. (Bottom) Jensen-Shannon diver-
gence between consecutive grid runs. The x axis indicates the
corresponding time tgrid and the JS divergence is calculated
between the posterior distributions at tgrid and tgrid þ Δt, where
Δt ¼ 0.5 ms. The colored circles indicate the times correspond-
ing to the posterior distributions in the top figure. The chosen
transition time is tgrid − tref ¼ 0.5 ms.
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(O1), the measured median value with 90% credible
interval is Af=Ai ¼ 1.31þ0.84

−0.70 . Furthermore, we obtain a
∼74.6% probability that the simulated signal is consistent
with the area theorem.
To ascertain how well we may test the area theorem in

the future, we repeat the entire analysis on the same signal
using the ZDHP PSD from Ref. [43], which is the design
sensitivity for Advanced LIGO. Figure 6 shows the JS
divergence plots for the inspiral (top) and ringdown
analyses (bottom). We find that the JS divergence of the
inspiral (ringdown) posteriors settles to a constant value at
tref − 27.5 ms (tref þ 0.5 ms), which is the same as the O1
results. The selected ringdown grid time corresponds to
12.6Mf after the peak amplitude of the signal. While here
we have chosen the JS divergence as an estimate of the
adequate ringdown time, there is no unique definition in the
literature of the start of the ringdown [62–64].
Results with the ZDHP configuration are shown by the

dashed posterior in Fig. 5. In this case, the measured
median value of the area increase with 90% credible
interval is Af=Ai ¼ 1.58þ0.35

−0.33 . With this sensitivity we
obtain a ∼99.9% probability that the simulated signal is
consistent with the area theorem.
The median value of Af=Ai underestimates the true value

in the O1 results. This is primarily due to a systematic bias
arising in the inspiral analysis. Both the mass ratio q≡
M1=M2ðM1 ≥ M2Þ and total mass are overestimated with
this method; this leads to an overestimate of Ai by ∼10%, in
turn leading to an underestimate of Af=Ai. Further biasing
the median is the fact that the simulated signal used here has
q ¼ 1. Since this is on the boundary of allowed parameter
space, the median of the posterior distribution can only ever
overestimate q, again leading to an underestimate of Af=Ai.
The chirpmass iswellmeasured; therefore an overestimate in
the mass ratio leads to an overestimate in the total mass as

well. Finally, as seen in Fig. 5, our prior on Af=Ai strongly
favors a violation of the area theorem. The prior follows from
the uniform prior on the inspiral masses and spins and the
uniform prior on the ringdown frequency and damping time.
This also shifts the posterior distribution to smaller values of
Af=Ai, though the effect is small compared to the effect of the
systematic bias.
Overall, the systematic bias in the area increase is less

than the statistical error. Furthermore, as the bias is toward
violations of the area theorem, it is a conservative error
when evaluating the credible interval to which the signal is
consistent with the area theorem.

FIG. 4. Whitened strain in each detector with the maximum
posterior (MAP) waveform from the inspiral analysis (blue) and
the ringdown analysis (orange).

FIG. 5. (Top) Posterior distribution on the ratio of the final to
initial areas, Af=ðA1 þ A2Þ, for two different Advanced LIGO
sensitivities, O1 and ZDHP. The shaded region Af=Ai < 1

indicates violation of the area theorem, and Af=Ai > 4 indicates
violation of the conservation of energy. The vertical red line is the
expected area increase. (Bottom) Distribution of the ratio
ΔAmeasured=ΔAexpected. The measured area change corresponds
to the distribution shown in the top figure. The expected area
change is given by the initial parameters obtained in the inspiral
analysis and the corresponding expected final parameters from
the fitting formulas in [47]. The vertical red line indicates
agreement between the measured and the expected values,
i.e., ΔAmeasured=ΔAexpected ¼ 1.
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Given the measured initial parameters from the inspiral
analysis, one can obtain the expected area change for each
point in the initial distribution using the fitting formulas in
[47]. A direct comparison of the expected change with the
measured change indicates the level of agreement of the
final object with the fitting formulas, and therefore with
general relativity. If the final object agrees with general
relativity, the ratio between the measured and the expected
values should be 1. The bottom panel in Fig. 5 shows this
ratio for the area change, ΔA ¼ Af − Ai.
The independent measurements of the initial and final

mass performed in this work also allow for estimating the
energy radiated away by the system. The top panel in Fig. 7
shows the posterior distribution in the energy radiated
away,ΔE ¼ Ei − Ef, for both current and future Advanced

LIGO sensitivities. The shaded region indicates the 29%
bound derived from the area increase law. Similar as with
the area change, one can compare the measured energy
radiated, ΔEmeasured, with the result one would obtain
making use of the fitting formulas in [47], ΔEexpected.
The bottom panel in Fig. 7 shows the ratio between these
two energies.
As can be seen by comparison of Figs. 5 and 7, the

measurement of the area increase is more accurate than the
measurement of the energy radiated. This can be under-
stood from the lines of constant area shown in Fig. 8. The
area follows the ringdown posteriors better than the mass
at positive spins, which are expected for two initially
nonspinning black holes. Furthermore, we can expect the

FIG. 6. Jensen-Shannon divergence between consecutive grid
times of the inspiral (top) and ringdown (bottom) analyses using
the ZDHP PSD. Insets show the resulting posterior distribution
for the chosen transition times. The light grey posteriors
correspond to the results obtained with O1 sensitivity. For the
inspiral (ringdown) analysis we find that the JS divergence settles
at tgrid − tref ¼ −27.5 ms (tgrid − tref ¼ 0.5 ms), consistent with
the O1 PSD results shown in Fig. 2 (Fig. 3).

FIG. 7. (Top) Posterior distribution on the energy radiated
during the coalescence. The red line indicates the expected value
for the injected parameters, Ei − Ef ≃ 3.4 M⊙. The shaded
region shows the theoretical limit of 29% in the energy emitted.
(Bottom) Distribution of the ratio ΔEmeasured=ΔEexpected. The
expected radiated energy is given by the initial parameters
obtained in the inspiral analysis and the corresponding expected
final parameters from the fitting formulas in [47]. The vertical red
line indicates agreement between the measured and the expected
values, i.e., ΔEmeasured=ΔEexpected ¼ 1.
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measurement of the area to be even sharper for highly
aligned spinning black holes, while the spin does not
significantly affect the measurement of the mass.

V. SIMULATING VIOLATIONS
OF THE AREA THEOREM

In this section we explore whether we would be able to
measure a violation of the area increase law with the
method described above. We do not explore here how this

violation could happen, but only whether we would be able
to measure a violation. For this purpose we compare our
inspiral measurements with lower-mass ringdown signals.
The spin of the final object is only dependent on the mass
ratio and the spins of the initial objects. Changing the
total mass of the binary yields different final mass but the
same final spin. Therefore, we find that for our system, a
violation of the area theorem would requireMf < 53.3M⊙.
We use two ringdowns with masses Mf ≃ 52.3 M⊙ and
Mf ≃ 47.6 M⊙, and perform the ringdown analysis only
with the ZDHP sensitivity.
Figure 9 shows the result of combining these new

ringdowns with the original inspiral results. The dashed
posterior distribution with ΔM ¼ Mf −Mt ≃ 3.4 M⊙ is
the result shown in the previous section. The continuous
line with ΔM ≃ 17.7 M⊙ is the system that yields a small
violation of the area theorem. We find a ∼55.2% proba-
bility that this system is in violation of the area theorem.
The dotted line shows the system with even lower mass, for
which we obtain ∼91.1% probability that the system is in
violation of the area theorem.

VI. CONCLUSIONS

We developed a method to test the area theorem on
gravitational-wave signals from binary black hole coales-
cences. This method completely ignores information from
the highly dynamical merger phase, thus ensuring that the
initial and final parameters are measured independently
from each other, and without assuming general relativity
during the merger process.
With current gravitational-wave detector sensitivities and

zero noise, we obtained ∼74.6% probability that a numeri-
cal waveform similar to GW150914 is consistent with the
area theorem. This probability increases to ∼99.9% with
design sensitivity (ZDHP) for Advanced LIGO.
The next obvious step is to perform this analysis on a real

gravitational-wave signal. From the binary black holes
known to date there is only one with loud enough ringdown
to perform this test: GW150914. We plan to show results on
this event in a future publication. One of the major issues is
the choice of the start time for the ringdown. Our method of
using the JS divergence will be a useful starting point for
this analysis but might need to be refined for real data. In
simulations with Gaussian noise, we have found that the
qualitative behavior of the JS divergence is the same as in
Fig. 3; however the data have larger variations. This will be
investigated in future work on real detector data.
The confidences obtained are mainly bound by the

ringdown analysis, which yields wider posterior distribu-
tions than the inspiral analysis. Higher modes could start
becoming important before the end of the second gener-
ation of gravitational-wave detectors. The addition of
subdominant modes to the ringdown analysis not only
allows for tests of the Kerr nature of the final black holes,
but could result in better constraints on the final mass and

FIG. 8. Lines of constant area as a function of the final mass
and spin. The solid line shows the expected value, while dashed
lines indicate areas �25%; 50%; 75%. For comparison, the 90%
credible interval from the ringdown analysis with O1 sensitivity is
shown.

FIG. 9. Posterior distribution on the ratio of the final to initial
areas, Af=ðA1 þ A2Þ, with ZDHP sensitivity. The shaded region
Af=Ai < 1 indicates violation of the area theorem. The shaded
region Af=Ai > 4 indicates violation of the conservation of
energy. Vertical lines indicate the expected value for each case.
The dashed posterior distribution is the result shown in the
previous section. The solid posterior distribution is a signal that
slightly violates the area theorem, and the dotted posterior
distribution is a signal that clearly violates the area theorem.
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spin. Therefore, detectable higher modes could improve the
confidence level on testing the area theorem.
As we have seen, the sky location is also an important

limiting factor in our analysis. In this paper we have shown
results on a two-detector network. However, the Virgo
detector joined the second generation of gravitational-wave
detectors in August of 2017, and showed an important
contribution on sky localization of gravitational-wave
sources. Future events could therefore show different con-
fidence levels as reported in this work if more than two
detectors are being used.
The techniques we present may also be extended to

make a joint measurement of the violation of the area
theorem for a population of binary black hole mergers. As
an increasing number of mergers are detected, we expect
that this may provide significant improvements to the
overall uncertainties.
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