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Using the analogy between acoustic perturbations in an ideal fluid and the description of a Klein-Gordon
scalar field in a curved spacetime, we study the quasinormal modes of a quantum system: the rotating Bose-
Einstein condensate. To compute quasinormal frequencies, we use two different numerical techniques,
namely the direct integration and the continued-fraction methods. We study in detail the ergoregion
instability of this linearly perturbed system, comparing the results with different setup configurations.
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I. INTRODUCTION

Acoustic analogue systems have shown to be interesting
alternatives to investigate (theoretically and experimentally)
some properties of compact objects [1–5], as black holes,
which so far cannot be subject to experimental reproduction
in laboratory. Among the properties that can be studied in
acoustic analogue systems, stand out: absorption and scatter-
ing of waves [6–9], quasinormal modes [10–13], ergoregion
instability [14–17], and stationary configurations [18,19].
Acoustic analogues have been studied in various systems,
among which we can mention the perfect fluids and Bose-
Einstein condensates (BECs) [20–22], the latter being shown
as a fruitful proposal of an experimental setup. Recently an
experimental apparatus in BECs was used for attempts to
observe some aspects of Hawking radiation in acoustic
analogue systems [23,24].
In this work we investigate the instability of a rotating

BEC. Previous studies on the instability of acoustic analogue
systems were performed for incompressible [14] and for
compressible [15–17] (perfect) fluids. As essential tools for
the investigation of instabilities, there are the quasinormal
modes (QNMs) of a system. QNMs are associated with
purely outgoing modes at spatial infinity, each mode being
described by a complex frequency [25–27]. As a purely
circulating system, we describe the effective spacetime of a
compressible hydrodynamic vortex [15,28], compatiblewith
an experimental setup in a rotating BEC. QNMs were
previously studied in one-dimensional flows in a BEC with
steplike discontinuity [29]. Furthermore, the scattering of the
sound waves was studied for a hydrodynamic vortex with a
density profile of a BEC [30].

The remainder of this paper is structured as follows. In
Sec. II we describe acoustic spacetimes in the context of a
rotating compressible fluid. In Sec. III we describe a purely
circulating BEC as a rotating acoustic analogue. In Sec. IV
we study the propagation of linear perturbations in this
compressible system, using the description in the frequency
domain. In Sec. V we obtain the QNM frequencies of this
system using two different methods: direct integration (DI)
and continued-fraction (CF). In Sec. VI we investigate the
ergoregion instability of the BEC hydrodynamic vortex,
validating and commenting our results, comparing the
QNM frequencies obtained via DI and CF methods. We
conclude with a brief discussion in Sec. VII.

II. EFFECTIVE SPACETIMES OF ROTATING
ACOUSTIC ANALOGUES

Requiring a fluid flow to be irrotational (i.e., with zero
vorticity), namely

∇ × v⃗ ¼ 0; ð1Þ
where v⃗ is the flow velocity, we may write

v⃗ ¼ −∇Φ; ð2Þ
where Φ is the velocity potential.
We may describe the irrotational flow of an inviscid fluid

without thermal conductivity (ideal fluid) using the Euler
equation, as follows:

∂v⃗
∂t þ

1

2
∇jv⃗j2 þ∇P

ρ
þ∇Vext ¼ 0; ð3Þ

where Vext is an external potential, P is the pressure and ρ is
the mass density of the fluid. We consider that the ideal
fluid is barotropic, i.e., with an equation of state (EoS) such
that
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P ¼ PðρÞ: ð4Þ

Furthermore, we impose mass conservation, which may
be described by the continuity equation, namely

∂ρ
∂t þ∇ · ðρv⃗Þ ¼ 0: ð5Þ

Using the description for effective curved spacetimes in
ideal fluids proposed by Unruh [1], we may obtain from
Eqs. (2)–(5) that the propagation of linear disturbances in
the background flow can be governed by the Klein-Gordon
equation [2], namely

∇μ∇μϕ ¼ 1ffiffiffiffiffijgjp ∂μð
ffiffiffiffiffi
jgj

p
gμν∂νϕÞ ¼ 0; ð6Þ

with gμν being the contravariant effective metric,
g≡ detðgμνÞ, and ϕ is the velocity potential associated to
the linear perturbations, i.e.,

δv⃗ ¼ −∇ϕ; ð7Þ
where cs is the speed of sound, which can be written as

cs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dP=dρ

p
: ð8Þ

An appropriate way to describe the properties of the
effective spacetime of a rotating acoustic analogue is
adopting a cylindrical coordinate system ðt; r; θ; zÞ. Here
we focus on the hydrodynamic vortex as a rotating acoustic
analogue—a purely circulating fluid—whose flow velocity
v⃗ ¼ vrr̂þ vθθ̂ þ vzẑ is such that both the radial vr and the
z-component vz vanish, so that

v⃗ ¼ vθθ̂: ð9Þ
Furthermore, from Eq. (1), we find that the velocity flow
may be written as

v⃗ ¼ C
r
θ̂; ð10Þ

where C is a constant related with the conserved
circulation.
From the Klein-Gordon equation, given by Eq. (6), we

may write, in cylindrical coordinates, the contravariant
effective metric gμν for a hydrodynamic vortex, namely

gμν ¼ −
1

ρcs

2
6664

1 0 vθ=r 0

0 −c2s 0 0

vθ=r 0 ðv2θ − c2s Þ=r2 0

0 0 0 −c2s

3
7775: ð11Þ

Thus, the line element ds2 ¼ gμνdxμdxν of a hydro-
dynamic vortex can be written as [31–34]

ds2 ¼ ρ

cs

�
−c2sdt2 þ

�
rdθ −

C
r
dt

�
2

þ dr2 þ dz2
�
: ð12Þ

Note that the line element (12) may be written as a function
of a quantity only, namely the fluid density ρ, since the
speed of sound explicitly depends on the density [as may be
seen from Eq. (8)]. Thus, to study the properties of the
hydrodynamic vortex it is necessary to know the fluid
density profile. Here we consider that the density ρ and the
speed of sound cs are functions of the radial coordinate
only, obtained from local properties of the unperturbed
fluid flow [2]. Furthermore, as can be seen from the line
element (12), the spacetime of the hydrodynamic vortex
has no event horizon, but has an ergoregion delimited by an
outer boundary re, which can be obtained from [2,14,15]

csðr ¼ reÞ2 ¼ jv⃗ðr ¼ reÞj2: ð13Þ
Next, we will obtain the expressions for the density ρ and

the speed of sound cs, as functions of r, for the hydrodynamic
vortex with a compatible experimental setup in a BEC.

III. BEC AS A ROTATING ACOUSTIC ANALOGUE

TheBECconsidered in thiswork is described as a physical
system obtained when a set of bosonic particles, which are
subjected to an exterior potential and interact in pairs with
neighbor particles, occupy the same quantum state—the
ground quantum state of the system [20–22,35,36]. This
system is formed at the limit in which the temperature of the
bosons is decreased to extremely low values (T ≈ 0). At zero
temperature, all particles of the condensate occupy the
quantum ground state. This system can be described by a
wave function, whose evolution is governed by the Gross-
Pitaevskii equation [35,36], namely

iℏ
∂Ψ
∂t ¼

�
−

ℏ2

2M
∇2 þ Vextðr⃗Þ þ UjΨj2

�
Ψ; ð14Þ

whereℏ is the reduced Planck constant,Vextðr⃗Þ is an external
potential, Ψ is a quantum field that describes the BEC,M is
the individual mass of each boson and U parametrizes the
strength of the interaction between bosons [35,36], as

U ¼ 4πaℏ2

M
; ð15Þ

with a being the scattering length between two bosons in the
condensate [35,36].
The total number of bosons in the condensate is given by

N ¼ R
dx3jΨj2 and the density of bosons of the BEC can be

written as

ρ ¼ jΨj2: ð16Þ
We may rewrite the Gross-Pitaevskii equation using the

Madelung representation for the wave function Ψ, namely
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Ψ ¼ ffiffiffi
ρ

p
exp

�
−
i
ℏ
ðΦðt; r⃗Þ þ μctÞ

�
; ð17Þ

where ρ is the density of the Madelung fluid [22] and μc is
the chemical potential (here we consider μc fixed [35,36]).
Substituting Eq. (17) in the Gross-Pitaesvskii equa-

tion (14), we obtain the following expression:

−
iℏρ−

1
2

2

∂ρ
∂t −

ffiffiffi
ρ

p ∂Φ
∂t −

ℏ2

2M
∇2 ffiffiffi

ρ
p þ iℏ

M
ð∇ ffiffiffi

ρ
p Þ · ð∇ΦÞ

þ
ffiffiffi
ρ

p
2M

ð∇ΦÞ · ð∇ΦÞ þ iℏ
ffiffiffi
ρ

p
2M

∇2Φþ Vext
ffiffiffi
ρ

p þ Uρ
ffiffiffi
ρ

p

− μc
ffiffiffi
ρ

p ¼ 0: ð18Þ

Separating the real and imaginary parts of Eq. (18), we find
the following expression for the real part:

−
∂
∂t

�
Φ
M

�
þ 1

2
∇
�
−
Φ
M

�
· ∇

�
−
Φ
M

�

þ Uρ

M
þ Vext

M
þ VQ

M
−
μc
M

¼ 0 ð19Þ

and for the imaginary part

∂ρ
∂t þ∇ ·

�
ρ∇

�
−
Φ
M

��
¼ 0; ð20Þ

where

VQ ≡ −
ℏ2

2M
ffiffiffi
ρ

p ∇2 ffiffiffi
ρ

p ð21Þ

is the so-called quantum potential. This quantum potential
can be neglected when the Thomas-Fermi approximation is
considered [36]. Note that, as it can be seen from Eq. (21), if
the density is sufficiently small (and the term ∇2 ffiffiffi

ρ
p

is large
enough), the quantum potential cannot be neglected [36].
Essentially, Eqs. (19) [more precisely, the gradient of

Eq. (19)] and (20), under the Thomas-Fermi approximation,
can be rewritten, respectively, as the Euler equation [Eq. (3)]
and the continuity equation [Eq. (5)], where the flow velocity
is v⃗ ¼ −∇ðΦ=MÞ, that implies that the BEC is irrotational.
Furthermore, comparing Eqs. (3) and (19), we obtain a

relation between pressure and density, defining then an EoS
for the BEC, namely

P ¼ Uρ2

2M
; ð22Þ

which denotes that the BEC (in the Thomas-Fermi approxi-
mation) can be represented as an ideal fluid, which is
barotropic and irrotational.
From Eq. (8) and the EoS (22), we may write the speed

sound cs in the BEC as

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πaℏ2ρ

M2

r
: ð23Þ

To describe a BEC hydrodynamic vortex, we recall that
the flow velocity has only an angular component, given by

vθ ¼
C
r
; ð24Þ

with

C≡ lℏ
M

; ð25Þ

where l is an integer number associated to the quantization
of the circulation of the BEC hydrodynamic vortex [35,36].
The density profile of theBECmay be determined directly

from Eq. (19) [in the Thomas-Fermi approximation], being

ρ ¼ M
4πaℏ2

�
μc − Vext −

ℏ2l2

2Mr2

�
: ð26Þ

Before proceeding to the derivation of a physically
acceptable expression for the density ρ of the BEC hydro-
dynamic vortex, some considerations about the external
potential Vext figuring in Eq. (26) are in order. In this paper,
we consider a constant external potential, namely Vext ¼
V0 ¼ constant [35,36].
From Eq. (26), we may write an expression for the

density profile of a vortex in a uniform medium, namely

ρ ¼ ρ∞

�
1 −

r2c
r2

�
; ð27Þ

with

ρ∞ ≡Mðμc − V0Þ
4πaℏ2

; ð28Þ

where ρ∞ is density of the BEC at r → ∞ (at large
distances from the center of the vortex), and rc is the
so-called critical radius, given by

rc ≡ jljffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πaρ∞

p ; ð29Þ

defining the position where the density of the vortex goes to
zero. The quantities ρ∞ and a can be determined from the
experimental setup [30]. Furthermore, from Eq. (28), the
chemical potential μc can be obtained, namely

μc ¼
4πaℏ2ρ∞

M
þ V0: ð30Þ

Note that the critical radius rc may be interpreted as a
characteristic length that delimits where the Thomas-Fermi
approximation is valid [36]; i.e., for sufficiently large
distances from r ¼ rc [recalling that the density reaches
its minimum value (ρ → 0) at r → rc], the quantum potential
VQ is small enough and can be neglected [cf. Eq. (21)].
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It is worth noting that the corresponding Kretschmann
invariant [37] goes to infinity at the critical radius rc,
denoting that this point is an essential singularity [15,28].
From Eqs. (23) and (27), we may write the speed of

sound as

cs ¼ cs∞

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2c
r2

r
; ð31Þ

where cs∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πaℏ2ρ∞=M2

p
is the speed of sound at

infinity. The speed of sound, as well as the density profile
[cf. Eq. (27)], vanishes at the critical radius rc.
Using Eqs. (13), (24) and (31), we may obtain the outer

boundary of the ergoregion, namely

re ¼
ffiffiffi
3

p jljffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πaρ∞

p : ð32Þ

Comparing Eqs. (29) and (32), we find a relation between
re and rc, as follows:

re
rc

¼
ffiffiffi
3

p
; ð33Þ

denoting that the ergoregion encompasses the location
where the density of the vortex vanishes: i.e., re > rc.

A. On the validity of the Thomas-Fermi approximation

We have seen that under certain approximations, namely
in the regime in which we can ignore the quantum potential,
the background density is given by Eqs. (27)–(29) and
furthermore, that the (phase) perturbations obey an effective
Klein-Gordon equation in a curved spacetime with metric
(11). In this section we will briefly analyze the conditions
under which this effective formulation provides an accurate
description of sound propagation in the vortex BEC.
As we have already discussed, the effective Klein-Gordon

equation can be obtained by perturbing Eqs. (19) and (20),
i.e., by expanding these equations to linear order in the phase
pertubation ϕ ¼ δΦ and the density perturbaton ϱ ¼ δρ,
solving the first equation forϱ in terms ofϕ, and replacing the
result in the second. In order to do so, we must ensure that
the contribution from the quantum potential is negligible as
compared with the interaction term. This amounts to the
condition

Uϱ ≫
ℏ2

4M
ffiffiffi
ρ

p
����∇2

�
ϱffiffiffi
ρ

p
�
−
ϱ

ρ
∇2 ffiffiffi

ρ
p ����: ð34Þ

From the second term we obtain the Thomas-Fermi approxi-
mation for the background density. This implies [using the
lowest order expression (27)] that if we want it to be ϵ times
smaller than the interaction term, we need that

r − rc
rc

>
1

ð16l2ϵÞ1=3 : ð35Þ

The first term gives the following upper bound for the wave
number k of the perturbations:

k ≪ l=rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πaρ∞

p
: ð36Þ

Therefore, the effective Klein-Gordon description is only
valid well beyond the central core of the vortex for low l,
while for large l, the Thomas-Fermi approximation is valid
at much closer distances. Even for low l, the analysis of
the quasinormal modes for this type of vortices within the
metric approximation is still interesting, among other
things, because of the role played by the boundary
conditions that have to be imposed close to the center.

IV. PERTURBATIONS IN A BEC
HYDRODYNAMIC VORTEX

Since the spacetime of the hydrodynamic vortex has a
cylindrical symmetry, we may denote the angular depend-
ence of the field ϕ as eimθ [cf. Eq. (7)], wherem is an integer
number called the azimuthal number, which is related to the
angular momentum of the perturbation. Furthermore, we
may describe the propagation of the perturbation in the
frequency domain, assuming that the fieldϕ depends on time
as eiωt, withω being the frequency of the perturbation. Then,
the field ϕ can be written as follows:

ϕðt; r; θ; zÞ ¼ 1ffiffiffi
r

p
X∞

m¼−∞
uωmðrÞ exp ½iðmθ − ωtÞ�; ð37Þ

where uωmðrÞ represent the single-frequency modes, i.e., the
perturbations described in the frequency domain.
Using the covariant metric components gμν, given by

Eqs. (11), and (37) together with Eq. (6), we obtain the
following ordinary differential equation:

�
ρ
d
dr

�
ρ
d
dr

�
þ ρ2

c2s

�
ω −

Cm
r2

�
2

−
ρ2

r2

�
m2 −

1

4

�
−

ρ

2r
dρ
dr

�
uωmðrÞ ¼ 0: ð38Þ

We may substitute Eqs. (27) and (31) into Eq. (38), to
obtain the following ordinary differential equation for a
BEC hydrodynamic vortex:

�
x2ð3x2 − 1Þ d2

dx2
þ 2x

d
dx

þ
� ffiffiffi

3
p

ϖx2 −
ffiffiffi
2

p
mC

jCj
�2

− ð3x2 − 1Þ
�
m2 −

1

4

�
− 1

�
uϖmðxÞ ¼ 0; ð39Þ

where we defined a dimensionless frequency
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ϖ ≡ ωre
cs∞

; ð40Þ

and a dimensionless radial coordinate

x≡ r
re
: ð41Þ

Equation (39) has regular singular points at the origin and at
the critical radius x ¼ xc (xc ≡ rc=re ¼ 1=

ffiffiffi
3

p
), and an

irregular singular point at spatial infinity.

V. NUMERICAL METHODS

In order to find the solutions of Eq. (39), we impose
boundary conditions at a certain position x ¼ xmin
(xmin > xc) and at spatial infinity x → ∞. We may assume
a boundary condition of Neumann type at x ¼ xmin (close
to the center of the vortex) such that�

d
dx

�
uϖmðxÞffiffiffi

x
p

��
x¼xmin

¼ 0: ð42Þ

The boundary condition (42) can be physically interpreted as
a cutoff, close to the center of thevortex, on the radial velocity
increment (δv⃗ ¼ −∇ϕ) associated to the linear perturbation
[cf. Eq. (37)]. This is related to a rigid barrier which has a
great opposition to this increment of the velocity of the fluid
(large acoustic impedance) placed at r ¼ rmin.
For large radial distances, in accordance with the asymp-

totic behavior of Eq. (39), we may write the following
solution:

uϖmðx → ∞Þ ∼ expðiϖxÞ: ð43Þ
We employed two numerical methods in the frequency

domain to solve directly the ordinary differential equa-
tions (39), using the boundary conditions previously
proposed, in order to obtain the frequency spectra ϖ for
different values of the azimuthal number m and of xmin.

A. Direct integration method

We may obtain the QNM frequencies from Eq. (39)
determining their solutions via the direct integration (DI)
method [12]. This procedure may be implemented as
follows:

(i) We impose boundary conditions on the wave func-
tion uϖmðxÞ and its derivative at spatial infinity,
namely

uϖmðx → ∞Þ ¼ expðiϖxÞ
X
j¼0

bj
xj

; ð44Þ

where bj are coefficients which can be determined
by collecting the same inverse powers of x from
Eq. (39) at x → ∞, keeping fixed the parameters m
and ω. For example,

b1 ¼
ið−3þ 12m2 þ 8

ffiffiffi
6

p
mω − 4ω2Þ

24ω
:

(ii) We integrate inwards Eq. (39), in the range ∞ >
x ≥ xmin.

(iii) At x ¼ xmin, we extract the QNM frequencies as
roots of ½ ddx ðuϖmðxÞffiffi

x
p Þ�

x¼xmin
¼ 0, using a standard root-

finding algorithm such as Newton’s method.

B. Continued fraction method

Another way to obtain the QNM frequencies from
Eq. (39) consists in representing the wave function
uϖmðxÞ as a Frobenius-like power series around x ¼ xmin
that satisfies the boundary conditions (42) and (43), as
follows:

uϖmðxÞ ¼ exp ðiϖxÞ
X
n¼0

an

�
1 −

xmin

x

�
n
: ð45Þ

Substituting Eq. (45) into Eq. (39), we find the following
five-term recurrence relation:

α0a2 þ β0a1 þ γ0a0 ¼ 0; ð46aÞ
α1a3 þ β1a2 þ γ1a1 þ δ1a0 ¼ 0; ð46bÞ
αnanþ2 þ βnanþ1 þ γnan þ δnan−1 þ ϵnan−2 ¼ 0;

for n ≥ 2; ð46cÞ
where the recurrence coefficients αn, βn, γn, δn and ϵn are
complex functions of the azimuthal number m and xmin,
given by

αn ¼ −4nð1þ nÞð−1þ 3x2minÞ;
βn ¼ 8n½nð−2þ 3x2minÞ þ ixminð1 − 3x2minÞω�;
γn ¼ 5 − 3x2min − 12ð−1þ nÞnð−2þ x2minÞ

þ 12m2ð−1þ x2minÞ − 8i½1þ 2ð−1þ nÞ�xminω

þ 8
ffiffiffi
6

p
mx2minω − 4x2minω

2;

δn ¼ 6þ 24m2 − 16ð−1þ nÞ2 þ 8ið−1þ nÞxminω;

ϵn ¼ −3 − 12m2 − 4ð−1þ nÞ þ 4ð−1þ nÞ2;
being obtained from Eq. (39), together with Eqs. (45)
and (46).
Using a double Gaussian elimination (cf. Refs. [14,38]),

from the five-term recurrence relation (46) we may write
the following three-term recurrence relation:

αnanþ2 þ βnanþ1 þ γnan ¼ 0; for n ≥ 0: ð47Þ
Using Eqs. (39), (45) and (47), it is possible to express
analytically the recurrence coefficients αn, βn, and γn, as
functions of the parameters m, ω and xmin.
Considering the boundary condition (42), Eqs. (45) and

(47), we may obtain the following continued-fraction
(CF) [39]:

1 − 2iϖxmin þ
2γ1

β1 −
α1γ2

β2−
α2γ3
β3−���

¼ 0: ð48Þ
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Again, we may obtain the QNM frequencies from Eq. (48)
for different values of the azimuthal number m and xmin,
using a standard root-finding algorithm such as Newton’s
method.

VI. ERGOREGION INSTABILITY

In this section we investigate the ergoregion instability of
the BEC hydrodynamic vortex.
In the left frame of Fig. 1 we plot the fluid density ρ

[given by Eq. (27)], the speed of sound cs [given by
Eq. (31)] and the local Mach number M≡ jv⃗j=cs, as
functions of x. In the right frame of Fig. 1 we plot the
dimensionless interaction term given by

EintðxÞ≡UρðxÞ
Kc

; ð49Þ

and the dimensionless quantum potential

V̄QðxÞ≡ VQðxÞ
Kc

; ð50Þ

with Kc ≡ 4πaℏ2ρ∞=M. We note that as the density of the
BEC decreases to zero at x → xc, the quantum potential
can assume a significant value [cf. Eq. (21)], being non
negligible, and the Thomas-Fermi approximation is no
longer valid in this case. Furthermore, we note that the
larger the value of l is, the closer to the vortex the
dimensionless quantum potential goes to zero. In our
numerical simulations, we consider boundary conditions
imposed at sufficiently large distances for the critical
radius, e.g., for a range of values of xmin with xmin ≥ 0.7
(with xmin=xc > 1.2).
Using two frequency domain methods (DI and CF

methods), we computed the QNM frequencies. In order
to verify the stability of the modes, boundary conditions of

Neumann type are applied, outside and inside of the
ergoregion, for this compressible acoustic system.
For theQNManalysis, we assume the standard convention

of ordering the imaginary part of the QNM frequencies ϖ
[25]. The fundamental mode (n ¼ 0) is the one with the
largest imaginary part of the QNM frequencies. Thus, if the
mode is unstable [ImðϖÞ > 0], the fundamental mode
corresponds to the smallest instability time scale, and for
stable modes [ImðϖÞ < 0], it corresponds to the longest-
lived mode.

FIG. 1. Left: Fluid density ρ, speed of sound cs, and local Mach numberM, for the BEC hydrodynamic vortex, as functions of x. We
also exhibit the position of the critical radius, xc ≡ 1=

ffiffiffi
3

p
, and of the outer boundary of the ergoregion, xe ≡ 1 (vertical dashed lines).

Right: Dimensionless interaction term, EintðxÞ given by Eq. (49), and dimensionless quantum potential, V̄QðxÞ given by Eq. (50), for
l ¼ 1, 10 and 30.

TABLE I. QNM frequencies ϖ of the BEC hydrodynamic
vortex for different values of the azimuthal number m, for
xmin ¼ 2.0 (outside the ergoregion) and xmin ¼ 0.7 (inside the
ergoregion), obtained numerically from estimates via DI and CF
methods [41]. At x ¼ xmin, we imposed the boundary condition
(42), and, at spatial infinity, we considered the boundary
condition (43).

xmin ¼ 2.0 (outside the ergoregion)

m Method ReðϖÞ ImðϖÞ

5
DI −1.315457 −0.240587
CF −1.315457 −0.240587

6
DI −1.590645 −0.246052
CF −1.590645 −0.246052

7
DI −1.865445 −0.250641
CF −1.865445 −0.250641

8
DI −2.139994 −0.254608
CF −2.139994 −0.254608

xmin ¼ 0.7 (inside the ergoregion)

m Method ReðϖÞ ImðϖÞ
5 DI þ1.375559 þ9.448427 × 10−7

6 DI þ1.985322 þ2.932041 × 10−7

7 DI þ2.625150 þ8.056820 × 10−8

8 DI þ3.287623 þ2.081309 × 10−8
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From Eq. (39), it can be clearly seen that there are
symmetries associated to the frequency ϖ, relating the
corotating modes (Cm > 0) and the counterrotating ones
(Cm < 0), as follows:

ϖðCm > 0Þ ¼ −ϖ�ðCm < 0Þ; ð51Þ
where “ �” denotes complex conjugation. From Eq. (51),
we note that to each QNM frequency of a corotating mode
there is a corresponding one of a counterrotating mode
with opposite real part and the same imaginary part [40].
Henceforth, taking into account the symmetries (51), we
may assume, without loss of generality, that m > 0 and
C > 0.

Estimates of the QNM frequencies ϖ are exhibited in
Table I, considering different values of the azimuthal
number m and applying the boundary condition (42) at
two different positions of the radial coordinate. These
QNM frequencies are obtained via DI and CF methods
[41]. Note that, as the azimuthal numberm is increased, the
magnitude of the real and imaginary parts of the QNM
frequencies for the stable modes also increases, while the
opposite happens for the unstable modes. The ergoregion
instability can be more easily perceived for large values
of m.
In Figs. 2 and 3 we plot, respectively, the real and

imaginary parts of the fundamental (n ¼ 0) QNM
frequencies ϖ, for azimuthal numbers m ¼ 5, 6, 7, 8, 9
and 10, obtained via DI and CF methods [41]. We observe
a decrease of the magnitude of the real and imaginary
parts of the QNM frequencies for stable modes and
an increase for the unstable modes. From Fig. 2, we
may observe that there exists a certain point (around
xmin ≈ 0.9), in which the real part of the QNM frequencies
is the same for all azimuthal numbers m. We should point
out that this pattern of coincidence does not happen if
we, instead of the boundary condition of Neumann type,
choose boundary condition of Dirichlet type. We also note
that, as we can clearly see in the right plots of Fig. 3, the
threshold between stability and instability is smaller for
BEC hydrodynamic vortex than for the polytropic hydro-
dynamic vortex (with the setup described in Ref. [15]);
i.e., the transition from stability to instability occurs more
rapidly for the BEC hydrodynamic vortex than for the
polytropic hydrodynamic vortex with a compatible exper-
imental setup in a perfect fluid (note that the transition of
stability to instability is more sudden for azimuthal
number m ¼ 5 than for m ≥ 6).

FIG. 2. Real part of the fundamental (n ¼ 0) QNM frequencies
ϖ of the BEC hydrodynamic vortex, for azimuthal numbers
m ¼ 5, 6, 7, 8, 9 and 10, as a function of xmin, obtained via DI and
CF methods [41]. At x ¼ xmin, we imposed a boundary condition
of the Neumann type, given by Eq. (42), and at spatial infinity we
considered the asymptotic behavior given by Eq. (43).

FIG. 3. Imaginary part of the fundamental (n ¼ 0) QNM frequencies ϖ of the BEC hydrodynamic vortex (left frame, with a zoom in
the right frame), for azimuthal numbersm ¼ 5, 6, 7, 8, 9 and 10, as a function of xmin, obtained via DI and CF methods [41]. At x ¼ xmin,
we imposed a boundary condition of the Neumann type, given by Eq. (42), and at spatial infinity we considered the asymptotic behavior
given by Eq. (43).
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VII. CONCLUSION

We investigated the ergoregion instability of a purely
circulating system of ideal fluid (representing a quantum
system): the BEC hydrodynamic vortex. We have shown
that, by imposing boundary conditions inside the ergore-
gion of this purely circulating system, instabilities appear,
which are associated with the existence of an ergoregion
(supersonic flow regime) and absence of an event horizon
[14–16]. From the QNM analysis, we concluded that the
imaginary part of the QNM frequencies of this system is
positive when the boundary conditions are imposed suffi-
ciently inside the ergoregion. Furthermore, we have shown
that, as the position of the boundary condition is placed
more inside of the ergorigion, the system is more unstable,
with the transition from stability to instability being more
sudden for the BEC hydrodynamic vortex than for the

polytropic hydrodynamic vortex with a compatible exper-
imental setup in a perfect fluid [15]. We have thus verified
for a quantum system a relevant property associated with
effective spacetime with ergoregion and without an event
horizon, namely the ergoregion instability.
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