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We investigate the gravitational waves and their properties in various modified teleparallel theories, such
as f(T), f(T,B), and f(T, Tg) gravities. We perform the perturbation analysis both around a Minkowski
background and in the case where a cosmological constant is present, and for clarity we use both the metric
and the tetrad languages. For f(T') gravity we verify the result that no further polarization modes comparing
to general relativity are present at first-order perturbation level, and we show that in order to see extra
modes one should look at third-order perturbations. For nontrivial f(7, B) gravity, by examining the
geodesic deviation equations, we show that extra polarization models, namely the longitudinal and
breathing modes, do appear at first-order perturbation level, and the reason for this behavior is the fact that
although the first-order perturbation does not have any effect on 7', it does affect the boundary term B.
Finally, for f(T,Ts) gravity we show that at first-order perturbations the gravitational waves exhibit the
same behavior as those of f(T) gravity. Since different modified teleparallel theories exhibit different
gravitational wave properties, the advancing gravitational-wave astronomy would help to alleviate the
degeneracy not only between curvature and torsional modified gravity but also between different subclasses

of modified teleparallel gravities.
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I. INTRODUCTION

The discovery of the late-time accelerating expansion of
the Universe and the study of galactic rotation curves have
generated a lot of interest and investigation, particularly in
the direction of dark energy and dark matter [1-3].
Additionally, it has led to investigations into gravitational
theories beyond general relativity (GR), with the most
studied cases being modifications of the Einstein-Hilbert
action, which is constructed from the Ricci scalar R.
Amongst others one may have f(R) gravity [4,5], theories
with inclusion of other scalar invariants [for instance,
f(R,G) gravity where G is the Gauss-Bonnet term [6,7],
and more generally Lovelock gravity [8,9] ], theories with
nonminimal curvature-matter couplings [e.g., f(R,7)
gravity, where 7 is the trace of the stress-energy tensor
[10-12] ], or more radical modifications such as massive
gravity [13] and Horava-Lifshitz [14]. The goal of all these
endeavors is to consistently explain the aforementioned
observational phenomena while also retaining GR as a
particular limit [15].
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Recently, there has been a significant rise in interest in a
specific class of theories originally investigated by Einstein
and Cartan. By considering gravitation to be described by
torsion rather than curvature, gravitation can retain many of
the features present in the original GR formalism [16,17].
This is most commonly referred to as teleparallel gravity.
Furthermore, the fundamental dynamical quantity of the
theory is not the metric tensor but the more subtle, so-
called, tetrad field. In the simplest form of these theories the
Lagrangian is just the torsion scalar 7, constructed by
contractions of the torsion tensor, and variation with respect
to the tetrad gives rise to exactly the same equations with
GR, which is why this theory was named “teleparallel
equivalent of general relativity” (TEGR) [18-21]. The
source of the above equivalence is a boundary quantity,
B, which relates the two Lagrangians, namely the Ricci
scalar of GR and the torsion scalar of TEGR:

R=-T+B, (1)

where R is calculated with the regular Levi-Civita con-
nection while 7 is calculated with the Weitzenbock
connection.

Inspired by the gravitational modifications that are based
on the curvature formulation of gravity, one can construct
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modified gravity theories starting from TEGR. The sim-
plest such modified teleparallel theory is the f(T) gravity,
in which one generalizes T to a function f(7) in the
Lagrangian [22,23] (see [24] for a review). One can
immediately see that due to relation (1) and in particular
to the boundary term, f(7') gravity is not equivalent to f(R)
gravity, and thus it is a novel gravitational modification.
Additionally, the advantage of this theory is that the
equations of motion are of second order, in contrast to
the fourth-order equations of f(R) gravity. These features
led to many investigations in various fields of cosmology in
this theory [25-33]. Furthermore, one may proceed in
constructing other modifications and extensions of tele-
parallel theories, such as the (T, Ts) gravity, where T is
the teleparallel equivalent of G [34-36], the f(T,7)
gravity, where 7 is the trace of the stress-energy tensor
[37,38], or torsional gravities with higher-order derivatives
[39]. Finally, one interesting class of torsional gravitational
modification is the f(7', B) gravity, in which one allows for
the use of the boundary term B in the Lagrangian [40—42].

On the other hand, gravitational wave (GW) observa-
tions not only have confirmed the existence of gravitational
waves as the mediator of gravitational information [43] but
also have set bounds on the polarization modes of these
waves from known sources [44], as well as on their speed,
which is equal to the light speed with great accuracy
[45-49]. These observations are very important for alter-
native theories of gravity, since in general one can obtain
extra polarization modes or variant speed. Although there
have been some works investigating gravitational waves in
f(T) gravity [50-52], the systematic study of gravitational
waves in modified teleparallel gravities has not been
performed.

In this work we are interested in looking at f(7),
f(T,B),and f(T, T) gravities in the realm of gravitational
waves through detailed perturbation analysis. Our goals are
to determine whether various teleparallel gravities predict
extra modes and to investigate the strength of these modes
in the scales where they arise. Although in GR there are two
GW polarizations, namely the plus and cross polarizations,
alternative and extended theories might yield more modes
[as for instance in f(R) gravity [53]]. As we will show,
although in the case of f(T') gravity the polarization models
are identical to those of GR [50], this is not the case when
an arbitrary boundary contribution is included, as for
instance in f(7, B) gravity.

The paper is organized as follows. In Sec. II we briefly
review teleparallel gravity and its various modifications. In
Sec. III we perform an analysis of the gravitational waves in
the case of f(7T) gravity, both in the metric and tetrad
languages, and for both zero and nonzero spin connections.
In Sec. IV we investigate the gravitational waves in the case
of f(T, B) gravity, both around a Minkowski background, a
case which is obtained in the absence of a cosmological
constant, but also in the case where the presence of a

cosmological constant changes the background around
which the perturbations are realized. In Sec. V we examine
the gravitational waves in f(7,T). Finally, the work
closes with a discussion and conclusion of results
in Sec. VL

II. MODIFIED TELEPARALLEL THEORIES
OF GRAVITY

In teleparallel theories of gravity the fundamental
dynamical variable is the tetrad (or vierbein) e“u, which
relates the standard coordinate frame 0, Ea—i with an
orthonormal and noncoordinate frame (e-frame). In gen-
eral, non-coordinate frames are anholonomic, a property
that is attributed to the existence of noninertial effects. The
metric tensor g,, can be related to the tetrad through the
Minkowski metric 7,;, by

G = ”abeapeaw (2)

where the point dependence is suppressed for brevity. In the
whole manuscript Greek indices refer to the spacetime
coordinates, while Latin indices refer to the tangent-space
ones. The inverse tetrad is denoted by E,* for transparency,
and one can show that

e ESS =6, e“ Ey = 5. (3)
The connection used in the teleparallel theories of gravity is
defined as a connection that has vanishing curvature. This
connection is the so-called Weitzenbock connection, and
the fact that it is torsionful makes the connection coef-
ficients nonsymmetric in the lower indices in contrast with
the Levi-Civita connection where the indices are symmet-
ric. The tetrad enables us to relate to each Lorentz spin
connection w?;, the Weitzenbdck connection via [54]

fZM = Ea/)aueav + Eal)a)ab,uebb' (4)

The spin connection w“,, does not represent any additional
gravitational degrees of freedom (d.o.f.). If one switches
over to the e-frame and applies the Weitzenbock covariant
derivative to the basis vectors of the e-frame, assuming the
so-called Weitzenbock condition where w“;, = 0, then the
result will be zero. This phenomenon is called complete
frame induced parallelism and in the physics literature is
frequently called teleparallelism or absolute parallelism
[21]. The Riemann and Ricci tensors calculated with the
Weitzenbock connection are identically zero, while the
torsion tensor is written as

ra _ a a a b a b
-1y, =0, —0,e + 0pe’, — e’
(5)

Moreover, one can define the superpotential tensor as
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1
Salw =5 (Kﬂya + ea”TUwa -

. e T).  (6)

where K*, is the contorsion tensor identified as

Kﬂba = (Ta}w + Twa - Tﬂya)’ (7)

| =

which represents the difference between the Levi-Civitd
connection and the Weitzenbock connection. The
Lagrangian of TEGR is the torsion scalar 7', constructed
by contractions of the torsion tensor, namely [54]

1 1
r=s/r, = ZT/WT + - TP¥T

PUV 2 vup T/mp TWU' (8)

Therefore, the action of TEGR reads

L R 4
S = e dxeT+/d xel,, (9)

where e = det(e?,) = /=g, with g being the determinant
of the metric tensor, and where £, is the matter Lagrangian
and G is Newton’s constant.

As we mentioned in the Introduction, one can show that
the Ricci scalar calculated with the Levi-Civita connection,
and the torsion scalar calculated with the Weitzenbock
connection, are related through

R =-T —2V*TY,, (10)

and thus we can identify the boundary term B = —2V¥¢T" .
Hence, one can immediately see that GR and TEGR will
lead to exactly the same equations. However, this will not
be the case if one uses f(R) and f(T) as the Lagrangian of
the theory, which therefore correspond to different gravi-
tational modifications.

A general class of modified teleparallel gravity would
thus be composed by an arbitrary function of 7' and B,
leading to f (T, B) gravity [40], characterized by the action

1

L B! 4
S = e d*xef(T,B) +/d xel,. (11)

By varying the action with respect to the vierbein we obtain
the following field equations:

1
EaMDfB - EabvﬂvufB + EBfBEu”
+ 2av(fB + fT)SuW + ze_lay(esaw)fT
1
- 2fTTaz/aSaﬂy - EEaﬂf = SJTGGaM7 (12)
where ©,* is the stress-energy tensor, which in terms of the

matter Lagrangian is given by ©,/ = —56L,,/6e?,. In the
above equation we have defined that f, = df/0T and

f = 0f /OB. Note that the derived equations are given for
the zero spin connection case. Additionally, in terms of
spacetime indices the equations of motion can take the form

- fTG/w + (g/u/[l - vﬂvll)fB
1
+§g;w(fBB+fTT_f)
+ Zsyaﬂaa(f]" +f3) = 8”G®Ml/’ (13)

where G, =R, — % guw R is the Einstein tensor calculated
with the Levi-Civita connection.

Before closing this section let us make some comments
on the spin connection »“y, that is present in the definition
(4). In the traditional works of TEGR one usually sets it to
zero for convenience, by choosing a suitable frame (spe-
cifically autoparallel orthonormal frame) [54]. Although
this does not have any effect for TEGR, in the case of f(7T')
gravity such a preferred frame choice should be used
carefully. In particular, one is allowed to make such a
choice in order to find cosmological solutions; however,
one has to have in mind that in investigations which include
questions on Lorentz transformations such a formulation is
in general inadequate. In this case one should formulate
f(T) gravity in a fully covariant way, keeping a general
nonzero spin connection [55]. In this way the theory
becomes completely consistent with Lorentz invariance,
nevertheless at the price of increased complication. In the
largest part of this manuscript we will consider the zero spin
connection case (which is a safe choice for cosmological
applications), especially for the general f(7,B) and
f(T,Tg) theories; however, in the simpler f(T) theory,
for completeness, we will also discuss the nonzero spin
connection case.

III. GRAVITATIONAL WAVES IN f(T) GRAVITY

Let us now start with the investigation of the gravita-
tional waves in the case of the simplest modification to
teleparallel gravity, namely f(7') gravity. We first perform
the analysis for first-order perturbations at a tetrad level,
and then we proceed to higher-order examination in order
to understand more transparently the potential deviations
from GR.

A. Tetrad solutions for GWs in f(T) gravity

We start by considering the tetrad form of the field
equations (13) in the case of f(7T') gravity, namely

e_lfTau(eSaﬂb) + fTTSam/auT
1
- fTTbyaSb’w + Zf(T)eaM = O’ (14)

where as before we neglect the matter sector. We consider a
tetrad perturbation of the form
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ey =7+ oY, (15)

where |y,(f)“| < 1 except for the zeroth-order contribution,
and each successive order is much smaller than the

preceding order, i.c., [y] < |y\"|. This last comment
applies throughout to every successive order quantity.
Throughout the work, superscripts with parentheses will
represent the perturbative order of the quantity being
presented. As usual, from (2) we obtain for the zeroth-
order perturbation

M = a7 7" (16)

Thus, the torsion tensor (5), assuming for the moment zero
spin connection, up to first order can be expressed as

a 0)a 0)a 1)a 1)a
T =0, = 0, + 0, =0, (17)

This gives an impression that an arbitrary choice of }/,So)a will
yield a zeroth-order contribution. However, as discussed in
Ref. [55], if the gravitational strength, i.e., the gravitational
constant, vanishes, one obtains the Minkowski background,
in which the torsion tensor vanishes. In this perturbation
regime e®,|s_o = y,(,())a, since this corresponds to the
Minkowski background, while the higher-order perturba-
tions are due to gravitational effects. Therefore

a o 0)a 0)a
T /41/|G—>0 - 8/1751 )~ 807/(4 ) =0. (18)

Hence, as we mentioned above, the torsion tensor is first
order, and so are the contorsion and superpotential, which
ultimately imply that the torsion scalar is second order at the
level of perturbations. Finally, in order to handle the f(T')
term we will consider the Taylor expansion (59).

Inserting the above expressions into Eq. (14), order by
order leads to

}’(aO)pf(O) =0, (19)
(1) (0)
77100, (e, 10m) 47 A o <0 o

As mentioned above, the first condition implies that no
cosmological constant is present. We next identify that
e =710 =1, and we assume f(!) =0, since T is a
second-order quantity and thus its function cannot have
first-order contributions. Last, we focus on the nontrivial

case [ g) ) # 0. Under these considerations Eq. (20) becomes
9,8,m =0, (21)

We note here that these intermediate steps are different from
the f(7) GWs analysis carried out previously with the

Einstein tensor, since we now follow the tetrad language.
Moreover, notice that this equation appears in TEGR, too [56].

Let us proceed by extracting explicit solutions. We first
remark, however, that the above equation is not possible to
solve in general. However, we can assume that GR gauge
conditions on the perturbed metric, namely h,(,p, can also be
imposed here, specifically that it is traceless,

h(l)MM = 277””%;,)//(40)“]/51)!7 =0, (22)

and satisfies the Lorenz gauge condition
0= 0"y = 0"
1)b 0)b 1)a 0)a 1)a 0)b
+ 0l O a0 o). (23)
Together with the relation

0)d . 0
y 4 = pedy O (24)

(0)a

and for simplicity we consider the case y,~ = &, where

Eq. (21) can solely be expressed in terms of y;(tl)a, namely

Al = ppen g Oy SO = 0. (25)

This yields the following system of equations:

AY: Oyi° = o, (26)

A0 = i O =y =0, (27)
Ai(i# ) O + 440 =0, (28)
Al (i=m): Oy =0, (29)

where we have used the fact that 7, = diag(—1,1,1,1)
and i,j={1,2,3}. Since we are working in the
Minkowski metric Cartesian coordinate system, the indices
{0,1,2,3} correspond to {z, x, y, z}, respectively. Last, we
can demand the extra gauge condition that the waves are
transverse, 1.e., hé}) =0, which sets y(()”o =0 and
yél)i = ygl)o. In summary, the full list of conditions and
equations are found to be

Traceless condition: ygl)i =0, (30)

Lorenz gauge condition: 8.,4(3/1('1)" + yﬁl)i) =0, (31)

Ai(i# j): O + /) =0, (32)
A (i=m): Oy =0, (33)

i

Without loss of generality we make the choice that the
gravitational wave propagates in the z direction, and as
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usual we work in the Fourier space. The wave equations
then imply that

ygl)i = A" exp(ik,x"),

i={1,2,3} (fixed index), (34)
y M " = B exp(ip,at),
i ={1,2,3}, i# ], (35)
where k, and p, are wave vectors such that

k,k* = p,p* =0, and where A;" and B;/ are coefficients
such that A, = —A,%, A;> =0, and B,® = B, = 0. Note
that these conditions arise from the traceless and Lorenz
gauge conditions. Therefore, the undetermined coefficients
are A;', B3, B,, and B2, which leads to the perturbed
tetrad solution

0 7/(()1)1 yém J/(()1)3
y}(})a B y((()iz; ?’(1]>] ygl)z }’(1])3
7 Bilexplip) - =" AP
y(()m _751)3 _ygm 0
(36)
Here the y§1>f are undetermined tetrad components which

are not constrained by the equations. We mention that the
perturbed metric then takes the form

0 0 0 0
L _ 0 27/51)1 B 2exp(ip,x*) 0
" 0 B*exp(ip,x*) —27/(11)1 0
0 0 0 0

(37)

Note that obtaining the perturbed tetrad is not a trivial task
in general, since amongst the infinite choices of perturbed
tetrad ansatzes corresponding to the same perturbed metric,
one should use the appropriate ones in order to obtain
consistency [25,52,57].

Observing the solution (37) we can easily identify the
standard + and x polarizations of GR by defining i, =
27/51)1 and h, = B,*exp(ip,x*). Therefore, the perturbed
tetrad has 2 physical d.o.f. (A, and A,) and 6 arbitrary d.o.f.
related to Lorentz transformations. Hence, through the
explicit solutions we did verify the result obtained pre-
viously, namely that at first-order perturbation level there
are not any new polarization modes in f(7) gravity. Finally,
as we mentioned above, in order to examine the 6 d.o.f.
related to Lorentz transformations it is necessary to

reformulate the theory in a fully covariant way, namely
keeping an arbitrary spin connection W, This is performed

in the next subsection.

B. GWs in f(T) gravity with nonzero spin connection

For completeness and transparency, in this subsection we
perform the analysis of the previous subsection, but in the
case of a general spin connection, i.e., for the fully
covariant formulation of f(T) gravity presented in [55].

We start by considering the tetrad perturbation (15);
however, we insert it in the torsion tensor (5) maintaining
an arbitrary spin connection, obtaining up to first order:

0 0 0)b 0)b
Talw = ,471(/ . - al/yil . + wz;ty’(/ : - a)abu}/!(t )

1a 1a a )b a 1)b
+0, 7 = o+ @y — 0t (38)

As discussed in [55], the purely inertial spin connection can
be found by demanding that the torsion tensor is zero when
the gravitational constant vanishes, namely G — 0, which
yields the expression

a)“bﬂ == FZ# - Eb”aﬂeay|(;_,0, (39)

where FZ’” is the GR Levi-Civita connection. As before,

(0)a

0
e’,|g.o =vu - Furthermore, g,,|G_o =1, and hence
'y, |g—o = 0. Therefore, the spin connection turns out to be

oy, = =y 0,70 (40)

Since the torsion tensor is zero when the gravitational
constant is zero, then

(0)

0 0)b
Taﬂu'G—>() = aﬂ}/l(/ N - auyll ¢ + wah/ﬂ/l(/ )

- a)abyy/(l())b =0.

(41)

Thus, the torsion tensor is first order, and so are the
contorsion and superpotential, which ultimately implies
that the torsion scalar is second order at the level of
perturbations.

Before investigating the field equations we make the
following remark. The purely inertial spin connection is
given by

@y, = =N, 0N, (42)

where A,¢ is a Lorentz matrix with inverse A?.. Thus,

under this formulation, we deduce that the zeroth-order

tetrad perturbations y,(,o)” are precisely the Lorentz matrices.

This shall be considered in what follows.

The next step is to expand the field equations at a
perturbation level. In this case, the field equations for f(T')
gravity with an arbitrary spin connection are given by
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e_lfT8v<6Sa#y) + fTTSaﬂbavT - fTTbvaSbW

1
+ fr@l ., Sy + 1 f(T)e?, =0, (43)

which under the Taylor expansion (59), expanding order by
order we obtain

P FO =0, (44)
17108, (e05,0m) + o, 85,0
f f(O)
a — a — =0, 45
+7! 1 + 7! 1 (45)

which generalize (19) and (20) in the case of nonzero spin
connection. As before, the first condition implies that no
cosmological constant is present. Moreover, we choose
e0) = 710 = 1, gince detyio)“ = det A%, = 1, which is a
property of Lorentz matrices; similar to the zero spin

connection case we impose f(!) =0 and we assume

fg) ) # 0. Hence, Eq. (45) becomes
8DS£})W + wbavsb(l)uﬂ =0, (46)

which is the generalization of (21) in the case of nonzero
spin connection. Finally, using the definition of the spin
connection w“,, = —yé) Bﬂy,(,o)a
into the simpler form

, Eq. (46) can be recast

7870,y 8,
= 0,8, 4y 9,0 s, 0w = 0. (47)
Similar to the spin zero case, solving the above equation
is not possible in general. However, we will again assume
that the GR gauge conditions on the perturbed metric being

traceless and satisfying the Lorenz gauge condition can also
be imposed here. Hence, together with the relation

y = pedyy O (48)

the equation of motion reduces to the following simplified
expression:

0 POy =y PP 0y ooy
+78 00 vy ") = v Dy oy

_ nﬂaab},g))/}aﬂy((ll)h + ”uaad},éo)ﬁaﬂy((ll)b =0, (49)

which can alternatively be expressed in terms of the spin
connection as

(s

. 0)8_(0 )b . 0
1 Ngr Uy -H’E; )ﬂ}’é WDY};) + 2" wdfya")/é 7

(0)p

_l’_,/lﬂayg))ﬁyl(xl)fayw z/_yd ', 86‘},;])17

0 0)b
+ 2}/51 >ﬂaa}/;} ) (I)#ba + yd 7//} 8 a)ﬂb

0 I)c a
~ 10, w e 0

+ ﬂ”“a)ﬁbdaﬂy((})b =0. (50)

Finally, note that if we choose our frame of reference to
correspond to zero spin connection, then the above equa-
tion reduces to

nﬂ{lﬂdfm]/((zl)f _ D)/((jl)ﬂ -0, (51)

where we have used the fact that

v 0)v a (0
7y ==, (52)

which arises from (3).

In general, as it was mentioned in [55], in the case of
nonzero spin connection it is hard even to extract the
background solutions. Hence we can see that obtaining the
perturbed solution seems very difficult, since the back-
ground tetrad affects the perturbed solution. The detailed
examination of the perturbed solutions in the case of f(7)
gravity with nonzero spin connection lies beyond the scope
of the present work.

We close this section by mentioning that the presented
methodology can be extended to more general torsional
modified gravitational theories, by defining appropriate
gauge conditions on the tetrad, especially to theories in
which the coordinate-indexed form of the field equations
results in mixing between the metric and tetrad tensors. In
this way, any information about the tetrad is not lost within
the metric tensor, since the appropriate field equations are
solved.

C. Higher-order metric perturbations

In this subsection we proceed to the analysis of higher-
order perturbations, in order to understand more trans-
parently the potential deviations from general relativity.
The standard approach is to consider perturbations around a
flat Minkowski background. This is achieved by perturbing
the metric tensor in the following manner:

G = M + hia) + B2 + 15+ O(hy)),  (53)

where |hf,’,2| < 1, which is retained up to third order in this
instance. Since the fundamental variable in the torsional
formulation is the tetrad, the above metric perturbation can
be obtained by the tetrad perturbation

ety =5+ 7 D D oY), (54)
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where |7,(,'>a| < 1. We remark that, in general, the zeroth-
order part of the tetrad perturbation is determined by the
background metric, which in linearized gravity is usually
the Minkowski metric. Thus, in the current case the zeroth-
order contribution to the tetrad perturbation turns out to be
represented by the identity matrix, and that is why we
introduced the Kronecker delta. However, we mention that
this does not affect the obtained results, and the same
conclusion is reached for other backgrounds, too.

By the definition of the metric tensor g,, = n,,¢%,¢",,
we can relate the metric and tetrad perturbations through

1 o ()b a
hi) = nap (373 + 78). (55)

a b a b a

h = 085" + W ). (56)
3 . (3)b a (2)b 2)a_ (1)b 3)a

h) = 0y (85" + v PP 4y DY D6h). (57)

Inserting these expressions into the definition of the torsion
tensor (5), and assuming for the moment zero spin con-
nection, we obtain

7, = a7 = 0,7 + 0P, (58)

from which we can see that the torsion tensor is at least of
first order, with the zeroth-order contribution equal to zero.
Consequently, from the definitions of the contorsion and
superpotential tensors, namely relations (7) and (6), respec-
tively, we deduce that they are both also at least of first
order since their zeroth-order contributions are zero. Thus,
the torsion scalar 7', which is quadratic in the torsion tensor,
becomes a second-order quantity. Finally, in order to handle
the f(T) term, for simplicity we assume that this function is
Taylor expandable around 7" = 0, namely

FT) = FO)+ FrOT + 3, freOT 4+ (59)

Let us proceed by perturbing the equations of motion.
According to Eq. (13), in the case of f(7T') gravity the field
equations become

_fTG/w + %g/w(fTT - f) + 2Sua;48afT =0. (60)
We mention that since we are interested in examining the
properties of the gravitational waves, for simplicity we have
neglected the contribution of the matter stress-energy
tensor; namely we neglect quadrupole moments which
arise from the stress-energy tensor.

Inserting the perturbed tetrad and metric in the field
equations (60), and under the Taylor expansion (59), order
by order we obtain

M f(0) = 0. (61)

£r(0)Gl) =0, (62)

fr(0)G) =0, (63)

100G + Frr(OTOG) = 2£12(0)8.,0,7% = 0.
(64)
Considering only the nontrivial case f(0) # 0 (otherwise

GR cannot be obtained at any limit) the perturbed field
equations simplify further to

Nuf(0) =0, (65)
Gl =0, (66)
G2 =o, (67)

(3) frr(0) (D (2)
G v = Su 8ozT . 68
! fr(0) — * (©%)

As we observe, the zeroth-order equation (65) implies
that no cosmological constant is present in the analysis,
which was expected since the considered perturbations are
around a Minkowski background and not around a cos-
mological constant one. The first- and second-order equa-
tions coincide with the standard GR perturbed equations in
vacuum. However, the new information is that at the third-
order equation (68) we find a deviation from the standard
GR perturbation equation, with a contribution arising from
the f7r term. Thus, the f(7) effect on the perturbation
equations enters only at the higher than second order, and
the reason behind this is that the torsion scalar is quadratic
in the torsion tensor. This is a radical difference with the
case of curvature-based modified gravity, where the effect
of the modification becomes manifest from first-order
perturbation already. These features will become more
transparent in the next section, where we study the case
of f(T, B) gravity. Finally, note that in the GR limit, i.e., at
frr(0) = 0, we reobtain the standard GR results.

In summary, as we showed, in order to see the effect of
f(T) gravity on the gravitational waves themselves, one
should look at third-order perturbations (higher-order con-
tributions in curvature gravity have been examined in
literature; see e.g., [58,59]). Note that this concerns the
effect on the “internal” properties of the gravitational
waves, as for instance in their polarization modes, where
it was known that no further polarization modes are present
in f(T) gravity at first-order perturbation levels [50,51].
However, we stress that in general the effect of f(7T') gravity
on the cosmological gravitational wave propagation can be
seen straightaway from the dispersion relation at first order,
due to the effect of f(T) gravity on the cosmological
background itself [52].
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IV. GRAVITATIONAL WAVES INf(T.B) GRAVITY

In this section we will investigate the gravitational waves
in the case of f(7, B) gravity with action (11). From now
on we consider only the case of zero spin connection, and
we focus on the case f(7,B) # f(T) since f(T) gravity
was investigated in the previous section. Furthermore, for
convenience, we first study the gravitational waves around
a Minkowski background, i.e., in the case where a
cosmological constant is absent from the f(7,B) form,
and then we proceed to the general investigation of the case
where a cosmological constant is allowed.

A. GWs in f(T,B) gravity in the absence of a
cosmological constant

We start with the perturbed metric around a Minkowski
background:

1 2
G = N + 1) + O(RL2)), (69)

where |h,(,’,,)| < 1. This metric perturbation can be obtained
from the perturbed tetrad

e, =8+ + 0D, (70)
Using relation g, = nube“”ebb we acquire

1 o ()b a
hi) = nap (s + 780). (71)

and thus for the perturbed torsion tensor we obtain

T, = 0,75 = 0,y + 0GP (72)

As we mentioned earlier, the torsion tensor is at least first
order, and thus the torsion scalar 7' is of second order in
perturbations. This has a significant consequence, namely
that relation (1), specifically R = —T + B, at first order
becomes R = B (we remind the reader that R is
calculated using the Levi-Civita connection while 7" and
B are calculated with the Weitzenbock connection). Indeed,
the Ricci scalar at first order is given to be

RY =p9,0,h "V, — O, (73)

where indices are raised with respect to the Minkowski
metric, AV = h(V# and O = §,0¢. Expanding in terms of
tetrads yields

RM =28 (38,07 — Oyy"). (74)

On the one hand, expanding the boundary term at first order
yields

B — _2(VﬂTDW)(1) = _2;1ﬂﬂapT(1)UW
=280 (10,0, = Oy "), (75)

Thus, we can immediately see that at this order it is equal to
the Ricci scalar.

In order to handle the f(T,B) term for simplicity we
assume that its form is Taylor expandable around the
current values T and B, namely

f(T,B) = f(To, By) + fr(To, Bo)(T —To)
+ f5(To, Bo)(B — By)

1
+ EfTT(TO’ By)(T —T,)?

+ 15T Bo) (B = By)?
+ f15(T0. Bo)(T = To)(B—Bo) +---.  (76)

Furthermore, since we are only examining the properties of

the gravitational waves, we neglect the matter sector.
Inserting all the above into the field equations of f (T, B)

gravity, namely Eq. (13), order by order we obtain

M f(0,0) = 0, (77)
~f7(0.0)Gl) + F55(0,0) (1,0 = 9,8,)RD =0,  (78)

where we have used the fact that R(Y) = B and that
£(0,0) =0 from the zeroth-order condition. The latter
condition is another statement for the fact that the arbitrary
Lagrangian function does not include a cosmological
constant.

We proceed following [51], and we define an effective
mass by considering the trace of the first-order equation.
This is also similar to the f(R) gravity case. However, our
effective mass is different from that of Ref. [51]. Indeed, by
taking the trace

Fr(0.0)RM +3£,5,(0,0)0RY =0, (79)
we identify the effective mass m by bringing the equation in
the form (CJ — m?)R!") = 0, which turns out to be

m? = _M_ (80)
3f5(0.0)

We remark that in the |m?| — oo limit [for instance when
f88(0,0) =0 and f7(0,0) # 0], the equation reduces to
that of GR. Since it is known that f(7) gravity yields no
further gravitational wave modes [50], as we verified in the
previous section, this special condition leads to a broader
class of theories in which at first order yields the gravi-
tational wave solutions.

In the case where fzz(0,0)#0 we can follow the
procedure of f(R) gravity [60-64] [note that f(R) is a
particular subclass of f(7, B) gravity, namely f(—T + B)

gravity]. First, we introduce the tensor i_z,(,p to be
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o 1 0,0
nD = 1Y~ Law,, 4 200

1
21 0,0y TR (B

where A1 represents the trace of /_z/(ﬁ,). Similar to the

previous section we consider the nontrivial case of
f7(0,0) #0 (otherwise GR cannot be obtained at any
limit). This simplifies Eq. (78) to

PO, + 00, hly) —n, 000N —ORG) = 0. (82)

As shown in [60], it is possible to consider the Lorenz
gauge condition 8”}_1,(,}) =0, which simplifies the wave

equation to
DRl = o, (83)

as well as the traceless condition 2! = 0. This allows for
the solution

ELL) = A, exp (ik,x"), (84)

where k, is the four-wave vector, A,, are constant coef-
ficients, k,k” =0, kA, = 0, and A#, = 0. The last con-
ditions are the Lorenz gauge and traceless conditions,
respectively. On the other hand, the solution for (79) is

R = Fexp (ip,x"), (85)

where F is a constant and p, is another four-wave vector

such that p, p* = —m?. Hence, the full solution for h,(,p is

constructed as

h,(t}/) = A, exp (ik,x") + JMWUF exp (ip,x*). (86)
f1(0,0)

Note that from (78) and (79), the Ricci tensor is found to be

m_ 1 ouy f(0.0) )
R, =-n,RY ————"—"20 0,R", 87
H 677;411 fT(O,O) n-v ( )

from which the solution of the Ricci scalar (85) simplifies
to

1 (1 1
Rﬂl/ - (gﬂyy—wl’ﬂpu>R(]>- (88)

Hence, it is trivial to verify that taking the trace yields a
consistent relation for the Ricci scalar, as expected.

We proceed by analyzing the polarization states of the
gravitational waves. As usual we consider the geodesic
deviation as in Ref. [60]. We remark that although in
teleparallel theories the particle motion is not described in
terms of geodesics, mathematically one may still use the
geodesic deviation formula, having in mind that all

curvature quantities should obviously be calculated using
the Levi-Civita connection [54] [for instance see [65] for
the geodesic deviation in f(7) gravity]. Hence, we start
from the geodesic deviation formula [66]

X = _Ri()joxj’ (89)

where dots represent coordinate time derivatives, R,,;, is
the Riemann tensor calculated with the Levi-Civita con-
nection, (z,x,y,z) =(0,1,2,3), i={1,2,3}, and
x/ = (x,y,z). Moreover, we consider the signature
(+,—,—,—), and for simplicity we assume that the wave
propagates in the z direction.

From the perturbation analysis presented above, we find
that

Loz
Riojo = Ek(z)hij ~om2 [”ijpgR(l) + PinR(])]- (90)

Therefore, the geodesic deviation becomes

1, 1,z
x:{_kghﬁu pgR<'>]x+§k%h(x”y, (91)

2 om>
. I 5- 1 I -
§ = [— SRR+ ngml)} y ke (92)
o L (R pHRWz = ~ 1RO 93
Z*@(Po—l’s) LT T (93)
where in the last equation we have used that p, p* = —m?.
Additionally, since the wave propagates in the z direction,
we have used and defined 1_1(111) = —Bglz) = f_zif) and

A\Y = h{) = A, which represent the massless + and x
polarizations.

As we observe, in the TEGR limit, namely at |m2| - 0
and R — 0, the remaining modes are the + and x
polarizations as expected. However, in the case |m?| <
oo we find the presence of the longitudinal and breathing
modes in the geodesic deviation equations. This is one of
the main results of the present work, namely that f (T, B)
gravity, in the case where f(T,B) # f(T), does have
further polarization modes at first-order perturbation, in
contrast to the case of f(7) gravity. The reason for this
behavior is the fact that although the first-order perturbation
does not have any effect on 7, it does affect the boundary
term B.

B. Tetrad solutions for GWs in f(T.B) gravity

In the previous subsection we analyzed the gravitational
waves in f(7T, B) gravity from the metric perturbation side.
We now proceed to their examination from the tetrad
perturbation side. In order to do this we start from the
perturbed tetrad (70), and we insert it into the tetrad form of
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the f(7,B) field equations, namely into Eq. (12).
Neglecting the matter sector, order by order we obtain

Sif 0 =0, (94)

1
H07Y - 8.040.fy) + 5BV £,

1
+20,8,04 17 =25 =0. (95)

As before, the zeroth-order condition is a verification that
there is no cosmological constant present, i.e., that the
perturbation is performed around the Minkowski back-
ground. In order to simplify the first-order equation we

remark that £ = fVBM and i) = ) B0 and as

usual we consider the nontrivial case f(TO ) # 0.
Therefore, Eq. (95) reduces to

0
1%

aysa(l)bﬂ +
217

[#0BWY —5:0#9,BN] =0.  (96)

Due to the introduction of the B(") terms in the above
equation, the traceless and Lorenz conditions used for the
simple case of f(T) gravity in Sec. Il A need to be
modified to accommodate a more suitable gauge choice.
From the metric approach of the previous subsection we
instead have the “trace-reversed” metric f_z,w in (81), which
satisfies the traceless and Lorenz gauge conditions 4 = 0,
and 6”}_1W = 0. Therefore, the “traceless” condition
becomes

(i _ 2f53B"

37t , (97)
is

. ©) p(1) 1
Aexp(ik,x*) + f;fam VE) )

T

(0) p(
By exp(ik,x") + yém D exp(ik,x") +f332)])
(Da _ 2f7

)

B, exp(ik,x*) + y(()l)z Cexp(ik,x") — ygl 2

(1)3

},(()1>3 —2Aexp(ik,x*)  Bjexp(ik,x") —y,

Here, the y,(-])j are undetermined tetrad components, not

constrained by the equations, A, By,, C, and D are
constants, and k, is the wave vector such that k,k* = 0.

As we observe, in the fgg — 0 limit the first-order
perturbed equation (99) reduces to that of GR and f(7T)
gravity, and hence the tetrad solution should describe the
same solution. Comparing with the tetrad solution obtained

while the “Lorenz condition” reads as

© 9 g)
Ny (07" + 840 7,) = fBBW (98)
Ir
In this way, the field equations simplify to
O3B0
A=, O 4 Sy T2 E —0, (99)
Ir
which yields the following system of field equations:
(0) p(1)
_ no _ fpeB
AD: D<y§)> e ) =0, (100)
2f7
A) = —Ay: O -7y =0 (101)
il N . 1)j 1)i
Al #): 00+ =00 (102)
A0 B
. ; B
Al (i=m): D<y§” —fBB—O> =0, (103)
27
where 7, = diag(-1,1,1,1) and i,j={1,2,3}.

Moreover, since we are working in the Minkowski metric
Cartesian coordinate system, the indices {0, 1,2,3} cor-
respond to {t, X, Yy, z}, respectively.

The above equations are standard wave equations, and
thus we assume a plane-wave solution by working in
Fourier space. Without loss of generality, we shall assume
that the waves propagate in the z direction. Hence, the
solution for the perturbed tetrad is

70 Yo
7" S8
104
~Dexplik,e) + 7 A o
B, exp(ik,x*) — ygm —Aexp(ik, ) + f%{g)iw

|
in the case of simple f(7') gravity, namely solution (36), we
deduce that this is obtained by setting A = By, =0,
implying that these constants reflect the transverse property
of the h, = 2D exp(ik,x*) and h, = Cexp(ik,x*) polar-
izations and hence can be removed. This can also be
identified from the metric tensor solution corresponding to
(104), namely
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. 7 B0 :
—2A exp(ik,x") — B:m) By exp(ik,x*)
Jr
-(0) )
B, exp(ik,x") h, + f”‘*(if)(l
hyy) = f’
B, exp(ik,x*) hy

—2A exp(ik,x")

which in the A, By ,, f g]g, — 0 limit reduces to the standard
perturbed metric solution for waves traveling in the z
direction.

C. GWs in f(T,B) gravity in the presence of a
cosmological constant

In the previous subsection we investigated the gravita-
tional waves in f(T,B) gravity through a perturbation
around a Minkowski background in vacuum, i.e., in the
absence of a cosmological constant in the form of f(7, B).
In the present subsection we examine the contribution of a
cosmological constant to the gravitational waves following
the procedure of [67,68]. Implications of the cosmological
constant onto gravitational waves (for instance quadrupole
contributions and effects during the cosmological history),
in the case of other scenarios, have been investigated in
[69-73].

Let A denote the cosmological constant. Similar to the
previous analysis we shall again consider a linearized
gravity approach; however, since the cosmological constant
also affects the background metric, the perturbations will
not be performed around a Minkowski background but
around a background that incorporates the contributions of
A. This is achieved through

G = 1Y + 1Y) + 0(n2), (106)

where |h,(f,,>| < 1, and
Y =, + AR + O(A2), (107)
) = ) ™+ AR VA L O(A2),  (108)

(0)A

where h,,/ " refers to the first-order contribution of A to the

GW

background metric, hf,i,) is the gravitational wave

perturbation without the effect of A, and hf,ly) GWA 15 the

contribution of the cosmological constant to the gravita-
tional wave perturbation. Correspondingly, the tetrad per-
turbation can be constructed as

a ( Ja

ety =1 + 7+ 0, (109)

where |y\“| < 1, and

By exp(ik,x")

B, exp(ik,x") —2A exp(ik,x*)
By B, exp(ik,x")
0 50 . ; (105)
—h, + l*;’T B, exp(ik,x")
Jr
. . b 0
B, exp(ik,x") —2Aexp(ik,x") + fr)
I
7 =5+ AR+ O(A%), (110)
= M AR o), (1)
where yﬁ,O‘A)a refers to the first-order contribution of A to the

(I.GW)a

background tetrad, y, is the gravitational wave

perturbation without the effect of A, and y,(tl’GWA)“ is the

contribution of the cosmological constant to the gravita-
tional wave perturbation. Therefore, the metric perturba-
tions are related to the tetrad perturbations through

H™ = (85N NS, (112)
hﬁ)Gw: b(5ﬁ (1.GW)b i (IGW)a(Sz)’ (113)

h/(w) GWA _ (5a (1, GWA)b_i_zyl(ll.GW)ayl(/O,A)b
+y,‘£'GWA>“55>. (114)

To facilitate the perturbation analysis, we again assume that
the function f(7,B) is Taylor expandable about
T = B = 0, namely

J(T.B) = f(0.0) + f7(0.0)T + f5(0.0)B
i Frr (0,07 + 5 £y (0.0)8°

+ fr8(0,0)TB + - - -. (115)

Hence, we can identify f(0,0) =2A, since this term
behaves as a cosmological constant, which can be seen
when it is substituted in the equations of motion or in the
action. The choice of this value is in order to ease the
comparisons with the cosmological constant present in GR.

Inserting the above into the field equations (13) and
neglecting the matter sector, for the zeroth-order perturba-
tion equation we obtain

1

0
17 G+ 5 (£ BO + 7 TO — f0) = 0. (116)
which when expanded over the A order yields
Fr0.0G" + 3, f0.0)=0, (17
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where the superscript A refers to the cosmological constant
contribution of the function (from here onwards, this shall
be assumed for all symbols). Taking the trace yields

£7(0,0)ROA =2£(0,0). (118)

In the case of TEGR with a cosmological constant, i.e., for
f(T,B) =T + 2A, the above expression yields precisely
the standard result for GR with a cosmological constant,

namely R = 4A. Note that the first derivative f;(0,0)
rescales this value of the Ricci scalar.

Expanding over the A order yields

fr(0,0)

and

— f1(0.0) GV NN~ GOV £1,(0,0) B
+ (7,0 =0,0,)[f 5(0,0)B"

+2[f75(0,0) + £55(0,0)]5"Y

~ f15(0,0)B!

JOWA 1 £5(0,0)T™)

where the superscript BG refers to the Minkowski metric
contribution. It is clear that Eq. (120) is exactly the same as
(78) (recalling that R) = B(). On the other hand,
Eq. (121) describes the relation between the standard
gravitational waves and the cosmological constant contri-
bution to them, which is the main result of the present
subsection.

Finally, it is interesting to note that for the case of simple
f(T) gravity, namely for f(T,B) = f(T), Egs. (120) and
(121) reduce to

fr(0)GH SV =0, (122)

1
FrOG VA 4 i) Vo) =0, (123)

Thus, for f(T) gravity at first order, the effect of the
cosmological constant on the gravitational waves is also
affected by the value of f;(0), as was also found in [52].
Last, in the case of TEGR these equations match identically
to those of GR, as expected.

- G(l) oW =+ fBB (0, 0) (ﬂuvlj(O)BG

GWA ]

“0,BNY 12[£7£(0,0)+ f55(0,0))8 M ,0,B0A =0,

Additionally, the first-order perturbation becomes

0 0)(0 1
- P60 - V6 + 0O - vV
1
+§h,<3)[f§f)B(‘> + fBO 4 fO7) L f Do) _ £
1
+ Ehﬁ‘J B+ 7T~ fO)
+2870,(7 + f5)) + 2807 + f5) = 0.
(119)
-9,0,)B1 Y =0, (120)
GWG +fBB(O 0)[]’1( A D(O)BG+77#VD(O)A—VLO)A(?D]B(I)GW
1
+§nﬂbeB(O,O)B(O)AB(1)GW—Eh(l)GWf(O,O)
(121)

V. GRAVITATIONAL WAVES IN f(T.T)
GRAVITY

In this section we proceed to the investigation of the
gravitational waves in another class of modified teleparallel
gravity, namely f(T, Ts) gravity, in which one uses in the
Lagrangian the teleparallel equivalent of the Gauss-Bonnet
combination 7';. In particular, in curvature-based modified
gravity one may add in the Lagrangian functions of the
higher-order Gauss-Bonnet invariant, defined as

G =R R;w/lo- _

4R, R" + R?, (124)

pvio
and construct f(R, G) theories [6,7]. Correspondingly, one
can construct its teleparallel equivalent T ;, which reads as
[34]

Tg = (K°yK™ K" (oK, — 2K k¥, K7 (., K,

+ 2K K", K7 K, + 2KP K1 KT, )80

aluv

(125)

rp

and use it as the Lagrangian, resulting in the so-called
f(T,Tg) gravity. The field equations of f(T,Ts) gravity
are written as [34,35]
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2(H[ac]b 4 H[ba]c _ H[Cb]a),c + z(H[ac]h +H[ba]c _ H[cb]a)cddc + (2H[ac]d + Hdca)cbcd

+ AHC 4@ + T qH W — h + (f = Tfr =T fr,)n" =0,

where

(126)

H* = fT(’YaCKbdd - Kbm) + €Cp”€akdf [(chKkader),t + fTGquthk[qufrﬂ

4 fTG [ecprt(zeadkabkadqr + eqdkaakahdr 4 €abkakdedqr)qut

1 1
+ ecprteabdefdp (kar.t _ 5I{qu(jqﬂ) + ecprleakdedfp <Kbkr.t _ EKbkqutr>:| ,

Ccuh = Ea”EbV(ec - ecv,u)v (128)

(129)

MV
ab __ a bpqd gk c
h —fT€ ked€ PatK prf q-

Note that for the purpose of the gravitation wave
investigation, the stress-energy contribution has been
neglected.

In order to analyze the gravitational waves in this theory,
we again consider the linear perturbations in the metric and
in the tetrad around a Minkowski background, namely
expressions (69) and (70), respectively. From the definition
of T we deduce that it is at least a fourth-order quantity in
the tetrad perturbation. Furthermore, for simplicity we
assume that f(7T,T;) is Taylor expandable around
T = T; = 0. Therefore, the resulting zeroth- and first-
order perturbation equations are

n°°£(0,0) =0, (130)

(HOlaclh 4 gbae _ gOedlay — 0. (131)

Similar to the previous discussion, the zeroth-order equa-

tion implies that no cosmological constant is present in the

theory, which is consistent with the fact that the perturba-

tions are performed around the Minkowski background.
From the definition of H%*° we remark that

HWabe — fT(Os 0) (naCK(l)bdd _ K(l)bca). (132)
Substituting in the first-order equation (131) yields

fT(O, 0)[11abK(1)cdd _ nacK(l)bdd + K(l)bca}’
= f7(0,0)0.5Mabe = 0,

c

(133)

where the definition of the superpotential (6) has been used.
Interestingly enough, for the nontrivial case f7(0,0) # 0
(otherwise GR cannot be obtained at any limit), Eq. (133)
coincides with Eq. (21) obtained in the case of simple f(7')
gravity (note that changing coordinate to tangent-space

(127)

indices involves only the zeroth-order part of the tetrad
which is just the Kronecker delta). Hence, we deduce that at
the first-order perturbation level, the gravitational waves
behave in the same way in f(7T) and f (T, T;) gravities, and
thus the previously obtained result that no further polari-
zation modes comparing to GR are obtained at this order
holds for f(T,T) gravity, too. This result was expected,
since T is a higher-order torsion invariant, and therefore
its effect switches on at higher perturbation orders.

VI. CONCLUSIONS

In this work we investigated the gravitational waves and
their properties, in various modified teleparallel theories,
such as f(T), f(T,B), and f(T, T ) gravities, by utilizing
the perturbed equations. Furthermore, we performed the
analysis in both the metric and the tetrad languages, in
order to reveal the properties of the formalism.
Additionally, we performed the perturbations around a
Minkowski background, a case which is obtained in the
absence of a cosmological constant, but also in the case
where the presence of a cosmological constant changes the
background around which the perturbations are realized.
Finally, in the case of usual f(T) gravity we performed the
analysis both for the standard formulation of zero spin
connection and for the most general and fully covariant
case of a nonzero spin connection.

For the case of simple f(7') gravity we verified the result
that no further polarization modes comparing to GR are
present at the first-order perturbation level, since the torsion
scalar (which is quadratic in the torsion tensor) does not
acquire any perturbative contribution at this level. Hence,
as we showed, in order to see the effect of f(T) gravity on
the gravitational waves themselves one should look at
third-order perturbations, in which a deviation from GR is
obtained due to the contribution from the f;7 component.
Nevertheless, we mention that this is the effect on the
internal properties of the gravitational waves, such as their
polarization modes, since in general the effect of f(T)
gravity on the cosmological gravitational wave propagation
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can be seen straightaway from the dispersion relation at
first order, due to the effect of f(7) gravity on the
cosmological background on which the gravitational waves
propagate [52].

For the case of f(7T, B) gravity with (T, B) # f(T), by
examining the geodesic deviation equations, we showed
that extra polarization modes, namely the longitudinal and
breathing modes, do appear at first-order perturbation level.
The reason for this behavior is the fact that although the
first-order perturbation does not have any effect on 7, it
does affect the boundary term B. Additionally, in the
case where a cosmological constant is present we have
extracted the gravitational wave equations, obtaining the
cosmological-constant corrections to the solutions, which
reflect the fact that the background is not Minkowski
anymore.

Finally, we investigated the gravitational waves in
f(T,Tg) gravity, which at the first-order perturbation level
exhibit the same behavior as those of f(T) gravity; that is
they do not have extra polarization modes comparing to
GR. This result was expected, since the teleparallel

equivalent of the Gauss-Bonnet term 7T is a higher-order
torsion invariant, and therefore its effect switches on at
higher perturbation orders.

In summary, as we showed, apart from their difference
from curvature-based gravity, different modified telepar-
allel gravities exhibit different gravitational wave properties
amongst themselves, despite the fact that at first sight they
might appear as similar theories. Hence, the advancing
gravitational-wave astronomy would help to alleviate the
degeneracy not only between curvature and torsional
modified gravity but also between different subclasses of
modified teleparallel gravities.
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