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The canonical tensor model (CTM) is a tensor model in Hamilton formalism and is studied as a model
for gravity in both classical and quantum frameworks. Its dynamical variables are a canonical conjugate
pair of real symmetric three-index tensors, and a question in this model was how to extract spacetime
pictures from the tensors. We give such an extraction procedure by using two techniques widely known in
data analysis. One is the tensor-rank (or CP etc.) decomposition, which is a certain generalization of the
singular value decomposition of a matrix and decomposes a tensor into a number of vectors. By regarding
the vectors as points forming a space, topological properties are extracted by using the other data analysis
technique called persistent homology, and geometries by virtual diffusion processes over points. Thus, time
evolutions of the tensors in the CTM can be interpreted as topological and geometric evolutions of spaces.
We have performed some initial investigations of the classical equation of motion of the CTM in terms of
these techniques for a homogeneous fuzzy circle and homogeneous two- and three-dimensional fuzzy
spheres as spaces, and have obtained agreement with the general relativistic system obtained previously in a
formal continuum limit of the CTM. It is also demonstrated by some concrete examples that the procedure
is general for any dimensions and topologies, showing the generality of the CTM.
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I. INTRODUCTION

How to formulate a consistent theory for quantum
gravity is one of the major problems in fundamental
physics. While general relativity and quantum mechanics
are believed to be the correct theories in their applied areas
in physics, quantization of general relativity using standard
(perturbative) quantum field theoretical method is hard due
to nonrenormalizable divergences from small scale quan-
tum fluctuations [1].1 One very promising direction to solve
the issue is to formulate spacetime and matter fields in a
more fundamental way than continuous spacetime and
pointlike objects. In such attempts, spacetime is considered
to be an emergent entity generated by the dynamics of more
fundamental degrees of freedom (d.o.f.).

Among the various approaches to quantum gravity in line
with the thoughts above, tensor models are of much interest.
They were originally proposed [4–6] as a generalization of
randommatrix models, which were successful for describing
two-dimensional quantumgravity, with the hope of obtaining
consistent theories for quantum gravity in dimensions higher
than 2. While the original models suffer from some diffi-
culties in computability,2 improved models called colored
tensor models were introduced [9] that enabled various
analytical computations in what is called 1=N expansions
[10]. The results seem to show that the emergent spaces in the
colored tensor models are like branched polymers [10,11],
two-dimensional quantum gravity, or mixtures [12,13], far
from macroscopic spacetimes or our actual spacetime.
On the other hand, there is a model of quantum gravity

with a causal structure, called causal dynamical triangula-
tion, that successfully generates macroscopic spacetimes
[14,15]. This is in contrast with the corresponding Euclidean
model, called dynamical triangulation, which is not success-
ful in this regard [16,17]. This fact suggests the importance of
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1However, see for instance [2] on the recent developments in
the asymptotic safety program [3].

2For the original models there are no so-called 1=N expan-
sions, as do exist for the matrix models. Recently, introducing a
traceless condition [7] or a pair of symmetric tensors [8] has been
proposed as a possible resolution.
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causal treatment in quantumgravity, andone of the authors of
this paper proposed a new type of tensor model, which we
call the canonical tensor model (CTM) [18,19]. This is
formulated as a first-class constraint system in Hamilton
formalism with a canonical conjugate pair of real symmetric
three-index tensors as its dynamical variables.3 Its first-class
constraint algebra closely resembles that of the ADM
formalism of general relativity, and there indeed exists a
formal continuum limit in which they agree [21]. There are
also other remarkable connections to general relativity: The
N ¼ 1 CTM4 agrees with the minisuperspace treatment of
general relativity [22], and the classical CTM in the formal
continuum limit agrees with a general relativistic coupled
system of gravity, a scalar field, and higher spin fields in the
Hamilton-Jacobi formalism [23].
The formal continuum limit above is obtained by a

formal replacement of the discrete values of the indices of
the tensors, a ¼ 1; 2;…; N, to a continuous one, x ∈ RD.
Therefore, this formal continuum limit is assuming a
classical continuous spacetime from the beginning and
does not tell anything about how such a space may emerge
from the (quantum) dynamics of the theory. A clue to the
last question has been obtained in our previous paper [20]:
The wave function of the quantum CTM has strong peaks at
values of the tensors symmetric under Lie groups. Since we
know that various symmetries are associated to our
spacetime, this result is encouraging. Then the next ques-
tion which naturally arises is how to interpret such
preferred values of the tensors as spacetimes.
The first step to answer this question would be to

establish the correspondence between tensors and space-
times. To this end, we introduce two well-known tech-
niques in data analysis to the CTM, and formulate a
systematic procedure to extract topological and geometric
properties of spaces held by the tensors. The first technique
is called tensor-rank decomposition (or CP etc.) [24–27].
This is a certain generalization of the singular value
decomposition of a matrix, and decomposes a tensor into
a number of vectors. By regarding the vectors as points and
their mutual inner products as quantities featuring distance
relations among points, one can obtain a space with
topological and geometric properties extracted from a
tensor. Here, topological properties can be extracted
through the second technique from topological data analy-
sis called persistent homology [28].5 Geometric structure
can be extracted by virtual diffusion processes over points
which are also often used in data analysis [33,34].
After introducing some notions and ideas, we consider a

homogeneous fuzzy circle and homogeneous fuzzy two-

and three-dimensional spheres to demonstrate the method.
We study the time evolution of the tensors corresponding to
these fuzzy spaces under the classical equation of motion of
the CTM and interpret them as the evolution of spacetime
by the extraction procedure mentioned above. We compare
the results with the classical equation of motion of the
general relativistic system derived in a formal continuum
limit of the CTM in a former paper [23] and find good
agreement.
This paper is organized as follows. In Sec. II, we review

some elementary facts about the tensor-rank decomposi-
tion, and interpret the vectors obtained from the decom-
position as points. In Sec. III, we give a systematic method
of constructing real symmetric three-index tensors of fuzzy
spaces corresponding to ordinary continuous spaces with
any dimensions and topologies. In Sec. IV, we introduce the
notion of neighborhoods in terms of mutual inner products
among vectors representing points in the sense of Sec. II. In
Sec. V, we review persistent homology, a technique from
topological data analysis, and demonstrate how one can
apply it to the fuzzy spaces. In Sec. VI, we point out that the
derivative expansion previously performed in the formal
continuum limit of the CTM mentioned above can be
represented in the form of a continuous tensor-rank
decomposition. Here the vectors of the decomposition
are expressed with the scalar and metric fields of the
general relativistic system corresponding to the CTM. In
Sec. VII, we present a method of obtaining the values of
scalar and metric fields by virtual diffusion processes over
continuously existing points, based on the expressions
obtained in Sec. VI. In Sec. VIII, the method developed
for continuous cases in the preceding sections is general-
ized to discrete cases, namely for finite N, and a method to
characterize the local distance structures in fuzzy spaces is
presented. In Sec. IX, the classical equation of motion of
the CTM is applied to the real symmetric three-index
tensors describing fuzzy spaces, and time evolution is
roughly described as an increasing process of number of
points and mutual distances among points. In Sec. X, by
applying the extraction procedure mentioned above,
detailed analysis of the time evolutions of homogeneous
fuzzy S1, S2 and S3 is performed and good agreement is
obtained with the general relativistic system corresponding
to the CTM. In Sec. XI, we explicitly construct the real
symmetric three-index tensors for fuzzy spaces with
various dimensions and topologies to demonstrate the
absence of limitations of the procedure, showing the
generality of the CTM. The last section is devoted to a
summary and future prospects. In Appendix, we show the
algorithm of the C++ program we made and used for the
tensor-rank decomposition.

II. TENSOR-RANK DECOMPOSITION AND
NOTION OF POINT

In this section we introduce the tensor-rank decompo-
sition, also often calledCP decomposition [24–27], and use

3For a concise review of the CTM, see for instance the review
section in [20].

4N denotes the dimension of the vector space associated to the
tensor indices. In other words, each index takes values from
f1; 2;…; Ng.

5Some examples of physical applications include [29–32].
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it to interpret a tensor as a collection of points which form a
space. Throughout this paper, unless otherwise stated,
we consider tensors which are real, symmetric, and of
three-way,6

Pabc ¼ Pσaσbσc ; ð1Þ

where σ denotes arbitrary permutations of a, b, c, and the
indices run from 1 to N. This particular choice of tensors is
considered because we are interested in applying methods
developed here to the CTM, which has a similar setup. It is
however straightforward to generalize the contents of this
section to other types of tensors. We also assume that the
underlying vector space admits an OðNÞ symmetry, which
is the natural symmetry for real inner product spaces and is
the kinematical symmetry of the CTM.
One may define a point by the simplest possible tensor.

In the present case of a real symmetric three-way tensor, the
simplest possibility is given by

P111 ≠ 0; others ¼ 0: ð2Þ

Using the OðNÞ symmetry in the underlying vector space,
the general form for a single point is given by

Pabc ¼ vavbvc; ð3Þ

where v is an N-dimensional real vector. This implies that
arbitrary single points are equivalent under the OðNÞ
symmetry up to the sizes. The tensor of the form (3) is
also called a rank-1 tensor.
A space may be described by a collection of such single

points, leading to a tensor of the form

Pabc ¼
XR
i¼1

viavibv
i
c: ð4Þ

A tensor represented by a sum of R rank-1 tensors is called
a rank-R tensor, for the smallest possible R with a given P.
Representing a given tensor in such a sum has various
names such as tensor-rank decomposition, rank-1 tensor
decomposition, CP decomposition, etc., [24–27], and
essentially generalizes the single value decomposition for
matrices. The decomposition always exists with a finite R
for finite N.
An important fact about the decomposition of a tensor in

our usage is that the set of vectors in the decomposition of a
tensor has sorts of uniqueness [35,36], and therefore a space

can be represented by points unambiguously7 in our actual
applications, unless the rank is taken to be unnecessarily too
large in the approximate tensor-rank decomposition [37],
which appears below. This is different from the matrix case,
because the vectors in the single value decomposition of a
matrix always have a large continuous ambiguity. For
example, the expression, Mab ¼

P
R
i¼1 v

i
avib, can be trans-

formed by arbitrary orthogonal transformations,via → Li
jv

j
a

with L ∈ OðRÞ, without changing Mab.
There are other differences and subtleties in the decom-

position of a tensor in comparison with the matrix case.
A tensor may have other tensor-rank decompositions with
different R and v, though there are some proven cases with
uniqueness (or a partial one). Here the least value of R is
called the rank of the tensor. The rank of a tensor depends
on the base field (namely, real or complex numbers for
instance) and whether each rank-1 tensor in the decom-
position is restricted to be symmetric or not. Since each
term in (4) is a symmetric real rank-1 tensor, R should be
more precisely referred to as real symmetric rank, and the
decomposition (4) as symmetric tensor-rank decomposition
over the reals. Unless otherwise stated, the tensor-rank
decomposition in this paper is always assuming the form
(4) with real values, and we simply ignore these specifi-
cations for brevity.
A typical rank is defined by any rank such that the set of

tensors having the rank has a positive measure in the whole
space of the tensors. This means that a given tensor can be
approximated as closely as one likes with a finite proba-
bility by a tensor with such a typical rank. It is known that
there exists only a single typical rank for complex sym-
metric tensors with given w, N, where w denotes the
amount of ways (the amount of indices) of a tensor. This
rank is called generic symmetric rank, which we here
denote by Rg, and is explicitly given by

Rgðw;NÞ ¼ ⌈ 1N
�
N þ w − 1

w

�
⌉ ð5Þ

with the following exceptions: Rgð2; NÞ ¼ N, and Rg is
given by increasing the above formula by 1 for ðw;NÞ ¼
ð3; 5Þ; ð4; 3Þ; ð4; 4Þ; ð4; 5Þ. Here ⌈ · ⌉ denotes the ceiling
function. This statement is from the Alexander-Hirschowitz
theorem [38]. (See [35,39] for more details.) The number
on the right-hand side of (5) is called expected rank,
because it can be obtained by the simple number counting
of the d.o.f.

6A tensor with three indices is often called a rank-three tensor
in physics literature, but this may cause confusion since the rank
of a tensor discussed in this section has nothing to do with the
amount of indices. To avoid this confusion we call a tensor with
three indices a three-way tensor, which is often used in computa-
tional science.

7In fact, in the case of our present applications considering
homogeneous fuzzy spaces with some Lie-group symmetries,
there exist some ambiguities under the Lie-group transforma-
tions. However, these ambiguities are not relevant, because the
relevant quantities we discuss later are obtained from some inner
products, which are invariant under these transformations.
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In the real case, however, there exist a number of typical
ranks for given w, N, the least value of which agrees with
the generic rank of the complex case. (See [40] for more
details.) So, the space of real tensors is divided into a
number of subregions, each of which has a certain typical
rank. The formula for the typical ranks is not known for
general w, N except for some specific cases. For example,
the typical ranks are 2 and 3 for ðw;NÞ ¼ ð3; 2Þ. (See [41]
for a table for three-way real tensors.)
The notion of typical rank implies that a given tensor

can be approximated as closely as one likes by the form (4)
with a typical rank. However, due to the lack of a
general formula for typical rank and a practical syste-
matic procedure, the tensor-rank decomposition is to
optimize vectors vi to approximate a given tensor as much
as possible with the form (4) with a value of R. So,
practically, what we obtain is an approximate tensor-rank
decomposition,

Pabc ¼
XR
i¼1

viavibv
i
c þ ΔPabc; ð6Þ

rather than an exact (4), where the error ΔPabc should be
made as small as possible. The error ΔPabc can be made
(numerically) to vanish if one takes R large enough, but R
cannot be taken unconditionally large in practical compu-
tations. This is not only because the optimization process
takes a longer time for larger R with larger d.o.f., but also
because for larger R it becomes more difficult to avoid
rough decompositions which contain mutual cancellations
of the rank-1 components (see [37,42] for more details).
Therefore there exist various uncertainties in the decom-
position. Is R taken large enough? Are the vectors opti-
mized? How much of an error is reasonable to allow?
These uncertainties introduce uncertainties in results and

are potentially very harmful when actually doing compu-
tations. In our applications, however, reasonable results are
obtained by taking R reasonably large to make errors
sufficiently small and repeating the optimization procedure
several times to choose the best set of vectors. Here, for the
optimization, we made a C++ program which implements
the greedy algorithm described in [42] with an additional
constraint. The program is described in some detail in
Appendix. It is worth noting that despite the possible
numerical problems, the tensor-rank decomposition is well
defined, so at least in principle we have a good notion of
points corresponding to a tensor.

III. REAL SYMMETRIC THREE-WAY TENSORS
CORRESPONDING TO FUZZY SPACES

Real symmetric three-way tensors may be used to
describe spaces through the algebra of functions acting
on these spaces [43–47]. In this section we describe a
systematic method to construct such tensors from their

corresponding algebra. This method is particularly useful in
constructing such tensors corresponding to homogeneous
spaces invariant under Lie-group symmetries. A require-
ment for such tensors is that they should be invariant under
the symmetric properties of the corresponding homo-
geneous spaces.
The rough idea of fuzzy spaces is to specify a space in

terms of the algebra of functions on it rather than a coordi-
nate system. This would be in accord with the fact that
the relevant objects in physics are fields on a space rather than
a space itself. Let us consider first an ordinary continuous
space RD. In this case functions can be used to label
points, because a single point, say ω0, can be identified by
providing a localized function8 fω0

ðωÞ ¼ δDðω − ω0Þ.
Therefore considering all the independent functions, which
are fω0

with ω0 ∈ RD, gives the whole space. The algebra
of functions, fω0

ðωÞfω1
ðωÞ ¼ δDðω − ω0ÞδDðω − ω1Þ ¼

δDðω0 − ω1Þfω0
ðωÞ, reflects the pointwise structure of the

continuous space. To get to more interesting cases one can
modify this structure in various ways. Well known are the
noncommutative spaces in which the function algebras are
taken to be noncommutative (and usually associative) [48].
We modify the algebra in a different way, by picking up

only functions corresponding to lower frequency modes
than a cutoff and ignore all the other higher frequency
modes. In this case, functions cannot represent single
points ω0 anymore, and the space necessarily becomes
fuzzy. This truncation gives a finite number of functions
faðωÞða ¼ 1; 2;…; NÞ for a compact space M with a
coordinate ω. The simplest way to obtain an algebra of
functions is to truncate the products of functions by
ignoring higher frequency modes. Such an algebra has
the form faðωÞfbðωÞ ¼ Pab

cfcðωÞ with structure coeffi-
cients Pab

c taking the original values in the full algebra of
the continuum case, but the summation over the modes c is
truncated by c ≤ N. This procedure gives a commutative
nonassociative algebra. Now the structure coefficients can
be extracted by considering

Pabc ¼
Z
M

dωfaðωÞfbðωÞfcðωÞ: ð7Þ

This procedure naturally defines a three-way tensor corre-
sponding to a space with fuzziness.9 By considering real
functions for all fa, (7) gives a real symmetric three-way

8This intuitive discussion is a bit formal, as this is not a proper
function. We can take a function which is arbitrarily close to this
localized distribution.

9Similarly, one could consider a matrix, Mab ¼R
M dωfaðωÞbðωÞ. Though this also contains a product of two
functions, it is projected to the zero mode by the integration, and
the matrix cannot represent the full structure of a fuzzy space. In
this sense, taking the three-way tensor above is the minimum (and
enough) choice.
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tensor representing a fuzzy space. For a homogeneous
space, Pabc should be invariant under its symmetry, and
therefore the function set must be taken so that it forms a
certain representation of the symmetry and Pabc is an
invariant tensor.
A comment is in order. Comparing with the decom-

position (4), one notices that (7) is nothing but a tensor-rank
decomposition of Pabc, where the index i is replaced by a
continuum one ω. This does not mean that a fuzzy space
defined by (7) requires an infinite R with a continuous
index. In fact, for a finite N, the tensor-rank decomposition
of Pabc can always be performed with a finite R. Therefore
a compact fuzzy space defined by (7) is always represented
by a finite number of points. If one takes a limit back to the
continuum (i.e., N → ∞), R should indeed become infinite,
which is considered in a formal continuum limit of the
CTM in Sec. VI.
Another comment concerns the ordinary continuum

space. Let us take a basis of real functions by the delta
functions mentioned above. Then (7) is given by
Pω0ω1ω2

¼ δDðω0 − ω1ÞδDðω0 − ω2Þ. Thus the ordinary
continuum space is described by a continuous fully
diagonal three-way tensor.
As a concrete example, let us consider a homogeneous

fuzzy two-sphere. As described above, we take a cutoff L
and take the spherical harmonics with angular momenta
≤ L as a function set. Then the real symmetric three-way
tensor corresponding to a homogeneous fuzzy two-sphere
is given by

Pðl1;m1Þðl2;m2Þðl3;m3Þ ¼
Z
S2
dΩỸl1m1

ðΩÞỸl2m2
ðΩÞỸl3m3

ðΩÞ:

ð8Þ

Here ðl; mÞ takes l ¼ 0; 1;…; L;m ¼ −l;−lþ 1;…; l, and
Ỹlm are the real functions defined by

Ỹlm ¼

8>>><
>>>:

1ffiffi
2

p ðYlm þ Y�
lmÞe−l

2=L2

; m > 0;

Yl0e−l
2=L2

; m ¼ 0;
1ffiffi
2

p
i
ðYlm − Y�

lmÞe−l
2=L2

; m < 0;

ð9Þ

where Ylm are the spherical harmonics and the star
represents taking a complex conjugation.10 The exponential
damping factor is to make the high-frequency cutoff
smoother, which turns out to result in better behaved
systems, as is explained in Sec. IV. In the section we
apply the tensor-rank decomposition to the P in (8), and
obtain the geometric picture in Fig. 1, which clearly
represents a spherical object.
The above procedure is general enough to construct

various real symmetric three-way tensors corresponding to
fuzzy spaces. Another simple example is a homogeneous
fuzzy S1, which can be obtained by considering a real basis
for functions on a circle. In Sec. XI, we explicitly construct
real symmetric three-way tensors corresponding to spaces
with various dimensions and topologies, and also non-
orientability. There we find that the tensor-rank decom-
position leads to topological and geometric interpretations
in agreement with the corresponding continuum spaces.
This demonstration proves the generality of our construc-
tion and that real symmetric three-way tensors can in
principle represent any kinds of spaces. This last fact is
particularly important for the generality of the CTM, in
which the tensors are real symmetric three-way. This is in

0.0 0.2 0.4 0.6 0.8
0

500

1000

1500

FIG. 1. Left: The histogram of the values of the inner products viav
j
aði; j ¼ 1; 2;…; RÞ for the fuzzy two-sphere with L ¼ 5. Right: The

diagram of connections of points obtained from the tensor-rank decomposition of P of the fuzzy two-sphere. Points are connected if two
points i and j satisfy viav

j
a > 0.2.

10More explicitly, we use a formula,

Z
S2
dΩYl1m1

Yl2m2
Yl3m3

¼
Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2li þ 1

p �
l1 l2 l3

0 0 0

��
l1 l2 l3

m1 m2 m3

�

with 3j-symbols.
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contrast with the other Euclidean tensor models [4–6,9], in
which the number of ways (i.e., the amount of indices) of
tensors is supposed to be in accord with the dimension of
building simplicial spaces one considers.

IV. NOTION OF NEIGHBORHOODS
IN FUZZY SPACES

In this section, we introduce the notion of neighborhoods
around points in fuzzy spaces. Let us assume that a tensor-
rank decomposition (4) is obtained for a given real
symmetric three-way tensor. A point i is represented by
a vector vi, as discussed in Sec. II. Here we introduce the
notion quite naively from the inner product, but in Sec. VII
this form is justified in the CTM via a virtual diffusion
process.
Let us define the neighborhood of a point i by the

following set of points11:

N cðiÞ ¼ fjjviavja > cg; ð10Þ
where the repeated index a is assumed to be summed over.
Hereafter this standard convention is implicitly assumed for
the indices originated from the tensor indices, e.g., a but not
i, j in (10). The parameter c in (10) determines the size of
the neighborhood: For larger c, the neighborhood becomes
smaller, and vice versa.
As an example, let us consider a fuzzy two-sphere with

L ¼ 5 defined in Sec. III. The dimension of the vector
space of P is N ¼ ðLþ 1Þ2 ¼ 36. Taking the rank to be
R ¼ 72, one can obtain a tensor-rank decomposition of P
within a 2 percent error.12 The left of Fig. 1 is a histogram of
the values of the inner products viav

j
a for i; j ¼ 1; 2;…; R.

The rightmost bins around 0.8 are composed of the self-
inner products viavia. The middle ones around 0.4 are
composed of the inner products between the nearest
neighbor points. Most of the inner products concentrate
in a small region around the origin, which means that most
of the points are not in their mutual neighborhoods for
c > 0. The physical meaning of this concentration is that
the fuzzy space respects locality, which is indeed what we
hope for if we make N sufficiently large. As can be seen in
Fig. 2, this concentration around the origin becomes larger
when the size of the fuzzy space is bigger, as more points
are not in their mutual neighborhoods. This aspect can also
be quickly understood by the fact that the probability for
two independent N-dimensional vectors to have a relative
angle θ is proportional to sinN−1 θ, which is the surface
volume on a unit sphere at an angle θ from a vector. This
phenomenon is called the concentration of measure in

mathematical literature [49]. The right of Fig. 1 shows the
neighborhood relations among the fuzzy space points,
which are connected if two points i and j satisfy
viav

j
a > 0.2. Here the cutoff value is chosen so that the

middle bunch of bins around 0.4 representing the nearest
neighbor connections is well included. The figure clearly
shows that the P defined in Sec. III represents a discrete
analogue of a continuous two-sphere through our pro-
cedure. The topological aspect is discussed more precisely
in terms of persistent homology in Sec. V.
Let us comment on the importance of the damping factor

e−l
2=L2

in (9), which smoothens the cutoff. Figure 3 shows
the histogram of the inner products obtained from the fuzzy
two-sphere without the damping factor for L ¼ 5.
Comparing with the left of Fig. 1, one can see that the
peak around the origin is broadened into the negative
values. This situation can be illustrated very roughly by
comparing the following two elementary integrations:

Z
L

−L
dpeipx ∝

sinðLxÞ
x

;
Z

L

−L
dpe−

p2

L2
þipx ∼

Z
∞

−∞
dpe−p

2=L2þipx ∝ e−
L2
4
x2 : ð11Þ

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000
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FIG. 2. The histogram of the inner products for the fuzzy two-
sphere with L ¼ 7 and R ¼ 142.
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0
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FIG. 3. The histogram of the inner products for the fuzzy two-
sphere with L ¼ 5 without the damping factor. The peak around
the origin is broadened compared with the left of Fig. 1.

11This does not include all neighborhoods in a topological
sense, which may be obtained by taking unions of these
neighborhoods.

12The percentage of error is defined from the ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔP2=P2

p
for (6), where T2 ≡ TabcTabc for a three-way tensor T.
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While the former, corresponding to the sharp cutoff case,
has a long-range oscillatory behavior with both positive and
negative values, the latter, corresponding to the case with
the damping factor, has the fast exponential damping
behavior with positive values only. The former aspects
lead to two major difficulties. As is discussed in Sec. VII,
we use a virtual diffusion process to extract geometrical
information. However, the diffusion equation with negative
coefficients can have very unusual behavior. For example,
diffusion is usually a process of easing concentrations, but
with negative coefficients it can have diverging behavior,
which contradicts the assumptions in Sec. VII. Another
difficulty is that the broad distribution around the origin
implies that there exist a substantial number of pairs of
points having non-negligible inner products. This means
that the fuzzy space has strong nonlocal features violating
locality of an ordinary continuous space. These problems
may also be solved by taking L sufficiently large, but for
doing actual numerical computations we have to restrict
ourselves to finite tensors and the damping factor is very
useful.

V. PERSISTENT HOMOLOGY

In Sec. IV, we have introduced the notion of neighbor-
hoods. This characterizes local topological structure of
fuzzy spaces. Global topological structure is also of much
interest. In this section, we introduce the notion called
persistent homology [28] as a method to extract the
homological structure of the fuzzy spaces.
Let us first assume that a distance dð·; ·Þ between any pair

of points on a fuzzy space (after a tensor-rank decom-
position) is given. How to construct such a distance is
discussed in due course. Let us denote the set of points
which represent the fuzzy space by V.
Let us introduce a family of abstract simplicial com-

plexes, parametrized by u, associated to a fuzzy space,
which is called a Vietoris-Rips stream13 and is denoted by
VRðV; uÞ. The complex, VRðV; uÞ, is defined as follows:

(i) The vertex set is given by V.
(ii) For vertices i and j, the edge ½ij� is included in

VRðV; uÞ if and only if dði; jÞ ≤ u.
(iii) A higher dimensional simplex is included in

VRðV; uÞ if and only if all of its edges are.
Since the Vietoris-Rips stream has the obvious pro-
perty that VRðV; uÞ ⊂ VRðV; u0Þ for u ≤ u0, it is called a
filtered simplicial complex. A filtered simplicial complex
has the following functorial property: For u ≤ u0, the
inclusion i∶VRðV; uÞ → VRðV; u0Þ of simplicial com-
plexes induces a map i�∶HkðVRðV;uÞÞ→HkðVRðV;u0ÞÞ
between homology groups.

Given such a stream of simplicial complexes with the
above functorial property, one can follow the creation and
annihilation of the elements in the homology group of
VRðV; uÞ while changing u. Here the filtration parameter u
roughly corresponds to the resolution of distances. When u
is smaller than any of the distances between points, all the
points are independent; there is no nontrivial topological
structure. When u is increased, points get connected to one
another, and there appear edges and higher dimensional
simplices, leading to some nontrivial topological structure.
An element of the k-homology group HkðVRðV; uÞÞ
corresponds to a k-cycle which is not the boundary of a
kþ 1-cycle, and the dimension of this group (the Betti
number) corresponds roughly to the amount of holes with
k-dimensional boundaries. When u is changed to become
larger than the size of such a hole, the hole is filled by
simplices and is not visible in the homology group.
Therefore such a hole can be represented by an interval
½ustart; uendÞ, which represents its creation and annihilation
and is called a Betti interval. For a given point set with
mutual distances, there exist Betti intervals of various
lengths. Each of them in principle is directly associated
with the data, but the ones with long lengths are considered
to be the intrinsic feature of a fuzzy space. On the other
hand, the shorter ones are not stable against small pertur-
bations, depending much on details, and are rather regarded
as noises. This summarizes the idea of persistent homology,
which extracts a topological structure from a discrete set of
points with distances.
We now describe a simple way to construct a distance

function dð·; ·Þ, also called a metric, which we can use in
the analysis of persistent homology below. We define

dði; jÞ ≔ 1 if j ∈ N cðiÞ ð12Þ

for fixed c, where the neighborhood N cðiÞ is defined in
(10). A path between i ∈ V and j ∈ V is defined as an
ordered sequence of points pði; jÞ ¼ ðp1;…; pnÞjp1¼i;pn¼j,
where the points in a pair ðpk; pkþ1Þ are always in
each other’s neighborhood. The length of a path is given
by the sum of the distances of individual links, Lp ≔P

n−1
k¼1 dðpk; pkþ1Þ. The distance of two points is defined as

the length of the shortest path between them, dði; jÞ ≔
minfLpjpði; jÞg. If two points i, j are not connected by a
union of neighborhoods, we say dði; jÞ ¼ ∞. This distance
function is relatively simple, whereas a more sophisti-
cated notion of distance is introduced in Sec. VII. This
simple distance function however is easy to calculate, and
seems to be applicable to extract the intrinsic topological
structure of a fuzzy space. This is because long-lived stable
Betti intervals are not affected by detailed choices of
distances, while noisy short-lived Betti-intervals may be
changed.
Figure 4 shows the Betti intervals for the fuzzy two-

sphere with L ¼ 5 and R ¼ 72, using the distance function

13There also exist some other streams which can be more
useful in some situations. See [28] and references therein for
more details.
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defined above. We used a program named “Ripser”14 to
compute the so-called persistence barcodes of the Vietoris-
Rips stream and imported the data in Mathematica to
construct the images. Here the graph of Bettik represents
the Betti intervals for the homology group HkðVRðV; uÞÞ,
which is the aforementioned persistence barcode. For
0 ≤ u < 1, u is smaller than any of the distances between
the points by construction, and there are no edges. SinceH0

represents the homology class of connected components,
the number of Betti0 intervals equals that of points or the
rank R in this region of u. For 1 ≤ u, the points are all
connected to form one component such that there exists one
long interval for Betti0 until the maximum distance on a
fuzzy space, in this case 7. For 1 ≤ u < 4, there exists one
interval for Betti2, which represents the existence of a hole
with a two-dimensional boundary. It vanishes at u ¼ 4,
when the hole is filled by simplices. Betti1 is vanishing
throughout the range of u. Thus, the long-life structure is
observed to be dimðH0Þ ¼ dimðH2Þ ¼ 1; dimðH1Þ ¼ 0,
topologically agreeing with an ordinary two-sphere.
Another application of persistent homology is to deter-

mine the topological dimension of a fuzzy space. If the
analysis of persistent homology implies dimðHkÞ ≠ 0 with
a certain k, one can know that the topological dimension of
the fuzzy space should not be less than k. However, this
method is not so useful, because, for example, a ball has a
finite topological dimension but vanishing homologies
except H0. A more useful way is to consider a reference
point, say p, and a collection of points within a certain
range of distance from it, dmin ≤ dð·; pÞ ≤ dmax, and study
its persistent homology. One would expect that the collec-
tion of points forms a sphere of dimension being D − 1,
where D is the dimension of the fuzzy space. This yields a
local definition of the topological dimension around a
reference point, and if this is the same for any choice of

reference point except special points such as those on
boundaries, the fuzzy space can be considered to have a
well-defined topological dimension. In Fig. 5, an illustra-
tive example is shown for the same fuzzy two-sphere as the
previous one.

VI. TENSOR-RANK DECOMPOSITION IN A
FORMAL CONTINUUM LIMIT

In [23] the authors discussed the correspondence
between the CTM and a general relativistic system by
performing a derivative expansion of P in a formal
continuum limit of the CTM. In the paper the authors
considered derivatives up to the fourth order to analyze the
equation of motion of the metric and a scalar field up to the
second order of their derivatives, while additional higher
spin fields must be taken into account in higher orders. In
the current discussion, however, we are interested in the
metric and the scalar field themselves with no necessity for
their derivatives, and it is sufficient to consider a derivative
expansion up to the second order.
In the formal continuum limit the indices of the tensor

are assumed to become continuous coordinates in RD,

Pabc → Pxyz; x; y; z ∈ RD: ð13Þ

Furthermore, a locality condition is imposed, which says
Pxyz ≠ 0 only if x ∼ y ∼ z. This rough locality condition
was mathematically translated to the tensor becoming a
distribution and may be given by a derivative expansion,

Pxyz ¼
Z
RD

dDωβðωÞδDðx − ωÞδDðy − ωÞδDðz − ωÞ

þ derivatives of delta functions: ð14Þ

Distributions are defined by their action on test functions
under integration. The authors showed that up to second
order the expansion can be written as

2 4 6

20

40

60

Betti_0

2 4 6

0.2

0.4

0.6

0.8

1.0
Betti_2

FIG. 4. The Z2-coefficient Betti intervals of the fuzzy two-sphere with L ¼ 5, R ¼ 72. We used the distance function defined around
(12) and chose c ¼ 0.2. dimðH1Þ ¼ 0 throughout.

14The (open source) software can freely be downloaded from
https://github.com/Ripser/ripser in the GitHub repository. This
program computes the Betti intervals for the Zn-coefficient
homology groups with the free choice of n as an input.
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Pf3 ≔
Z

dDxdDydDzPxyzfðxÞfðyÞfðzÞ

∶≈
Z

dDxðβðxÞfðxÞ3 þ βμνðxÞfðxÞ2f;μνðxÞÞ; ð15Þ

where the βðxÞ and βμνðxÞ, which is symmetric, are the
expansion coefficients, and fðxÞ is an arbitrary test func-
tion. The β and βμν in the expansion are fields on the space
RD. These fields contain the d.o.f. of the CTM in the formal
continuum limit, which corresponds to a general relativistic
system. The relation between the β fields and the scalar
field ϕ and the metric field gμν of the relativistic system has
been found by analyzing the equations of motion of the
CTM and is given by [23]

βðxÞ ¼ gðxÞ−1=4eϕðxÞ;
βμνðxÞ ¼ gðxÞ−1=4e−ϕðxÞgμνðxÞ; ð16Þ

where g ¼ DetðgμνÞ. The test functions and β’s are not
usual scalar functions but have nonvanishing density
weights, and they were fixed from their transformation
properties under spatial diffeomorphisms which are part of
the continuum limit of the SOðNÞ symmetry transformation
of the CTM. The weights are ½f� ¼ −½β� ¼ −½βμν� ¼ ½g1=4�
as in (16). In particular, these weights are taken so that the
weights associated to each index of Pxyz are ½g1=4� and the
integral for an index contraction

R
dDxPxabPxcd is invariant

under diffeomorphisms.
Let us now consider a continuous analogue of the tensor-

rank decomposition. For this we assume the form

Pxyz ¼
Z

dDωβðωÞ−2wxðωÞwyðωÞwzðωÞ: ð17Þ

The integration form dDωβ−2ðωÞ is chosen such that the
weight of the integration form is 0 so the wxðωÞ are of
weight 0 in ω. The wxðωÞ still has a weight in x of ½g1=4ðxÞ�,
because each index of Pxyz must have this weight as

explained above. From (14) one can see that the wxðωÞ
can also be given by a derivative expansion of the form

wxðωÞ ≔ wðωÞδDðx − ωÞ þ wðωÞwμðxÞδðxÞμ ðx − ωÞ
þ wðωÞwμνðxÞδðxÞμν ðx − ωÞ þ H:o:; ð18Þ

where h.o. means higher orders, δðxÞμ ðx−ωÞ≔∇ðxÞ
μ δDðx−ωÞ,

and ∇ðxÞ
μ is the covariant derivative acting on x (similarly

δðxÞμν ≔ ∇ðxÞ
μ ∇ðxÞ

ν δ). Here, as explained above, wxðωÞ must
have the weight of ½g1=4ðxÞ�. Let us use the convention that
the density weight of the delta function, say δDðx − yÞ
having a total weight of ½g1=2�, is equally distributed over
both arguments x, y. Then the weights of the fields in (18)
are determined to be ½w� ¼ ½g−1=4� and ½wμ� ¼ ½wμν� ¼ 0. By
putting (18) into (17), multiplying test functions, integrating
over their arguments, and comparing the result to (15), one
finds

wxðωÞ ¼ βðωÞδDðx − ωÞ þ 1

3
βðωÞβ−1ðxÞβμνðxÞδðxÞμν ðx − ωÞ

þ H:o: ð19Þ

According to the interpretation given in Sec. II, the vector
wxðωÞ represents a single point labeled by ω. With these
wxðωÞ one can define a quantity similar to the Euclidean
inner product between two points. Since theweight ofwxðωÞ
is ½g1=4ðxÞ� an invariant quantity can be obtained by

Kðω; ω̃Þ ≔
Z

dDxwxðωÞwxðω̃Þ; ð20Þ

¼ Aðω; ω̃ÞδDðω − ω̃Þ þ Aμνðω; ω̃Þδðω̃Þμν ðω̃ − ωÞ
þ Aμνðω̃;ωÞδðωÞμν ðω − ω̃Þ þ H:o:; ð21Þ

where
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FIG. 5. The Z2-coefficient Betti intervals for the collection of points with the distances 3 ≤ dð·; pÞ ≤ 5 from a reference point p in the
fuzzy space with L ¼ 5, R ¼ 72, again using c ¼ 0.2. The collection has the persistent homology consistent with a circle implying that
the topological dimension of the fuzzy space is 2.
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Aðω; ω̃Þ ≔ βðωÞβðω̃Þ ¼ gðωÞ−1=4gðω̃Þ−1=4eϕðωÞþϕðω̃Þ;

Aμνðω; ω̃Þ ≔ 1

3
βðωÞβμνðω̃Þ ¼ 1

3
gðωÞ−1=4gðω̃Þ−1=4gμνðω̃Þ:

ð22Þ

Here we have used (16) to obtain the last field theoretical
expressions, and it is apparent that the density weights
provided by g−1=4 cancel the weights from the delta
functions to make Kðω; ω̃Þ a scalar in ω and ω̃.
As above, the quantity Kðω; ω̃Þ transforms as a scalar

under diffeomorphisms on ω; ω̃. However, this invariant
feature should be particular to the continuum case, because
the (almost) uniqueness of the tensor-rank decomposition
for finite N, mentioned in Sec. II, does not allow such
degeneracies of expressions in the discrete case. On the
other hand, it would be important to use a corresponding
similar form even in the discrete case, because it can be
expected to converge to this physically meaningful invari-
ant form in a continuum limit with N → ∞. Therefore we
follow similar steps taking care of invariant forms as in this
section, when we discuss a discrete analogue in Sec. VIII.
The expression (21) of Kðω; ω̃Þ is given by an expansion

in terms of the derivatives of delta functions, inheriting the
locality imposed for Pxyz below (13). The physical meaning
of this fact is that locality is respected by the mutual
relations among points. Similar inner products, viav

j
a, can

be considered for the discrete case and characterize the
local distance structures of a fuzzy space. This aspect of the
inner products has already been used to define local
neighborhoods around points in Sec. IV. In the following
sections, this aspect is further pursued in more detail.

VII. DISTANCES BY A VIRTUAL
DIFFUSION PROCESS

The main purpose of the present and the following
sections is to find a notion of distances on fuzzy spaces
in terms of a diffusion process by using the knowledge
of the preceding section. For this purpose we need to relate
the distances given by the metric field in the continuous
theory to the discrete case. This is done through Kðω; ω̃Þ
defined by the inner product in (20), which can also
be interpreted as a second-order differential operator as
shown in (21). This operator defines a virtual diffusion
process on a continuum space, which can be easily
replicated on a discrete space to extract corresponding
continuum quantities.
Using virtual diffusion processes to interpret discrete

systems similarly to continuous ones is common in the
literature of data analysis and quantum gravity as they can
be interpreted in a similar way for both the discrete and
continuous cases. For instance in data analysis diffusion
processes are often used in order to define distance
functions in data sets [33,34]. In quantum gravity the
use of diffusion processes is also appreciated [50], as they

can be defined similarly for continuous and discrete spaces
and allow one to construct well-defined observables such as
the spectral dimension [51]. Our strategy is to consider a
diffusion process defined byKðω; ω̃Þ in (21) and extract the
geometric and scalar field data from it. As defined in (20),
Kðω; ω̃Þ is the continuous analogue of the inner product
viav

j
a, so we can easily relate it to the discrete model and

find a notion of distances there, which is done in the
following section.
The diffusion equation we consider in the continuum

case is given by

d
ds

ρðω; sÞ ¼
Z

dDω̃βðω̃Þ−2Kðω; ω̃Þρðω̃; sÞ; ð23Þ

where ρ is a scalar field representing the density of a virtual
diffusing material, Kðω; ω̃Þ is given in (21), and βðω̃Þ−2
makes the volume element have weight 0. By using (21)
and (22) and performing partial integrations, we obtain

d
ds

ρðω; sÞ ¼ BðωÞρðω; sÞ þ BμðωÞ∇μρðω; sÞ
þ BμνðωÞ∇μ∇νρðω; sÞ; ð24Þ

where

BðωÞ ¼ 1þ 1

3

�
βμνðωÞ

�
1

βðωÞ
�

;μν
þ βðωÞ

�
βμνðωÞ
β2ðωÞ

�
;μν

�
;

BμðωÞ ¼ 2

3

�
βμνðωÞ

�
1

βðωÞ
�

;ν
þ βðωÞ

�
βμνðωÞ
β2ðωÞ

�
;ν

�
;

BμνðωÞ ¼ 2

3

βμνðωÞ
βðωÞ : ð25Þ

In general the diffusion equation (24) cannot be solved
analytically and one would have to rely on numerics.
Rather than doing so, let us restrict ourselves to extracting
only short distances by the diffusion equation. For this
purpose, it is enough to consider a localized initial con-
dition like ρðω; 0Þ ¼ δDðω − ω0Þ for arbitrary location ω0

and a short time period of evolution 0 ≤ s ≪ 1. Since ρ is
nonvanishing only in a small distance region around ω0

under such a short period of time, one can regard B’s as
constants, assuming B’s are smooth enough in ω. Then we
can solve (24) and obtain

ρðω; sÞ ≃ ρ0s−
D
2 exp

��
B −

1

4
BμB−1

μνBν

�
s −

1

2
BμB−1

μν δω
ν

−
1

4s
δωμB−1

μν δω
ν

�
; ð26Þ

where ρ0 is an overall constant factor, and δω ¼ ω − ω0.
The expressions are still complicated to actually work with,
but we can further assume the covariant derivatives of β’s to
vanish in the homogenous case and obtain
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BðωÞ ¼ 1;

BμðωÞ ¼ 0;

BμνðωÞ ¼ 2

3

βμνðωÞ
βðωÞ ¼ 2

3
e−2ϕðωÞgμνðωÞ: ð27Þ

Thus the diffusion process can determine a conformally
rescaled metric e2ϕðωÞgμνðωÞ.15
A comment is in order. We could have used dDω̃

ffiffiffiffiffiffiffiffiffiffi
gðω̃Þp

as the volume element in (23). In this case, (27) is
changed to

BðωÞ ¼ e2ϕðωÞ;

BμðωÞ ¼ 0;

BμνðωÞ ¼ 2

3

βμνðωÞ
βðωÞ e2ϕðωÞ ¼ 2

3
gμνðωÞ: ð28Þ

So in this case the ϕ and gμν fields completely decouple in
the diffusion process. Namely, this choice gives more direct
meaning to the coefficients of the diffusion equation from
the point of view of the identification of the fields obtained
in [23]. However, this choice is practically difficult to
implement for the discrete case, since there is no natural
way to know

ffiffiffi
g

p
while defining the kernel. Moreover, in

the presence of a scalar field, there is no canonical way to
take a particular choice of the metric from the ambiguity of
the conformal transformation with the scalar field. This is
what is called frame dependence, and various choices are
possible depending on usages such as the Einstein frame
normalizing the Einstein term. Therefore, we rather use
βðω̃Þ−2 for the volume element as above, which is much
easier to implement in the discrete case, as is done in
Sec. VIII. Though the fields are not separated in the
coefficients in this method, it gives a way to extract β
and βμν=β in a straightforward manner and can equivalently
determine ϕ and gμν through the relation (16).

VIII. DISTANCES ON FUZZY SPACES

In this section, we discuss the actual process of deter-
mining distances between points on fuzzy spaces by
considering a discrete analogue of the method developed
in Sec. VII. In fact, due to the difference between
continuum and discrete spaces, we find an issue that there
exist some offsets in the distances determined by the
procedure for the discrete case. We propose a provisional
solution to this issue, and get acceptable results in the actual
application in Sec. X. However, a more satisfactory
resolution is desirable.

Let us start with the continuum case. One can determine
distances between nearby16 points by measuring the third
term in (26). This third term is a damping function in s and
generally tiny compared to the first term linear in s.
Therefore it is practically (or numerically) difficult to
measure, if the first term exists. To circumvent the situation,
it is more convenient to replace the kernel in (23) by

Kðω; ω̃Þ → Kðω; ω̃Þ − βðω̃Þ2δDðω − ω̃Þ: ð29Þ

Then, assuming the homogenous case (27), the problematic
first term disappears from (26), as well as the second term.
Thus, we obtain

ρ̃ðω; sÞ ¼ ρ0s−
D
2 exp

�
−

1

4s
δωμB−1

μν δω
ν

�
; ð30Þ

where ρ̃ is the density function after the replacement (29).
The maximum of ρ̃ is located at s ¼ smax satisfying

δωμB−1
μν δω

ν ¼ 2Dsmax: ð31Þ

Thus, by measuring smax of diffusion processes, one can
determine the distance squares between arbitrary nearby
points. Here note that the distances are defined with respect
to the conformally rescaled metric e2ϕðωÞgμνðωÞ, as noted
below (27).
Now let us discuss the discrete case. The discrete

analogue of the tensor-rank decomposition to the con-
tinuum (17) is given by

Pabc ¼
XR
i¼1

wi
awi

bw
i
cβ

−2ðiÞ; ð32Þ

and the diffusion kernel corresponding to (20) is given by

Kði; jÞ ¼ wi
aw

j
a: ð33Þ

A nontrivial part is how to determine βðiÞ from the tensor-
rank decomposition. We consider a self-consistency con-
dition given by

XR
j¼1

wi
aw

j
aβðjÞ−2 ¼ 1: ð34Þ

This is derived from the following continuum counterpart,R
dDω̃βðω̃Þ−2Kðω; ω̃Þ ¼ 1, which can be proven for the

homogeneous case due to the vanishing of the derivatives
of β’s. Since the relation between the two tensor-rank
decompositions, (4) and (32), is given by

15It is curious to note that the metric which appears naturally in
string theory is also the one which is given by a conformal
rescaling of the metric in the Einstein frame with the dilaton field.
This comes from the fact that the gravitational coupling constant
depends on the dilaton field in string theory [52].

16This is because we are assuming the constancy of the
parameters in Sec. VII.
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via ¼ wi
aβðiÞ−2=3; ð35Þ

the condition (34) can be rewritten as

XR
j¼1

viav
j
aβðjÞ−4=3 ¼ βðiÞ−2=3: ð36Þ

This condition determines βðiÞ from the decomposition (6),
and hence wi

a by (35). This process is used in our numerical
analysis.
Next, let us consider the discrete version of the diffusion

equation (23) with the substitution (29). This is given by

K̃ði; jÞ ¼ βðiÞ−1βðjÞ−1wi
aw

j
a − δij

XR
k¼1

wi
awk

aβðkÞ−2;

d
ds

ρ̃ði; s; i0Þ ¼
XR
j¼1

K̃ði; jÞρ̃ðj; s; i0Þ;

ρ̃ði; 0; i0Þ ¼ δi;i0 : ð37Þ

Here note that the last term in the first line is actually δij by
using (34). Note also that K̃ði; jÞ has been defined so that
the weight associated to i, j is 1=2 and the same for ρ̃. This
is to make K̃ði; jÞ symmetric to simplify the following
discussions. The other assignments of weights would
be possible, like considering the diffusion equation
with simpler assignments of weights, dρ̃ðiÞ=ds ¼P

j K̃ði; jÞβðjÞ−2ρ̃ðjÞ, where ρ̃ and K̃ have no weights.
This weight assignment was actually used in the conti-
nuum discussions. However, this requires us to treat
K̃ði; jÞβðjÞ−2, which is asymmetric and makes things
nonobvious about eigenvalue problems and the symmetry
of distances under mutual permutations of points.
Therefore we employ the above symmetric assignment,
which is indeed equivalent to any asymmetric assignment,
because they are related by a similarity transforma-
tion βðiÞwK̃ði; jÞβðjÞ−w.
The distance square between arbitrary nearby points, i

and j, can be determined from smaxði; jÞ at which ρ̃ði; s; jÞ
takes the maximum value in s. Because K̃ is symmetric,
ρ̃ði; s; jÞ and ρ̃ðj; s; iÞ give the same distance, which
guarantees the symmetry of the distances.17

To study time evolutions of fuzzy spaces, we are
interested in the time dependence of their sizes. For a
given fuzzy space, one can perform the tensor-rank
decomposition and solve the diffusion equation (37) to

obtain smaxði; jÞ for arbitrary nearby points. This method
cannot directly be used for long distances, because of the
assumptions made in the derivation in Sec. VII. One would
also think that the distance between two arbitrary points
could be determined, even if it is large, by considering the
shortest path connecting the two points, where its length is
the sum of short lengths along the path. However, this turns
out not to be justified because of the existence of the offsets
explained below: The contribution of the offsets becomes
considerable by being multiplied by the number of the short
length portions along the path. Instead, since we are only
considering homogeneous fuzzy spaces in this paper, we
characterize the local distance structures of the fuzzy spaces
and assume them to be proportional to their whole sizes.
To do so, let us first recall the distance introduced in

Sec. V, where we have discussed topological structures of
fuzzy spaces. The distance is defined to take dði; jÞ ¼ 1, if
twopoints i and j are in their local neighborhoods. Let us call
this a topological distance and denote it by dtði; jÞ, because
this is determined by topological relations of neighbor-
hoods. Here, in the example of the fuzzy space in Fig. 1, the
two points i, j with dtði; jÞ ¼ 1 are those which have the
inner products viav

j
a in the range between 0.4 and 0.6. Then

topological distances dtði; jÞ between any points i, j are
defined by taking the shortest paths as given below (12).
Now characteristic local distances of a homogeneous

fuzzy space can be obtained by considering smaxðrÞ, which is
an average value of smaxði; jÞ over all the pairs of i, j with
dtði; jÞ ¼ r. This is plotted against r for the examples of
fuzzy S1 and S2 in Fig. 6. The data points in the figure are
fitted with a quadratic function a0 þ a1r2 with coefficients
a0, a1. In the continuum case, a0 ¼ 0 and the distance is
strictly proportional to

ffiffiffiffiffiffiffiffiffi
smax

p
, but in the present case, the

offset is nonvanishing, a0 ≠ 0. This would be understand-
able because the diffusion process is from points to points at
small s and it becomes continuous only after larger s.
Therefore the discreteness is apparent in small s, and may
generate such a difference from the continuous case. To
regarda0 as negligible, we have to consider larger r such that
smaxðrÞ ≫ a0. On the other hand, we cannot take r too large
because this violates the assumptions made in Sec. VII. In
Sec. X, we take r ¼ 4 and obtain some acceptable results.

IX. TIME EVOLUTIONS OF FUZZY SPACES
IN THE CTM

As is explained, the equation of motion of the CTM gives
a first-order differential equation in time for a real sym-
metric three-way tensor. In this section, we regard the
solutions to the differential equation as time evolutions of
the tensors corresponding to fuzzy spaces, and study some
of their elementary properties. One observation is that the
time evolutions increase the number of points forming
fuzzy spaces starting from 1, in the sense which will be
described more precisely.

17However, it does not seem guaranteed in general that the
distances determined by this procedure satisfy the triangle
inequality. If the violation occurs in a macroscopic scale, it is
a problem, because the classical spacetime picture cannot be
applied. On the other hand, the violation would be allowable on
the order of the fundamental scale, where the classical spacetime
picture is not required to hold.
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The d.o.f. of the CTM are a pair of canonically conjugate
real symmetric three-way tensors, which satisfy the funda-
mental Poisson brackets,

fQabc; Pdefg ¼
X
σ

δaσdδbσeδcσf ;

fQabc; Qdefg ¼ fPabc; Pdefg ¼ 0; ð38Þ

where the summation is over all the possible permutations
of d, e, f for the consistency with the permutation
symmetry of the tensors. The classical equation of motion
of the CTM is given by

dXabc

dt
¼ fXabc; Hg; ð39Þ

where X is Q or P, and the Hamiltonian H is given by a
linear combination of the first-class constraints, Ha and
J ab, as

H ¼ N aHa þN abJ ab: ð40Þ

Here N a and N ab are freely choosable generally time-
dependent variables corresponding to the lapse function
and the shift vector in the ADM formalism of general
relativity. The explicit expressions of the constraints are
given by

Ha ¼
1

2
PabcPbdeQcde;

J ab ¼
1

4
ðQacdPbcd −QbcdPacdÞ: ð41Þ

In this paper, we put N ab ¼ 0, since the corresponding
term in (40) is just a generator of time-dependent SOðNÞ
transformations, which are irrelevant if we are only
interested in SOðNÞ invariant quantities like the inner
products viav

j
a. Then the equation of motion of Pabc is

given by

dPabc

dt
¼ −N dðPdaePebc þ PdbePeca þ PdcePeabÞ: ð42Þ

In this paper, we do not consider the equation of motion of
Qabc, because the interpretation of the equation of motion
in the continuum language (namely, general relativity) is
only known for Pabc [23]. We also do not consider a term,
λQabb, which can be added to Ha, because it causes an
issue concerning locality in the classical equation of motion
of Pabc [21].
Let us consider the time evolution of the homogeneous

fuzzy two-sphere defined in Sec. III. The index set is given
by a ¼ ðl; mÞ, where l and m are integers satisfying 0 ≤
l ≤ L;−l ≤ m ≤ l with a cutoff L. Let us use 0 to represent
the index (0,0) for notational simplicity. We take the fuzzy
two-sphere in (8) as the input of Pabc at t ¼ 0. For the lapse
function, we take N 0 ¼ 1

3
for convenience, where we also

1 2 3 4
r

5
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15

20

smax

1 2 3 4
r
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10

15

20

smax

FIG. 6. Left: The mean value smaxðrÞ plotted against the topological distance r for a fuzzy S1 with N ¼ 31 and R ¼ 46. Right: The
same for a fuzzy S2 with N ¼ 64 and R ¼ 146. The data are fitted with a quadratic function. While the fitting for S1 is really good, that
for S2 seems to have small deviations. The deviations probably represent an effect from the curvature on S2, but this remains as an open
question.

FIG. 7. The error ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔP2=P2

p
of the tensor-rank decom-

position of PabcðtÞ for a fuzzy two-sphere with L ¼ 5 taken for
Pabcð0Þ. PabcðtÞ with larger t requires higher ranks to keep the
preciseness of the approximate tensor-rank decomposition. For
R ¼ 82, the error is numerically consistent with 0, suggesting that
the actual rank of the tensor is 82.
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have to takeN a ¼ 0 for a ≠ 0 to keep the SOð3Þ symmetry
of the homogeneous fuzzy two-sphere under the time
evolution.18

First of all, let us point out an important property general
for homogenous cases. This has a similarity to the property
first pointed out for N ¼ 1 [22]. Due to the SOð3Þ
symmetry, P00a ¼ 0 for a ≠ 0. Then, by putting a ¼ b ¼
c ¼ 0 in (42), one can find that the equation of motion of
P000 in (42) decouples from the others, and obtain

dP000

dt
¼ −P2

000: ð43Þ

The solution is

P000ðtÞ ¼
1

1þ t
; ð44Þ

where P000ð0Þ ¼ 1 has been assumed as the normalization
of the initial condition. As can be seen in (44), the solution
diverges at t ¼ −1 and monotonically decreases as t
increases. The time t ¼ −1 can be considered to be the
time of birth of the fuzzy two-sphere as is explained below.
The time dependence of the other components can be
computed numerically, and we used the Runge-Kutta
method for the purpose.
Once a solution is obtained, one can perform the tensor-

rank decomposition of PabcðtÞ at each t by the program
described in Appendix. Figure 7 plots the error ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔP2=P2

p
of the decomposition, where ΔP is the error

of the approximate tensor-rank decomposition in (6). In
Fig. 7, Pabcð0Þ is taken to be the fuzzy two-sphere in (8)
with L ¼ 5. The plot shows that the rank R must be
increased for larger t, if one wants to keep the error ratio

being suppressed under a certain value. In the t → −1 limit,
one can numerically find that P000 dominates over all the
other components, meaning that PabcðtÞ approaches a rank-
1 tensor. This explains the rapid decaying behavior of the
error ratio in the small t region. By regarding the rank to be
equivalent to the number of points forming a space, the time
evolution of PabcðtÞ can be regarded as that starting from
one point at t ¼ −1 and gradually increasing the number of
points.19

Another aspect related to the time evolution appears in
the inner products viav

j
a. Figure 8 shows the histograms of

the inner products viav
j
a at t ¼ −0.75 and t ¼ 25 for a

homogeneous fuzzy two-sphere with N ¼ 36 and R ¼ 78.
The inner products are shifted to the positive values for
smaller t, meaning that the distances between points
become shorter, and vice versa. This is consistent with
the rough picture that the two-sphere becomes larger in
time, as discussed above in the sense of the number of
points. In the following section, we perform more detailed
analysis with comparison with the general relativistic
system derived in [23].

X. CORRESPONDENCE TO A GENERAL
RELATIVISTIC SYSTEM

A discrete theory of quantum gravity is expected to
reproduce a general relativistic system in a certain classical
continuum limit. In [23], a general relativistic system
corresponding to the CTM has been obtained by taking
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FIG. 8. Histograms of viav
j
a for a fuzzy two-sphere with N ¼ 36 and R ¼ 78. The left is for t ¼ −0.75 and the right for t ¼ 25.

18Physically, this is to consider the lapse which is uniform on
the fuzzy two-sphere, or taking the spacelike slices in which the
evolution is described in a spatially uniform manner. An
important thing here is that, because of the first-class nature of
the constraints, this is just a gauge choice, but not a particular
choice of a time evolution.

19This should not be considered as a mathematically rigid
statement and is merely an approximate one, which would be
relevant in practical physical applications containing errors or
quantum fluctuations. One can easily see that, if an exact
decomposition of PabcðtÞ is given at one time, the differential
equation (42) can be rewritten in a closed form with the vectors
viaðtÞ only. This means that the rank of PabcðtÞ is constant in the
course of changing t. Changing rank is needed only if a tensor-
rank decomposition is approximate with an error and one wants to
keep the error ratio under a certain value throughout a time
evolution. A more mathematically rigid statement is left for future
study.
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a formal continuum limit, which is to formally replace the
discrete values taken by the indices, a ¼ 1; 2;…; N, to the
continuum coordinates, x ∈ RD. This formal replacement
is obviously unsatisfactory from the viewpoint of quantum
gravity, because no considerations of dynamics to lead to
the replacement were made. There is not only this difficult
problem of dynamics of emergent macroscopic spaces, but
also another related issue in this formal continuum limit
that it is not given as any limit of N → ∞ but is rather given
as a sudden formal replacement from the discrete to the
continuum indices. The question we consider in this section
is whether fuzzy spaces with large N can well be described
by the continuum general relativistic theory obtained
previously in [23] or not. We perform some detailed studies
of the time evolutions of the homogeneous fuzzy S1, S2 and
S3 by using the methods developed in the former sections
and compare the results with the equation of motion of the
general relativistic system. We obtain good agreement with
the continuum theory at least for these homogeneous cases.
Let us first discuss the continuum side. The equations of

motion of βðt; xÞ and βμνðt; xÞ in the continuum general
relativistic theory are given by [23]20

d
dt

β ¼ −9nβ2;

d
dt

βμν ¼ −15nββμν þ 2nβμμ
0
βνν

0
Rμ0ν0 ; ð45Þ

where nðt; xÞ is the lapse function, Rμν is the Ricci
curvature of the space, and we have ignored a number
of covariant derivative terms in the original equations, since
we are considering homogeneous spaces. In the case of
homogenous spaces with uniform time evolutions
nðt; xÞ ¼ nðtÞ, one can assume that βðt; xÞ; βμνðt; xÞ are
given by products of functions separately depending on
time or space. Namely, we can write βμνðt; xÞ ¼
β2ðtÞβ̃μνðxÞ and βðt; xÞ ¼ βðtÞ, and the second equation
in (45) can be rewritten as

d
dt

β2 ¼ −15nββ2 þ c1nβ22; ð46Þ

where c1 is a constant proportional to the curvature on the
space. The equation for β remains the same as in (45).
Then, by taking n ¼ 1=9 for convenience, one can obtain
the solution to the above equations as

βðtÞ ¼ 1

t − t0
; ð47Þ

β2ðtÞ ¼
β02

ðt − t0Þ53ð1þ cRðt − t0Þ−2
3Þ ; ð48Þ

where t0 is supposed to be the time of birth of the space, β02
is an integration constant, and cR ¼ c1β02=6. As explained
in Sec. IX, t0 ¼ −1 in our case. The solution leads to the
following time dependence of B−1

μν by taking the inverse of
the expression in (27),

B−1
μν ðtÞ ∝

β

β2
∝ cR þ ðtþ 1Þ23: ð49Þ

Let us compare the solution with the time evolutions of
the fuzzy spaces. We consider homogeneous fuzzy S1 with
N ¼ 31, R ¼ 46, S2 with N ¼ 64, R ¼ 146, and S3 with
N ¼ 55, R ¼ 120. We set the tensors corresponding to
these fuzzy spaces explained in Sec. III (see Sec. XI for the
details of S3) as the initial conditions at t ¼ 0 of the
equation of motion of the CTM shown in (42), and
numerically obtained the solutions PabcðtÞ by the manner
explained in Sec. IX. Then we performed the tensor-rank
decompositions of PabcðtÞ for a number of representative
values of t. Finally βði; tÞ were determined by solving (36).
Figure 9 plots the mean values, βðtÞ≡ 1

R

P
R
i¼1 βði; tÞ, in

log-log plot. The gradients agree with −1 with the
precisions down to the three decimal places, giving perfect
agreement with (47).
As for B−1

μν ðtÞ, we have obtained the results shown in
Fig. 10. The left figure shows the time dependence of
smaxð4Þ defined in Sec. VIII. This is expected to be
proportional to B−1

μν , and therefore the data are fitted with
(49). The agreement is rather nice with nonzero values of
cR. This seems to contradict the supposed origin of cR,

FIG. 9. Log-log plot of βðtÞ. The examples are fuzzy S1 with
N ¼ 31, R ¼ 46, fuzzy S2 with N ¼ 64, R ¼ 146, and fuzzy S3

with N ¼ 55, R ¼ 120. The data points are plotted with intervals
0.01 for −0.97 ≤ t ≤ −0.8, 0.05 for −0.8 ≤ t ≤ 0, and 1 for
0 ≤ t ≤ 25, to distribute the data points more or less evenly in log
scale. The data are fitted with linear functions, where the
gradients agree with −1 with the precisions down to the three
decimal places.

20The equations of motion are taken from Sec. VII of [23] with
the consideration of the gauge condition ββμν ¼ gμν=

ffiffiffi
g

p
and the

change of the all-over minus sign for a convention.

CANONICAL TENSOR MODEL THROUGH DATA ANALYSIS: … PHYS. REV. D 97, 124061 (2018)

124061-15



since S1 does not have a curvature. The right figure shows
the logarithmic derivative of the data obtained by sub-
tracting the sequential data, and they are fitted with the
corresponding derivative of (49). The results of the fitting
are not nice but only barely acceptable.
The method above uses the short-time behavior of the

virtual diffusion process, and is supposed to determine
short distance structures of fuzzy spaces by measuring
smaxði; jÞ between nearby points. If the method is fully
reliable, one should be able to determine the time depend-
ence of the whole size of a homogeneous fuzzy space up to
an all-over factor by the local distance structure, because
they should be proportional. On the other hand, we want to
believe the validity of the continuum theory, because a
fuzzy space with large N is made of many points and is
expected to allow a continuum description. We seem to
have a tension between the measuring method and the
continuum theory.
To study the issue from a different angle, let us measure

the whole size in a different manner using the lowest
eigenvalue of a Laplacian. The lowest nonzero eigenvalue
of the minus of a Laplacian is expected to be proportional to
the inverse of the square size of a space. In our case, the
inverse of the lowest nonzero eigenvalue of −K̃ði; jÞ in (37)
is expected to behave in the same manner as B−1

μν . The left
and the middle of Fig. 11 plot the data of the inverse, and
they are fitted with (49). The right one shows the loga-
rithmic derivatives of the data obtained by subtracting the
sequential data, and they are fitted with the logarithmic
derivative of (49). They are in much better agreement with
the continuum theory than Fig. 10.
The two results above seem to conclude that the

continuum theory is right, but our former method of
measuring local distances for sizes is not fully reliable at
least in our situation, while the latter method of using the
lowest eigenvalue is. In fact, we have already pointed out

the subtlety of the former method in Sec. VIII. The former
method would become more reliable and interesting for
much larger fuzzy spaces with points existing more densely
enough to validate the continuum description. There is also
another possibility that the short-length dynamics is
actually different from the global one. Note that the main
contributors in the the former method are the modes with
large eigenvalues of −K̃ in (37) because of short diffusion
time, while the latter is the lowest one.
Another interesting thing in Fig. 11 in comparison with

Fig. 10 is that the value of cR for S1 has substantially
decreased from the former method to the latter, while it
keeps a more or less similar value for S2. This seems to
suggest that a large portion of cR for S1 comes from the
small scale rather than the global scale. This would explain
the presence of cR even for S1, which has no curvatures, in
the following sense. As derived in [23], the right-hand side
of the second equation in (45) actually contains the terms
like βμμ

0
βνν

0 ð∇μ0βÞð∇ν0βÞ=β2 and βμνβμ
0ν0 ð∇μ0∇ν0βÞ=β,

which can potentially contribute to cR. We have ignored
these terms because of the homogeneity of the spaces, but
the discreteness locally violates this assumption in short
distances. Therefore, it does not seem obvious that these
terms can really be ignored in short distances.
Though the agreement of the fitting in Fig. 11 is really

good especially in the small t region, there exist some
deviations in the large t region, as can clearly be seen in the
right figure. In fact, the continuum description cannot be
expected to be right in this region, because the sizes of the
fuzzy spaces are so large that the points exist sparsely on
them, or, in other words, discreteness is macroscopic. To
see this from a different viewpoint, we show the data from
two fuzzy S3’s with N ¼ 55, R ¼ 120 but with different
damping factors. The damping factor used for the data
S3N55R120 is e−l

2=L2

with L ¼ 3, where l denotes the

FIG. 10. Left: smaxð4Þ is plotted against t for fuzzy S1 with N ¼ 31, R ¼ 46 and fuzzy S2 with N ¼ 64, R ¼ 146. The data are fitted
with a0ðcR þ ð1þ tÞ2=3Þ [see (49)] with cR ¼ 0.19, 0.24, respectively. Right: The logarithmic derivatives of the left data obtained by
subtracting the sequential data. They are fitted with the logarithmic derivative of (49). This computation was not done for S3 with
N ¼ 55, R ¼ 120, since its size is too small to consider smaxð4Þ as a reliable quantity (4 is well more than the half-size of S3).
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angular momenta of the modes. On the other hand, for
S3N55R120LB, it is e−lðlþ2Þ=L2

with L ¼ 4, where lðlþ 2Þ
comes from the eigenvalues of the Laplace-Beltrami
operator on S3. It is clearly seen that the behaviors are
qualitatively different from each other in the large t region.
This implies that, while the small t region can well be
described by the continuum theory irrespective of the
damping factor, the large t region can be affected by
small-distance details of fuzzy spaces. This seems to be
consistent with the fact that the discrete structure is
macroscopic in the large t region. It would be an interesting
future problem how such deviations from the continuum
can be described.

XI. GENERALITYOF REAL SYMMETRIC THREE-
WAY TENSORS

In Sec. III, we explained how to calculate the three-way
tensor Pabc by using an example of 2-sphere S2, and
showed the realization of homogeneous fuzzy 2-sphere. In
this section we show that this methodology can be applied
to other fuzzy spaces by using some low dimensional
manifolds with various topologies. The main point of this
section is to show the generality of real symmetric three-
way tensors by these demonstrations and consequently the
generality of the CTM. One can explicitly see that real
symmetric three-way tensors can in principle represent any
spaces with free choices of dimensions and topologies. So
the way such tensors realize spaces is essentially distinct
from that in the other Euclidean tensor models [4–6,9], in
which the dimensions of building simplicial blocks are
supposed to be equivalent to the numbers of ways (the
amount of indices) of tensors.
First let us summarize the procedure to construct a fuzzy

space corresponding to a compact manifold M:
(1) Take a coordinate xμ and a positive-definite metric

gμν on the considering manifold M.
(2) Prepare a set of real basis functions ffaðxÞg on the

manifold. It is convenient to impose an orthonorm-
alization condition: for all combination a, b,

Z
M

dDx
ffiffiffi
g

p
faðxÞfbðxÞ ¼ δab; ð50Þ

where g ¼ detðgμνÞ. Since the dimension of the
function space is infinite in general, we have to
choose a finite subset from the complete basis suited
for a practical purpose. There are no general pro-
cedures for that, but in each individual case, there is
a proper one. For example, let us suppose that basis
functions faðxÞ are taken to satisfy the Helmholtz
equation,

ðΔþm2
aÞfaðxÞ ¼ 0; ð51Þ

where Δ is Laplace-Beltrami operator on the mani-
fold M. Here ma plays the role as a frequency
associated to each value a of the indices, and
provides a natural way to choose a subset from
the complete basis by ffaðxÞjm2

a ≤ Λ2g with some
parameter Λ. This Λ determines the part of the basis
which is considered, and effectively determines the
value of N. The physical reason for considering such
lower frequency modes than a cutoff is that we are
interested in defining a space which is modified in a
small scale but keeps its ordinary properties oth-
erwise.

(3) Define “regularized” functions f̃aðxÞ from faðxÞ.
There also exists a freedom in the way to regularize,
but in the case faðxÞ satisfies (51), a natural
definition of f̃aðxÞ is

f̃aðxÞ ¼ faðxÞe−m2
a=L2 ¼ eΔ=L

2

faðxÞ ð52Þ

with some damping scale L. It is good to choose
L≲ Λ in general. Here, the damping factor can be
another function damping with m2

a or with a similar
damping behavior. As discussed in Sec. IV, this
regularization smoothens the cutoff and is important
for locality of fuzzy spaces and good behavior of the
virtual diffusion process.

FIG. 11. Left: Time dependence of the inverse of the lowest nonzero eigenvalue of −K̃ði; jÞ in (37) for homogeneous fuzzy S1 with
N ¼ 31, R ¼ 46, S2 with N ¼ 64, R ¼ 146, and two S3’s with N ¼ 55, R ¼ 120 but with different damping factors. Middle: The same
graph with a different vertical axis scale to show more clearly the latter two cases. Right: Logarithmic derivatives of the left data obtained
by subtracting the sequential data. The fitting lines are the logarithmic derivatives of (49) with cR ¼ 0.009, 0.04, 0.25, 0.45, respectively.
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(4) Calculate Pabc by using

Pabc ¼
Z
M

dDx
ffiffiffi
g

p
f̃aðxÞf̃bðxÞf̃cðxÞ: ð53Þ

Then Pabc defines a fuzzy space. It is expected that the
tensor-rank decomposition of the tensor and connecting
neighboring points will give a discretized counterpart of the
manifold M.

A. Spheres

The square integrable functions on an n-dimensional
sphere can be represented by a linear combination of
n-dimensional (generalized) spherical harmonics. There-
fore, let us take the generalized spherical harmonics as the
set of the orthonormal basis functions on Sn.
Let us start with some setups [53]. Let us choose local

coordinates such that the metric tensor on Sn (with radius
r ¼ 1) is given by

ðgμνÞ ¼ diag

�
1; sin2θ1; sin2θ1sin2θ2;…;

Yn−1
i¼1

sin2θi

�
; ð54Þ

θi ∈
� ½0; π� i ¼ 1;…; n − 1

½0; 2π� i ¼ n
; ð55Þ

where μ; ν ¼ 1;…; n. One can obtain the Laplace-Beltrami
operator in local coordinates for any Riemannian manifold
by

Δ ¼ 1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
gμν∂νÞ; ð56Þ

where g ¼ detðgμνÞ. Then the n-dimensional spherical
harmonics Yl1l2���lnðθ1;…; θnÞ are defined as the solutions
of this equation,

½Δþ lnðln þ n − 1Þ�Yl1l2���lnðθ1;…; θnÞ ¼ 0; ð57Þ

where all li’s are integer and jl1j ≤ l2 ≤ … ≤ ln−1 ≤ ln is
satisfied. Some explicit formulas to represent Yl1l2…lnðθ1;
…; θnÞ are known, but we rather used a Mathematica
package [54], which can produce the set of n-dimensional
spherical harmonics automatically for any n and ln. By
using this n-dimensional spherical harmonics, one can
obtain the orthonormal basis functions in our previous
notation by

fðl1;…;lnÞðθ1;…; θnÞ ¼ Yl1l2…lnðθ1;…; θnÞ; ð58Þ

and the regularized basis functions can be defined by

f̃ðl1;…;lnÞðθ1;…; θnÞ ¼ Yl1l2…lnðθ1;…; θnÞe−l2n=L2 ð59Þ

with a damping scale L. It is also possible to take −lnðln þ
n − 1Þ=L2 as the exponent of the damping factor, faithfully
following (52).

1. Circle S1

We take for the coordinate on S1, θ ∈ ½0; 2π� andffiffiffi
g

p ¼ 1. The set of basis functions is

faðθÞ ¼
�

1ffiffiffiffiffiffi
2π

p ;

�
1ffiffiffi
π

p sin nθ

�
;

�
1ffiffiffi
π

p cos nθ

��
: ð60Þ

The notation like fsin nθg is the abbreviation of
fsin nθjn ∈ Nþg. Since these functions satisfy (51), we
can use the procedure (52) to regularize the basis and the
results are

f̃aðθÞ ¼
�

1ffiffiffiffiffiffi
2π

p ;

�
1ffiffiffi
π

p sin nθe−n
2=L2

�
;

�
1ffiffiffi
π

p cos nθe−n
2=L2

��
; ð61Þ

with n ∈ Nþ. Pabc can be calculated by

Pabc ¼
Z

2π

0

dθf̃aðθÞf̃bðθÞf̃cðθÞ; ð62Þ

and one can get homogeneous fuzzy circles, which look
like polygons, from this Pabc.

2. Three-dimensional sphere S3

Figure 12 shows a homogeneous fuzzy 3-sphere
obtained from the three-way tensor constructed from the
above procedure. For this, we took n ¼ 3, and l3 was taken
up to l3 ≤ 4, which resulted in N ¼ 55. The tensor-rank

FIG. 12. The homogeneous fuzzy 3-sphere with N ¼ 55 and
R ¼ 120. The edges are drawn between the neighboring points by
the criterion viav

j
a > 0.2, after the tensor-rank decomposition.
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decomposition was carried out with R ¼ 120, and the
points have connections if viav

j
a > 0.2 in Fig. 12. Though it

is really hard to recognize this object as S3, the topological
data analysis method discussed in Sec. V, namely, persis-
tent homology, is quite helpful. The analysis of Betti
intervals is shown in Fig. 13. The result tells the homology
groups to be

H0ðS3;Z2Þ ¼ Z2;

H3ðS3;Z2Þ ¼ Z2; ð63Þ

and dimðH1;2;4Þ ¼ 0. The homology groups agree with
those of the 3-sphere, supporting our construction pro-
cedure of the fuzzy 3-sphere.

B. Line segments

One can also consider manifolds with boundaries. In the
case of spaces with boundaries, one needs to set boundary
conditions for its basis functions. There exist various
choices such as Dirichlet, Neumann, their mixtures, and
so on. In the following analysis, we simply consider the
standard Dirichlet and Neumann boundary conditions.
Let us consider line segments. We take the coordinate of

a line segment to be given by x ∈ ½−π; π� and ffiffiffi
g

p ¼ 1. In
the case of the Dirichlet boundary condition, one imposes
fDa ð�πÞ ¼ 0 for all a, and then one finds two types of
functions: sinðnxÞ and cosððn − 1=2ÞxÞ where n ∈ Nþ.
Thus the set of an orthonormal basis can be taken to be

fDa ðxÞ ¼
��

1ffiffiffi
π

p cosðn − 1=2Þx
�
;

�
1ffiffiffi
π

p sin nx

��
: ð64Þ

In the case of Neumann boundary condition,
d
dx f

N
a ðxÞjx¼�π ¼ 0, there are three types of functions: the

constant function, cosðnxÞ and sinððn − 1=2ÞxÞ with
n ∈ Nþ. Then the set of an orthonormal basis can be taken
to be

fNa ðxÞ ¼
�

1ffiffiffiffiffiffi
2π

p ;

�
1ffiffiffi
π

p sinðn − 1=2Þx
�
;

�
1ffiffiffi
π

p cos nx

��
:

ð65Þ

The Pabc can be computed from the regularized func-
tions f̃N;Da ðxÞ. The regularization factor can be taken for
example to be expð−k2=L2Þ for a trigonometric function
with frequency k. From these regularized functions, the
three-way tensors can be obtained by

PN;D
abc ¼

Z
π

−π
dxf̃N;Da ðxÞf̃N;Db ðxÞf̃N;Dc ðxÞ; ð66Þ

where we are supposed to take a finite number of low-
frequency modes. We have explicitly checked that fuzzy
line segments are obtained from the tensor-rank decom-
positions of these tensors for both Dirichlet and Neumann
boundary conditions.

C. Fiber bundles

In this subsection, let us construct more nontrivial fuzzy
spaces, namely from fiber bundles.

1. Trivial bundles

Let us consider a manifoldMwhich is isomorphic to the
Cartesian product of two manifolds M1 and M2. There
exist the following relations:

Manifold M1 M2 M ¼ M1 ×M2

Coordinate x1 x2 x ¼ ðx1; x2Þ
Index a1 a2 a ¼ ða1; a2Þ
Basis fa1ðx1Þ fa2ðx2Þ faðxÞ ¼ fa1ðx1Þfa2ðx2Þ
Tensor Pa1b1c1 Pa2b2c2 Pabc ¼ Pa1b1c1Pa2b2c2

The basis functions faðxÞ ¼ fa1ðx1Þfa2ðx2Þ on M are
normalized properly by the normalizations onM1 andM2.

As an example, let us consider the flat two-torus
T2 ≅ S1 × S1. Using the basis on S1 given in (60), the
set of the orthonormal basis functions on T2 is given by
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FIG. 13. The Z2-coefficient Betti intervals for the fuzzy 3-sphere. There are no intervals for H1;2;4.
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faðθ1; θ2Þ ¼
�
1

2π
;

�
1ffiffiffi
2

p
π
sin nθ1

�
;

�
1ffiffiffi
2

p
π
cos nθ1

�
;

�
1ffiffiffi
2

p
π
sinmθ2

�
;

�
1

π
sin nθ1 sinmθ2

�
;

�
1

π
cos nθ1 sinmθ2

��
1ffiffiffi
2

p
π
cosmθ2

�
;

�
1

π
sin nθ1 cosmθ2

�
;
�
1

π
cos nθ1 cosmθ2

��
;

ð67Þ

where θ1, θ2 ∈ ½0; 2π� and n;m ∈ Nþ. The regularized
basis functions f̃aðθ1; θ2Þ can be obtained by using (52),
but this can also be obtained by the product of the
regularized basis functions (61) of S1: f̃aðθ1; θ2Þ ¼
f̃a1ðθ1Þf̃a2ðθ2Þ. Then the three-way tensor Pabc can be
obtained by

Pabc ¼
Z
½0;2π�2

dθ1dθ2f̃aðθ1; θ2Þf̃bðθ1; θ2Þf̃cðθ1; θ2Þ; ð68Þ

which defines a fuzzy two-torus.

2. Möbius strip

The Möbius strip is an example of a nontrivial bundle,
which is a bundle of a line segment over a circle. It can
practically be built by considering a square and gluing a
pair of opposite edges with a twist. From this we can easily
find the conditions on the functions fðx; yÞ on a Möbius
strip. We assume x; y ∈ ½−π; π� and suppose that the edges
at y ¼ �π are glued with a twist in the x direction. Then the
condition on these edges gives the periodic boundary
condition,

fðx; yÞ ¼ fð−x; yþ 2πÞ: ð69Þ

The boundary condition on x ¼ �π can be freely chosen
for instance from the Dirichlet boundary condition,

fð�π; yÞ ¼ 0; ð70Þ

or the Neumann boundary condition,

∂
∂x fðx; yÞjx¼�π

¼ 0; ð71Þ

for all y ∈ ½−π; π�. Using the periodic condition (69) twice,
one has

fðx; yÞ ¼ fðx; yþ 4πÞ; ð72Þ

so fðx; yÞ can be expanded by a linear combination of
fgmðxÞeimy=2g with integer m and functions of x, gmðxÞ.

If one imposes Dirichlet boundary condition (70), gmðxÞ
is further restricted to be a linear combination of fcosðn −
1=2Þx; sin nxg with n ∈ Nþ. Therefore the set of the basis
functions is a subset of the Cartesian product of fcosðn −
1=2Þx; sin nxg and f1; cosmy=2; sinmy=2gðn;m ∈ NþÞ.
Finally, by taking into account (69), five types of ortho-
normal basis functions are obtained:

fDa ðx; yÞ ¼
��

1ffiffiffi
2

p
π
cosðn − 1=2Þx

�
;

�
1

π
cosðn − 1=2Þx cosmy

�
;

�
1

π
sin nx cosðm − 1=2Þy

�
;

�
1

π
cosðn − 1=2Þx sinmy

�
;

�
1

π
sin nx sinðm − 1=2Þy

��
ð73Þ

with n;m ∈ Nþ.
In the case of imposing Neumann boundary condition

(71), the basis functions are given by a subset of the
Cartesian product of f1; sinðn − 1=2Þx; cos nxg and
f1; cosmy=2; sinmy=2g ðn;m ∈ NþÞ by a similar argu-
ment. After taking into account (69), eight types of
orthonormal basis functions are obtained,

fNa ðx; yÞ ¼
�
1

2π
;

�
1ffiffiffi
2

p
π
cos nx

�
;

�
1ffiffiffi
2

p
π
cosmy

�
;

�
1ffiffiffi
2

p
π
sinmy

�
;

�
1

π
cos nx cosmy

�
;

�
1

π
sinðn − 1=2Þx cosðm − 1=2Þy

�
;

�
1

π
cos nx sinmy

�
;

�
1

π
sinðn − 1=2Þx sinðm − 1=2Þy

��
ð74Þ

with n;m ∈ Nþ. The regularized basis functions f̃aðx; yÞ
can be obtained by the procedure (52), and one obtains the
three-way tensors by

PN;D
abc ¼

Z
½−π;π�2

dxdyf̃N;Da ðx; yÞf̃N;Db ðx; yÞf̃N;Dc ðx; yÞ: ð75Þ

We have checked that connecting neighboring points by the
result of the tensor-rank decompositions of the P produces
discrete analogues of the Möbius strip for both Dirichlet
and Neumann boundary conditions.
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3. Klein bottle K2

The Klein bottle is another nontrivial bundle of a circle
over a circle and can be constructed by considering a
square, gluing one pair of opposite edges, and gluing the
other pair with a twist. This procedure tells us how to obtain
the basis functions on a Klein bottle. We again take the
coordinates ðx; yÞ ∈ ½−π; π�2 and suppose that the glued
edges with twisting correspond to those at y ¼ �π. Then
the periodic boundary conditions are given by

fðx; yÞ ¼ fðxþ 2π; yÞ; ð76Þ

fðx; yÞ ¼ fð−x; yþ 2πÞ: ð77Þ

Using the condition (77) twice, one obtains

fðx; yÞ ¼ fðx; yþ 4πÞ: ð78Þ

So we see that fðx; yÞ can be expanded in a linear
combination of expðinxþ imy=2Þ ðn;m ∈ ZÞ. Taking a
real basis and requiring (77), eight types of orthonormal
basis functions are obtained:

faðx; yÞ ¼
�
1

2π
;

�
1ffiffiffi
2

p
π
cos nx

�
;

�
1ffiffiffi
2

p
π
cosmy

�
;

�
1ffiffiffi
2

p
π
sinmy

�
;
�
1

π
cos nx cosmy

�
;

�
1

π
sin nx cosðm − 1=2Þy

�
;

�
1

π
cos nx sinmy

�
;

�
1

π
sin nx sinðm − 1=2Þy

��
ð79Þ

with n;m ∈ Nþ. By the procedure explained before at (52),
one can obtain regularized basis functions f̃aðxÞ and the
tensor Pabc from them.
Figure 14 shows the fuzzy Klein bottle with N ¼ 49, the

damping scale L ¼ 3, and the tensor rank R ¼ 49. Here
N ¼ 49 comes from setting the parameter Λ below (51) by
Λ ¼ 4. More explicitly, in the case Λ ¼ 4, 49 is the
summation of the numbers of the modes as
N ¼ 1þ 4þ 4þ 4þ 8þ 10þ 8þ 10 ¼ 49, where the
summands are ordered in the same way as in the expression

(79). Note that the numbers of the combinations ðn;mÞ ∈
Nþ × Nþ which satisfy n2 þm2 ≤ 42 and n2þ
ðm − 1=2Þ2 ≤ 42 are 8 and 10, respectively. The object
in Fig. 14 can be seen as a discretized two-dimensional
closed surface with the structure of self-intersection, which
is the characteristics of Klein bottle. Figure 15 shows the
Z2-coefficient Betti intervals for the fuzzy Klein bottle.
This result shows that the homology groups of the fuzzy
space are

H0ðK2;Z2Þ ¼ Z2; ð80Þ

H1ðK2;Z2Þ ¼ Z2 ⊕ Z2; ð81Þ

H2ðK2;Z2Þ ¼ Z2; ð82Þ

and we have also checked HnðK2;Z2Þ ¼ 0 at least for
n ¼ 3, 4, 5. Figure 16 shows the Z3-coefficient Betti
intervals. This result also shows that the homology groups
of the fuzzy space are

H0ðK2;Z3Þ ¼ Z3; ð83Þ

H1ðK2;Z3Þ ¼ Z3; ð84Þ

FIG. 14. The fuzzy Klein bottle with N ¼ 49, R ¼ 49. The
edges are drawn between the neighboring points by the criterion
viav

j
a > 0.05, after the tensor-rank decomposition.
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FIG. 15. The Z2-coefficient Betti intervals for the fuzzy Klein bottle.
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H2ðK2;Z3Þ ¼ 0; ð85Þ

and we have also checked HnðK2;Z2Þ ¼ 0 at least for
n ¼ 3, 4, 5. These homology groups agree with those of the
ordinary continuous Klein bottle, supporting the validity of
our construction of the fuzzy Klein bottle.
The contents of this section are limited to homogeneous

fuzzy spaces, and we are successful at least in these cases.
However, the construction procedure explained at the
beginning of this section (also in Sec. III) is not limited
to homogeneous spaces, and it should be straightforward to
construct inhomogeneous fuzzy spaces in a similar manner.

XII. SUMMARY AND FUTURE PROSPECTS

The CTM is a discrete model of gravity, which has a
canonical conjugate pair of real symmetric three-way
tensors as its dynamical variables. A question about the
model was how to interpret the tensors as spacetimes. We
have solved this question by using two well-known
techniques in data analysis, namely the tensor-rank decom-
position and persistent homology, and have formulated a
mathematical procedure to extract topological and geo-
metric properties from the real symmetric three-way
tensors. We have also provided a systematic method to
construct real symmetric three-way tensors corresponding
to fuzzy spaces with any dimensions and topologies. We
demonstrated these techniques by considering the real
symmetric three-way tensors corresponding to homo-
geneous fuzzy S1, S2, and S3, solved the equations of
motion of the CTM with these tensors as the initial
conditions, and interpreted the time-dependent solutions
as time evolutions of geometric spaces. We have found that
the results coincide with the expectation from the general
relativistic system derived previously in a formal con-
tinuum limit of the CTM [23]. We have also explicitly
constructed real symmetric three-way tensors for a variety
of homogeneous fuzzy spaces with various dimensions and
topologies, demonstrating the generality of the construction
and extraction procedures, and hence of the CTM.
It is now apparent that the CTM is not limited to a

particular dimension: The real symmetric three-way tensors

can represent spaces of any dimension. This is a strong
advantage of the CTM in relation to quantum gravity,
because now generic spacetimes, including their dimen-
sions, should emerge from the dynamics in the macroscopic
limit rather than input parameters. This is in sharp contrast
with the other Euclidian types of tensor models [4–6,9], in
which the numbers of ways (indices) of tensors are directly
related to the dimensions of simplicial building blocks of
spaces.
Another important implication of this paper is that the

formal continuum limit of the CTM discussed previously in
[21,23] can actually be realized in large N limits. In these
previous papers, the limit was formally put in by hand by
performing an immediate replacement of discrete values of
indices to continuum ones. In other words, the arguments
were valid after the emergence of continuous macroscopic
spacetimes, but did not tell anything about how they
emerged. Though this paper is limited to the classical
cases, we have explicitly shown that such limits can be
realized by some large N cases by choosing appropriate
initial conditions representing fuzzy spaces for the classical
equation of motion. An obvious remaining problem here is
how such initial conditions and classical trajectories are
generated in the quantum framework, and we have a
plausible hint for this: The physical wave function of the
CTM has strong peaks at the tensor configurations invariant
under Lie groups with indefinite signatures [20,55]. As in
the constructions of homogeneous spaces, such Lie-group
symmetries can play vital roles in spacetime emergence.
Though this paper has introduced some interesting tools

to interpret the dynamics of the tensors in the CTM as the
dynamics of spacetimes, the applications are largely
immature. This paper only dealt with the dynamics of
zero modes in spaces, but for real physical interests, one has
to deal with local dynamics in three-dimensional spaces.
Though there are no theoretical difficulties, there is a
technical issue: Such studies require much larger fuzzy
spaces, but the present performance of the tensor-rank
decomposition is too slow. We are aware of high interest in
studies in this direction of computer science, and hope that
we are able to overcome this main technical difficulty in the
near future by incorporating recent developments. Other
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FIG. 16. The Z3-coefficient Betti intervals for the fuzzy Klein bottle. There are no intervals for H2.
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directly related future research directions would be trying
to find and examine observables on the discrete geometry
generated by the three-way tensors. Examples of such
observables are already known from different discrete
approaches, such as the spectral dimension [51], volume
profile, Hausdorff dimension or the recently introduced
quantum Ricci curvature [56,57]. It would also be interest-
ing to see if this method can be extended to include
matter fields to see the influence of matter on the dynamics
of the fuzzy spaces. Furthermore, we have an interpre-
tation for one of the tensors, but what would the geo-
metric interpretation of the canonical conjugate be? It
would also be interesting to see if the vectors from the
tensor rank decomposition would have a quantummechani-
cal analogue.
The novel connection between gravity and data analysis

shown in this paper stimulates some new kinds of, more
speculative, questions. Can the Universe purely be
described by data? How can one identify physically
significant observables from random data? How do black
holes appear in data? What is mass or energy in data? Is the
equation of motion of the CTM useful in data analysis? We
hope mutual communications of ideas in different fields
stimulate new questions and studies to benefit them
altogether.
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APPENDIX: THE PROGRAM FOR THE TENSOR-
RANK DECOMPOSITION

We made our own C++ program to obtain an approxi-
mate tensor-rank decomposition of a real symmetric three-
way tensor as in (6) for an R given as an input. The program
is roughly divided into two major parts. The former part is
to set up an initial approximate tensor-rank decomposition
of P, and the latter is to improve it as closely as possible.
Let us begin with the former. Setting P0 ¼ P, viði ¼

1; 2;…; RÞ are iteratively determined by minimizing the
size of

Pi
abc ¼ Pi−1

abc − viavibv
i
c; ðA1Þ

starting from a random value of vi. The actual minimization
method is described in the end. This iterative process sets
the initial approximate tensor-rank decomposition as

Pabc ¼
XR
i¼1

viavibv
i
c þ ΔPabc ðA2Þ

with an error ΔPabc. In this iterative process, each vi has
been optimized in the absence of the later vectors,
vjðj ¼ iþ 1; iþ 2;…; RÞ, and therefore they are not
optimized as a whole. Further optimization is possible to
reduce ΔPabc.
This is done in the latter part of the program. Each viði ¼

1; 2;…; RÞ is iteratively improved with the presence of the
other vectors by minimizing the size of

P̃i
abc − viavibv

i
c; ðA3Þ

where

P̃i
abc ¼ Pabc −

XR
j¼1
j≠i

vjav
j
bv

j
c ðA4Þ

is kept fixed during the optimization of vi. This iteratively
goes through i ¼ 1; 2;…; R, forming one cycle. After every
cycle, it is checked whether Pabcviavibv

i
c > 0 is satisfied by

every i or not. If not, the vi which does not satisfy the
condition is discarded. This cycle is repeated many times
until the error ΔPabc cannot be reduced or becomes smaller
than a criterion.
In our application, it is observed that the above condition

Pabcviavibv
i
c > 0 tends to avoid rough tensor-rank decom-

positions containing mutual cancellations among large
vi’s,21 and gives a decomposition with vi of nearly equal
sizes. This is useful in our application, because we are
considering homogeneous fuzzy spaces, in which all the
points should be more or less uniformly weighted.
Finally let us explain the actual minimization method

used as a subroutine in the above procedure. The subroutine
minimizes the size of

P̃abc − vavbvc ðA5Þ

for a given P̃ by optimizing v. By taking the square,
ðPabc − vavbvcÞðPabc − vavbvcÞ, this is to find a minimum
of

ðv2Þ3 − 2P̃abcvavbvc: ðA6Þ

Though this is a well-defined problem, it is not easy to
obtain a global minimum, and we restrict ourselves to
finding a local one. This limitation is a disadvantage which
cannot be underestimated in general, but, since this sub-
routine is called many times, it is also unlikely that v stays
in a bad local minimum through the whole process. The
condition for a local minimum of (A6) is given by the
vanishing of its first derivative,

21See for example [37,42] for more details about this numeri-
cally (and theoretically) serious problem.
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ðv2Þ2va ¼ P̃abcvbvc; ðA7Þ

and the absence of negative eigenvalues of its second
derivative matrix (Hessian) given by

4v2vavb þ ðv2Þ2δab − 2P̃abcvc: ðA8Þ

Rather than trying to directly solve the above problem
which has strong nonlinearity, let us consider a simpler
form than (A6),

1

4
ðw2Þ2 − 1

3
P̃abcwawbwc: ðA9Þ

The minimization of this is also well defined. The reason
for considering (A9) rather than (A6) becomes evident in
due course. In the same way as above, the conditions for a
local minimum of (A9) are given by

w2wa ¼ P̃abcwbwc ðA10Þ

and the non-negativity (in the same meaning as above) of

2wawb þ ðw2Þδab − 2P̃abcwc: ðA11Þ

Comparing the two problems, one can see that a local
minimum of the latter gives one of the former by doing a

rescaling v2va ¼ wa. Here it is important that the non-
negativity of (A11) readily implies that of (A8), because the
difference 2v2vavb is non-negative.
Away to obtain a local minimum of (A9) is to apply the

steepest descent method. By taking the first derivative of
(A9) and choosing a step size of γ=w2 with γ > 0, one
obtains a sequence,

w0
a ¼ ð1 − γÞwa þ γ

Pabcwbwc

w2
: ðA12Þ

A convergent vector of the sequence gives a local minimum
of (A9).
An advantage of considering (A12) from (A9) rather

than what can be obtained from (A6) is that (A12) is more
controllable. The second term of (A12) is bounded for any
w, and one can easily prove that, for 0 < γ < 2, the
sequence does not diverge. Therefore, the worst behavior
is a bounded nonconvergent sequence, which would be
changed to a convergent one by an appropriate choice of γ,
typically by making it smaller. In our application, however,
the simplest choice γ ¼ 1 suffices,22 where only the second
term needs to be computed on the right-hand side of (A12).
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