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The Gaia mission offers a new opportunity to search for the low-frequency gravitational wave
background using astrometric measurements. In this paper, the astrometric effect of gravitational waves
is reviewed, with a particular focus on the effect of non-Einsteinian gravitational wave polarizations.
A stochastic gravitational wave background generates a correlated vector field of astrometric deflections
on the sky. A convenient decomposition for the correlation matrix is introduced, enabling it to be calculated
for all possible gravitational wave polarizations and compared to the redshift correlations from the pulsar-
timing literature; in the case of a general relativity background of transverse traceless gravitational waves,
this also allows us to identify an astrometric analog of the famous Hellings-Downs curve. Finally, the cross
correlation between the redshift and astrometric signal is also calculated; this may form the basis for future
joint pulsar-timing and astrometry searches for arbitrarily polarized gravitational wave backgrounds.
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I. INTRODUCTION

The first direct detection of gravitational waves (GWs)
from a binary black hole was achieved in September 2015
by the LVCCollaboration using the ground-based Advanced
LIGO detectors [1]. This event, as well as subsequent binary
black hole detections [2–5], and the first multimessenger
observations of a binary neutron star merger [6], have paved
the way for the development of a host of new research topics
in astronomy, astrophysics and cosmology [7–10]. In par-
ticular, gravitational waves afford the possibility to test the
theory of general relativity (GR) in regimes which are
inaccessible through light-based observations (e.g., strong
gravity), and to constrain the deviations from general rela-
tivity far better than has previously been possible [11–13].
There are, however, GW tests of GR which are difficult or

impossible to performwith current instruments. For example,

the geometry of the two LIGO detectors alone hinders
accurate determination of the GW polarization; this has
been improved by the addition of Virgo which helped
constrain the polarization content of GW170814 [4].
However, there may still exist combinations of GW polar-
izations (the transverse and longitudinal scalar modes)
which laser interferometers cannot distinguish [14,15]. It
is well known that pulsar timing arrays (PTAs) provide
one method which can distinguish between all six possible
GW polarizations [16] and can even have an enhanced
response to some non-Einsteinian polarizations [17]. In this
paper another technique capable of distinguishing the six
GW polarizations is considered.
The Gaia mission, launched in 2013 by ESA, is carrying

out a thorough mapping of more than a billion objects in
the Milky Way [18]. As part of this survey, star positions,
velocities, and accelerations (among other observables) will
be mapped with an unprecedented precision; this new map
of the Milky Way objects will allow for an entirely updated
understanding of the dynamics and composition of our
Galaxy and of the Local Group [19].
The idea of using high-precision astrometric measure-

ments as an alternative avenue to detecting gravitational
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wave signals is not new: the authors of Ref. [20] were the
first to examine the physical principles at play, and later the
authors of Ref. [21] applied them to quasar proper motions.
More recently the authors of Ref. [22] published an in-depth
analysis of the concept applied to astrometric measure-
ments, the authors of Ref. [23] evaluated the viability of
finding this effect in detector data, and the authors of
Ref. [24] discussed it in direct relation to the Gaia mission.
The approach has been investigated numerically in the
context of Gaia, and future data releases promise better
sensitivity to single GW sources than existing techniques
in a certain frequency range [25]. This article explores the
possibility of using such high-precision astrometric mea-
surements to ascertain the polarization of a stochastic
GW background, and hence constrain modified theories
of gravity.
Within GR, gravitational waves travel at the speed of

light and carry a superposition of two transverse, traceless
polarization modes, usually denotedþ and × [26]. Generic
metric theories of gravity have up to four additional
polarization modes: a purely transverse scalar mode, two
vectorial modes with mixed transverse and longitudinal
properties, and a purely longitudinal scalar mode [15]. It
should be noted that modified theories of gravity must now
satisfy the polarization constraints from the LIGO-Virgo
observations (e.g., Ref. [4]) of compact binary sources in
the frequency range ∼101–103 Hz. In general, these polari-
zation modes may travel at speeds other than the speed of
light; however this is strongly constrained by the recent
electromagnetic and GW multimessenger observations
[13]. Detections of GWs using astrometric methods would
allow for additional constraints to be placed on their
polarization and speed. This paper considers all six GW
polarizations, but the discussion is restricted to waves
traveling at the speed of light.
While still not explicitly detected, another possible target

for gravitational wave detectors is a stochastic gravitational
wave background created by a large number of random,
uncorrelated, and individually unresolvable sources.
According to their origin, backgrounds can be classed as
astrophysical or cosmological. Astrophysical sources range
from supernovae and mergers of compact objects (black
hole–black hole, black hole–neutron star, and neutron star–
neutron star binaries) to supermassive black hole binaries.
Backgrounds of this origin are generally believed to have
a power-law spectrum and exist at frequencies above
∼10−12 Hz [27]. Cosmological backgrounds, on the other
hand, include early-Universe events like reheating or
inflation, or even more exotic alternatives like primordial
black hole mergers or QCD phase transitions. These
generally have more unusual spectra, and are more power-
ful at lower frequencies than astrophysical backgrounds.
Astrophysical backgrounds, specifically supermassive
black hole binaries corresponding to galaxy mergers, are
by far the most promising in the context of astrometric and

PTA-based methods for detection. The most constraining
upper limits on the stochastic GW background at frequen-
cies of several nanohertz come from pulsar timing. The
North American Nanohertz Observatory for Gravitational
Waves [28] and the European Pulsar Timing Array [29]
placed 95% Bayesian upper limits on the amplitude of
a stochastic gravitational wave background of 1.5 × 10−4

and 3.0 × 10−15 respectively at a frequency of 1 year−1.
Currently the most stringent limit comes from the Parkes
Pulsar Timing Array which placed a 95% upper limit on the
amplitude of 1.0 × 10−15 at a frequency of 1 year−1 [30]
while the International Pulsar Timing Array [31] has placed
a 2σ upper limit of 1.7 × 10−15 at the same frequency.
This article analyses the astrometric response to a

gravitational wave and the detector cross-correlation func-
tions (or overlap reduction functions) for an astrophysical
background in the context of all possible gravitational
wave polarization states. In Sec. II the relativistic principles
that are responsible for the periodic shift in a star’s apparent
position on the sky due to a gravitational wave are
presented. Similar analyses have been published previously
(e.g., Ref. [22]), but it is repeated here with a focus on the
astrometric response to non-GR polarization states.
Section III summarizes the mathematical formulation of
GW polarization tensors. The characteristic astrometric
patterns produced by each polarization are then plotted and
analyzed in terms of the geometry of the astrometric
response function. The expected value of the correlation
between the response function of two independent detec-
tors is defined and derived for each of the polarization states
in Sec. IV. Their significance and possible applications are
also presented, alongside suitable depictions of their
geometry. Pulsar timing and astrometry are two techniques
which are capable of detecting GWs from similar sources.
It is therefore interesting to consider the possibility of
combining PTA and astrometric data sets to achieve
improved sensitivities. As a first step in this direction,
Sec. V considers the cross correlation between the astro-
metric deflection and the PTA measured redshift for each
of the possible GW polarizations.
After this paper was submitted a preprint appeared [32]

which had independently obtained similar results for the
astrometric correlation functions presented in Sec. IV of
this paper. After accounting for somewhat different nota-
tion, their results agree with those presented here.
Reference [32] does not present the redshift-astrometry
correlations described in Sec. V of this paper, but they do
present results for the correlation coefficients of a vector
spherical harmonic representation of the astrometric
response. This is written in terms of an angular power
spectra function, and is not computed here.
The astrometric correlations due to a stochastic back-

ground of GWs with non-Einsteinian polarizations have
not been explored previously. However, the redshift corre-
lations due to such backgrounds have been explored
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previously, in the context of pulsar timing arrays. Notably,
Ref. [16] set out a thorough overview of the topic, and [33]
calculated all relevant correlations for scalar and vector
backgrounds. Throughout this paper, the astrometric cor-
relations derived will be compared with the existing results
for the redshift correlations.

II. ASTROMETRIC RESPONSE TO A
GRAVITATIONAL WAVE

Astrometric measurements of any distant objects could,
in principle, be used to detect GWs (the term “star” will be
used to refer to any such distant object, although the same
reasoning applies to any light source). The telescope used
for the astrometric measurements will not be at rest (Gaia
orbits at the Sun-Earth L2 point, and moves on a Lissajous-
type orbit) and it will be necessary to correct for the
detector motion; the term “Earth” will be used to refer to
the location of an idealized stationary observer, and for
simplicity it will be assumed that the necessary corrections
in the data have already been made. Figure 1 depicts the
relationship between the “star,” the gravitational wave
source, and the “Earth.”
In this section the periodic astrometric deflection of a

distant “star” as viewed from the “Earth” due to a weak,
plane-fronted GW signal is derived. The background space-
time is assumed to be flat [the mostly positive metric ημν ¼
diagð−;þ;þ;þÞ is used here] and only leading-order
terms in the metric perturbation are retained. We designate
coordinates in which the Earth is at the spatial origin,
xμEðtÞ ¼ ðt; 0Þ, and the Star is at fixed spatial position,
xμSðtÞ ¼ ðt; xiSÞ, with xiS ≡ const. While the results in this
section are not new (in particular our derivation is similar
to that in Ref. [22]) it will be useful to rederive them
here, paying special attention to the case of non-Einsteinian
polarization states. The reader might be interested to consult

Ref. [34] for a simplified discussion of this effect and a
comparison of the interferometric, pulsar timing, and astro-
metric methods for GW detection.
In the absence of a metric perturbation the star and the

Earth are joined by the following one-parameter family of
null geodesics in the flat space-time, labeled by t0,

xμt0ðλÞ ¼ ðΩλþ t0;−ΩλniÞ: ð1Þ

HereΩ is the unperturbed frequency of the photons coming
from the star, −ni is a unit 3-vector in the direction of
its propagation, the affine parameter λ varies from λS ≡
−jxSj=Ω to 0 between the star and the observer, and the
tangent vector (4-momentum) pμ ≡ dxμ=dλ ¼ Ωð1;−niÞ
is null.
The observer (source) is equipped with a time-

independent orthonormal tetrad ϵμâ (σμâ), satisfying
ημνϵ

μ
âϵ

ν
b̂
¼ ημνσ

μ
âσ

ν
b̂
¼ ηâ b̂, where the time-like basis vector

is taken to be the 4-velocity, ϵμ
0̂
¼ σμ

0̂
¼ ð1; 0; 0; 0Þ. The

tetrad is parallel transported along the worldline of the
observer (source), who measures the following tetrad
components (denoted with a hat) of the 4-momentum:

pâ ¼ ημνpμϵνâ ¼ −Ωð1; n{̂Þ; where n{̂ ≡ ϵμ{̂ nμ ð2Þ

(and similarly for the source). The observed frequency is
given by Ωobs ≡ −p0̂ while the astrometric position is
given by n{̂ ≡ p{̂=p0̂.
Now consider perturbing this setup with a monochro-

matic, plane-fronted GWwith angular frequencyω radiated
from a distant source in the direction of the vector qi,
extending over a region including the source and the
observer (Fig. 1). The metric perturbation is given by

hμνðt; xiÞ ¼ ℜfHμν exp ðikρxρÞg; ð3Þ

where the Hμν are small complex constants satisfying
Hμν ¼ Hνμ, and the GW wave vector is kμ ¼ ðω;−ωqiÞ,
where qi is a 3-vector pointing from the Earth to the GW
source. Hereafter, the R is implicit in all complex expres-
sions. Additionally, diffeomorphism invariance allows a
spatial gauge choice to be made for the metric perturbation,
H0μ ¼ 0. In GR it is possible to further restrict to the
well-known “transverse-traceless” gauge; this is not done
here as our focus will be on alternative polarizations. The
perturbed space-time is gμν ¼ ημν þ hμν, and its inverse is
gμν ¼ ημν − hμν. The connection coefficients for this metric
are

Γμ
νρ ¼ 1

2
gμσð∂νgσρ þ ∂ρgνσ − ∂σgμνÞ

¼ 1

2
ð∂νhμρ þ ∂ρhνμ − ∂μhνρÞ þOðh2Þ; ð4Þ

FIG. 1. An illustration of the geometric setup under consid-
eration. The star lies on the past light cone of the Earth, and the
two are linked by an unperturbed null geodesic with tangent
vector pμ and the apparent position of the star is given by n{̂.
When the metric is perturbed by a GW with wave vector
kμ ¼ −qμ, the tangent to the null geodesic is perturbed,
pμ þ δpμ, along with the apparent position of the star,
n{̂ þ δn{̂. The apparent position of the GW source is q{̂.
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and the nonzero components are given explicitly by

Γ0
ij ¼

1

2
∂0hij; Γi

0j ¼ Γi
j0 ¼

1

2
∂0hij;

and Γi
jk ¼

1

2
ð∂khij þ ∂jhik − ∂ihjkÞ: ð5Þ

The worldlines of the Earth [xμEðtÞ ¼ ðt; 0Þ] and star
[xμSðtÞ ¼ ðt; xiSÞ] are geodesics in both the unperturbed (ημν)
and perturbed (ημν þ hμν) metrics; these worldlines are
unaffected by the GW. However, the null geodesics xμt0ðλÞ
and the tetrads ϵμâ and σμâ are affected, and so are the tetrad
components pâ defined in Eq. (2).
First, consider the tetrad along the Earth’s worldline; this

is perturbed ϵμâ ↦ ϵμâ þ δϵμâðtÞ according to the parallel
transport equations (the 4-velocity is ϵμ

0̂
),

d
dt
δϵμâðtÞ ¼ −Γμ

νρϵνâϵ
ρ
0̂
þOðh2Þ; ð6Þ

where the symbols Γμ
νρ are to be understood as being

evaluated along the worldline of the Earth, xμEðtÞ. When
integrating Eq. (6) the constants of integration may be
discarded as it is the time-dependent change in astrometric
position which we ultimately seek to measure. Substituting
for the connection coefficients from Eq. (5) and integrating
Eq. (6) along the worldline of the observer shows that the
only nonzero components of δϵμâðtÞ are

δϵj{̂ ðtÞ ¼ −
1

2
Hj

{̂ exp ð−iωt0Þ: ð7Þ

Note that the time-like component of the tetrad is unaf-
fected. Similar equations hold for the deviation δσj{̂ ðtÞ.
Second, consider the null geodesics and their tangents;

these are perturbed xμ ↦ xμ þ δxμðλÞ and pμ ↦ pμ þ
δpμðλÞ according to the geodesic equation,

d2

dλ2
δxμt0ðλÞ ¼

d
dλ

δpμ
t0ðλÞ ¼ −Γμ

νρpνpρ þOðh2Þ: ð8Þ

In the above equation the symbols Γμ
νρ are to be understood

as being evaluated along the unperturbed trajectory xμt0ðλÞ
(corrections to this trajectory enter at order of h2).
Substituting for the connection coefficients from Eq. (5)
and for the metric perturbation from Eq. (3) gives

d
dλ

δp0
t0ðλÞ ¼

iωΩ2

2
Hijninjfðt0; λÞ; ð9aÞ

d
dλ

δpi
t0ðλÞ ¼

iωΩ2

2
ð−2Hi

jnj þ ðqjHi
k þ qkHi

j

− qiHjkÞnjnkÞfðt0; λÞ; ð9bÞ
where fðt0; λÞ ¼ exp ð−iωΩλð1 − qiniÞ − iωt0Þ. Provided
qini ≠ 1, integrating Eq. (9a) with respect to λ with the

initial condition that the emission frequency in the rest
frame of the star is unaffected by the GW [Ωemit≡
ημνσ

μ
0̂
pν ¼ Ω, which reduces to δp0

t0ðλSÞ ¼ 0 because
δσμ

0̂
¼ 0] gives

δp0ðλÞ ¼ −Ω
2ð1 − qknkÞ

Hijninjðfðt0; λÞ − fðt0; λsÞÞ: ð10Þ

Integrating Eq. (9b) twice with respect to λ gives

δxiðλÞ ¼ −i
2ωð1 − qlnlÞ2
× ð−2Hi

jnj þ ðqjHi
k þ qkHi

j − qiHjkÞnjnkÞ
× fðt0; λÞ þ λAi þ Bi; ð11Þ

where Ai and Bi are constants of integration. The boundary
conditions needed to determine Ai and Bi are as follows:
(a) The family of geodesics xμt0ðλÞ þ δxμt0ðλÞ remain null;

at leading order this condition becomes

hμνðΩλþ t0;−ΩλniÞpμpν þ 2ημνpμδpν
t0ðλÞ ¼ 0:

ð12Þ

(b) The geodesics intersect the Earth’s worldline: the
freedom to reparametrize the geodesics λ ↦ λþ λ0
may be used to ensure that the intersection occurs at
λ ¼ 0, so this condition becomes δxit0ð0Þ ¼ 0.

(c) The geodesics intersect the star’s worldline at some
value λS þ δλS [where δλS ¼ OðhÞ], so this condition
becomes xit0ðλS þ δλSÞ þ δxit0ðλS þ δλSÞ ¼ xiS.

Boundary condition (b) fixes the constants Bi leaving

δxiðλÞ ¼ −i
2ωð1 − qlnlÞ2

ð−2Hi
jnj þ ðqjHi

k þ qkHi
j

−qiHjkÞnjnkÞðfðt0; λÞ − fðt0; 0ÞÞ þ λAi: ð13Þ

Next, we decompose Ai ¼ Ai⊥ þ Ai
k in parallel and

perpendicular directions to ni. It is sufficient to enforce
condition (a) at λ ¼ λS [where it is most straightforward to
do so because δp0

t0ðλSÞ ¼ 0] as the norm of a tangent is
automatically preserved along a geodesic; this gives

Ai⊥ ¼ −Ωni

2ð1 − qlnlÞ
Hjknjnkfðt0; λS þ qkHi

jÞ: ð14Þ

Finally, condition (c) is applied to fix Ai
k and δλS, although

only the former is needed here,

MIHAYLOV, MOORE, GAIR, LASENBY, and GILMORE PHYS. REV. D 97, 124058 (2018)

124058-4



Ai
k ¼

i
2λSωð1 − qlnlÞ2

ð2Hi
jnj − ðqjHi

k þ qkHi
j

−qiHijÞnjnk − 2niHjknjnk

þ niqmnmHjknjnkÞðfðt0; 0Þ − fðt0; λSÞÞ: ð15Þ

As discussed following Eq. (2), the observed frequency
is given by the temporal tetrad component of the photon
Ωobs ≡ −p0̂,

Ωobs ¼ ðημν þ hμνðt0; 0ÞÞðpμ þ δpμ
t0ð0ÞÞðϵν0̂ þ δϵν

0̂
ðt0ÞÞ

¼ Ω
�
1 −

Hijninj

2ð1 − qknkÞ
ðfðt0; 0Þ − fðt0; λSÞÞ

�
: ð16Þ

Therefore, the redshift, defined as 1þ z≡Ω=Ωobs,
where Ω is the emitted frequency, is obtained from
Eq. (16) as

z ¼ ninj

2ð1 − qknkÞ
ðhijðEÞ − hijðSÞÞ: ð17Þ

The redshift depends antisymmetrically on the metric
perturbations at the “emission” and “absorption” events
at the star and the Earth, respectively [hijðEÞ≡Hijfðt0; 0Þ
and hijðSÞ≡Hijfðt0; λsÞ]. This symmetry arises from the
end points of the integral along the null geodesic linking the
star to the Earth. The redshift varies periodically in time due
to the GW. This redshifting, applied to a distant pulsar,
causes individual pulses to arrive at the Earth periodically
early and late; it is this timing residual which is searched for
by PTAs.
As discussed following Eq. (2), the star’s astrometric

position is given by n{̂ ≡ p{̂=p0̂ where p0̂ is the negative of
Ωobs in Eq. (16) and

p{̂ ¼ ðημν þ hμνðt0; 0ÞÞðpμ þ δpμ
t0ð0ÞÞðϵν{̂ þ δϵν{̂ ðt0ÞÞ: ð18Þ

Combining the previous results gives the observed astro-
metric deflection of the star due to a plane GW; this is the
same result as that found in Ref. [22] [their Eq. (36)] with
minor changes in notation;

δn{̂ ¼
���

1þ ið2 − qrnrÞ
ωλSΩð1 − qlnlÞ

ð1 − exp ð−iωΩλSð1 − qsnsÞÞÞ
�
n{̂

−
�
1þ i

ωλSΩð1 − qlnlÞ
ð1 − exp ð−iωΩλSð1 − qsnsÞÞÞ

�
q{̂

�
Hjknjnk

2ð1 − qlnlÞ

−
�
1

2
þ i
ωλSΩð1 − qlnlÞ

ð1 − exp ð−iωΩλSð1 − qsnsÞÞÞ
�
H{̂jnj

�
expð−iωt0Þ: ð19Þ

As was found for the redshift, the deflection depends
on the metric perturbations at the star and at the Earth;
although not symmetrically. This loss of symmetry is
because the deflection depends both on an integral along
the null geodesic trajectory as per Eq. (9b), and an integral
along the Earth’s worldline as per Eq. (6).
In the PTA analysis of stochastic GW backgrounds it is

common to drop the “pulsar term” (which is called the “star
term” here). This is possible because in the limit where the
GW wavelength is much shorter than the distance to the
star, ωλSΩ ≫ 1, the overlap reduction function (ORF)
tends to the result obtained by simply ignoring the “pulsar
term” in Eq. (17) [35].
In the astrometric case the “star terms” can also some-

times be neglected, albeit for slightly different reasons.
Consider Eq. (19) in the distant source limit ωλSΩ ≫ 1
(i.e., where the star is many GW wavelengths distant from
the observer). At leading order, only the first term in each
set of curly brackets remains, and the result becomes

δn{̂ ¼
1

2

�
n{̂ − q{̂
1 − qlnl

h|̂ k̂ðEÞn|̂nk̂ − h{̂ |̂ðEÞn|̂
�
: ð20Þ

Notice that in this limit all dependence on hijðSÞ has been
lost. Also notice that the distant-source limit was taken
for the astrometric response of a single star, and not for
the statistical response of a network (quantified via the
ORF) as in the PTA case. In Eq. (20) all contractions have
been written using tetrad components; hereafter the hat
notation denoting tetrad components will be dropped,
and the astrometric deflections in Eq. (20) will simply be
denoted δni.
The sensitivity of Gaia to GWs comes largely from the

fact that it observes a large number of stars. These stars
are generally well separated (by many gravitational wave-
lengths), and therefore the small star terms will be
uncorrelated between stars. At small angular separation
many stars are at similar distances (star clusters); this
needs consideration in any practical application. In con-
trast, the larger Earth term is correlated between all stars;
it is this that Gaia will aim to detect. The independent star
terms may be treated as an effective noise source in the
experiment. Including all the individual “star terms”
would slightly increase the sensitivity of Gaia to the
lowest GW frequencies; however this would involve
fitting for the distance to every observed star individually.
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A problem occurs with the distant source limit of the
astrometric deflection when the GW source is collinear
with a star (i.e., when qini ¼ 1); the expression in Eq. (20)
will, in general, diverge. In fact, this is usually not a
problem, because in GR the GW polarizations are trans-
verse (i.e., hijqj ¼ 0) which ensures that Eq. (20) has a
smooth limit as ni → qi. However, the divergence is a
problem when working with alternative polarizations with
a longitudinal component (i.e., when hijqj ≠ 0). For the
remainder of this paper we work with the distant-source
limit in Eq. (20) whenever possible, and fall back on the
full (nondivergent) expression in Eq. (19) when the distant-
source-limit approximation breaks down.
For a transverse GW the distant-source limit does not

diverge and we may study the fractional error in the distant-
source approximation. The error is defined as

δ ¼ jδni − δndsi j
jδnij

; ð21Þ

where δni is given by Eq. (19), and δndsi by Eq. (20). This
quantity is plotted in Fig. 2 as a function of the distance to
the source for two frequencies at the edges of Gaia’s GW
bandwidth, ð10−8 − 3 × 10−7Þ Hz [25]. Also shown in
Fig. 2 is the cumulative distribution of the distances to
stars in the Gaia catalog. Figure 2 shows that even for
the longest GW wavelengths of interest to Gaia the error
δ < 10−2 for 90% of stars in the Gaia catalog. This justifies
the use of the distant-source limit Eq. (20) whenever it is
not divergent.

III. GRAVITATIONAL WAVE POLARIZATIONS

While GR only allows for two GW polarization modes
(the transverse and traceless þ and × modes), alternative
theories can include up to four additional modes. Besides
the two GR modes, there may be a transverse trace scalar
mode, two vectorial modes with mixed transverse and
longitudinal components, and a purely longitudinal scalar
mode. For a detailed discussion the reader is referred to
Ref. [15].
In order to define the six GW polarization basis tensors

we first introduce the orthonormal coordinate basis asso-
ciated with the spherical polar coordinates ðr; θ;ϕÞ;

êri ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ; ð22aÞ

êθi ¼ ðcos θ cosϕ; cos θ sinϕ;− sin θÞ; ð22bÞ

êϕi ¼ ð− sinϕ; cosϕ; 0Þ: ð22cÞ

The symmetric spatial GW polarization tensor, Hij, for a
GW traveling in direction qi ¼ −êri can then be decom-
posed in terms of basis tensors as

Hij ¼ Aþϵþij þ A×ϵ
×
ij þ ASϵ

S
ij þ AXϵ

X
ij þ AYϵ

Y
ij þ ALϵ

L
ij;

ð23Þ

where the six GW basis tensors, ϵPij, are defined as

ϵþijðqkÞ ¼ êθi ê
θ
j − êϕi ê

ϕ
j ; ð24aÞ

ϵ×ijðqkÞ ¼ êθi ê
ϕ
j þ êϕi ê

θ
j ; ð24bÞ

ϵSijðqkÞ ¼ êθi ê
θ
j þ êϕi ê

ϕ
j ; ð24cÞ

ϵXijðqkÞ ¼ êθi ê
r
j þ êri ê

θ
j ; ð24dÞ

ϵYijðqkÞ ¼ êϕi ê
r
j þ êri ê

ϕ
j ; ð24eÞ

ϵLijðqkÞ ¼
ffiffiffi
2

p
êri ê

r
j: ð24fÞ

The factor of
ffiffiffi
2

p
in the definition of ϵLijðqkÞ is for

normalization convenience and accounts for the fact that
this tensor has only a single nonzero component, while all
others have exactly two. In the standard Cartesian coor-
dinate system the generalized perturbation tensor takes the
form

H ¼

0
B@

Aþ þ AS A× AX

A× −Aþ þ AS AY

AX AY

ffiffiffi
2

p
AL

1
CA: ð25Þ

FIG. 2. The fractional error, δ [see Eq. (21)], in the distant-
source approximation as a function of the distance to the star. The
red and blue curves correspond to frequencies of 5 × 10−7 and
5 × 10−9 Hz respectively; these are the upper and lower fre-
quency limits of Gaia’s GW sensitivity [25]. Also shown on the
secondary y axis is the cumulative distribution of distances to
objects in the Gaia DR1 catalog (simulated distances to stars are
taken from the Gaia Universe model snapshot [36]). The distant-
source limit is a good approximation for the majority of stars in
the catalog.
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Shown in Fig. 3 are the distant-source limit astrometric
deflection patterns for each of the three transverse GW
polarization states, and the exact astrometric deflection
patterns for the other three GW polarization modes with
longitudinal components. The results in Fig. 3 were
calculated using Eq. (20) for the þ;×, and S polarization
states, and using Eq. (19) for the X, Y, and L states.
Polarization tensors Hij ¼ APϵ

P
ij with AP ¼ 0.1 (unrealis-

tically large for visualization purposes) were used through-
out, and in the latter three cases, all stars were placed 10
gravitational wavelengths away from Earth. If the distant-
source limit were used for the three longitudinal modes, the
plots would incorrectly show a divergence in the astro-
metric deflection pattern at the North pole due to the factor
of 1 − qlnl in the denominator of Eq. (20).

IV. CORRELATED ASTROMETRIC
DEFLECTIONS

In Sec. II of this article the astrometric response to a
single monochromatic GW was derived. In this section the
astrometric response to a stochastic background of GWs
is considered. A stochastic background of GWs generates
a stochastic pattern of astrometric deflections over the sky
which is highly correlated at large angular scales. The
pattern of this correlation depends on the polarization of
the GWs which make up the background. The general
framework for considering correlated vector fields on the
sphere is introduced, and then in Secs. IVA–IV D below,
the correlations for several different combinations of
the polarization states discussed in Sec. III are explicitly
evaluated.

FIG. 3. Orthographic projections of the Northern (left) and Southern (right) hemispheres. Randomly placed on the sky are 1000 stars.
A GW from a source located in the direction of the North pole (indicated by the red dots) is incident on the Earth causing the stars to
move periodically at the GW frequency. The blue lines show the traces that each star would leave as it moves on the sky. For clarity, the
incident GW has the unphysically large characteristic strain amplitude A ¼ 0.1, and in the cases where the modes have longitudinal
components (X, Y, and L), the star terms are included in the calculation of the astrometric deflection in order to avoid it becoming
divergent near the North pole. In these latter three samples, all stars are placed at a distance of 10 gravitational wavelengths from the
Earth. In reality, these neat elliptical patterns would appear more chaotic, since the distances to each star are generally different. The þ
and × patterns are related to each other by a rotation through π

4
and the X and Y patterns are related by a rotation through π

2
.

The astrometric patterns for the two GR states including the star terms are presented additionally in Appendix A.
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The discussion in this article is restricted to stochastic
GW backgrounds which are Gaussian, stationary, iso-
tropic and unpolarized (at this point we do not specify
which polarization states comprise the background,
just that they are uncorrelated with each other so the
background is statistically unpolarized). The astrometric
deflection is then a Gaussian random vector field on the
sphere, and the statistical properties of this field are
described by a correlation matrix. Adopting a convenient
decomposition for this correlation matrix allows for an
intuitive visualization of key features of the correlation
over the sphere of the sky. This decomposition will also
permit a clear comparison with the analogous calculations
in the pulsar timing literature.
Consider the correlation between the astrometric deflec-

tions at two different points on the sky. The astrometric
response is given by the distant-source limit formula,
Eq. (20) (specific examples of when this formula is not
valid will be considered later in this section). In this limit,
the astrometric deflection depends only on the “Earth term”
metric perturbation; this time-dependent metric perturba-
tion can be Fourier decomposed as

hijðtÞ ¼ R

�X
P

Z
∞

0

df
Z
S2
dΩqAPðq; fÞe−2πiftϵPijðqÞ

�
;

ð26Þ

where f ¼ ω=2π is the linear GW frequency, APðq; fÞ are
the (complex) Fourier coefficients, dΩq is the area element
on the sphere, and q≡ qi is the direction from which the
GW originates. The label P indicates the GW polarization
which, at this stage, may be any of the six states P ∈
fþ;×; S; X; Y; Lg described in Sec. III.
The GW background is assumed to be Gaussian, zero-

mean, stationary, isotropic, and unpolarized. The expect-
ation values of the Fourier coefficients in such a back-
ground satisfy

hAPðq; fÞA�
P0 ðq0; f0Þi ¼ CðfÞδPP0δS2ðq;q0Þδðf − f0Þ;

ð27aÞ

hAPðq; fÞAP0 ðq0; f0Þi ¼ 0; ð27bÞ

where the function CðfÞ is related to the spectral energy
density in the GW background [37].
The astrometric deflection is linear in the metric pertur-

bation, and the response to each Fourier mode may be
calculated individually:

δniðn; tÞ ¼ R

�X
P

Z
∞

0

dfe−2πift
Z
S2
dΩqAPðq; fÞ

× Δijkðn;qÞϵPjkðqÞ
�
; ð28Þ

where we have defined

Δi
jkðn;qÞ ¼ 1

2

�
ni − qi
1 − qlnl

njnk − δi
jnk
�
: ð29Þ

The linearity of the astrometric deflection with the metric
perturbation also ensures that it will be a Gaussian random
variable, and that its statistical properties depend only on
the two-point correlation. Using Eqs. (27) and (28), it is
straightforward to show that the expectation of the product
of astrometric responses δni and δmi of two stars, situated
at two different points on the sky, ni andmi, separates into a
factor depending on the measurement times and a factor
depending on the locations of the stars on the sky,

hδniðn; tÞδmjðm; t0Þi ¼ Tðt; t0ÞΓijðn;mÞ: ð30Þ

Because both δniðn; tÞ and δmjðm; tÞ have zero mean, this
expectation is proportional to the correlation between the
two quantities. As is well known, the temporal correlation
factor is given by the cosine transform of the GW frequency
spectrum:

Tðt; t0Þ ¼ 1

4

Z
∞

0

dfCðfÞðe2πifðt−t0Þ þ e−2πifðt−t0ÞÞ: ð31Þ

The spatial correlation factor is a sum of integrals of
products of vectors over the sphere for each mode P [cf. the
factor of δPP0 in Eq. (27a)]:

Γijðn;mÞ ¼
X
P

ΓP
ijðn;mÞ; ð32Þ

where, for each polarization state, we defined

ΓP
ijðn;mÞ ¼

Z
S2
dΩqδnPi ðn;qÞδmP

j ðm;qÞ; ð33Þ

where δnPi ðn;qÞ ¼ Δi
jkðn;qÞϵPjkðqÞ: ð34Þ

Only the spatial part of the correlation, Γijðn;mÞ, depends
on the polarization content of the GW background.
Hereafter, only spatial correlations will be investigated.
Since the background is isotropic, the sky sphere can be

rotated into the most convenient orientation. The first star,
ni, is placed at the North Pole, and the second,mi, in the x-z
plane (for anisotropic backgrounds, this transformation is
still possible, though in that case the background needs to
also be rotated into the new frame; see Ref. [33] for details).
The stars have coordinates

n ¼ ð0; 0; 1Þ; ð35aÞ

m ¼ ðsinΘ; 0; cosΘÞ: ð35bÞ
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The astrometric deflection vectors lie in the tangent plane
of the sphere; it is now necessary to introduce a pair of basis
vectors at both points on the sphere. The choice of basis is
of course arbitrary; however, the following choice will
prove to be convenient. For any pair of points ni and mi

there is a unique (shortest) geodesic, γ, linking ni to mi; at
both ni and mi the unit tangent vector to γ and the unit
vector pointing to the left of γ form an orthonormal basis.
For the values of ni and mi in Eqs. (35a)–(35b) the
coordinate expressions for these basis vectors are

ûx ¼ ð1; 0; 0Þ; ð36aÞ
ûy ¼ ð0; 1; 0Þ; ð36bÞ
ûθ ¼ ðcosΘ; 0;− sinΘÞ; ð37aÞ
ûϕ ¼ ð0; 1; 0Þ; ð37bÞ

while the general definitions for two arbitrary points on the
sphere are

ûx ¼ ðn̂ × m̂Þ × n̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðn̂ · m̂Þ2

p ; ð38aÞ

ûy ¼ n̂ × m̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðn̂ · m̂Þ2

p ; ð38bÞ

ûθ ¼ ðn̂ × m̂Þ × m̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðn̂ · m̂Þ2

p ; ð39aÞ

ûϕ ¼ n̂ × m̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðn̂ · m̂Þ2

p : ð39bÞ

The geometric setup is illustrated in Fig. 4.
The astrometric deflections may now be decomposed

into this basis:

δnPi ðqÞ ¼ δnPx ðqÞûxi þ δnPy ðqÞûyi ; ð40aÞ

δmP
i ðqÞ ¼ δmP

θ ðqÞûθi þ δmP
ϕðqÞûϕi ; ð40bÞ

where the scalar coefficients are given by

δnPx ðqÞ ¼ δnPi ðqÞûix; ð41aÞ

δnPy ðqÞ ¼ δnPi ðqÞûiy; ð41bÞ

δmP
θ ðqÞ ¼ δmP

i ðqÞûiθ; ð42aÞ

δmP
ϕðqÞ ¼ δmP

i ðqÞûiϕ: ð42bÞ

Substituting Eqs. (40a)–(40b) into Eq. (33) and expanding
gives an expression for the spatial correlation function as a
sum of scalar integrals over the sphere,

ΓP
ijðΘÞ ¼ ûxi û

θ
j

Z
S2
dΩqδnPx ðqÞδmP

θ ðqÞ ð43aÞ

þ ûxi û
ϕ
j

Z
S2
dΩqδnPx ðqÞδmP

ϕðqÞ ð43bÞ

þ ûyi û
θ
j

Z
S2
dΩqδnPy ðqÞδmP

θ ðqÞ ð43cÞ

þ ûyi û
ϕ
j

Z
S2
dΩqδnPy ðqÞδmP

ϕðqÞ: ð43dÞ

In fact, it can be shown that for any correlated vector
field on the sphere which is statistically invariant under
both rotations and parity transformations the y − θ and
x − ϕ terms [i.e., Eqs. (43b) and (43c)] vanish. These terms
can also explicitly be shown to vanish for each GW
polarization considered individually in Secs. IVA–IV D
below. Therefore, remarkably, the full spatial correlation
matrix is always fully specified by just two real-valued
functions, and may be written as

ΓP
ijðn;mÞ ¼ ΓP

xθðΘÞûxi ûθj þ ΓP
yϕðΘÞûyi ûϕj ; ð44Þ

where Θ ¼ arccos ðn ·mÞ, the unit vectors are defined in
terms of ni and mi in Eqs. (38a)–(38b) and (39a)–(39b)
and the functions ΓP

xθðΘÞ and ΓP
yϕðΘÞ are defined as the

integrals in Eqs. (43a) and (43d) respectively. This result is
the equivalent of Eq. (71) in Ref. [22].
One advantage of the decomposition of the spatial

correlation matrix in Eq. (44) is that the functions ΓP
xθðΘÞ

FIG. 4. Geometrical setup of the vectors involved in the
calculation of the overlap reduction functions. A pair of stars,
one of them nominally placed at the North pole, and a second one
at angular separation Θ (along the arc ϕ ¼ 0) are considered.
Each of them experiences astrometric response due to a back-
ground of gravitational radiation. On the left-hand side of the
figure are shown the Cartesian triad associated with the point n̂i

(top) and the curvilinear triad associated with the point m̂i

(bottom). The astrometric deflection at point n̂i (m̂i) is a vector
in the tangent plane to the sphere, and can be decomposed in
terms of just êx and êy (êθ and êϕ). We are interested in the
correlations between these vector components.
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and ΓP
yϕðΘÞ have the clear interpretation as the scalar

correlations of the “parallel” and “perpendicular” compo-
nents of the astrometric deflection. Here “parallel” means
tangent to the geodesic linking the two points, and
“perpendicular” means pointing to the left of this curve;
see Fig. 4.
It is well known that any vector field vi on the sphere

admits a unique Helmholtz decomposition into gradient
and curl parts; vi ¼ ∇iϕþ ð∇ ∧Þiψ , where∇ is the surface
gradient on the sphere, ð∇ ∧Þ ¼ r ∧ ∇ is the surface curl,
and ϕ and ψ are scalar fields on the sphere. Another
advantage of the spatial correlation matrix in Eq. (44) is that
the functions ΓP

xθðΘÞ and ΓP
yϕðΘÞ govern the statistical

properties of the gradient and curl parts respectively. By
comparing components, it can be seen that the ΓP

xθðΘÞ and
ΓP
yϕðΘÞ terms in Eq. (44) are exactly the general divergence

and curl kernels Ψdiv and Ψcurl defined in Ref. [38]. A
random vector field described by a spatial correlation
matrix with Γyϕ ¼ 0 will be a pure divergence, and a
vector field described by a correlation matrix with Γxθ ¼ 0
will be a pure curl.

A. Tensorial transverse-traceless polarizations

This section considers the astrometric correlations aris-
ing in a background of just the two GR polarization modes;
i.e., P ∈ fþ;×g. This calculation was considered previ-
ously in Ref. [22]; here this result is reproduced within the
framework outlined in the previous section.
In Appendix B it is shown how to evaluate the integrals

Γþ
xθ, Γþ

yϕ, Γ×
xθ, and Γ×

yϕ defined in Eq. (33). Following
Eq. (32), the spatial correlation matrix in a background with
multiple polarizations is the sum of the individual spatial
correlations, so Γþ;×

xθ ðΘÞ ¼ Γþ
xθðΘÞ þ Γ×

xθðΘÞ, and similarly
for Γþ;×

yϕ ðΘÞ. Remarkably, these two functions turn out to be
equal in this particular case,

T ðΘÞ ¼ Γþ;×
xθ ðΘÞ ¼ Γþ;×

yϕ ðΘÞ ¼ 2π

3
−
14π

3
sin2ðΘ=2Þ

− 8π
sin4ðΘ=2Þ

1 − sin2ðΘ=2Þ ln ðsin ðΘ=2ÞÞ: ð45Þ

Throughout this section all correlation functions are
written in terms of sin ðΘ=2Þ. Therefore, the correlated
astrometric deflection field generated by a Gaussian, sta-
tionary, isotropic, unpolarized GW background in GR is
fully specified by a single real-valued function of the
angular separation on the sphere, T ðΘÞ.
This function ought to be compared to the corresponding

result for pulsar timing. The spatial correlation between the
redshift at two different points on the sky is given by the
well-known Hellings-Downs curve [39],

HðΘÞ ¼ 1

2
ð1þ βÞ − 1

4
sin2ðΘ=2Þ

þ 3sin2ðΘ=2Þ ln ðsin ðΘ=2ÞÞ; ð46Þ

where β ¼ 1 for colocated pulsars and is zero otherwise.
The standard PTA normalization is limΘ→0HðΘÞ ¼ 1

2
; the

β in Eq. (46) comes from the expectation of the pulsar
terms in Eq. (17) which is nonzero only for the autocor-
relation. In the astrometric case there are no star terms
[see Eq. (20)], so in the case of a total time correlation
[Tðt; t0Þ ¼ 1], the normalization T ð0Þ ¼ 1 can be chosen.
Regardless, it is the “shape” of these curves that is of most
interest here.
The well-known Hellings-Downs curve governs the

spatial correlation of the redshift on the sky. Similarly,
the function T ðΘÞ governs the spatial correlation of the
astrometric deflection on the sky. The function T ðΘÞ can
therefore be considered as the astrometric analog of the
Hellings-Downs curve. Both T ðΘÞ and HðΘÞ are shown
in Fig. 5.
In order to gain a better understanding of what this vector

field correlation over the sky means it is useful to draw a
realization of this random process and to plot the result.
The results are shown in Fig. 6, and an overview of the
procedure used to produce the data in this plot can be found
in Appendix C.

B. Scalar “breathing” polarization

The astrometric correlations arising in a background of
transverse scalar GWs (i.e., P ∈ fSg) are considered here.
Appendix D shows how to evaluate the integrals ΓS

xθ and
ΓS
yϕ defined in Eq. (33); here only the results of these

integrals are presented:

FIG. 5. The astrometric and redshift correlations as a function
of angular separation on the sky in a background of tensorial,
transverse-traceless GWs (i.e., þ and ×). The well-known
Hellings-Downs curve, HðΘÞ, determines the redshift correla-
tions and is shown here with the usual normalization
limΘ→0HðΘÞ ¼ 1

2
due to the presence of the pulsar term in

Eq. (17). The astrometric correlations are similarly determined
by a single function, T ðΘÞ, which is shown with the normali-
zation T ð0Þ ¼ 1 as there is no star term in Eq. (20). The function
T ðΘÞ is the astrometric analog of the Hellings-Downs curve. The
function PðΘÞ is the redshift-astrometry analog of the Hellings-
Downs curve and is introduced and discussed in Sec. V.
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ΓS
xθðΘÞ ¼

π

3
cosΘ≡ π

3
−
2π

3
sin2ðΘ=2Þ; ð47aÞ

ΓS
yϕðΘÞ ¼

π

3
: ð47bÞ

Again, this should be compared to the PTA result for the
redshift correlation in a stochastic background of “breath-
ing” GWs. This was derived in Ref. [16] as

corrðΘÞ ¼ 1

2
ð1þ βÞ þ 1

2
−
1

4
sin2ðΘ=2Þ; ð48Þ

where the variable β is defined just after Eq. (46). All three
of these functions are plotted in Fig. 7.
The most surprising aspect of astrometric correlation is

the result for ΓS
yϕðΘÞ; the “perpendicular” components of

the astrometric deflection at any two points on the sky are
always perfectly correlated. This is an extremely strong
constraint which any allowed realizations of the vector field
must obey. The interpretation of this becomes clearer when
a random realization of the correlation is drawn; this is
shown in Fig. 8.
The random realizations of the astrometric deflections

plotted in Figs. 6 and 8 are qualitatively different. The
transverse-traceless polarizations of GR produce a distinc-
tive curl-like pattern at large angular scales, whereas the
transverse-trace (or scalar) mode generates a dipole-like
structure on the sky. The polarization content of the
stochastic GW background determines the spatial correla-
tions among the astrometric deflections. If Gaia, or some
other future astrometry mission, is able to measure the
stochastic pattern of astrometric deflections due to a
background of GWs, the measured correlations will encode
details of the polarization content of the background and
thereby enable a test of GR.

C. Vectorial polarizations

After analyzing the tensorial modes and the scalar
“breathing” mode, it is interesting to consider the astro-
metric correlations arising in a background of just the two
vectorial polarization modes; i.e., P ∈ fX; Yg. These cal-
culations have an additional complication over those in the
preceding sections as the vectorial polarizations have a
longitudinal component which introduces a singularity into
the “Earth term”-only redshift and astrometric responses
[see Eqs. (17) and (20)]. In the case of the redshift
correlation, as was found in Ref. [16], this means the
correlation curve diverges at Θ ¼ 0;

ΓX;Y
z ðΘÞ ¼ −

28π

3
þ 32π

3
sin2ðΘ=2Þ − 8π ln ðsin ðΘ=2ÞÞ:

ð49Þ

FIG. 6. A random realization of the astrometric deflection field
for a background of tensorial þ and × waves. The position of
each star is recorded twice, separated by a time Δt. These two
positions are shown here (in a Mollweide projection) at the foot
and head respectively of each arrow. The length of each arrow is
proportional to the total power in the GW background at
frequencies f < 1=Δt. The length of the arrows has been greatly
scaled up here for clarity.

FIG. 7. The astrometric and redshift correlations as a function
of angular separation on the sky in a background of scalar,
“breathing” GWs (i.e., S). The functions which determine the
astrometric correlations [ΓS

xθðΘÞ and ΓS
yϕðΘÞ; see Eq. (47)] are

normalized so that their maximum is unity. The PTA result for the
correlated redshift in Eq. (48) is plotted, normalized to 1

2
atΘ ¼ 0.

FIG. 8. A random realization of the astrometric deflection field
for a background of scalar “breathing” S waves. This was
produced in the same way as Fig. 6. It is clear from the plot
that the astrometric deflection vector field has a random dipole-
like structure on the sphere; the origin of this behavior is the fact
that ΓS

yϕðΘÞ≡ const, and the astrometric deflection at any two
points on the sky are perfectly correlated.
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This result is plotted in Fig. 9. The divergence at the origin
is a result of the use of the “Earth term”-only redshift
response. If the “star term” is included the result becomes
finite, and the correlation depends on the distance to the
star. When including the star term the integration must be
performed numerically; the results of this numerical inte-
gration are also shown in Fig. 9 for two pulsars at distances
of 100 and 200 gravitational wavelengths respectively.
In contrast, the divergence in the astrometric response

is of a logarithmic nature [i.e., of the type
R
dxfðxÞ=x],

and is regularized by the integral over the sky. This means
that the resulting correlation curve is nondivergent, even
though the two individual astrometric responses do
diverge. Appendix E discusses how to evaluate the
integrals ΓX

xθ, ΓX
yϕ, ΓY

xθ, and ΓY
yϕ analytically. Following

Eq. (32), the spatial correlation matrix in a background
with multiple polarizations is the sum of the individual
spatial correlations, ΓX;Y

xθ ðΘÞ ¼ ΓX
xθðΘÞ þ ΓY

xθðΘÞ, and
similarly for ΓX;Y

yϕ ðΘÞ. Again, these two functions turn
out to be equal:

ΓX;Y
xθ ðΘÞ ¼ ΓX;Y

yϕ ðΘÞ ¼ 4π

3
þ 8π

3
sin2ðΘ=2Þ

þ 8π
sin2ðΘ=2Þ

1 − sin2ðΘ=2Þ ln ðsin ðΘ=2ÞÞ: ð50Þ

This vectorial astrometric correlation function is also
plotted in Fig. 9.

D. Scalar “longitudinal” polarization

The scalar longitudinal mode, on the other hand, is more
interesting, as in this case the “Earth term”-only astrometric
correlation curves do diverge at Θ ¼ 0. These functions are

given by (see Appendix F for details of the evaluation of
the relevant integrals, and Fig. 10 for plots of the two
functions)

ΓL
xθðΘÞ ¼ −

10π

3
þ 8π

3
sin2ðΘ=2Þ − 2π

ln ðsin ðΘ=2ÞÞ
1 − sin2ðΘ=2Þ ;

ð51aÞ

ΓL
yϕðΘÞ ¼ −

4π

3
− 2π

ln ðsin ðΘ=2ÞÞ
1 − sin2ðΘ=2Þ : ð51bÞ

Similarly to the vectorial redshift correlation, the diver-
gence is a result of using the “Earth term”-only astrometric
response in Eq. (20). If instead, the full astrometric
response in Eq. (19) is used the correlation is finite,
although the integrals need to be evaluated numerically
in this case (see Appendix F 1 for details). When using the
full astrometric response, the correlation curves depend on
the distance to the stars; two such curves are shown in
Fig. 10 for stars at distances of 100 and 200 gravitational
wavelengths.
One conclusion which can be drawn from the curves in

Fig. 10 is that for a longitudinally polarized GW back-
ground there are only strong astrometric correlations
between stars at small angular separations. This is in
marked contrast to the GR case of a tensorial fþ;×g
background, where correlations of order unity persist at all
angular scales.
In order to better understand the behavior at Θ ¼ 0, it is

useful to consider the full (nondivergent) correlation
including the distances to the stars at the point Θ ¼ 0.
At this point the full integral can be evaluated analytically,
giving a correlation which is a function of just the distances
dn and dm to the two stars. This function quantifies the

FIG. 9. The astrometric and redshift correlations as a function
of angular separation on the sky in a background of vectorial
GWs (i.e., P ∈ fX; Yg). The function which determines the
astrometric correlation [ΓX;Y

xθ ðΘÞ ¼ ΓX;Y
yϕ ðΘÞ; see Eq. (50)] is

normalized so that its maximum is unity. The numerical redshift
result [for pulsars at distances ð100λGW; 200λGWÞ] for the
correlated redshift is plotted (normalized to 1

2
at Θ ¼ 0) along

with the divergent result from Eq. (49).

FIG. 10. The astrometric and redshift correlations as a function
of angular separation on the sky in a background of scalar
longitudinal GWs (i.e., L). The numerical curves which deter-
mine the astrometric correlation [LxθðΘÞ and LyϕðΘÞ; see
Appendix F 1] are normalized so that their maximum is unity;
the two analytical divergent curves ΓL

xθðΘÞ and ΓL
yϕðΘÞ [see

Eq. (51)] are also plotted. The numerical redshift result for the
correlated redshift is plotted, normalized to 1

2
at Θ ¼ 0.
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cross correlation of the deflections of two stars which
appear at the same point on the sky, but are separated in
distance by many gravitational wavelengths. A plot of this
function is given in Fig. 11 and an explicit expression for it
is given in Appendix F 2.

V. REDSHIFT-ASTROMETRY CORRELATIONS

As discussed above, a stochastic background of GWs
can, in principle, be detected by both pulsar timing or
astrometric measurements. However, improved sensitiv-
ities can be obtained by combining these two techniques.
In addition to the straightforward increase in signal to
noise that comes with the increased amount of data, there
is an additional benefit that comes from now being able to
search for GWs in the cross correlation between the two
data sets. It is this redshift-astrometric correlation which is
considered here.
As described above, an isotropic, unpolarized back-

ground of GWs causes a correlated redshift pattern on
the sky. The correlation at two points on the sky is
described by a single real-valued function of the angular
separation [HðΘÞ; see Eq. (46) and Fig. 5] known as the
Hellings-Downs curve [39]. This result is a very robust
prediction within GR; it depends only on the existence of
the two polarizations predicted by the theory and the
homogeneity and isotropy of the Universe on scales
comparable to the distance to the GW sources. It does
not depend on the dynamics of the individual sources
generating the background. The detection of a Hellings-
Downs correlated redshift pattern via pulsar timing would
be clear evidence for a stochastic GW background.
Similarly, a background of GWs causes a correlated

astrometric deflection pattern on the sky. This correlation

pattern is also fully specified by a single real-valued
function of the angular separation [T ðΘÞ; see Eq. (45)
and Fig. 5] which was first derived in Ref. [22], although
not in the current form. This is the astrometric analog of the
Hellings-Downs curve; it is a similarly robust prediction
of GR and the detection of this pattern via astrometric
measurements would provide similarly clear evidence for a
stochastic GW background.
Additionally, there is a correlation between the redshift

and astrometric deflection. The redshift of a pulsar in
direction n is correlated with the astrometric deflection,
δmi ¼ δmθûθi þ δmϕû

ϕ
i , of a star in direction m via

hzðnÞδmiðmÞi ∝
Z

dΩqzðnÞδmiðmÞ

∝
Z

dΩqzðnÞðδmθûθi þ δmϕû
ϕ
i Þ

∝ ΓzθðΘÞûθi þ ΓzϕðΘÞûθi ; ð52Þ

where Θ ¼ arccosðn ·mÞ. General considerations again
show that Γzϕ always vanishes. For a GW background
of þ and × waves the remaining function evaluates to

PðΘÞ ¼ Γþ
zθðΘÞ ¼

8π

3
sin ðΘ=2Þ cos ðΘ=2Þ

þ 8π
sin3ðΘ=2Þ
cos ðΘ=2Þ ln ðsin ðΘ=2ÞÞ: ð53Þ

The basis vectors ûθi and ûϕi are defined in Sec. IV and
illustrated in Fig. 4. From Eq. (52) it follows that the
redshift of a pulsar is correlated with the “parallel compo-
nent” of the astrometric deflection of a star, and is
uncorrelated with the “perpendicular component” (see
Fig. 4 for an illustration of the geometric setup).
Furthermore, the correlation between a pulsar and the

response from a ×-polarized GW vanishes,

Γ×
zθðΘÞ ¼ Γ×

zϕðΘÞ ¼ 0; ð54Þ

therefore the entire correlation between the redshift of a
pulsar and the astrometric deflection of a star for P ∈
fþ;×g is governed by PðΘÞ in Eq. (53). This is shown,
together with the other curves relevant to GR, in Fig. 5, and
with the other redshift-astrometry curves in Fig. 12.
PTA-astrometry correlations like the one in Eq. (53) can

be found for the other polarization states, too. In particular,
the curves can be derived explicitly in the case of scalar
“breathing” and vectorial modes,

ΓS
zθðΘÞ ¼ −

20π

3
sin ðΘ=2Þ cos ðΘ=2Þ

− 8π
sin ðΘ=2Þ
cos ðΘ=2Þ ln ðsin ðΘ=2ÞÞ; ð55Þ

FIG. 11. Surface plot of the astrometric longitudinal correlation
at Θ ¼ 0, given by ΣLðdn; dmÞ for dm ≥ dn [see Eq. (F7) in
Appendix F 2 for the precise expression]. The two distances are
expressed in terms of gravitational wavelengths. A dot marks the
point ðdn; dmÞ ¼ ð100; 200Þ, which is used for computing the
numerical integral in Fig. 10.
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ΓX
zθðΘÞ ¼

2π

3
sin ðΘ=2Þ cos ðΘ=2Þ; ð56Þ

while the correlations ΓS
zϕ, ΓX

zϕ, ΓY
zθ and ΓY

zϕ all vanish. The
scalar longitudinal mode curve cannot be derived explicitly
using this method, and has therefore been computed
numerically (again, only the x − θ correlation is nonzero).
Plots of all four curves can be found in Fig. 12.
Again, the redshift-astrometric correlation pattern is fully

described by a single real-valued function of the angular
separation, PðΘÞ. This is the redshift-astrometric analog
of the Hellings-Downs curve, and is a similarly robust
prediction within GR. The three functionsHðΘÞ, T ðΘÞ and
PðΘÞ provide a starting point for searching for a stochastic
GW background using a combination of pulsar timing and
astrometric data; HðΘÞ describes the spatial correlations of
the redshift over the sky, T ðΘÞ describes the astrometric
correlations, and PðΘÞ describes the cross correlation
between the redshifts and astrometric deflections.

VI. CONCLUSIONS

The change in the apparent position of a star, or the
astrometric response, caused by an arbitrarily polarized
gravitational wave has been considered. This astrometric
response depends, in general, on both the metric perturba-
tion at the photon emission and absorption events at the
star and Earth respectively. If the star is many gravitational
wavelengths distant from the Earth, and if the GW is
transverse (i.e., þ, ×, and S), then the star terms can be
neglected and the astrometric deflection depends only on
the metric perturbation near the Earth.
This paper considered the correlated astrometric signal

due to a stationary and isotropic GW background. If the
background is unpolarized, then the correlation separates
into a sum of an integral over the sphere of the sky for each
polarization state. We evaluated these integrals for each of

the six possible GW polarization states, although in one
case the integration could only be performed numerically.
A new decomposition for the astrometric correlation matrix
has been introduced. This decomposition has a clear
geometric interpretation and enables a nice comparison
with existing results for the redshift correlations from the
pulsar timing literature. In the special case of a tensorially
polarized GW background, the astrometric correlation is
governed by a single function which can be considered as
the astrometric analogue of the Hellings-Downs curve.
The cross correlation between the redshift and astro-

metric signals has also been derived for all six GW
polarizations. This may form the basis for a joint pulsar
timing and astrometric search for the low-frequency sto-
chastic gravitational wave background.
Future work on this topic should include establishing how

the absolute sensitivity of Gaia to stochastic GW back-
grounds depends on the polarization content. It would also
be possible to consider how the astrometric correlations are
changed in the presence of an anisotropic GW background;
this would require a more detailed analysis similar to that
already performed for redshift correlations [33,40].
The correlation coefficients for the modes of a vector

spherical harmonic representation of the astrometric
response can also be computed by utilizing the results
described here. This was discussed in Ref. [32], albeit in a
different formalism, and the results were left in terms of
Legendre polynomial projections of an angular power
spectra function. Instead, the correlation coefficients can
be computed directly by projecting the two-point correla-
tion functions presented in Secs. IV and V onto vector
spherical harmonics with m ¼ �1 or m ¼ 0 for the
astrometry correlations and redshift-astrometry corrections
respectively. A future work would involve directly comput-
ing the correlation coefficients and assessing their detect-
ability by current and future detectors.
Another interesting possibility is to consider how the

astrometric and redshift correlations change if the graviton
has a mass; the correlations derived in this paper depend
on the assumption that GWs propagate at the speed of
light.
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FIG. 12. The redshift-astrometric correlations as a function of
angular separation on the sky, given by Eqs. (53), (55), and (56)
for different polarizations. The numerical result for the scalar
longitudinal correlation is plotted too (see Appendix F 1). All
functions are normalized so that their maximum is unity.
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APPENDIX A: ADDITIONAL ASTROMETRIC
DEFLECTION PATTERNS

In Fig. 3 of Sec. III the astrometric deflection patternswere
plotted for all six GW polarization states; for the three
transverse modes (þ, ×, and S) the distant-source-limit
formula (20) was used, while for the three modes with
longitudinal components (X, Y, and L) the full formula
(including the star terms) (19) was used. In this Appendix the
effect of including the star terms on the deflection patterns for
the two transverse GR modes (þ and ×) is illustrated. In
Fig. 13 the new astrometric deflection patterns are plotted;
these plots were produced in the same way as the top row
of Fig. 3 except that Eq. (19) was used in place of Eq. (20)
(all stars are placed 10 gravitational wavelengths away from
the Earth). The extra terms in the full expression for the
astrometric deflection introduce an additional oscillatory
deflection pattern which is out of phase with the Earth term
pattern plotted in Fig. 3; this causes each star to trace out a
small ellipse on the sky. If the stars are further away from the
Earth then the phase difference between the two oscillations
changes and the amplitude of the additional oscillation is
reduced (the ellipses appear rotated and their eccentricity is
increased); in the limit of infinite distance the patterns in
Fig. 3 are recovered. In these figures the ellipses are aligned
in a regular pattern on the sky because the stars are all the
same distance from the Earth. If all the distances were
different, the ellipses would all be misaligned and the extra
motion from the full formula in Eq. (19) would appear to be a
random noise superposed on the regular Earth term pattern
plotted in Fig. 3.

APPENDIX B: THE TENSORIAL ASTROMETRIC
INTEGRALS

In Secs. IVA–IV D the details of the evaluations of the
spatial correlation integrals for the different polarization
modes were omitted for brevity; the details are presented in
this Appendix, and in Appendices D–F.
In the main text the astrometric response at each of the

two star positions was resolved in the tangent plane along a
pair of basis vectors. It was then shown how the spatial
correlation matrix can be written in terms of just two scalar
integrals over the sky: one involving the x and θ compo-
nents, and one involving the y and ϕ components. In this
Appendix these two integrals will be evaluated, first for the
þ mode and then for the × mode.
First, the x − θ term for the þ polarized GW state is

considered; the correlation integral is defined in Eq. (43a) as

Γþ
xθðΘÞ ¼

Z
S2
dΩqδnþx ðqÞδmþ

θ ðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnþx ðθ;ϕÞδmþ
θ ðθ;ϕÞ; ðB1Þ

where the vector q ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is the
direction on the sky from which the GW originates. The
components of the astrometric deflections, δnþx ðθ;ϕÞ and
δmþ

θ ðθ;ϕÞ, may be evaluated from the definitions in
Eqs. (41a) and (42a), using the formula for the astrometric
deflection in Eq. (20), the expression for theGWbasis tensor
in Eq. (24a), and the expressions for the basis vectors tangent
to the sphere in Eqs. (36a) and (37a):

δnþx ðθ;ϕÞ ¼ −
1

2
sin θ cosϕ; ðB2aÞ

δmþ
θ ðθ;ϕÞ ¼

1

1 − cosΘ cos θ − sinΘ sin θ cosϕ

�
3

16
sinΘð1 − cos ð2θÞÞ þ 1

4
ðcos ð2ΘÞ sin ð2θÞ − 2 cosΘ sin θÞ cosϕ

þ 1

16
ð8 sinΘ cos θ − 3 sin ð2ΘÞ − sin ð2ΘÞ cos ð2θÞÞ cos ð2ϕÞ

�
: ðB2bÞ

FIG. 13. Orthographic projections of the Northern (left) and Southern (right) hemispheres. On the sky are chosen 1000 stars. A GW
from a source located at the North pole (indicated by the red dots) is incident on the Earth causing the stars to move periodically at the
GW frequency, according to Eq. (19). All stars are placed at a distance of 10 gravitational wavelengths from the Earth; in reality, these
neat elliptical patterns would appear more chaotic, since the distances to each star are generally different. The blue lines show the
resulting movement tracks. The incident GW has the unphysically large characteristic strain amplitude A ¼ 0.1.
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The azimuthal integral over ϕ in Eq. (B1) may be evaluated using the result derived in Appendix B 1 (previously published in
Ref. [40] with a sign error). Using this result the double integral in Eq. (B1) becomes the single integral

Γþ
xθðΘÞ ¼ −2π

Z
Θ

0

dθðcos4ðθ=2Þ þ cos2ðθ=2Þ − 1Þ sin
3ðθ=2Þ

cos ðθ=2Þ þ 2π

Z
π

Θ
dθðsin4ðθ=2Þ þ sin2ðθ=2Þ − 1Þ cos

3ðθ=2Þ
sin ðθ=2Þ

þ 2πcos2ðΘ=2Þ
Z

Θ

0

dθð2cos4ðθ=2Þ þ 1Þ sin
3ðθ=2Þ

cos ðθ=2Þ − 2πsin2ðΘ=2Þ
Z

π

Θ
dθð2sin4ðθ=2Þ þ 1Þ cos

3ðθ=2Þ
sin ðθ=2Þ

−
2π

sin2ðΘ=2Þ
Z

Θ

0

dθ
sin5ðθ=2Þ
cos ðθ=2Þ þ

2π

cos2ðΘ=2Þ
Z

π

Θ
dθ

cos5ðθ=2Þ
sin ðθ=2Þ : ðB3Þ

This integral may now be evaluated using standard tech-
niques to give

Γþ
xθðΘÞ ¼

7π

3
−
14π

3
sin2ðΘ=2Þ − 4π

sin4ðΘ=2Þ
1 − sin2ðΘ=2Þ

× ln ðsin ðΘ=2ÞÞ þ 4π
cos4ðΘ=2Þ

1 − cos2ðΘ=2Þ
× ln ðcos ðΘ=2ÞÞ: ðB4Þ

Second, the y − ϕ component term for the þ polarized
GW state is considered; the relevant correlation integral
was defined in Eq. (43d) as

Γþ
yϕðΘÞ ¼

Z
2π

0

dϕ
Z

π

0

dθ sin θδnþy ðθ;ϕÞδmþ
ϕ ðθ;ϕÞ:

ðB5Þ
The components of the astrometric deflections may be
evaluated from the definitions in Eqs. (41b) and (42b),
using the formula for the astrometric deflection in
Eq. (20), the expression for the GW basis tensor in
Eq. (24a), and the expressions for the basis vectors
in Eqs. (36b) and (37b):

δnþy ðθ;ϕÞ ¼ −
1

2
sin θ sinϕ; ðB6aÞ

δmþ
ϕ ðθ;ϕÞ ¼

1

1 − cosΘ cos θ − sinΘ sin θ cosϕ

�
1

2
ðcosΘ sin θ cos θ − sin ð2ΘÞ sin θÞ sinϕ

þ 1

8
ð2 sin ð2ΘÞ cos θ − 3 sinΘ − sinΘ cos ð2θÞÞ sin ð2ϕÞ

�
: ðB6bÞ

The integral for Γþ
yϕðΘÞ in Eq. (B5) may be evaluated in

the same way as that for Γþ
xθðΘÞ above to give

Γþ
yϕðΘÞ ¼ −

5π

3
− 4π

sin4ðΘ=2Þ
1 − sin2ðΘ=2Þ ln ðsin ðΘ=2ÞÞ

− 4π
cos4ðΘ=2Þ

1 − cos2ðΘ=2Þ ln ðcos ðΘ=2ÞÞ: ðB7Þ

Third, the two analogous integrals for the × GR polari-
zation state are considered; these correlation integrals are
defined in Eqs. (43a) and (43d):

Γ×
xθðΘÞ¼

Z
π

0

dθ
Z

2π

0

dϕsinθδn×x ðθ;ϕÞδm×
θ ðθ;ϕÞ; ðB8aÞ

Γ×
yϕðΘÞ¼

Z
π

0

dθ
Z

2π

0

dϕsinθδn×y ðθ;ϕÞδm×
ϕðθ;ϕÞ: ðB8bÞ

The components of the astrometric deflection may be
evaluated from the definitions in Eqs. (41a), (42a), (41b),

and (42b), using the formula for the astrometric deflection
in Eq. (20), the expression for the GW basis tensor in
Eq. (24b), and the expressions for the basis vectors in
Eqs. (36a), (37a), (36b), and (37b). Due to the symmetry
between theþ and × modes, these components are closely
related to those found above for the þ components:

δn×x ðθ;ϕÞ ¼ δnþy ðθ;ϕÞ; ðB9aÞ

δn×y ðθ;ϕÞ ¼ −δnþx ðθ;ϕÞ; ðB9bÞ

δm×
θ ðθ;ϕÞ ¼ δmþ

ϕ ðθ;ϕÞ; ðB9cÞ

δm×
ϕðθ;ϕÞ ¼ −δmþ

θ ðθ;ϕÞ: ðB9dÞ

The two integrals for Γ×
xθðΘÞ and Γ×

yϕðΘÞ in Eqs. (B8a)
and (B8b) may be evaluated in the same way as those for
Γþ
xθðΘÞ and Γþ

yϕðΘÞ above to give

Γ×
xθðΘÞ ¼ Γþ

yϕðΘÞ; ðB10aÞ
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Γ×
yϕðΘÞ ¼ Γþ

xθðΘÞ: ðB10bÞ

As was described in the main text, for an unpolarized
background containing equal powers of both þ and ×
polarization states we may define the combined spatial
correlation functions Γþ;×

xθ ðΘÞ ¼ Γþ
xθðΘÞ þ Γ×

xθðΘÞ and
Γþ;×
yϕ ðΘÞ ¼ Γþ

yϕðΘÞ þ Γ×
yϕðΘÞ. These new functions may

be evaluated by taking the sums of the expressions in
Eqs. (B4), (B7), (B10a), and (B10b) to give the result
which appeared in the main text,

Γþ;×
xθ ðΘÞ ¼ Γþ;×

yϕ ðΘÞ ¼ 2π

3
−
14π

3
sin2ðΘ=2Þ

− 8π
sin4ðΘ=2Þ

1 − sin2ðΘ=2Þ ln ðsin ðΘ=2ÞÞ: ðB11Þ

The three functions Γþ
xθðΘÞ ¼ Γ×

yϕðΘÞ, Γþ
yϕðΘÞ ¼ Γ×

xθðΘÞ,
and Γþ;×

xθ ðΘÞ ¼ Γþ;×
yϕ ðΘÞ, are plotted in Fig. 14.

1. Azimuthal integral

The following integral appears in most of the spatial
correlation integrals:

Inðθ;ΘÞ ¼
Z

2π

0

dϕ
cosðnϕÞ

1− cosΘcosθ− sinΘsinθ cosϕ

¼R

�Z
2π

0

dϕ
einϕ

1− cosΘcosθ− sinΘ sinθ cosϕ

�
:

ðB12Þ

The integral is tidied up by defining the new variables

aðθ;ΘÞ ¼ 1 − cosΘ cos θ; ðB13aÞ

bðθ;ΘÞ ¼ −
sinΘ sin θ

1 − cosΘ cos θ
: ðB13bÞ

If z ¼ eiϕ, then dϕ ¼ dz=ðizÞ and from z̄ ¼ 1=z ¼
cosϕ − i sinϕ, it can be found that cosϕ ¼ 1

2
ðzþ z−1Þ

and finally Inðθ;ΘÞ is expressed as a complex integral over
the circle γ ¼ fjzj ¼ −1=bg

Inðθ;ΘÞ ¼ R

�
2

ia

I
γ
dz

zjnj

bz2 þ 2zþ b

�
: ðB14Þ

The modulus sign is needed since the cosine function
is even. The integrand has two distinct poles, each at
z� ¼ ð−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p
Þ=b. The positions of those poles are

determined by the range of the function bðθ;ΘÞ. Both θ
and Θ range from 0 to π; the substitutions x ¼ cos θ and
y ¼ cosΘ lead to

bðx; yÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
1 − xy

: ðB15Þ

By investigating the derivatives of bðx; yÞ, it can be estab-
lished that the function ranges between −1 and 0, which
corresponds to z− ∈ ½−1=b;þ∞Þ and zþ ∈ ð0;−1=b�. The
value of the contour integral is determined by the residue
of the root which lies inside the contour γ,

2πiResz¼zþ

�
zn

bz2 þ 2zþ b

�
¼ πi

znþ
bzþ þ 1

: ðB16Þ

Plugging this back into Eq. (B14) yields a result for In,

Inðθ;ΘÞ ¼
2π

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p
 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p

b

!jnj

¼ 2π

j cos θ − cosΘj

×

�
1 − cosΘ cos θ þ j cos θ − cosΘj

sinΘ sin θ

�jnj

ðB17aÞ

¼
8<
:

2π
cos θ−cosΘ

	
ð1þcosΘÞð1−cos θÞ
ð1−cosΘÞð1þcos θÞ


jnj=2
; 0 ≤ θ ≤ Θ;

2π
cosΘ−cos θ

	
ð1−cosΘÞð1þcos θÞ
ð1þcosΘÞð1−cos θÞ


jnj=2
; Θ < θ ≤ π:

ðB17bÞ

APPENDIX C: RANDOM REALIZATIONS
OF THE ASTROMETRIC DEFLECTIONS

ON THE SKY

Figures 6 and 8 show one possible realization of the GW
background for the GR and transverse scalar polarizations
respectively. In this Appendix the method for producing
such realizations is described.
Pick N distinct arbitrary points (or “stars”) on the sky.

The Cartesian coordinates of the ith star are ni ¼ ðxi; yi; ziÞ

FIG. 14. Plot of the tensorial correlation functions in Eq. (B11),
normalized so that their absolute maximum is unity. Also shown
are the functions for each of the two GR modes, given by
Eqs. (B4), (B7), (B10a), and (B10b), rescaled by the same
normalization constant.
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and satisfy x2i þ y2i þ z2i ¼ 1. Consider the following vector
of length 3N formed from the Cartesian coordinates:

x ¼ ðx1; y1; z1; x2; y2; z2;…; xN; yN; zNÞ: ðC1Þ

The quantity one needs to find is the change in these
coordinates, δx. Formally, this is distributed as a zero-mean
Gaussian random variable,

δx ∼N ð0;CÞ; ðC2Þ
with the 3N × 3N correlation matrix formed block by block
from the 3 × 3 spatial matrices defined in Eq. (32):

C ¼

0
BBBBB@

Γðn1;n1Þ Γðn1;n2Þ … Γðn1;nNÞ
Γðn2;n1Þ Γðn2;n2Þ … Γðn2;nNÞ

..

. ..
. . .

. ..
.

ΓðnN;n1Þ ΓðnN;n2Þ … ΓðnN;nNÞ

1
CCCCCA:

ðC3Þ

This is only valid formally, because the matrix C is not
positive definite; in fact, it has N zero eigenvalues. The
origin of this behavior is that the three Cartesian coor-
dinates are being used to describe an intrinsically two-
dimensional process on the sphere. This can be rectified by
instead considering the changes in the polar coordinates of
each star:

�
δθi

δϕi

�
¼ Pi ·

0
B@

δxi
δyi
δzi

1
CA;

where Pi ¼

0
B@ 0 0 − 1ffiffiffiffiffiffiffi

1−z2i
p

− yi
x2iþy2i

xi
x2iþy2i

0

1
CA ðC4Þ

⇒ δθ≡ ðδθ1; δϕ1; δθ2; δϕ2;…; δθN; δϕNÞ
¼ Π · δx

where Π ¼

0
BBBBB@

P1 0 … 0

0 P2 … 0

..

. ..
. . .

. ..
.

0 0 … PN

1
CCCCCA: ðC5Þ

The matrix Π has shape 2N × 3N. The vector δθ is also
distributed as a Gaussian random variable, δθ ∼N ð0;C0Þ,
where the new covariance matrixC0 ¼ Π · C ·ΠT is strictly
positive definite. The parameter A is some overall ampli-
tude chosen in Figs. 6 and 8 to be A ¼ 0.01. A random
realization of δθ may now be obtained without an obstacle,
and the vector δx can be obtained by simple geometry.

The plots in Figs. 6 and 8 were produced using N ¼
1000 stars placed regularly on the sky, and show the
original star positions, x, and the new positions, xþ δx,
joined by a smooth curves using the Mollweide projection.

APPENDIX D: THE TRANSVERSE SCALAR
“BREATHING” MODE ASTROMETRIC

INTEGRALS

In this Appendix the evaluation of spatial correlation
integrals for the transverse scalar GW polarization state, S,
is briefly described. The integration is very similar to those
for the þ and × states described in Appendix B. The
relevant correlation integrals were defined in Eqs. (43a)
and (43d) as

ΓS
xθðΘÞ ¼

Z
S2
dΩqδnSxðqÞδmS

θðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnSxðθ;ϕÞδmS
θðθ;ϕÞ; ðD1aÞ

ΓS
yϕðΘÞ ¼

Z
S2
dΩqδnSyðqÞδmS

ϕðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnSyðθ;ϕÞδmS
ϕðθ;ϕÞ; ðD1bÞ

where the vector q ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is the
direction on the sky from which the GW originates. The
components of the astrometric deflections may be evalu-
ated from the definitions in Eqs. (41a), (42a), (41b), and
(42b), using the formula for the astrometric deflection in
Eq. (20), the expression for the GW basis tensor in
Eq. (24c), and the expressions for the basis vectors tangent
to the sphere in Eqs. (36a), (37a), (36b), and (37b):

δnSxðθ;ϕÞ ¼ −
1

2
sin θ cosϕ; ðD2aÞ

δnSyðθ;ϕÞ ¼ δmS
ϕðθ;ϕÞ ¼ −

1

2
sin θ sinϕ; ðD2bÞ

δmS
θðθ;ϕÞ ¼

1

2
sinΘ cos θ −

1

2
cosΘ sin θ cosϕ: ðD2cÞ

The azimuthal and polar integrals for ΓS
xθðΘÞ and ΓS

yϕðΘÞ in
Eqs. (D1a) and (D1b) may be evaluated in the same way as
those for Γþ;×

xθ ðΘÞ and Γþ;×
yϕ ðΘÞ in Appendix B to give the

results in Eqs. (47a) and (47b) of the main text.

APPENDIX E: THE VECTORIAL ASTROMETRIC
INTEGRALS

In this Appendix the evaluation of spatial correlation
integrals for the vectorial GW polarization states, X and Y,
is briefly described. The derivation is very similar to those
for the þ and × states described in Appendix B. What is
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interesting in this case is that even though the stand-alone
astrometric response in both vectorial polarizations is
divergent at the origin (in Fig. 3 the “star terms” were
added to remove this divergence), the correlation functions
are perfectly regular and finite for all relevant values of Θ.
First, the X mode is considered; the relevant correlation

integrals were defined in Eqs. (43a) and (43d) as

ΓX
xθðΘÞ¼

Z
S2
dΩqδnXx ðqÞδmX

θ ðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sinθδnXx ðθ;ϕÞδmX
θ ðθ;ϕÞ; ðE1aÞ

ΓX
yϕðΘÞ¼

Z
S2
dΩqδnXy ðqÞδmX

ϕðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sinθδnXy ðθ;ϕÞδmX
ϕðθ;ϕÞ; ðE1bÞ

where the vector q ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is the
direction on the sky from which the GW originates. The
components of the astrometric deflections may be evalu-
ated from the definitions in Eqs. (41a), (42a), (41b), and
(42b), using the formula for the astrometric deflection in
Eq. (20), the expression for the GW basis tensor in
Eq. (24d), and the expressions for the basis vectors tangent
to the sphere in Eqs. (36a), (37a), (36b), and (37b):

δnXx ðθ;ϕÞ ¼
1

2
ð1þ 2 cos θÞ cosϕ; ðE2aÞ

δnXy ðθ;ϕÞ ¼
1

2
ð1þ 2 cos θÞ sinϕ; ðE2bÞ

δmX
θ ðθ;ϕÞ ¼

1

1 − cosΘ cos θ − sinΘ sin θ cosϕ

×

�
1

8
ð2 sinΘ sin θ − 3 sinð2ΘÞ sinð2θÞÞ

þ 1

2
ðcosΘ cos θ − cosð2ΘÞ cosð2θÞÞ cosϕ

þ 1

4
ðsinΘ sin θ − sinð2ΘÞ sinð2θÞÞ cosð2ϕÞ

�
;

ðE2cÞ

δmX
ϕðθ;ϕÞ ¼

1

1 − cosΘ cos θ − sinΘ sin θ cosϕ

×

�
1

2
cosΘðcos θ − cosð2θÞÞ sinϕ

þ 1

4
ðsinð2ΘÞ sin θ − sinΘ sinð2θÞÞ sinð2ϕÞ

�
:

ðE2dÞ
The equations for δmX

θ ðθ;ϕÞ and δmX
ϕðθ;ϕÞ diverge when

Θ ¼ 0. Nevertheless, the azimuthal and polar integrals for

ΓX
yϕðΘÞ and ΓX

yϕðΘÞ in Eqs. (E1a) and (E1b) may be

evaluated in the same way as those for Γþ;×
xθ ðΘÞ and

Γþ;×
yϕ ðΘÞ in Appendix B to give two results that are regular

for all values of Θ:

ΓX
xθðΘÞ ¼

π

6
þ 2π

3
sin2ðΘ=2Þ þ 6π

sin2ðΘ=2Þ
1 − sin2ðΘ=2Þ

× ln ðsin ðΘ=2ÞÞ − 2π
cos2ðΘ=2Þ

1 − cos2ðΘ=2Þ
× ln ðcos ðΘ=2ÞÞ; ðE3aÞ

ΓX
yϕðΘÞ ¼

13π

6
þ πsin2ðΘ=2Þ þ 6π

sin2ðΘ=2Þ
1 − sin2ðΘ=2Þ

× ln ðsin ðΘ=2ÞÞ þ 2π
cos2ðΘ=2Þ

1 − cos2ðΘ=2Þ
× ln ðcos ðΘ=2ÞÞ: ðE3bÞ

Second, the Y mode is considered; the relevant correlation
integrals were defined in Eqs. (43a) and (43d) as

ΓY
xθðΘÞ ¼

Z
2π

0

dϕ
Z

π

0

dθ sin θδnYx ðθ;ϕÞδmX
θ ðθ;ϕÞ; ðE4aÞ

ΓY
yϕðΘÞ ¼

Z
2π

0

dϕ
Z

π

0

dθ sin θδnYy ðθ;ϕÞδmX
ϕðθ;ϕÞ: ðE4bÞ

The components of the astrometric deflections may be
evaluated from the definitions in Eqs. (41a), (42a), (41b),
and (42b), using the formula for the astrometric deflection
in Eq. (20), the expression for the GW basis tensor in
Eq. (24e), and the expressions for the basis vectors tangent
to the sphere in Eqs. (36a), (37a), (36b), and (37b):

δnYx ðθ;ϕÞ ¼
1

2
cos θ sinϕ; ðE5aÞ

δnYy ðθ;ϕÞ ¼ −
1

2
cos θ cosϕ; ðE5bÞ

δmY
θ ðθ;ϕÞ ¼

1

1 − cosΘ cos θ − sinΘ sin θ cosϕ

×

�
1

2
ðcos ð2ΘÞ − cosΘ cos θÞ cos θ sinϕ

þ 1

4
sinΘð2 cosΘ − cos θÞ sin θ sin ð2ϕÞ

�
;

ðE5cÞ

δmY
ϕðθ;ϕÞ¼

1

1− cosΘcosθ− sinΘsinθcosϕ

×
�
3

16
sinð2ΘÞsinð2θÞþ1

4
ð1−2cosΘcosθ

þ cosð2ΘÞcosð2θÞÞcosϕþ 1

16
ðsinð2ΘÞsinð2θÞ

−8sinΘsinθÞcosð2ϕÞ
�
: ðE5dÞ
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The integrals for ΓY
yϕðΘÞ and ΓY

yϕðΘÞ in Eqs. (E4a) and
(E4b) may be evaluated in the same way as the integrals in
Appendix B:

ΓY
xθðΘÞ ¼

7π

6
þ 2π

sin2ðΘ=2Þ
1 − sin2ðΘ=2Þ lnðsinðΘ=2ÞÞ

þ 2π
cos2ðΘ=2Þ

1 − cos2ðΘ=2Þ lnðcosðΘ=2ÞÞ; ðE6aÞ

ΓY
yϕðΘÞ ¼ −

5π

6
þ 5π

3
sin2ðΘ=2Þ þ 2π

sin2ðΘ=2Þ
1 − sin2ðΘ=2Þ

× ln ðsin ðΘ=2ÞÞ − 2π
cos2ðΘ=2Þ

1 − cos2ðΘ=2Þ
× ln ðcos ðΘ=2ÞÞ: ðE6bÞ

As was described in the main text, for a unpolarized
background containing equal powers of both X and Y
polarization states we may define the combined spatial
correlation functions ΓX;Y

xθ ðΘÞ ¼ ΓxθðΘÞX þ ΓY
xθðΘÞ and

ΓyϕðΘÞX;Y ¼ ΓyϕðΘÞX þ ΓY
yϕðΘÞ. These new functions

may be evaluated by taking the sums of the expressions
in Eqs. (E3a), (E3b), (E6a), and (E6b) to give the results
which appeared in Eq. (50) of the main text.
The functions ΓX

xθðΘÞ, ΓX
yϕðΘÞ, ΓY

yϕðΘÞ, ΓY
xθðΘÞ, and

ΓX;Y
xθ ðΘÞ ¼ ΓX;Y

yϕ ðΘÞ, are plotted in Fig. 15.

APPENDIX F: THE SCALAR LONGITUDINAL
ASTROMETRIC INTEGRALS

In this Appendix the evaluation of spatial correlation
integrals for the longitudinal scalar GW polarization state,
L, will be discussed. Using the method established in the
previous appendices will yield divergent curves. These
results are still useful, and reasons for the anomaly are
discussed in Sec. IV D. A more careful calculation which

removes the divergence is presented in Appendix F 1. The
integration is very similar to those for the þ and × states
described in Appendix B. The relevant correlation integrals
were defined in Eqs. (43a) and (43d) as

ΓL
xθðΘÞ ¼

Z
S2
dΩqδnLx ðqÞδmL

θ ðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnLx ðθ;ϕÞδmL
θ ðθ;ϕÞ; ðF1aÞ

ΓL
yϕðΘÞ ¼

Z
S2
dΩqδnLy ðqÞδmL

ϕðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnLy ðθ;ϕÞδmL
ϕðθ;ϕÞ; ðF1bÞ

where the vector q ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is the
direction on the sky from which the GW originates. The
components of the astrometric deflections may be evalu-
ated from the definitions in Eqs. (41a), (42a), (41b), and
(42b), using the formula for the astrometric deflection in
Eq. (20), the expression for the GW basis tensor in
Eq. (24f), and the expressions for the basis vectors tangent
to the sphere in Eqs. (36a), (37a), (36b), and (37b):

δnLx ¼ −
1ffiffiffi
2

p sin θ cos θ cosϕ
1 − cos θ

; ðF2aÞ

δnLy ¼ −
1ffiffiffi
2

p sin θ cos θ sinϕ
1 − cos θ

; ðF2bÞ

δmL
θ ¼ 1ffiffiffi

2
p ð1 − cosΘ cos θ − sinΘ sin θ cosϕÞ

×

�
1

8
sinð2ΘÞð1þ 3 cosð2θÞÞ

þ 1

4
cosð2ΘÞ sinð2θÞ cosϕ

þ 1

8
sinð2ΘÞðcosð2θÞ − 1Þ cosð2ϕÞ

�
; ðF2cÞ

δmL
ϕ ¼ 1ffiffiffi

2
p ð1 − cosΘ cos θ − sinΘ sin θ cosϕÞ

×

�
1

2
cosΘ sinð2θÞ sinϕ

þ 1

4
sinΘð1 − cosð2θÞÞ sinð2ϕÞ

�
: ðF2dÞ

The integrals for ΓL
yϕðΘÞ and ΓL

yϕðΘÞ in Eqs. (F1a) and
(F1b) may be evaluated in the same way as those for
Γþ;×
xθ ðΘÞ and Γþ;×

yϕ ðΘÞ in Appendix B to give the results
presented in Sec. IV D of the main text (51a) and (51b).
As evident from Fig. 10, where these two curves are

plotted, they diverge at Θ ¼ 0. Obviously, this implies that
in the context of the scalar longitudinal mode, the method
for calculating the overlap reduction function is

FIG. 15. Plot of the vectorial correlation functions in Eq. (50),
normalized so that their absolute maximum is unity. Also shown
are the functions for each of the two GR modes, given by
Eqs. (E3a), (E3b), (E6a), and (E6b), rescaled by the same
normalization constant.
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inapplicable. We present below a modified approach which
solves the issue of the divergent curves.

1. Numerical correlation integrals on the sphere

The cause of the divergence in Eqs. (51a) and (51b) is
the use of the distant-source version of the astrometric

response in Eq. (20). If the full astrometric response in
Eq. (51a) is used instead the resulting spatial correlation is
always finite (although no longer analytically tractable).
All of the general discussion of the spatial correlation in
Sec. IV proceeds exactly as before, except Eq. (29) now
becomes the distance-dependent expression

Δijkðn;q; dÞ ¼
��

1þ ið2 − qrnrÞ
dð1 − qlnlÞ

ð1 − exp ð−idð1 − qsnsÞÞÞ
�
n{̂

−
�
1þ i

dð1 − qlnlÞ
ð1 − exp ð−idð1 − qsnsÞÞÞ

�
q{̂

�
njnk

2ð1 − qlnlÞ

−
�
1

2
þ i
dð1 − qlnlÞ

ð1 − exp ð−idð1 − qsnsÞÞÞ
�
δi

jnk; ðF3Þ

where d ¼ ωλSΩ is a measure of the distance to the star (in
gravitational wavelengths). With this form of Δi

jk, the
integral becomes regular for all relevant values of Θ.
The correlation curve is now a three-parameter function
of the angle on the sky Θ and the distances to both stars, dn
and dm:

ΓL
xθðΘ; dn; dmÞ ¼

Z
S2
dΩqδnLx ðq; dnÞδmL

θ ðq; dmÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnLx ðθ;ϕ; dnÞ

× δmL
θ ðθ;ϕ; dmÞ; ðF4aÞ

ΓL
yϕðΘ; dn; dmÞ ¼

Z
S2
dΩqδnLy ðq; dnÞδmL

ϕðq; dmÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnLy ðθ;ϕ; dnÞ

× δmL
ϕðθ;ϕ; dmÞ: ðF4bÞ

The vector q ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is the direc-
tion on the sky from which the GW originates. The
components of the astrometric deflections may be evalu-
ated from the definitions in Eqs. (41a), (42a), (41b), and
(42b), using the formula for the astrometric deflection in
Eq. (19), the expression for the GW basis tensor in
Eq. (24f), and the expressions for the basis vectors tangent
to the sphere in Eqs. (36a), (37a), (36b), and (37b).
Unfortunately, the integrals in Eqs. (F4a) and (F4b) can
no longer be solved using the same method as above, and
need to be evaluated numerically. Let LxθðΘÞ be the result
of numerically evaluating ΓL

xθðΘÞ and LyϕðΘÞ be the result

of numerically evaluating ΓL
yϕðΘÞ. In Fig. 10 two curves

LxθðΘÞ and LyϕðΘÞ are shown as examples of these
integrals for ðdn; dmÞ ¼ ð100; 200Þ. It becomes evident
that the numerical curves tend to the two analytic functions
(51a) and (51b) for large Θ.

2. Correlation integrals for stars in the same
direction on the sky

The integrals (F4a) and (F4b) can be solved analyti-
cally for the case Θ ¼ 0 (and also for Θ ¼ π) to give a
two-parameter family of functions which quantifies the
correlation between the astrometric deflections of stars
with the same position on the sky but located at different
distances,

ΣLðdn; dmÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnLx ðdn; θ;ϕÞδmL
θ ðdm; θ;ϕÞ

����
Θ¼0

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnLx ðdn; θ;ϕÞδnLx ðdm; θ;ϕÞ:

ðF5Þ

The derivation involves a simple azimuthal integral which
yields another straightforward polar integral. The compo-
nents of the astrometric deflections (at Θ ¼ 0) may be
evaluated from the definitions in Eqs. (41a), (42a), (41b),
and (42b), using the formula for the astrometric deflection
in Eq. (19), the expression for the GW basis tensor in
Eq. (24f), and the expressions for the basis vectors tangent
to the sphere in Eqs. (36a), (37a), (36b), and (37b):
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δnLx ðd; θ;ϕÞ ¼ δnLy ðd; θ;ϕÞ ¼ −
1ffiffiffi
2

p
�
cos3ðθ=2Þ
sin ðθ=2Þ − sin ðθ=2Þ cos ðθ=2Þ

�
cosϕ

þ 1

2
ffiffiffi
2

p
d
ð3 − 2cos2ðθ=2ÞÞ

�
cos3ðθ=2Þ
sin3ðθ=2Þ −

cos ðθ=2Þ
sin ðθ=2Þ

�
sin ð2dsin2ðθ=2ÞÞ cosϕ: ðF6Þ

The integral for ΣLðdn; dmÞ in Eq. (F5) may be evaluated using a computer algebra package to give

ΣLðdn; dmÞ ¼ πγþ π lnð2Þ− 29π

30
þ 33π

d4n
þ 33π

d4m
þ 11π

2d2n
þ 11π

2d2m
−

90π

ðd2n − d2mÞ2
þ π ln ðdndmÞ

− π
ðdn þ dm − 2Þðdn þ dm þ 2Þ

4dndm
ln ðdn þ dmÞ þ π

ðdn − dm − 2Þðdn − dm þ 2Þ
4dndm

ln jdn − dmj

− πCið2dnÞ− πCið2dmÞ−
9π

2dn
Sið2dnÞ−

9π

2dm
Sið2dmÞ

þ π
ðdn þ dm − 2Þðdn þ dm þ 2Þ

4dndm
Cið2ðdn þ dmÞÞ− π

ðdn − dm − 2Þðdn þ dm þ 2Þ
4dndm

Cið2jdn − dmjÞ

þ 15πðdn þ dmÞ
4dndm

Sið2ðdn þ dmÞÞ−
15πðdn − dmÞ

4dndm
Sið2jdn − dmjÞÞ

− π
5d2n − 54

2d4n
cos ð2dnÞ− π

5d2m − 54

2d4m
cos ð2dmÞ þ π

d4n þ 11d2n − 60

2d5n
sin ð2dnÞ þ π

d4m þ 11d2m − 60

2d5m
sin ð2dmÞ

−
10π

ðd2n − d2mÞ2
cos ð2dnÞ cos ð2dmÞ− π

ðd2n − d2mÞ3 − 12ðd2n − d2mÞ2 þ 100ðd2n þ 3d2mÞ
4ðd2n − d2mÞ3dm

cos ð2dnÞ sin ð2dmÞ

þ π
ðd2n − d2mÞ3 þ 12ðd2n − d2mÞ2 − 100ðd2n þ 3d2mÞ

4ðd2n − d2mÞ3dn
sin ð2dnÞ cos ð2dmÞ

þ π

8dndm

�
20

ðdn þ dmÞ2
þ 20

ðdn − dmÞ2
þ 31

�
sin ð2dnÞ sin ð2dmÞ: ðF7Þ

Here, γ ¼ 0.57722 is the Euler-Mascheroni constant, and Cið•Þ and Sið•Þ are the cosine and sine integrals, respectively.
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