
 

Euclidean action and the Einstein tensor

Dawood Kothawala*

Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India

(Received 20 February 2018; published 26 June 2018)

We give a local description of the Euclidean regime ðM; g; uÞ of Lorentzian spacetimes ðM; gÞ based on
timelike geodesics u passing through an arbitrary event p0 ∈ M. We show that, to leading order, the
Euclidean Einstein-Hilbert action IE is proportional to the Einstein tensor G½g�ðu;uÞ. The positivity of IE
follows if G½g�ðu; uÞ > 0 holds. We suggest an interpretation of this result in terms of the amplitude
A½Σ0� ¼ exp½−IE� for a single spacelike hypersurface Σ0 ∈ Iþðp0Þ to emerge at a constant geodesic
distance λ0 from p0. Implications for classical and quantum gravity are discussed.
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I. INTRODUCTION

Feynman’s path-integral formulation of quantum theory
provides a powerful basis for setting up a quantum
framework for a theory described by certain degrees of
freedom, say qA, with probability amplitudes for different
configurations determined by the classical action I½qA�. If
one therefore wishes to study the quantum aspects of
gravity within the path-integral formalism, it is natural to
start with the Einstein-Hilbert action on a manifold ðM; gÞ,
determined by the Lagrangian Lgrav½g� ¼ RicSc½g�—the
Ricci scalar constructed from g (and appropriate boundary
terms for each boundary of M). The corresponding path
integral for gravity is then defined as a sum-over-histories g
of the amplitude A½Gf ;Gijg� ¼ exp ½iI½Gf ;Gijg�=ℏ� which is
the transition amplitude between the 3-geometries Gi and Gf
corresponding to a given g (mathematically, a Lorentzian
cobordism). All these steps are merely formal; they simply
state the standard prescription of path integrals for a
classical tensor field g. But of course, gravity is more than
simply a theory of a classical field: it is also a manifestation
of the curvature of spacetime which provides the back-
ground over which all other field theories are constructed.
This makes the situation much more complicated, and has
been discussed at length in the vast literature on the topic.
In this work, we focus on the most basic of these: the

Euclidean version of the gravitational path integral [1]. The
conventional approach here is to perform a suitable Wick
rotation (analytic continuation of the time coordinate t to
the complex plane), and then study the path integral based
on the Lagrangian Lgrav½gE� ¼ RicSc½gE�, where gE is the
Euclidean metric. Of course, Wick rotation does not always
yield a sensible gE, and many variants have been proposed
which analytically continue some metric degree of freedom
as a cure for issues related to the analytic continuation of t

and/or those related to the unboundedness of the Euclidean
action. Be that as it may, such issues definitely make it
worthwhile to further probe the class of Euclidean geo-
metries that can be introduced in the path integral, and that
are compatible with the existence of a Lorentzian metric
on M.
With this in mind, we here consider a covariant alter-

native to conventional Wick rotation (t → it), which is
essentially motivated by a simple result about the existence
of Lorentzian metrics on manifolds that possess a
Euclidean metric (see Sec. 2.6 of Ref. [2]). Specifically,
a manifold with a Euclidean metric admits a Lorentzian
metric (or the converse, which is more relevant for our case)
if there exists a smooth, nowhere-vanishing vector field u
on it. Such a vector field always exists for noncompact
manifolds, while compact manifolds admit one if and only
if their Euler number is zero. We therefore focus on the
class of Euclidean metrics ĝab ¼ gab − ΘðλÞuaub where ua
is a well-defined unit timelike vector field parametrized by
λ (that is, gabuaub ¼ −1 and ua∂aλ ¼ 1), and ΘðλÞ is a
transition function that satisfies limx→0ΘðxÞ ¼ −2 and
limx→∞ΘðxÞ ¼ 0 corresponding to the metric ĝ being
Euclidean or Lorentzian; in particular, gE ≡ ĝðΘ ¼ −2Þ
[2–4]. I will assume that the transition between these
two values of Θ is sharp; (see Fig. 1). Although the
two domains—Euclidean and Lorentzian—are of primary
interest here, the transition between these also leads to an
interesting mathematical structure in the curvature tensors,
represented by terms with delta-function support.
Several novel and remarkable consequences follow from
this proposal for Euclidean regimes associated with
Lorentzian spacetimes [5], resulting in a rich geometrical
structure. As we shall see, combined with the geodesic
structure of Riemannian/Lorentzian space(time)s, these
features imply a very specific relationship between the
Euclidean Einstein-Hilbert action IE ≔ −iI½gE� and the
Einstein tensor G½g�.*dawood@iitm.ac.in
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Before proceeding to prove this relationship, let me
highlight two key advantages of studying Euclidean quan-
tum gravity in the framework proposed here. First, it helps us
to define a Euclidean geometry corresponding to a given
Lorentzian geometry without any ambiguity and without
having to worry about the metric components becoming
imaginary. This is in contrast to what happens with conven-
tional Wick rotation. Second, the fact that the resultant
Euclideanization depends on a vector field u allows us to
introduce the notion of observer dependence at a very basic
level in the quantum description of gravity, a desirable
feature since quantum theory is expected to be inherently
observer dependent (a fact that has not received as much
careful attention as other aspects of quantum gravity, though
some discussions exist; for example, see Ref. [6]).

II. THE CURVATURE TENSORS
ASSOCIATED WITH ĝ

I will now describe the geometrical features associated
with the metric ĝ that will allow us to construct the action
I½ĝ�, whose Euclidean regimewill be our key point of focus.
After lengthy algebra and judicious use of the Gauss-
Codazzi and Gauss-Weingarten equations, it is possible to
write down the geometrical quantities associated with ĝ in
terms of those associated with g. This inevitably involves
the intrinsic and extrinsic geometry of u foliation with the
induced metric (the projection of) hab ¼ δab þ uatb. (Here,
ta ¼ gabub.) Some relevant expressions are given in the
Appendix for completeness; these lead to the final expres-
sion for the Ricci scalar which is of direct relevance for
further discussion of the Euclidean action

RicSc½ĝ� ¼ ð1þ ΘÞRicSc½g� − ΘRΣ þ
�
dΘ
dλ

�
K ð1Þ

where RΣ represents the intrinsic Ricci scalar of level
surfaces of u (see Fig. 1), and K represents their extrinsic
curvature. We will now use the above to evaluate the action

in the Euclidean regime of ĝ. For this, we will choose
a sharp (step-function) profile for the transition function
ΘðλÞ¼2θðλ−λ0Þ−2. Since dΘ=dλ ¼ 2δðλ − λ0Þ≡ 2δΣ0

,
the last term in the above expression will contribute
ð2KÞδΣ0

to the Euclidean action, which happens to be
precisely the Gibbons-Hawking-York (GHY) boundary
term inD ¼ 4! This somewhat curious result arises because
the metric signature changes by 2 (which leads to the
correct factor of 2 in the GHY term).
We are now in a position to analyze the action

I½ĝ�
ℏ

¼ 1

lD−2
0

Z
RicSc½ĝ�dvD ð2Þ

where dvD is the volume measure based on ĝ.1 We will be
interested in the Euclidean regime Θ ¼ −2, and hence the
volume integration will be over the corresponding domain.
Finally, we note that, det ĝ ¼ ð1þ ΘÞ−1 det g, and since
det g < 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ĝ

p
is imaginary for Θ < −1, and in

particular for Θ ¼ −2. This is expected. However, for
Θ ¼ −1, the metric ĝ is degenerate (in fact, equal to
hab). Therefore, we shall choose the volume measure
dvD as equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−detĝ

p
d4x¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−detg

p
d4x for Θ < −1,

and equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− deth

p
d4x ¼ i

ffiffiffiffiffiffiffiffiffiffi
deth

p
d4x for Θ ¼ −1.

III. THE LOCAL EUCLIDEAN GEOMETRY
OF SPACETIME

We are now ready to study the Euclidean regime in a
geodesically convex neighborhood of an arbitrary event p0

in a manifold possessing a Lorentzian metric g, using for u
the set of timelike geodesics emanating from p0; see Fig. 2.

FIG. 1. Left: A typical profile for ΘðλÞ; the dashed curve is the idealized step profile used in this paper. Right: Euclidean-to-Lorentzian
transition characterized by u and ΘðλÞ. The Σ’s represent level surfaces of u.

1l0, with dimensions of length, is defined by this expression
(it is the natural relativistic reduced Planck scale). To avoid
clutter, we will set λ0 ¼ l0, since we expect the transition to take
place close to the Planck scale. It is easy to do away with this
choice, in which case the ratio ðλ0=l0Þ will appear in the final
result.
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Our construction, being anchored at an (otherwise arbi-
trary) spacetime event p0 and valid within Iþðp0Þ, there-
fore provides a local, covariant prescription for the
Euclidean action as an alternative to conventional Wick
rotation.
Since u are timelike geodesics emanating from p0, the

surfaces of constant geodesic distance alongu are orthogonal
to u; see Lemma 4.5.2 in Ref. [2]. The corresponding
surfaces, whichwe call equigeodesic surfaces, then represent
Σ, and are composed of eventsp lying at a constant (squared)
geodesic interval σ2ðp; p0Þ from p0. The relevant geomet-
rical properties of such surfaces in arbitrary curved space-
times were discussed in Ref. [7], and we briefly quote the
results which we will need here. First, it is easy to show that
ta ¼ ∇aσ

2=2
ffiffiffiffiffiffiffiffi
−σ2

p
. From this, the extrinsic curvature of Σ

can be computed asKab ¼ ð−σ2Þ−1=2ð∇a∇bðσ2=2Þ þ tatbÞ.
All the interesting geometric properties of Σ can therefore be
derived from the well-known covariant Taylor series expan-
sion of the bitensor ∇a∇bðσ2=2Þ at p near p0 [8]. The
quantities of relevance to us have the following covariant
Taylor expansions (in λ ¼

ffiffiffiffiffiffiffiffi
−σ2

p
) characterized essentially

by the tidal tensor Eab ¼ Rambnumun:

K ¼ D1=λ − ð1=3ÞλE þ ð1=12Þλ2∇uE

− ð1=60Þλ3F þOðλ4Þ;
RΣ ¼ −D1D2λ

−2 þ Rþ ð2=3ÞðDþ 1ÞE þOðλÞ; ð3Þ

where E ¼ gabEab, F ¼ ∇2
uE þ ð4=3ÞEa

bE
b
a, and we use the

convenient shorthand D# to denote D − #.

IV. THE EUCLIDEAN ACTION

To evaluate the Euclidean action, it is convenient to write
the Lorentzian metric g at events p ∈ Iþðp0Þ in the
synchronous coordinates: g ¼ −dλ ⊗ dλþ hðλ; χ;ΩAÞ,
where χ is the local boost coordinate and ΩA; A ¼ 3…D
are angular coordinates. It is easy to show that deth
has the following expansion in λ:

ffiffiffiffiffiffiffiffiffiffi
deth

p
dχdΩA ¼

λD−1½1 − ð1=6ÞEλ2 þOðλ3Þ�ðsinh χÞD−2dχdΩA.2

We can now use Eq. (1) withΘ ¼ −2, along with Eq. (3),
the expression for dvD [discussed below Eq. (2)], and the
above expansion for

ffiffiffiffiffiffiffiffiffiffi
deth

p
, to evaluate the Euclidean

action. The λ integral goes from λ ¼ 0 to λ ¼ l0, and
keeping in mind the ð2KÞδΣ0

term, a lengthy computation
finally yields (recall that IE ≔ −iI½gE�)

IE
ℏ

¼ 1

D

Z
l2
0

�
Rþ 1

3
ðD1D2 −D−1D4ÞE

�
dHD−1

1

þ Oðl3
0 ×∇R…Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

higher curvature terms

which, upon using E ¼ Rabuaub ¼ Gabuaub − ð1=2ÞR,
simplifies remarkably, thereby yielding our key result

IE
ℏ

¼ 2

D

Z
l2
0Gabðp0ÞuaubdHD−1

1 þ Oðl3
0 × ∇R…Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

higher curvature terms

≈
2

D
l2
0Gabðp0Þτab ð4Þ

FIG. 2. Geodesic structure of spacetime near an arbitrary event p0. Right inset: Future timelike geodesics in Iþðp0Þ will serve as the
basis for the local Euclidean regime in the neighborhood of p0. The shaded region represents the Euclidean domain.

2Note that E ¼ Eabðp0Þuaðχ;ΩAÞubðχ;ΩAÞ, though we will
suppress the dependence on ðχ;ΩAÞ to avoid notational clutter.
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where τab ¼ R
uaubdHD−1

1 represents the average of the unit
timelike vectors uaðχ;ΩAÞ over the unit (D − 1) hyperbolic
space HD−1

1 . In particular, it is evident that, as long as
G½g�ðu; uÞ > 0 for all timelike vectors u, I½gE� > 0.
This is a remarkable result, and the only inputs that have

gone into deriving this result are (i) the characterization of
ĝ, and (ii) the geometry of level surfaces of timelike
geodesics emanating from a spacetime event p0. Both of
these inputs are rooted in basic differential geometry (see,
e.g., Ref. [2]), and provide a more rigorous alternative to
Wick rotation for studying the Euclidean regime of
spacetime. Irrespective of how one proceeds further from
it, Eq. (4), which is our main result, is sufficient to indicate
the nontrivial role that the Einstein tensor of a given
Lorentzian geometry plays in determining the structure
of the action in the Euclidean regime of this geometry. To
the best of our knowledge, such a connection has neither
been expected nor arrived at in the conventional approach
to Euclidean quantum gravity.
Formally, of course, τab is divergent due to the expo-

nentially divergent volume of the hyperbolic space. we
briefly mention below two possible ways for evaluating τab.
Although both are mathematically straightforward, we
must add that there is no preferred way of choosing one
over the other without entering into the realm of specula-
tion. It is not even clear whether one should bother with it at
this stage, since it is the Euclidean path integral based on IE
which is expected to be more relevant than IE itself.
(a) Imposing a cutoff on χ: The most straightforward

evaluation is done by replacing
R∞
0 dχð…Þ → R χc

0 dχð…Þ to
extract the leading χc → ∞ divergences. The evaluation for
τab in this case is most conveniently done by parametrizing
ua with standard Lorentz transformations: uaðχ;ΩAÞ ¼
ðcosh χÞTa þ ðsinh χÞNa, where Ta, Na are arbitrary unit
timelike and spacelike vectors in the tangent space T p0

ðMÞ,
with TaNa ¼ 0. It is then straightforward to show that
τab=SD−2¼ðID=ðD−1ÞÞ½ηabþDTaTb�þID−2TaTb, where
SD−2 is the volume of the unit (D − 2) sphere. In this
form, the χc → ∞ divergences are captured through
the integrals ID ¼ R χc

0 dχðsinh χÞD. It is worth highlighting
that the first term in the structure of τab, being traceless,
would pick the traceless part Gtr

ab ¼ Gab − ð1=DÞGgab
of the Einstein tensor. Explicitly, Gabτ

ab=SD−2 ¼
ðDID=ðD − 1ÞÞGtr

abT
aTb þ ID−2GabTaTb. The Euclidean

action with this regularization is worth exploring further,
and can lead to new insights into quantum gravity as well as
its classical limit. It might also be of direct conceptual
significance for ideas that treat gravity as an emergent
phenomenon [9].
(b) Regularized hyperbolic volume: As an alternative to

the above regularization, one might mention that there has
been discussion on handling precisely the above kind of
divergences in the context of AdS=CFT, which essentially
regularizes the volume of HN (which is exactly what arises

in our setup as well). It is straightforward to show that
τab≡ðvolregðHD−1

1 Þ=DÞgabðp0Þ [10]. In this case, Gabτ
ab¼

ðvolregðHD−1
1 Þ=DÞG¼−volregðHD−1

1 ÞððD−2Þ=2DÞRicSc½g�.
The Euclidean action is now indeed proportional to
RicSc½g�, but the proportionality constant is not the
standard one. The relevance and/or justification for this
particular regularization is unclear (at least to this author).

V. DISCUSSION AND IMPLICATIONS

Let me first summarize the approach presented here and
the result it has led us to. we began by considering a class of
spacetime metrics ĝ derivable from a Lorentzian metric g
and timelike geodesics u, which interpolate between the
Euclidean and Lorentzian space(time)s. This turns out to
lead to a rich mathematical structure, with the transition
between Euclidean and Lorentzian regimes leading to terms
in the curvature with delta-function support on the hyper-
surface on which the transition takes place. Even more
surprisingly, the Ricci scalar RicSc½ĝ� corresponding to ĝ
has a delta-function term which corresponds precisely to
the GHY boundary term in the conventional formalism of
the Einstein-Hilbert action principle. In addition, RicSc½ĝ�
in the Euclidean regime has an additional term involving
the intrinsic Ricci scalar of the codimension-one transition
surface. This entire formalism was then applied to the
causal future of an arbitrary spacetime event p0, using for u
the timelike geodesics emanating from p0. This yielded a
local description of Euclidean regime in the neighborhood
of any event p0. we then computed the Euclidean action IE
explicitly and exhibited its direct connection with the
Einstein tensor of g.
I must emphasize that the connection between the

Euclidean action and the Lorentzian Einstein tensor,
derived here, is a highly nontrivial result and there seems
to be no a priori reason for expecting such a connection.3

Since it uses covariant expansions valid in arbitrary
Lorentzian spacetimes, the result has direct implications
for studying quantum properties of the small-scale structure
of spacetime (perhaps along the lines of Refs. [7,12]). Let
me elaborate a little bit on this, taking a cue from the
domain in which similar ideas from Euclidean quantum
gravity were first applied and developed: quantum cosmol-
ogy. We will focus on the well-known Hawking-Hartle
prescription for the ground-state wave function of the
Universe [1,13]. This is defined via the path integral over

3One plausible connection is hinted by the case of static
solutions in standard field theories. Here, it is well known that the
Euclidean action is the Hamiltonian (apart from a factor of
the periodicity of Euclidean time). Since G0

0 is essentially the
gravitational Hamiltonian, the connection with the Euclidean
action seems plausible. However, for static solutions in general
relativity, the situation can be more subtle [11]. Moreover, the
result derived here does not assume staticity, etc. We nevertheless
thank the referee for bringing this interesting point to my notice.
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Euclidean geometries that have a (D − 1) hypersurface Σ0

as their only boundary, and, in the semiclassical limit, the
corresponding wave function Ψ½Σ0� is interpreted as
yielding the amplitude for the Universe to emerge from
nothing. With this as motivation, we may consider the
result derived here as yielding a wave function Ψp0

∼
e−ð2=DÞl2

0
Gabτ

ab
describing the emergence of a single space-

like surface at a fixed geodesic distance from an arbitrary
event p0. Since the analysis is completely local, one may
then apply it to all of spacetime, in which case one would
then be effectively talking about the wave function
Ψ ¼ Π

p0

Ψp0
for a spacetime with a given Lorentzian metric

g to exist. Understanding our result along these lines would
also then pave the way to better understanding the role of an
observer as far as the small-scale structure of spacetime is
concerned, somewhat along the lines of Calzetta and
Kandus [6], who argued that quantum cosmology inherits
the observer dependence of vacuum in quantum field
theory (in their case, through the choice of Wick rotation).
It would also be of interest to understand the implications

of the result derived here for the positive action conjecture
in Euclidean gravity, and its connection with the energy
conditions of classical general relativity. Such a connection
is hinted by the proportionality derived here (to leading
order in curvature) between IE and G½g�ðu; uÞ, since
G½g�ðu; uÞ ≥ 0 is (the geometrical version of) the weak
energy condition. (There is already a connection between
the positive energy theorem in (Dþ 1) dimensions and the
positive action conjecture in D dimensions: the former
implies the latter [14].)
Finally, as is evident, the result presented here has

obvious relevance to quantum gravity, in particular those
frameworks that use the gravitational path integral as their
basic starting point [e.g., causal sets or causal dynamical
triangulation (CDT)]. One would like to study the partition
function Z for quantum gravity based on the class of space
(time)s described by ĝ:

Z ¼
Z

DgDu exp

�
þi

Z
R̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ĝ

p �
:

Studying the behavior of this path integral in the Euclidean
regime of ĝ should yield new insights, since the integrand
in that limit directly depends on the Einstein tensor Gab.
This would entail addressing several issues, conceptual as
well as mathematical, so as to fully extract the conse-
quences of the result for the small-scale structure of
spacetime. It would also be of interest to investigate the
effective action obtained by integrating over u. Although
the full treatment of this might be involved, in the limit
being considered, since the Euclidean action becomes
quadratic in u, the path integral can presumably be done

(and will be determined by the determinant of the Einstein
tensor G). However, it is best not to speculate about this
without further careful consideration of the higher-curva-
ture terms in the (Euclidean) action IE.
Of particular interest is the question as to whether the

semiclassical limit of Z has any connection with the so-
called entropy functional formalism of gravitational
dynamics [15], and, more broadly, with any of the results
for the so-called emergent gravity paradigm [9]. Since
the path amplitudes (to leading order in the curvature
expansion) are given by Ψp0

∼ e−ð2=DÞl2
0
Gabτ

ab
, the

Lorentzian metrics g satisfying G½g� ¼ 0—the vacuum
Einstein equations—would dominate the path integral. It
would be interesting to make this connection mathemati-
cally rigorous after including the matter coupling. Such a
possibility is also very strongly suggested by the fact that,
for a canonical matter action quadratic in first derivatives,
Lmatter½gE� ¼ −Tabuaub! Also of interest in this context is
the understanding of the cosmological constant [16] as a
low-energy relic of the small-scale structure of spacetime.
Moving on to quantum gravity, a natural next step would be
to see if any of the existing frameworks lead naturally to ĝ
(perhaps as an effective metric). Indeed, the notion of
signature change at small scales has appeared in several
quantum gravity frameworks (see Refs. [17,18] for exam-
ples from loop quantum cosmology and CDT). The result
derived here, being applicable for arbitrary curved space-
times ðM; gÞ, should therefore provide a useful tool for a
mathematically rigorous discussion of such a change in
quantum spacetime.
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APPENDIX: RIEMANN TENSOR
ASSOCIATED WITH ≥

I quote here the expression for the Riemann tensor for ĝ,

R̂ab
cd ¼Rab

cd þ2Θ½tmRm½a
cdub� þK½a½cKb�

d��þ2 _Θu½aKb�½ctd�

( _Θ ¼ dΘ=dλ) from which all other tensors, including
the Ricci scalar quoted in the text, can be obtained in a
straightforward manner [5]. It is also worth high-
lighting the following limit on the hypersurface Θ ¼ −1,
where the metric (expectedly) becomes degenerate:

limΘ→−1R̂
ab

cde
ðμÞ
a eðνÞb ecðρÞe

d
ðσÞ ¼ RΣ

μν
ρσ. Similar limits are

obtained for all the other tensors, e.g., limΘ→−1 R̂ ¼ RΣ.
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