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We investigate the gravitational waves and their properties in various modified teleparallel theories, such
as fðTÞ, fðT; BÞ, and fðT; TGÞ gravities. We perform the perturbation analysis both around a Minkowski
background and in the case where a cosmological constant is present, and for clarity we use both the metric
and the tetrad languages. For fðTÞ gravity we verify the result that no further polarization modes comparing
to general relativity are present at first-order perturbation level, and we show that in order to see extra
modes one should look at third-order perturbations. For nontrivial fðT; BÞ gravity, by examining the
geodesic deviation equations, we show that extra polarization models, namely the longitudinal and
breathing modes, do appear at first-order perturbation level, and the reason for this behavior is the fact that
although the first-order perturbation does not have any effect on T, it does affect the boundary term B.
Finally, for fðT; TGÞ gravity we show that at first-order perturbations the gravitational waves exhibit the
same behavior as those of fðTÞ gravity. Since different modified teleparallel theories exhibit different
gravitational wave properties, the advancing gravitational-wave astronomy would help to alleviate the
degeneracy not only between curvature and torsional modified gravity but also between different subclasses
of modified teleparallel gravities.
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I. INTRODUCTION

The discovery of the late-time accelerating expansion of
the Universe and the study of galactic rotation curves have
generated a lot of interest and investigation, particularly in
the direction of dark energy and dark matter [1–3].
Additionally, it has led to investigations into gravitational
theories beyond general relativity (GR), with the most
studied cases being modifications of the Einstein-Hilbert
action, which is constructed from the Ricci scalar R.
Amongst others one may have fðRÞ gravity [4,5], theories
with inclusion of other scalar invariants [for instance,
fðR;GÞ gravity where G is the Gauss-Bonnet term [6,7],
and more generally Lovelock gravity [8,9] ], theories with
nonminimal curvature-matter couplings [e.g., fðR; T Þ
gravity, where T is the trace of the stress-energy tensor
[10–12] ], or more radical modifications such as massive
gravity [13] and Hořava-Lifshitz [14]. The goal of all these
endeavors is to consistently explain the aforementioned
observational phenomena while also retaining GR as a
particular limit [15].

Recently, there has been a significant rise in interest in a
specific class of theories originally investigated by Einstein
and Cartan. By considering gravitation to be described by
torsion rather than curvature, gravitation can retain many of
the features present in the original GR formalism [16,17].
This is most commonly referred to as teleparallel gravity.
Furthermore, the fundamental dynamical quantity of the
theory is not the metric tensor but the more subtle, so-
called, tetrad field. In the simplest form of these theories the
Lagrangian is just the torsion scalar T, constructed by
contractions of the torsion tensor, and variation with respect
to the tetrad gives rise to exactly the same equations with
GR, which is why this theory was named “teleparallel
equivalent of general relativity” (TEGR) [18–21]. The
source of the above equivalence is a boundary quantity,
B, which relates the two Lagrangians, namely the Ricci
scalar of GR and the torsion scalar of TEGR:

R ¼ −T þ B; ð1Þ

where R is calculated with the regular Levi-Cività con-
nection while T is calculated with the Weitzenböck
connection.
Inspired by the gravitational modifications that are based

on the curvature formulation of gravity, one can construct
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modified gravity theories starting from TEGR. The sim-
plest such modified teleparallel theory is the fðTÞ gravity,
in which one generalizes T to a function fðTÞ in the
Lagrangian [22,23] (see [24] for a review). One can
immediately see that due to relation (1) and in particular
to the boundary term, fðTÞ gravity is not equivalent to fðRÞ
gravity, and thus it is a novel gravitational modification.
Additionally, the advantage of this theory is that the
equations of motion are of second order, in contrast to
the fourth-order equations of fðRÞ gravity. These features
led to many investigations in various fields of cosmology in
this theory [25–33]. Furthermore, one may proceed in
constructing other modifications and extensions of tele-
parallel theories, such as the fðT; TGÞ gravity, where TG is
the teleparallel equivalent of G [34–36], the fðT; T Þ
gravity, where T is the trace of the stress-energy tensor
[37,38], or torsional gravities with higher-order derivatives
[39]. Finally, one interesting class of torsional gravitational
modification is the fðT; BÞ gravity, in which one allows for
the use of the boundary term B in the Lagrangian [40–42].
On the other hand, gravitational wave (GW) observa-

tions not only have confirmed the existence of gravitational
waves as the mediator of gravitational information [43] but
also have set bounds on the polarization modes of these
waves from known sources [44], as well as on their speed,
which is equal to the light speed with great accuracy
[45–49]. These observations are very important for alter-
native theories of gravity, since in general one can obtain
extra polarization modes or variant speed. Although there
have been some works investigating gravitational waves in
fðTÞ gravity [50–52], the systematic study of gravitational
waves in modified teleparallel gravities has not been
performed.
In this work we are interested in looking at fðTÞ,

fðT; BÞ, and fðT; TGÞ gravities in the realm of gravitational
waves through detailed perturbation analysis. Our goals are
to determine whether various teleparallel gravities predict
extra modes and to investigate the strength of these modes
in the scales where they arise. Although in GR there are two
GW polarizations, namely the plus and cross polarizations,
alternative and extended theories might yield more modes
[as for instance in fðRÞ gravity [53] ]. As we will show,
although in the case of fðTÞ gravity the polarization models
are identical to those of GR [50], this is not the case when
an arbitrary boundary contribution is included, as for
instance in fðT; BÞ gravity.
The paper is organized as follows. In Sec. II we briefly

review teleparallel gravity and its various modifications. In
Sec. III we perform an analysis of the gravitational waves in
the case of fðTÞ gravity, both in the metric and tetrad
languages, and for both zero and nonzero spin connections.
In Sec. IV we investigate the gravitational waves in the case
of fðT; BÞ gravity, both around a Minkowski background, a
case which is obtained in the absence of a cosmological
constant, but also in the case where the presence of a

cosmological constant changes the background around
which the perturbations are realized. In Sec. V we examine
the gravitational waves in fðT; TGÞ. Finally, the work
closes with a discussion and conclusion of results
in Sec. VI.

II. MODIFIED TELEPARALLEL THEORIES
OF GRAVITY

In teleparallel theories of gravity the fundamental
dynamical variable is the tetrad (or vierbein) eaμ, which
relates the standard coordinate frame ∂μ ≡ ∂

∂xμ with an
orthonormal and noncoordinate frame (e-frame). In gen-
eral, non-coordinate frames are anholonomic, a property
that is attributed to the existence of noninertial effects. The
metric tensor gμν can be related to the tetrad through the
Minkowski metric ηab by

gμν ¼ ηabeaμeaν; ð2Þ

where the point dependence is suppressed for brevity. In the
whole manuscript Greek indices refer to the spacetime
coordinates, while Latin indices refer to the tangent-space
ones. The inverse tetrad is denoted by Ea

μ for transparency,
and one can show that

eaμEa
ν ¼ δνμ; eaμEb

μ ¼ δab: ð3Þ

The connection used in the teleparallel theories of gravity is
defined as a connection that has vanishing curvature. This
connection is the so-called Weitzenböck connection, and
the fact that it is torsionful makes the connection coef-
ficients nonsymmetric in the lower indices in contrast with
the Levi-Cività connection where the indices are symmet-
ric. The tetrad enables us to relate to each Lorentz spin
connection ωa

bμ the Weitzenböck connection via [54]

Γ̂ρ
νμ ≡ Ea

ρ∂μeaν þ Ea
ρωa

bμebν: ð4Þ

The spin connection ωa
bμ does not represent any additional

gravitational degrees of freedom (d.o.f.). If one switches
over to the e-frame and applies the Weitzenböck covariant
derivative to the basis vectors of the e-frame, assuming the
so-called Weitzenböck condition where ωa

bμ ¼ 0, then the
result will be zero. This phenomenon is called complete
frame induced parallelism and in the physics literature is
frequently called teleparallelism or absolute parallelism
[21]. The Riemann and Ricci tensors calculated with the
Weitzenböck connection are identically zero, while the
torsion tensor is written as

Ta
μν ≡ Γ̂a

νμ − Γ̂a
μν ¼ ∂μeaν − ∂νeaμ þ ωa

bμebν − ωa
bνebμ:

ð5Þ

Moreover, one can define the superpotential tensor as
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Saμν ≡ 1

2
ðKμν

a þ eaμTαν
α − eaνTαμ

αÞ; ð6Þ

where Kμν
a is the contorsion tensor identified as

Kμν
a ≡ 1

2
ðTa

μν þ Tνμ
a − Tμν

aÞ; ð7Þ

which represents the difference between the Levi-Civitá
connection and the Weitzenböck connection. The
Lagrangian of TEGR is the torsion scalar T, constructed
by contractions of the torsion tensor, namely [54]

T ≡ SaμνTa
μν ¼

1

4
TρμνTρμν þ

1

2
TρμνTνμρ − Tρμ

ρTνμ
ν: ð8Þ

Therefore, the action of TEGR reads

S ¼ 1

16πG

Z
d4xeT þ

Z
d4xeLm; ð9Þ

where e ¼ detðeaμÞ ¼ ffiffiffiffiffiffi−gp
, with g being the determinant

of the metric tensor, and where Lm is the matter Lagrangian
and G is Newton’s constant.
As we mentioned in the Introduction, one can show that

the Ricci scalar calculated with the Levi-Cività connection,
and the torsion scalar calculated with the Weitzenböck
connection, are related through

R ¼ −T − 2∇μTν
μν; ð10Þ

and thus we can identify the boundary term B≡ −2∇μTν
μν.

Hence, one can immediately see that GR and TEGR will
lead to exactly the same equations. However, this will not
be the case if one uses fðRÞ and fðTÞ as the Lagrangian of
the theory, which therefore correspond to different gravi-
tational modifications.
A general class of modified teleparallel gravity would

thus be composed by an arbitrary function of T and B,
leading to fðT; BÞ gravity [40], characterized by the action

S ¼ 1

16πG

Z
d4xefðT; BÞ þ

Z
d4xeLm: ð11Þ

By varying the action with respect to the vierbein we obtain
the following field equations:

Ea
μ□fB − Ea

ν∇μ∇νfB þ 1

2
BfBEa

μ

þ 2∂νðfB þ fTÞSaνμ þ 2e−1∂νðeSaνμÞfT
− 2fTTα

νaSαμν −
1

2
Ea

μf ¼ 8πGΘa
μ; ð12Þ

where Θa
μ is the stress-energy tensor, which in terms of the

matter Lagrangian is given by Θa
μ ¼ −δLm=δeaμ. In the

above equation we have defined that fT ≡ ∂f=∂T and

fB ≡ ∂f=∂B. Note that the derived equations are given for
the zero spin connection case. Additionally, in terms of
spacetime indices the equations of motion can take the form

− fTGμν þ ðgμν□ −∇μ∇νÞfB
þ 1

2
gμνðfBBþ fTT − fÞ

þ 2Sναμ∂αðfT þ fBÞ ¼ 8πGΘμν; ð13Þ

where Gμν ≡ Rμν − 1
2
gμνR is the Einstein tensor calculated

with the Levi-Cività connection.
Before closing this section let us make some comments

on the spin connection ωa
bμ that is present in the definition

(4). In the traditional works of TEGR one usually sets it to
zero for convenience, by choosing a suitable frame (spe-
cifically autoparallel orthonormal frame) [54]. Although
this does not have any effect for TEGR, in the case of fðTÞ
gravity such a preferred frame choice should be used
carefully. In particular, one is allowed to make such a
choice in order to find cosmological solutions; however,
one has to have in mind that in investigations which include
questions on Lorentz transformations such a formulation is
in general inadequate. In this case one should formulate
fðTÞ gravity in a fully covariant way, keeping a general
nonzero spin connection [55]. In this way the theory
becomes completely consistent with Lorentz invariance,
nevertheless at the price of increased complication. In the
largest part of this manuscript wewill consider the zero spin
connection case (which is a safe choice for cosmological
applications), especially for the general fðT; BÞ and
fðT; TGÞ theories; however, in the simpler fðTÞ theory,
for completeness, we will also discuss the nonzero spin
connection case.

III. GRAVITATIONAL WAVES IN f ðTÞ GRAVITY

Let us now start with the investigation of the gravita-
tional waves in the case of the simplest modification to
teleparallel gravity, namely fðTÞ gravity. We first perform
the analysis for first-order perturbations at a tetrad level,
and then we proceed to higher-order examination in order
to understand more transparently the potential deviations
from GR.

A. Tetrad solutions for GWs in f ðTÞ gravity
We start by considering the tetrad form of the field

equations (13) in the case of fðTÞ gravity, namely

e−1fT∂νðeSaμνÞ þ fTTSaμν∂νT

− fTTb
νaSbμν þ

1

4
fðTÞeaμ ¼ 0; ð14Þ

where as before we neglect the matter sector. We consider a
tetrad perturbation of the form
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eaμ ¼ γð0Þaμ þ γð1Þaμ þOðγð2Þaμ Þ; ð15Þ

where jγðiÞaμ j ≪ 1 except for the zeroth-order contribution,
and each successive order is much smaller than the

preceding order, i.e., jγð2Þaμ j ≪ jγð1Þaμ j. This last comment
applies throughout to every successive order quantity.
Throughout the work, superscripts with parentheses will
represent the perturbative order of the quantity being
presented. As usual, from (2) we obtain for the zeroth-
order perturbation

ημν ¼ ηabγ
ð0Þa
μ γð0Þbν : ð16Þ

Thus, the torsion tensor (5), assuming for the moment zero
spin connection, up to first order can be expressed as

Ta
μν ¼ ∂μγ

ð0Þa
ν − ∂νγ

ð0Þa
μ þ ∂μγ

ð1Þa
ν − ∂νγ

ð1Þa
μ : ð17Þ

This gives an impression that an arbitrary choice of γð0Þaν will
yield a zeroth-order contribution. However, as discussed in
Ref. [55], if the gravitational strength, i.e., the gravitational
constant, vanishes, one obtains the Minkowski background,
in which the torsion tensor vanishes. In this perturbation

regime eaμjG→0 ¼ γð0Þaμ , since this corresponds to the
Minkowski background, while the higher-order perturba-
tions are due to gravitational effects. Therefore

Ta
μνjG→0 ¼ ∂μγ

ð0Þa
ν − ∂νγ

ð0Þa
μ ¼ 0: ð18Þ

Hence, as we mentioned above, the torsion tensor is first
order, and so are the contorsion and superpotential, which
ultimately imply that the torsion scalar is second order at the
level of perturbations. Finally, in order to handle the fðTÞ
term we will consider the Taylor expansion (59).
Inserting the above expressions into Eq. (14), order by

order leads to

γð0Þρa fð0Þ ¼ 0; ð19Þ

fð0ÞT e−1ð0Þ∂νðeð0ÞSað1ÞμνÞ þ γð0Þρa
fð1Þ

4
þ γð1Þρa

fð0Þ

4
¼ 0: ð20Þ

As mentioned above, the first condition implies that no
cosmological constant is present. We next identify that
eð0Þ ¼ e−1ð0Þ ¼ 1, and we assume fð1Þ ¼ 0, since T is a
second-order quantity and thus its function cannot have
first-order contributions. Last, we focus on the nontrivial

case fð0ÞT ≠ 0. Under these considerations Eq. (20) becomes

∂νSað1Þμν ¼ 0: ð21Þ

We note here that these intermediate steps are different from
the fðTÞ GWs analysis carried out previously with the

Einstein tensor, since we now follow the tetrad language.
Moreover, notice that this equation appears inTEGR, too [56].
Let us proceed by extracting explicit solutions. We first

remark, however, that the above equation is not possible to
solve in general. However, we can assume that GR gauge

conditions on the perturbed metric, namely hð1Þμν , can also be
imposed here, specifically that it is traceless,

hð1Þμμ ¼ 2ημνηabγ
ð0Þa
μ γð1Þbν ¼ 0; ð22Þ

and satisfies the Lorenz gauge condition

0 ¼ ∂μhð1Þμν ¼ ∂bγ
ð0Þb
ν

þ ηab½γð1Þbν ∂μγð0Þbν þ γð1Þaμ ∂μγð0Þaμ þ γð1Þaμ ∂μγð0Þbν �: ð23Þ
Together with the relation

γð0Þdν ¼ ηcdημνγ
ð0Þμ
c ð24Þ

and for simplicity we consider the case γð0Þaμ ¼ δaμ, where

Eq. (21) can solely be expressed in terms of γð1Þaμ , namely

Aμ
d ≡ ημαηdf□γð1Þfα þ δμaδ

ρ
d□γð1Þaρ ¼ 0: ð25Þ

This yields the following system of equations:

A0
0∶ □γð1Þ00 ¼ 0; ð26Þ

A0
i ¼ −Ai

0∶ □ðγð1Þ0i − γð1Þi0 Þ ¼ 0; ð27Þ

Ai
jði ≠ jÞ∶ □ðγð1Þji þ γð1Þij Þ ¼ 0; ð28Þ

Ai
mði ¼ mÞ∶ □γð1Þii ¼ 0; ð29Þ

where we have used the fact that ημν ¼ diagð−1; 1; 1; 1Þ
and i; j ¼ f1; 2; 3g. Since we are working in the
Minkowski metric Cartesian coordinate system, the indices
f0; 1; 2; 3g correspond to ft; x; y; zg, respectively. Last, we
can demand the extra gauge condition that the waves are

transverse, i.e., hð1Þ0μ ¼ 0, which sets γð1Þ00 ¼ 0 and

γð1Þi0 ¼ γð1Þ0i . In summary, the full list of conditions and
equations are found to be

Traceless condition∶ γð1Þii ¼ 0; ð30Þ

Lorenz gauge condition∶ ∂jðγð1Þji þ γð1Þij Þ ¼ 0; ð31Þ

Ai
jði ≠ jÞ∶ □ðγð1Þji þ γð1Þij Þ ¼ 0; ð32Þ

Ai
mði ¼ mÞ∶ □γð1Þii ¼ 0: ð33Þ

Without loss of generality we make the choice that the
gravitational wave propagates in the z direction, and as
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usual we work in the Fourier space. The wave equations
then imply that

γð1Þii ¼ Ai
i expðikμxμÞ;

i ¼ f1; 2; 3g ðfixed indexÞ; ð34Þ

γð1Þji þ γð1Þij ¼ Bi
j expðipμxμÞ;

i ¼ f1; 2; 3g; i ≠ j; ð35Þ

where kμ and pμ are wave vectors such that
kμkμ ¼ pμpμ ¼ 0, and where Ai

i and Bi
j are coefficients

such that A1
1 ¼ −A2

2, A3
3 ¼ 0, and B1

3 ¼ B2
3 ¼ 0. Note

that these conditions arise from the traceless and Lorenz
gauge conditions. Therefore, the undetermined coefficients
are A1

1, B1
3, B2

3, and B1
2, which leads to the perturbed

tetrad solution

γð1Þaμ ¼

0
BBBBBB@

0 γð1Þ10 γð1Þ20 γð1Þ30

γð1Þ10 γð1Þ11 γð1Þ21 γð1Þ31

γð1Þ20 B1
2 expðipμxμÞ − γð1Þ21 −γð1Þ11 γð1Þ32

γð1Þ30 −γð1Þ31 −γð1Þ32 0

1
CCCCCCA
:

ð36Þ

Here the γð1Þji are undetermined tetrad components which
are not constrained by the equations. We mention that the
perturbed metric then takes the form

hð1Þμν ¼

0
BBBBB@

0 0 0 0

0 2γð1Þ11 B1
2 expðipμxμÞ 0

0 B1
2 expðipμxμÞ −2γð1Þ11 0

0 0 0 0

1
CCCCCA
:

ð37Þ

Note that obtaining the perturbed tetrad is not a trivial task
in general, since amongst the infinite choices of perturbed
tetrad ansatzes corresponding to the same perturbed metric,
one should use the appropriate ones in order to obtain
consistency [25,52,57].
Observing the solution (37) we can easily identify the

standard þ and × polarizations of GR by defining hþ ≡
2γð1Þ11 and h× ≡ B1

2 expðipμxμÞ. Therefore, the perturbed
tetrad has 2 physical d.o.f. (hþ and h×) and 6 arbitrary d.o.f.
related to Lorentz transformations. Hence, through the
explicit solutions we did verify the result obtained pre-
viously, namely that at first-order perturbation level there
are not any new polarization modes in fðTÞ gravity. Finally,
as we mentioned above, in order to examine the 6 d.o.f.
related to Lorentz transformations it is necessary to

reformulate the theory in a fully covariant way, namely
keeping an arbitrary spin connectionωa

bμ. This is performed
in the next subsection.

B. GWs in f ðTÞ gravity with nonzero spin connection

For completeness and transparency, in this subsection we
perform the analysis of the previous subsection, but in the
case of a general spin connection, i.e., for the fully
covariant formulation of fðTÞ gravity presented in [55].
We start by considering the tetrad perturbation (15);

however, we insert it in the torsion tensor (5) maintaining
an arbitrary spin connection, obtaining up to first order:

Ta
μν ¼ ∂μγ

ð0Þa
ν − ∂νγ

ð0Þa
μ þ ωa

bμγ
ð0Þb
ν − ωa

bνγ
ð0Þb
μ

þ∂μγ
ð1Þa
ν − ∂νγ

ð1Þa
μ þ ωa

bμγ
ð1Þb
ν − ωa

bνγ
ð1Þb
μ : ð38Þ

As discussed in [55], the purely inertial spin connection can
be found by demanding that the torsion tensor is zero when
the gravitational constant vanishes, namely G → 0, which
yields the expression

ωa
bμ ¼ Γa

bμ − Eb
ν∂μeaνjG→0; ð39Þ

where Γa
bμ is the GR Levi-Cività connection. As before,

eaμjG→0 ¼ γð0Þaμ . Furthermore, gμνjG→0 ¼ ημν and hence
Γa
bμjG→0 ¼ 0. Therefore, the spin connection turns out to be

ωa
bμ ¼ −γð0Þνb ∂μγ

ð0Þa
ν : ð40Þ

Since the torsion tensor is zero when the gravitational
constant is zero, then

Ta
μνjG→0 ¼ ∂μγ

ð0Þa
ν − ∂νγ

ð0Þa
μ þ ωa

bμγ
ð0Þb
ν − ωa

bνγ
ð0Þb
μ ¼ 0:

ð41Þ

Thus, the torsion tensor is first order, and so are the
contorsion and superpotential, which ultimately implies
that the torsion scalar is second order at the level of
perturbations.
Before investigating the field equations we make the

following remark. The purely inertial spin connection is
given by

ωa
bμ ¼ −Λb

c∂μΛa
c; ð42Þ

where Λd
c is a Lorentz matrix with inverse Λa

c. Thus,
under this formulation, we deduce that the zeroth-order

tetrad perturbations γð0Þaν are precisely the Lorentz matrices.
This shall be considered in what follows.
The next step is to expand the field equations at a

perturbation level. In this case, the field equations for fðTÞ
gravity with an arbitrary spin connection are given by
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e−1fT∂νðeSaμνÞ þ fTTSaμν∂νT − fTTb
νaSbνμ

þ fTωb
aνSbνμ þ

1

4
fðTÞeaμ ¼ 0; ð43Þ

which under the Taylor expansion (59), expanding order by
order we obtain

γð0Þρa fð0Þ ¼ 0; ð44Þ

fð0ÞT ½e−1ð0Þ∂νðeð0ÞSað1ÞμνÞ þ ωb
aνSbð1Þνμ�

þ γð0Þρa
fð1Þ

4
þ γð1Þρa

fð0Þ

4
¼ 0; ð45Þ

which generalize (19) and (20) in the case of nonzero spin
connection. As before, the first condition implies that no
cosmological constant is present. Moreover, we choose

eð0Þ ¼ e−1ð0Þ ¼ 1, since det γð0Þaν ¼ detΛa
ν ¼ 1, which is a

property of Lorentz matrices; similar to the zero spin
connection case we impose fð1Þ ¼ 0 and we assume

fð0ÞT ≠ 0. Hence, Eq. (45) becomes

∂νS
ð1Þμν
a þ ωb

aνSbð1Þνμ ¼ 0; ð46Þ

which is the generalization of (21) in the case of nonzero
spin connection. Finally, using the definition of the spin

connection ωa
bμ ¼ −γð0Þνb ∂μγ

ð0Þa
ν , Eq. (46) can be recast

into the simpler form

γð0Þαa ∂ν½γð0Þbα Sbð1Þμν�
¼ ∂νSað1Þμν þ γð0Þαa ∂νγ

ð0Þb
α Sbð1Þμν ¼ 0: ð47Þ

Similar to the spin zero case, solving the above equation
is not possible in general. However, we will again assume
that the GR gauge conditions on the perturbed metric being
traceless and satisfying the Lorenz gauge condition can also
be imposed here. Hence, together with the relation

γð0Þdν ¼ ηcdημνγ
ð0Þμ
c ; ð48Þ

the equation of motion reduces to the following simplified
expression:

ημαηβργ
ð0Þβ
d □ðγð0Þρf γð1Þfα Þ − γð0Þβd ∂bγ

ð0Þμ
c ∂cγð1Þbβ

þ γð0Þβd □ðγð0Þμb γð1Þbβ Þ − γð0Þβd ∂νγ
ð1Þc
β ∂μγð0Þνc

− ημα∂bγ
ð0Þβ
d ∂βγ

ð1Þb
α þ ημα∂dγ

ð0Þβ
b ∂βγ

ð1Þb
α ¼ 0; ð49Þ

which can alternatively be expressed in terms of the spin
connection as

ημαηdf□γð1Þfα þ γð0Þβd γð0Þμb □γð1Þbβ þ 2ημαωdfν∂νγð0Þfα

þ ημαγð0Þβd γð1Þfα ∂νωβf
ν − γð0Þβd ωμ

cb∂cγð1Þbβ

þ 2γð0Þβd ∂αγð0Þbβ ωμ
bα þ γð0Þβd γð1Þbβ ∂αω

μ
b
α

− γð0Þβd ∂νγ
ð1Þc
β ων

c
μ − ημαωβ

db∂βγ
ð1Þb
α

þ ημαωβ
bd∂βγ

ð1Þb
α ¼ 0: ð50Þ

Finally, note that if we choose our frame of reference to
correspond to zero spin connection, then the above equa-
tion reduces to

ημαηdf□γð1Þfα −□γð1Þμd ¼ 0; ð51Þ

where we have used the fact that

γð1Þνb ¼ −γð0Þνa γð1Þaμ γð0Þμb ; ð52Þ

which arises from (3).
In general, as it was mentioned in [55], in the case of

nonzero spin connection it is hard even to extract the
background solutions. Hence we can see that obtaining the
perturbed solution seems very difficult, since the back-
ground tetrad affects the perturbed solution. The detailed
examination of the perturbed solutions in the case of fðTÞ
gravity with nonzero spin connection lies beyond the scope
of the present work.
We close this section by mentioning that the presented

methodology can be extended to more general torsional
modified gravitational theories, by defining appropriate
gauge conditions on the tetrad, especially to theories in
which the coordinate-indexed form of the field equations
results in mixing between the metric and tetrad tensors. In
this way, any information about the tetrad is not lost within
the metric tensor, since the appropriate field equations are
solved.

C. Higher-order metric perturbations

In this subsection we proceed to the analysis of higher-
order perturbations, in order to understand more trans-
parently the potential deviations from general relativity.
The standard approach is to consider perturbations around a
flat Minkowski background. This is achieved by perturbing
the metric tensor in the following manner:

gμν ¼ ημν þ hð1Þμν þ hð2Þμν þ hð3Þμν þOðhð4Þμν Þ; ð53Þ

where jhðiÞμν j ≪ 1, which is retained up to third order in this
instance. Since the fundamental variable in the torsional
formulation is the tetrad, the above metric perturbation can
be obtained by the tetrad perturbation

eaμ ¼ δaμ þ γð1Þaμ þ γð2Þaμ þ γð3Þaμ þOðγð4Þaμ Þ; ð54Þ
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where jγðiÞaμ j ≪ 1. We remark that, in general, the zeroth-
order part of the tetrad perturbation is determined by the
background metric, which in linearized gravity is usually
the Minkowski metric. Thus, in the current case the zeroth-
order contribution to the tetrad perturbation turns out to be
represented by the identity matrix, and that is why we
introduced the Kronecker delta. However, we mention that
this does not affect the obtained results, and the same
conclusion is reached for other backgrounds, too.
By the definition of the metric tensor gμν ¼ ηabeaμebν,

we can relate the metric and tetrad perturbations through

hð1Þμν ¼ ηabðδaμγð1Þbν þ γð1Þaμ δbνÞ; ð55Þ
hð2Þμν ¼ ηabðδaμγð2Þbν þ γð1Þaμ γð1Þbν þ γð2Þaμ δbνÞ; ð56Þ

hð3Þμν ¼ ηabðδaμγð3Þbν þ γð1Þaμ γð2Þbν þ γð2Þaμ γð1Þbν þ γð3Þaμ δbνÞ: ð57Þ
Inserting these expressions into the definition of the torsion
tensor (5), and assuming for the moment zero spin con-
nection, we obtain

Ta
μν ¼ ∂μγ

ð1Þa
ν − ∂νγ

ð1Þa
μ þOðγð2Þaμ Þ; ð58Þ

from which we can see that the torsion tensor is at least of
first order, with the zeroth-order contribution equal to zero.
Consequently, from the definitions of the contorsion and
superpotential tensors, namely relations (7) and (6), respec-
tively, we deduce that they are both also at least of first
order since their zeroth-order contributions are zero. Thus,
the torsion scalar T, which is quadratic in the torsion tensor,
becomes a second-order quantity. Finally, in order to handle
the fðTÞ term, for simplicity we assume that this function is
Taylor expandable around T ¼ 0, namely

fðTÞ ¼ fð0Þ þ fTð0ÞT þ 1

2!
fTTð0ÞT2 þ � � � : ð59Þ

Let us proceed by perturbing the equations of motion.
According to Eq. (13), in the case of fðTÞ gravity the field
equations become

−fTGμν þ
1

2
gμνðfTT − fÞ þ 2Sναμ∂αfT ¼ 0: ð60Þ

We mention that since we are interested in examining the
properties of the gravitational waves, for simplicity we have
neglected the contribution of the matter stress-energy
tensor; namely we neglect quadrupole moments which
arise from the stress-energy tensor.
Inserting the perturbed tetrad and metric in the field

equations (60), and under the Taylor expansion (59), order
by order we obtain

ημνfð0Þ ¼ 0; ð61Þ

fTð0ÞGð1Þ
μν ¼ 0; ð62Þ

fTð0ÞGð2Þ
μν ¼ 0; ð63Þ

fTð0ÞGð3Þ
μν þ fTTð0ÞTð2ÞGð1Þ

μν − 2fTTð0ÞSð1Þαν μ∂αTð2Þ ¼ 0:

ð64Þ

Considering only the nontrivial case fTð0Þ ≠ 0 (otherwise
GR cannot be obtained at any limit) the perturbed field
equations simplify further to

ημνfð0Þ ¼ 0; ð65Þ

Gð1Þ
μν ¼ 0; ð66Þ

Gð2Þ
μν ¼ 0; ð67Þ

Gð3Þ
μν ¼ 2

fTTð0Þ
fTð0Þ

Sð1Þαν μ∂αTð2Þ: ð68Þ

As we observe, the zeroth-order equation (65) implies
that no cosmological constant is present in the analysis,
which was expected since the considered perturbations are
around a Minkowski background and not around a cos-
mological constant one. The first- and second-order equa-
tions coincide with the standard GR perturbed equations in
vacuum. However, the new information is that at the third-
order equation (68) we find a deviation from the standard
GR perturbation equation, with a contribution arising from
the fTT term. Thus, the fðTÞ effect on the perturbation
equations enters only at the higher than second order, and
the reason behind this is that the torsion scalar is quadratic
in the torsion tensor. This is a radical difference with the
case of curvature-based modified gravity, where the effect
of the modification becomes manifest from first-order
perturbation already. These features will become more
transparent in the next section, where we study the case
of fðT; BÞ gravity. Finally, note that in the GR limit, i.e., at
fTTð0Þ ¼ 0, we reobtain the standard GR results.
In summary, as we showed, in order to see the effect of

fðTÞ gravity on the gravitational waves themselves, one
should look at third-order perturbations (higher-order con-
tributions in curvature gravity have been examined in
literature; see e.g., [58,59]). Note that this concerns the
effect on the “internal” properties of the gravitational
waves, as for instance in their polarization modes, where
it was known that no further polarization modes are present
in fðTÞ gravity at first-order perturbation levels [50,51].
However, we stress that in general the effect of fðTÞ gravity
on the cosmological gravitational wave propagation can be
seen straightaway from the dispersion relation at first order,
due to the effect of fðTÞ gravity on the cosmological
background itself [52].
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IV. GRAVITATIONALWAVES IN f ðT;BÞGRAVITY

In this section we will investigate the gravitational waves
in the case of fðT; BÞ gravity with action (11). From now
on we consider only the case of zero spin connection, and
we focus on the case fðT; BÞ ≠ fðTÞ since fðTÞ gravity
was investigated in the previous section. Furthermore, for
convenience, we first study the gravitational waves around
a Minkowski background, i.e., in the case where a
cosmological constant is absent from the fðT; BÞ form,
and then we proceed to the general investigation of the case
where a cosmological constant is allowed.

A. GWs in f ðT;BÞ gravity in the absence of a
cosmological constant

We start with the perturbed metric around a Minkowski
background:

gμν ¼ ημν þ hð1Þμν þOðhð2Þμν Þ; ð69Þ

where jhðiÞμν j ≪ 1. This metric perturbation can be obtained
from the perturbed tetrad

eaμ ¼ δaμ þ γð1Þaμ þOðγð2Þaμ Þ: ð70Þ
Using relation gμν ¼ ηabeaμebν we acquire

hð1Þμν ¼ ηabðδaμγð1Þbν þ γð1Þaμ δbνÞ; ð71Þ
and thus for the perturbed torsion tensor we obtain

Ta
μν ¼ ∂μγ

ð1Þa
ν − ∂νγ

ð1Þa
μ þOðγð2Þaμ Þ: ð72Þ

As we mentioned earlier, the torsion tensor is at least first
order, and thus the torsion scalar T is of second order in
perturbations. This has a significant consequence, namely
that relation (1), specifically R ¼ −T þ B, at first order
becomes Rð1Þ ¼ Bð1Þ (we remind the reader that R is
calculated using the Levi-Cività connection while T and
B are calculated with the Weitzenböck connection). Indeed,
the Ricci scalar at first order is given to be

Rð1Þ ¼ ημν∂ρ∂νhð1Þρμ −□hð1Þ; ð73Þ

where indices are raised with respect to the Minkowski
metric, hð1Þ ≡ hð1Þμμ and □≡ ∂μ∂μ. Expanding in terms of
tetrads yields

Rð1Þ ¼ 2δρbðημν∂ν∂ργ
ð1Þb
μ −□γð1Þbρ Þ: ð74Þ

On the one hand, expanding the boundary term at first order
yields

Bð1Þ ¼ −2ð∇μTν
μνÞð1Þ ¼ −2ημρ∂ρTð1Þν

μν

¼ 2δρbðημν∂ν∂ργ
ð1Þb
μ −□γð1Þbρ Þ: ð75Þ

Thus, we can immediately see that at this order it is equal to
the Ricci scalar.
In order to handle the fðT; BÞ term for simplicity we

assume that its form is Taylor expandable around the
current values T0 and B0, namely

fðT; BÞ ¼ fðT0; B0Þ þ fTðT0; B0ÞðT − T0Þ
þ fBðT0; B0ÞðB − B0Þ

þ 1

2!
fTTðT0; B0ÞðT − T0Þ2

þ 1

2!
fBBðT0; B0ÞðB − B0Þ2

þ fTBðT0; B0ÞðT − T0ÞðB − B0Þ þ � � � : ð76Þ

Furthermore, since we are only examining the properties of
the gravitational waves, we neglect the matter sector.
Inserting all the above into the field equations of fðT; BÞ

gravity, namely Eq. (13), order by order we obtain

ημνfð0; 0Þ ¼ 0; ð77Þ

−fTð0; 0ÞGð1Þ
μν þ fBBð0; 0Þðημν□ − ∂μ∂νÞRð1Þ ¼ 0; ð78Þ

where we have used the fact that Rð1Þ ¼ Bð1Þ, and that
fð0; 0Þ ¼ 0 from the zeroth-order condition. The latter
condition is another statement for the fact that the arbitrary
Lagrangian function does not include a cosmological
constant.
We proceed following [51], and we define an effective

mass by considering the trace of the first-order equation.
This is also similar to the fðRÞ gravity case. However, our
effective mass is different from that of Ref. [51]. Indeed, by
taking the trace

fTð0; 0ÞRð1Þ þ 3fBBð0; 0Þ□Rð1Þ ¼ 0; ð79Þ

we identify the effective massm by bringing the equation in
the form ð□ −m2ÞRð1Þ ¼ 0, which turns out to be

m2 ≡ −
fTð0; 0Þ
3fBBð0; 0Þ

: ð80Þ

We remark that in the jm2j → ∞ limit [for instance when
fBBð0; 0Þ ¼ 0 and fTð0; 0Þ ≠ 0], the equation reduces to
that of GR. Since it is known that fðTÞ gravity yields no
further gravitational wave modes [50], as we verified in the
previous section, this special condition leads to a broader
class of theories in which at first order yields the gravi-
tational wave solutions.
In the case where fBBð0; 0Þ ≠ 0 we can follow the

procedure of fðRÞ gravity [60–64] [note that fðRÞ is a
particular subclass of fðT; BÞ gravity, namely fð−T þ BÞ
gravity]. First, we introduce the tensor h̄ð1Þμν to be
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hð1Þμν ¼ h̄ð1Þμν −
1

2
h̄ð1Þημν þ

fBBð0; 0Þ
fTð0; 0Þ

ημνRð1Þ; ð81Þ

where h̄ð1Þ represents the trace of h̄ð1Þμν . Similar to the
previous section we consider the nontrivial case of
fTð0; 0Þ ≠ 0 (otherwise GR cannot be obtained at any
limit). This simplifies Eq. (78) to

∂ρ∂νh̄
ð1Þ
ρμ þ ∂ρ∂μh̄

ð1Þ
νρ − ημν∂ρ∂αh̄ð1Þρα −□h̄ð1Þμν ¼ 0: ð82Þ

As shown in [60], it is possible to consider the Lorenz

gauge condition ∂μh̄ð1Þμν ¼ 0, which simplifies the wave
equation to

□h̄ð1Þμν ¼ 0; ð83Þ

as well as the traceless condition h̄ð1Þ ¼ 0. This allows for
the solution

h̄ð1Þμν ¼ Aμν exp ðikρxρÞ; ð84Þ

where kρ is the four-wave vector, Aμν are constant coef-
ficients, kρkρ ¼ 0, kμAμν ¼ 0, and Aμ

μ ¼ 0. The last con-
ditions are the Lorenz gauge and traceless conditions,
respectively. On the other hand, the solution for (79) is

Rð1Þ ¼ F exp ðipμxμÞ; ð85Þ

where F is a constant and pμ is another four-wave vector

such that pμpμ ¼ −m2. Hence, the full solution for hð1Þμν is
constructed as

hð1Þμν ¼ Aμν exp ðikρxρÞ þ
fBBð0; 0Þ
fTð0; 0Þ

ημνF exp ðipμxμÞ: ð86Þ

Note that from (78) and (79), the Ricci tensor is found to be

Rð1Þ
μν ¼ 1

6
ημνRð1Þ −

fBBð0; 0Þ
fTð0; 0Þ

∂μ∂νRð1Þ; ð87Þ

from which the solution of the Ricci scalar (85) simplifies
to

Rð1Þ
μν ¼

�
1

6
ημν −

1

3m2
pμpν

�
Rð1Þ: ð88Þ

Hence, it is trivial to verify that taking the trace yields a
consistent relation for the Ricci scalar, as expected.
We proceed by analyzing the polarization states of the

gravitational waves. As usual we consider the geodesic
deviation as in Ref. [60]. We remark that although in
teleparallel theories the particle motion is not described in
terms of geodesics, mathematically one may still use the
geodesic deviation formula, having in mind that all

curvature quantities should obviously be calculated using
the Levi-Cività connection [54] [for instance see [65] for
the geodesic deviation in fðTÞ gravity]. Hence, we start
from the geodesic deviation formula [66]

ẍi ¼ −Ri0j0xj; ð89Þ

where dots represent coordinate time derivatives, Rμνλρ is
the Riemann tensor calculated with the Levi-Cività con-
nection, ðt; x; y; zÞ ¼ ð0; 1; 2; 3Þ, i ¼ f1; 2; 3g, and
xj ¼ ðx; y; zÞ. Moreover, we consider the signature
ðþ;−;−;−Þ, and for simplicity we assume that the wave
propagates in the z direction.
From the perturbation analysis presented above, we find

that

Ri0j0 ¼
1

2
k20h̄

ð1Þ
ij −

1

6m2
½ηijp2

0R
ð1Þ þ pipjRð1Þ�: ð90Þ

Therefore, the geodesic deviation becomes

ẍ ¼
�
1

2
k20h̄

ð1Þ
þ þ 1

6m2
p2
0R

ð1Þ
�
xþ 1

2
k20h̄

ð1Þ
× y; ð91Þ

ÿ ¼
�
−
1

2
k20h̄

ð1Þ
þ þ 1

6m2
p2
0R

ð1Þ
�
yþ 1

2
k20h̄

ð1Þ
× x; ð92Þ

̈z ¼ 1

6m2
ðp2

0 − p2
3ÞRð1Þz ¼ −

1

6
Rð1Þz; ð93Þ

where in the last equation we have used that pμpμ ¼ −m2.
Additionally, since the wave propagates in the z direction,

we have used and defined h̄ð1Þ11 ¼ −h̄ð1Þ22 ≡ h̄ð1Þþ and

h̄ð1Þ12 ¼ h̄ð1Þ21 ≡ h̄ð1Þ× , which represent the massless þ and ×
polarizations.
As we observe, in the TEGR limit, namely at jm2j → ∞

and Rð1Þ → 0, the remaining modes are the þ and ×
polarizations as expected. However, in the case jm2j <
∞ we find the presence of the longitudinal and breathing
modes in the geodesic deviation equations. This is one of
the main results of the present work, namely that fðT; BÞ
gravity, in the case where fðT; BÞ ≠ fðTÞ, does have
further polarization modes at first-order perturbation, in
contrast to the case of fðTÞ gravity. The reason for this
behavior is the fact that although the first-order perturbation
does not have any effect on T, it does affect the boundary
term B.

B. Tetrad solutions for GWs in f ðT;BÞ gravity
In the previous subsection we analyzed the gravitational

waves in fðT; BÞ gravity from the metric perturbation side.
We now proceed to their examination from the tetrad
perturbation side. In order to do this we start from the
perturbed tetrad (70), and we insert it into the tetrad form of
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the fðT; BÞ field equations, namely into Eq. (12).
Neglecting the matter sector, order by order we obtain

δμafð0Þ ¼ 0; ð94Þ

δμa□fð1ÞB − δνa∂μ∂νf
ð1Þ
B þ 1

2
Bð1Þfð0ÞB δμa

þ2∂νSað1Þνμf
ð0Þ
T −

1

2
δμafð1Þ ¼ 0: ð95Þ

As before, the zeroth-order condition is a verification that
there is no cosmological constant present, i.e., that the
perturbation is performed around the Minkowski back-
ground. In order to simplify the first-order equation we

remark that fð1Þ ¼ fð0ÞB Bð1Þ and fð1ÞB ¼ fð0ÞBBB
ð1Þ, and as

usual we consider the nontrivial case fð0ÞT ≠ 0.
Therefore, Eq. (95) reduces to

∂νSað1Þνμ þ
fð0ÞBB

2fð0ÞT

½δμa□Bð1Þ − δνa∂μ∂νBð1Þ� ¼ 0: ð96Þ

Due to the introduction of the Bð1Þ terms in the above
equation, the traceless and Lorenz conditions used for the
simple case of fðTÞ gravity in Sec. III A need to be
modified to accommodate a more suitable gauge choice.
From the metric approach of the previous subsection we
instead have the “trace-reversed” metric h̄μν in (81), which
satisfies the traceless and Lorenz gauge conditions h̄ ¼ 0,
and ∂μh̄μν ¼ 0. Therefore, the “traceless” condition
becomes

δνbγ
ð1Þb
ν ¼ 2fð0ÞBBB

ð1Þ

fð0ÞT

; ð97Þ

while the “Lorenz condition” reads as

ηabð∂aγð1Þbν þ δbν∂μγð1Þaμ Þ ¼ fð0ÞBB∂νBð1Þ

fð0ÞT

: ð98Þ

In this way, the field equations simplify to

Aμ
a≡ ημαηab□γð1Þbα þ δμbδ

ρ
a□γð1Þbρ − δμa

fð0ÞBB□Bð1Þ

fð0ÞT

¼ 0; ð99Þ

which yields the following system of field equations:

A0
0∶ □

�
γð1Þ00 −

fð0ÞBBB
ð1Þ

2fð0ÞT

�
¼ 0; ð100Þ

A0
i ¼ −Ai

0∶ □ðγð1Þ0i − γð1Þi0 Þ ¼ 0; ð101Þ

Ai
jði ≠ jÞ∶ □ðγð1Þji þ γð1Þij Þ ¼ 0; ð102Þ

Ai
mði ¼ mÞ∶ □

�
γð1Þii −

fð0ÞBBB
ð1Þ

2fð0ÞT

�
¼ 0; ð103Þ

where ημν ¼ diagð−1; 1; 1; 1Þ and i; j ¼ f1; 2; 3g.
Moreover, since we are working in the Minkowski metric
Cartesian coordinate system, the indices f0; 1; 2; 3g cor-
respond to ft; x; y; zg, respectively.
The above equations are standard wave equations, and

thus we assume a plane-wave solution by working in
Fourier space. Without loss of generality, we shall assume
that the waves propagate in the z direction. Hence, the
solution for the perturbed tetrad is

γð1Þaμ ¼

0
BBBBBBBBB@

A expðikμxμÞ þ fð0ÞBBB
ð1Þ

2fð0ÞT

γð1Þ10 γð1Þ20 γð1Þ30

B1 expðikμxμÞ þ γð1Þ10 D expðikμxμÞ þ fð0ÞBBB
ð1Þ

2fð0ÞT

γð1Þ21 γð1Þ31

B2 expðikμxμÞ þ γð1Þ20 C expðikμxμÞ − γð1Þ21 −D expðikμxμÞ þ fð0ÞBBB
ð1Þ

2fð0ÞT

γð1Þ32

γð1Þ30 − 2A expðikμxμÞ B1 expðikμxμÞ − γð1Þ31 B2 expðikμxμÞ − γð1Þ32 −A expðikμxμÞ þ fð0ÞBBB
ð1Þ

2fð0ÞT

1
CCCCCCCCCA
: ð104Þ

Here, the γð1Þji are undetermined tetrad components, not
constrained by the equations, A, B1;2, C, and D are
constants, and kμ is the wave vector such that kμkμ ¼ 0.

As we observe, in the fð0ÞBB → 0 limit the first-order
perturbed equation (99) reduces to that of GR and fðTÞ
gravity, and hence the tetrad solution should describe the
same solution. Comparing with the tetrad solution obtained

in the case of simple fðTÞ gravity, namely solution (36), we
deduce that this is obtained by setting A ¼ B1;2 ¼ 0,
implying that these constants reflect the transverse property
of the hþ ≡ 2D expðikμxμÞ and h× ≡ C expðikμxμÞ polar-
izations and hence can be removed. This can also be
identified from the metric tensor solution corresponding to
(104), namely
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hð1Þμν ¼

0
BBBBBBBBB@

−2A expðikμxμÞ − fð0ÞBBB
ð1Þ

fð0ÞT

B1 expðikμxμÞ B2 expðikμxμÞ −2A expðikμxμÞ

B1 expðikμxμÞ hþ þ fð0ÞBBB
ð1Þ

fð0ÞT

h× B1 expðikμxμÞ

B2 expðikμxμÞ h× −hþ þ fð0ÞBBB
ð1Þ

fð0ÞT

B2 expðikμxμÞ

−2A expðikμxμÞ B1 expðikμxμÞ B2 expðikμxμÞ −2A expðikμxμÞ þ fð0ÞBBB
ð1Þ

fð0ÞT

1
CCCCCCCCCA
; ð105Þ

which in the A, B1;2, f
ð0Þ
BB → 0 limit reduces to the standard

perturbed metric solution for waves traveling in the z
direction.

C. GWs in f ðT;BÞ gravity in the presence of a
cosmological constant

In the previous subsection we investigated the gravita-
tional waves in fðT; BÞ gravity through a perturbation
around a Minkowski background in vacuum, i.e., in the
absence of a cosmological constant in the form of fðT; BÞ.
In the present subsection we examine the contribution of a
cosmological constant to the gravitational waves following
the procedure of [67,68]. Implications of the cosmological
constant onto gravitational waves (for instance quadrupole
contributions and effects during the cosmological history),
in the case of other scenarios, have been investigated in
[69–73].
Let Λ denote the cosmological constant. Similar to the

previous analysis we shall again consider a linearized
gravity approach; however, since the cosmological constant
also affects the background metric, the perturbations will
not be performed around a Minkowski background but
around a background that incorporates the contributions of
Λ. This is achieved through

gμν ¼ hð0Þμν þ hð1Þμν þOðhð2Þμν Þ; ð106Þ

where jhðiÞμν j ≪ 1, and

hð0Þμν ¼ ημν þ Λhð0ÞΛμν þOðΛ2Þ; ð107Þ
hð1Þμν ¼ hð1Þ GWμν þ Λhð1Þ GWΛ

μν þOðΛ2Þ; ð108Þ

where hð0ÞΛμν refers to the first-order contribution of Λ to the

background metric, hð1Þ GWμν is the gravitational wave

perturbation without the effect of Λ, and hð1Þ GWΛ
μν is the

contribution of the cosmological constant to the gravita-
tional wave perturbation. Correspondingly, the tetrad per-
turbation can be constructed as

eaμ ¼ γð0Þaμ þ γð1Þaμ þOðγð2Þaμ Þ; ð109Þ

where jγðiÞaμ j ≪ 1, and

γð0Þaμ ¼ δaμ þ Λγð0;ΛÞaμ þOðΛ2Þ; ð110Þ
γð1Þaμ ¼ γð1;GWÞa

μ þ Λγð1;GWΛÞa
μ þOðΛ2Þ; ð111Þ

where γð0;ΛÞaμ refers to the first-order contribution ofΛ to the

background tetrad, γð1;GWÞa
μ is the gravitational wave

perturbation without the effect of Λ, and γð1;GWΛÞa
μ is the

contribution of the cosmological constant to the gravita-
tional wave perturbation. Therefore, the metric perturba-
tions are related to the tetrad perturbations through

hð0ÞΛμν ¼ ηabðδaμγð0;ΛÞbν þ γð0;ΛÞaμ δbνÞ; ð112Þ
hð1Þ GWμν ¼ ηabðδaμγð1;GWÞb

ν þ γð1;GWÞa
ν δbμÞ; ð113Þ

hð1Þ GWΛ
μν ¼ ηabðδaμγð1;GWΛÞb

ν þ 2γð1;GWÞa
μ γð0;ΛÞbν

þ γð1;GWΛÞa
μ δbνÞ: ð114Þ

To facilitate the perturbation analysis, we again assume that
the function fðT; BÞ is Taylor expandable about
T ¼ B ¼ 0, namely

fðT; BÞ ¼ fð0; 0Þ þ fTð0; 0ÞT þ fBð0; 0ÞB

þ 1

2!
fTTð0; 0ÞT2 þ 1

2!
fBBð0; 0ÞB2

þ fTBð0; 0ÞTBþ � � � : ð115Þ
Hence, we can identify fð0; 0Þ≡ 2Λ, since this term
behaves as a cosmological constant, which can be seen
when it is substituted in the equations of motion or in the
action. The choice of this value is in order to ease the
comparisons with the cosmological constant present in GR.
Inserting the above into the field equations (13) and

neglecting the matter sector, for the zeroth-order perturba-
tion equation we obtain

−fð0ÞT Gð0Þ
μν þ 1

2
hð0Þμν ðfð0ÞB Bð0Þ þ fð0ÞT Tð0Þ − fð0ÞÞ ¼ 0; ð116Þ

which when expanded over the Λ order yields

fTð0; 0ÞGð0ÞΛ
μν þ 1

2
ημνfð0; 0Þ ¼ 0; ð117Þ
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where the superscript Λ refers to the cosmological constant
contribution of the function (from here onwards, this shall
be assumed for all symbols). Taking the trace yields

fTð0; 0ÞRð0ÞΛ ¼ 2fð0; 0Þ: ð118Þ

In the case of TEGR with a cosmological constant, i.e., for
fðT; BÞ ¼ T þ 2Λ, the above expression yields precisely
the standard result for GR with a cosmological constant,
namely R ¼ 4Λ. Note that the first derivative fTð0; 0Þ
rescales this value of the Ricci scalar.

Additionally, the first-order perturbation becomes

− fð0ÞT Gð1Þ
μν − fð1ÞT Gð0Þ

μν þ ½hð0Þμν □
ð0Þ −∇ð0Þ

μ ∇ð0Þ
ν �fð1ÞB

þ 1

2
hð0Þμν ½fð0ÞB Bð1Þ þ fð1ÞB Bð0Þ þ fð0ÞT Tð1Þ þ fð1ÞT Tð0Þ − fð1Þ�

þ 1

2
hð1Þμν ½fð0ÞB Bð0Þ þ fð0ÞT Tð0Þ − fð0Þ�

þ 2Sð0Þαν μ∂αðfð1ÞT þ fð1ÞB Þ þ 2Sð1Þαν μ∂αðfð0ÞT þ fð0ÞB Þ ¼ 0:

ð119Þ

Expanding over the Λ order yields

fTð0; 0Þ − Gð1Þ GW þ fBBð0; 0Þðημν□ð0ÞBG − ∂μ∂νÞBð1Þ GW ¼ 0; ð120Þ

and

−fTð0;0ÞGð1ÞGWΛ−Gð1ÞGWfTBð0;0ÞBð0ÞΛ−fTBð0;0ÞBð1ÞGWGð0ÞΛ
μν þfBBð0;0Þ½hð0ÞΛμν □

ð0ÞBGþημν□
ð0ÞΛ−∇ð0ÞΛ

μ ∂ν�Bð1ÞGW

þðημν□ð0Þ−∂μ∂νÞ½fBBð0;0ÞBð1ÞGWΛþfTBð0;0ÞTð1ÞGWΛ�þ1

2
ημνfBBð0;0ÞBð0ÞΛBð1ÞGW−

1

2
hð1ÞGWμν fð0;0Þ

þ2½fTBð0;0ÞþfBBð0;0Þ�Sð0;ΛÞαν μ∂αBð1ÞGWþ2½fTBð0;0ÞþfBBð0;0Þ�Sð1;GWÞα
ν μ∂αBð0ÞΛ¼0; ð121Þ

where the superscript BG refers to the Minkowski metric
contribution. It is clear that Eq. (120) is exactly the same as
(78) (recalling that Rð1Þ ¼ Bð1Þ). On the other hand,
Eq. (121) describes the relation between the standard
gravitational waves and the cosmological constant contri-
bution to them, which is the main result of the present
subsection.
Finally, it is interesting to note that for the case of simple

fðTÞ gravity, namely for fðT; BÞ ¼ fðTÞ, Eqs. (120) and
(121) reduce to

fTð0ÞGð1Þ GW ¼ 0; ð122Þ

fTð0ÞGð1Þ GWΛ þ 1

2
hð1Þ GWμν fð0Þ ¼ 0: ð123Þ

Thus, for fðTÞ gravity at first order, the effect of the
cosmological constant on the gravitational waves is also
affected by the value of fTð0Þ, as was also found in [52].
Last, in the case of TEGR these equations match identically
to those of GR, as expected.

V. GRAVITATIONAL WAVES IN f ðT;TGÞ
GRAVITY

In this section we proceed to the investigation of the
gravitational waves in another class of modified teleparallel
gravity, namely fðT; TGÞ gravity, in which one uses in the
Lagrangian the teleparallel equivalent of the Gauss-Bonnet
combination TG. In particular, in curvature-based modified
gravity one may add in the Lagrangian functions of the
higher-order Gauss-Bonnet invariant, defined as

G ¼ RμνλσRμνλσ − 4RμνRμν þ R2; ð124Þ

and construct fðR;GÞ theories [6,7]. Correspondingly, one
can construct its teleparallel equivalent TG, which reads as
[34]

TG ¼ ðKα
γβKγλ

ρKμ
ϵσKϵν

φ − 2Kαλ
βKμ

γρKγ
ϵσKϵν

φ

þ 2Kαλ
βKμ

γρKγν
ϵKϵ

σφ þ 2Kαλ
βKμ

γρKγν
σ;φÞδβρσφαλμν ;

ð125Þ

and use it as the Lagrangian, resulting in the so-called
fðT; TGÞ gravity. The field equations of fðT; TGÞ gravity
are written as [34,35]
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2ðH½ac�b þH½ba�c −H½cb�aÞ;c þ 2ðH½ac�b þH½ba�c −H½cb�aÞCd
dc þ ð2H½ac�d þHdcaÞCb

cd

þ 4H½db�cCðdcÞa þ Ta
cdHcdb − hab þ ðf − TfT − TGfTG

Þηab ¼ 0; ð126Þ

where

Habc ¼ fTðηacKbd
d − KbcaÞ þ ϵcprtϵakdf

�
ðfTG

Kbk
pKdf

rÞ;t þ fTG
Cq

ptKbk½qKdf
r��

þ fTG
½ϵcprtð2ϵadkfKbk

pKd
qr þ ϵqdkfKak

pKbd
r þ ϵabkfKk

dpKd
qrÞKqf

t

þ ϵcprtϵabkdKfd
p

�
Kk

fr;t −
1

2
Kk

fqCq
tr

�
þ ϵcprtϵakdfKdf

p

�
Kb

kr;t −
1

2
Kb

kqCq
tr

��
; ð127Þ

Cc
ab ¼ Ea

μEb
νðecμ;ν − ecν;μÞ; ð128Þ

hab ¼ fTϵakcdϵbpqdKk
fpKfc

q: ð129Þ

Note that for the purpose of the gravitation wave
investigation, the stress-energy contribution has been
neglected.
In order to analyze the gravitational waves in this theory,

we again consider the linear perturbations in the metric and
in the tetrad around a Minkowski background, namely
expressions (69) and (70), respectively. From the definition
of TG we deduce that it is at least a fourth-order quantity in
the tetrad perturbation. Furthermore, for simplicity we
assume that fðT; TGÞ is Taylor expandable around
T ¼ TG ¼ 0. Therefore, the resulting zeroth- and first-
order perturbation equations are

ηabfð0; 0Þ ¼ 0; ð130Þ

ðHð1Þ½ac�b þHð1Þ½ba�c −Hð1Þ½cb�aÞ;c ¼ 0: ð131Þ

Similar to the previous discussion, the zeroth-order equa-
tion implies that no cosmological constant is present in the
theory, which is consistent with the fact that the perturba-
tions are performed around the Minkowski background.
From the definition of Habc we remark that

Hð1Þabc ¼ fTð0; 0ÞðηacKð1Þbd
d − Kð1ÞbcaÞ: ð132Þ

Substituting in the first-order equation (131) yields

fTð0; 0Þ½ηabKð1Þcd
d − ηacKð1Þbd

d þ Kð1Þbca�;c
¼ fTð0; 0Þ∂cSð1Þabc ¼ 0; ð133Þ

where the definition of the superpotential (6) has been used.
Interestingly enough, for the nontrivial case fTð0; 0Þ ≠ 0
(otherwise GR cannot be obtained at any limit), Eq. (133)
coincides with Eq. (21) obtained in the case of simple fðTÞ
gravity (note that changing coordinate to tangent-space

indices involves only the zeroth-order part of the tetrad
which is just the Kronecker delta). Hence, we deduce that at
the first-order perturbation level, the gravitational waves
behave in the same way in fðTÞ and fðT; TGÞ gravities, and
thus the previously obtained result that no further polari-
zation modes comparing to GR are obtained at this order
holds for fðT; TGÞ gravity, too. This result was expected,
since TG is a higher-order torsion invariant, and therefore
its effect switches on at higher perturbation orders.

VI. CONCLUSIONS

In this work we investigated the gravitational waves and
their properties, in various modified teleparallel theories,
such as fðTÞ, fðT; BÞ, and fðT; TGÞ gravities, by utilizing
the perturbed equations. Furthermore, we performed the
analysis in both the metric and the tetrad languages, in
order to reveal the properties of the formalism.
Additionally, we performed the perturbations around a
Minkowski background, a case which is obtained in the
absence of a cosmological constant, but also in the case
where the presence of a cosmological constant changes the
background around which the perturbations are realized.
Finally, in the case of usual fðTÞ gravity we performed the
analysis both for the standard formulation of zero spin
connection and for the most general and fully covariant
case of a nonzero spin connection.
For the case of simple fðTÞ gravity we verified the result

that no further polarization modes comparing to GR are
present at the first-order perturbation level, since the torsion
scalar (which is quadratic in the torsion tensor) does not
acquire any perturbative contribution at this level. Hence,
as we showed, in order to see the effect of fðTÞ gravity on
the gravitational waves themselves one should look at
third-order perturbations, in which a deviation from GR is
obtained due to the contribution from the fTT component.
Nevertheless, we mention that this is the effect on the
internal properties of the gravitational waves, such as their
polarization modes, since in general the effect of fðTÞ
gravity on the cosmological gravitational wave propagation
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can be seen straightaway from the dispersion relation at
first order, due to the effect of fðTÞ gravity on the
cosmological background on which the gravitational waves
propagate [52].
For the case of fðT; BÞ gravity with fðT; BÞ ≠ fðTÞ, by

examining the geodesic deviation equations, we showed
that extra polarization modes, namely the longitudinal and
breathing modes, do appear at first-order perturbation level.
The reason for this behavior is the fact that although the
first-order perturbation does not have any effect on T, it
does affect the boundary term B. Additionally, in the
case where a cosmological constant is present we have
extracted the gravitational wave equations, obtaining the
cosmological-constant corrections to the solutions, which
reflect the fact that the background is not Minkowski
anymore.
Finally, we investigated the gravitational waves in

fðT; TGÞ gravity, which at the first-order perturbation level
exhibit the same behavior as those of fðTÞ gravity; that is
they do not have extra polarization modes comparing to
GR. This result was expected, since the teleparallel

equivalent of the Gauss-Bonnet term TG is a higher-order
torsion invariant, and therefore its effect switches on at
higher perturbation orders.
In summary, as we showed, apart from their difference

from curvature-based gravity, different modified telepar-
allel gravities exhibit different gravitational wave properties
amongst themselves, despite the fact that at first sight they
might appear as similar theories. Hence, the advancing
gravitational-wave astronomy would help to alleviate the
degeneracy not only between curvature and torsional
modified gravity but also between different subclasses of
modified teleparallel gravities.
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