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We generalize the covariant Tolman-Oppenheimer-Volkoff equations proposed in Carloni and Vernieri
[Phys. Rev. D 97, 124056 (2018).]. to the case of static and spherically symmetric spacetimes with
anisotropic sources. The extended equations allow a detailed analysis of the role of the anisotropic terms in
the interior solution of relativistic stars and lead to the generalization of some well-known solutions of this
type. We show that, like in the isotropic case, one can define generating theorems for the anisotropic
Tolman-Oppenheimer-Volkoff equations. We also find that it is possible to define a reconstruction
algorithm able to generate a double infinity of interior solutions. Among these, we derive a class of
solutions that can represent “quasi-isotropic” stars.
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I. INTRODUCTION

It has been clear for a long time that, different from the
Newtonian case, in general relativity the structure of a
spherical stellar object can be highly nontrivial. Indeed, in
spite of the progress made so far, no completely satisfactory
general solution of this problem has been found.
The isotropic case, in which the source of the gravita-

tional field is a perfect fluid, was the focus of much research
in the last few years. For example, in Ref. [1], an extensive
selection of the known solutions was made using physical
criteria like the positivity of the pressure and the negative
gradient of the density distribution. In addition, a number of
new methods to obtain analytic solutions representing
relativistic stars were proposed (e.g., Ref. [2–5]), together
with an analysis of the general properties of these solutions
[6]. In Refs. [7,8], e.g., some general theorems were proven
that connect different isotropic solutions to each other.
On the other hand, actual relativistic astrophysical stellar

objects hardly resemble spheres of perfect fluids. This is due
to a number of reasons. For example magnetic fields can be
very intense and induce nontrivial deviations from isotropy.
In addition, it is widely believed that in relativistic stellar
objects matter is in a state which has exotic thermodynam-
ical properties (see e.g., Refs. [9,10] and references therein).
In fact, it has been suggested that even a simple mixture of
real gas can behave as an anisotropic fluid (See Ref. [11]).
The study of solutions describing anisotropic stellar

interiors presents a number of additional challenges, due
to the extra degrees of freedom (d.o.f.) associated with the
anisotropy. There are a number of interesting works in
which solutions representing anisotropic stars are proposed
and analyzed from different points of view (see e.g.,
Refs. [12–15] for some recent examples).

In Ref. [16], we developed a new covariant formalism to
treat the Tolman-Oppenheimer-Volkoff (TOV) equations in
the case of an isotropic fluid. In the new formalism, many
aspects of the properties of these solutions, like the math-
ematical structure of the equations, become immediately
clear. In addition, the generating theorems mentioned above,
plus some new ones, can be easily formulated as deforma-
tions of the initial solutions. The formalism also allows the
determination of a number of physically relevant solutions
via the use, for example, of reconstruction algorithms.
The purpose of this paper is to extend this formalism to

the case of anisotropic sources. As in the isotropic case, the
new equations will clarify the mathematical structure of the
problem and suggest in an intuitive way a number of purely
analytical resolution strategies. The characterization of the
anisotropy as a pressure term, will also allow the definition
of a new class of generating theorems for this case. We will
also prove, via the definition of a reconstruction algorithm,
that, surprisingly, generating solutions in the anisotropic
case is indeed easier than the isotropic one.
The paper is organized as follows. Section II introduces

the basic formalism and a key set of variables which will be
useful for our purposes. Section III is dedicated to the
construction of the covariant TOV equations and to differ-
ent resolution strategies of the new equations. In Sec. IV,
we formulate some generating theorems of the anisotropic
case. In Sec. V, instead, we will propose a reconstruction
algorithm and we will use it to generate some physically
interesting solutions. Section VI is dedicated to the
conclusion.
Unless otherwise specified, natural units (ℏ ¼ c ¼

kB ¼ 8πG ¼ 1) will be used throughout this paper and
Latin indices run from 0 to 3. The symbol ∇ represents the
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usual covariant derivative and ∂ corresponds to partial
differentiation. We use the −;þ;þ;þ signature, and the
Riemann tensor is defined by

Ra
bcd ¼ Γa

bd;c − Γa
bc;d þ Γe

bdΓa
ce − Γe

bcΓa
de; ð1Þ

where the Γa
bd are the Christoffel symbols (i.e., symmetric

in the lower indices), defined by

Γa
bd ¼

1

2
gaeðgbe;d þ ged;b − gbd;eÞ: ð2Þ

The Ricci tensor is obtained by contracting the first and the
third indices

Rab ¼ gcdRacbd: ð3Þ

Finally, the Hilbert-Einstein action in the presence of matter
is given by

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ 2Lm�: ð4Þ

II. 1 + 1 + 2 TOV EQUATIONS

We now derive the covariant TOV equations in the
1þ 1þ 2 formalism in presence of anisotropic sources.
A general and detailed presentation of the 1þ 1þ 2
formalism can be found in Refs. [17–19] and in
Ref. [16], the companion of this series of papers.
Reference [16] also contains a general formulation of
the junction conditions which will be used below.
In the case of the rotation-free, static and spherically

symmetric spacetimes (LRSII) with anisotropic sources
which will be considered in the following, all the 1þ 1þ 2
vectors and tensors vanish as well as the variables Ω, ξ, H,
Θ, Σ and Q. Thus, one is left with the six scalars
fA;ϕ; E; μ; p;Πg which are related by the equations

ϕ̂ ¼ −
1

2
ϕ2 −

2

3
μ −

1

2
Π − E; ð5Þ

Ê −
1

3
μ̂þ 1

2
Π̂ ¼ −

3

2
ϕ

�
E þ 1

2
Π
�
; ð6Þ

p̂þ Π̂ ¼ −
�
3

2
ϕþA

�
Π − ðμþ pÞA; ð7Þ

Â ¼ −ðAþ ϕÞAþ 1

2
ðμþ 3pÞ; ð8Þ

K̂ ¼ −ϕK; ð9Þ

with the constraints

0 ¼ −Aϕþ 1

3
ðμþ 3pÞ − E þ 1

2
Π;

K ¼ 1

3
μ − E −

1

2
Πþ 1

4
ϕ2: ð10Þ

We introduce at this point a parameter such that the
Gaussian curvature K is given by [20]

K ¼ K0e−ρ: ð11Þ

The parameter ρ is connected to the standard area radius by

ρ ¼ 2 lnðr=r0Þ; ð12Þ

where r0 is an arbitrary constant. In the rest of this work, we
will perform the calculations in ρ, but we will give the final
results in terms of r to make the comparison with known
results easier.
Using the parameter ρ and defining the following

variables [20],

X ¼ ϕ;ρ

ϕ
; Y ¼ A

ϕ
; K ¼ K

ϕ2
; E ¼ E

ϕ2
;

M ¼ μ

ϕ2
; P ¼ Π

ϕ2
; P ¼ p

ϕ2
; ð13Þ

Eqs. (5)–(9) take the form

Y;ρ ¼ M þ 3P − 2YðX þ Y þ 1Þ; ð14Þ

K;ρ ¼ −Kð1þ 2XÞ; ð15Þ

P;ρ þ P;ρ ¼ −2YðM þ PÞ − 2Pð2X þ YÞ
− Pð4X þ 3Þ; ð16Þ

with the constraints

2Mþ 2Pþ 2Pþ 2X − 2Y þ 1 ¼ 0; ð17Þ

1 − 4K − 4Pþ 4Y − 4P ¼ 0; ð18Þ

2Mþ 6Pþ 3P − 6Y − 6E ¼ 0: ð19Þ

These equations will be the starting point for the con-
struction of the covariant TOV equations.
The form of A, ϕ, K, Y and K in terms of the metric

coefficients and their derivatives can be found in Ref. [16].
Israel’s junction conditions [21,22] translate in the

variables (13) as (see Ref. [16] for more details)

½K� ¼ 0; ½Y� ¼ 0: ð20Þ

Using the constraint in Eq. (18) above, one gets
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½Pþ P� ¼ 0: ð21Þ

As ½K� ¼ 0, this is equivalent to saying that ½pr� ¼ 0. In
other words, in order to provide a smooth junction with the
Schwarzschild metric, one has to seek a value of the radius
in which the radial pressure is zero. In the following, we
will impose the junction conditions requiring directly that
pr is zero on the boundary of the star. We will have,
however, two cases in which this condition is incompatible
with the structure of the solution and we will be required to
introduce a shell with stress-energy tensor

TS
ab ¼ uaub½ϕþ 2A� þ Nab

�
ϕ

2
þA

�
: ð22Þ

The condition Eq. (21) does not give any information on
the energy density and the tangential pressure, implying
that there is no constraint on these quantities. This can be
verified breaking covariance. From the expressions con-
necting the 1þ 1þ 2 scalars to the metric components in
Ref. [16], we realize that the junction conditions (20)
require the continuity of A, of its first derivative and also the
continuity of B. From the Einstein equations, it is easy to
see that the energy density and the tangential pressure
depend on derivatives of the metric coefficients (like the
first derivative of B) which have no constraint. As a
consequence, both of these quantities can have a jump at
the junction.
Considering Eq. (15) and eliminating X and Y from

Eq. (16), one obtains

P;ρ þ P;ρ ¼ P

�
M − 2P − 3Kþ 7

4

�
þ P

�
M − 3Kþ 1

4

�

þ
�
1

4
−K

�
M − P2 − P2;

K;ρ ¼ −2K
�
K −

1

4
−M

�
: ð23Þ

The structure of these equations is similar to the one of the
isotropic case treated in Ref. [16], and therefore we have
similar problems in determining a general analytical
solution. The most important difference is that now two
different pressure terms (isotropic and anisotropic) appear
in the TOV equations. In the standard treatment, the
equations above are written in a slightly different way.
Indeed, the TOV equations are written for the combination
Pþ P which would correspond to pr=ϕ2 (see e.g.,
Ref. [9]). We will make use of the latter form of the
equations to give a special case in the following subsection.
In general, since anisotropic solutions possess additional

d.o.f., it is natural to expect that this case is more
complicated than the isotropic one. Surprisingly, we will
find that this is not always the case.

The equations above are completely equivalent to the
Einstein equations. However, not all the solutions of the
Einstein equations with anisotropic fluids correspond to
(the interior of) stellar objects. It is known [5,9] that a
physical solution will have to fulfill the following
conditions:
(1) μ, pr and p⊥ should be positive inside the object;
(2) the gradients of μ, pr and p⊥ should be negative;
(3) the speed of sound should be always less that the

speed of light 0 < ∂pr∂μ < 1, 0 < ∂p⊥∂μ < 1;
(4) the energy conditions should be satisfied;
(5) the anisotropy Π should be zero in the center of the

object, i.e., pr ¼ p⊥ at the center.
In the following, we will present solutions that are
compatible with these conditions at least for one set of
their parameters.

III. SOME RESOLUTION STRATEGIES

There are several strategies which can be used to obtain
solutions of the TOV equations in this case. The simplest
one are based on making an ansatz on the behavior of the
anisotropy Π and then solving for the corresponding
pressure. This is one of the most common approaches in
literature (see e.g., [9]).
Setting, for example,

P ¼
μ20P0ð1 − hÞe2ρð1 − μ0eρ

3K0
Þh=2

18ð3K0 − μ0eρÞ2
��

1 − μ0eρ

3K0

�
h=2

þ 3P0

�
2
; ð24Þ

where h is an arbitrary constant, one obtains

P ¼ μ0eρ

½ð1 − μ0eρ

3K0
Þh=2 þ 3P0�2

"
3P2

0 þ ð1 − μ0eρ

3K0
Þh

4ðμ0eρ
3K0

− 1Þ

þ
2P0½4ðhþ 5Þμ0eρ − 72K0�ð1 − μ0eρ

3K0
Þh=2

ð4μ0eρ − 12K0Þ2
#
; ð25aÞ

and

K ¼ −
3K0eρ=2

16μ0e3ρ=2 − 12K0eρ=2
; ð26aÞ

Y ¼ μ0eρð3K0 − μ0eρÞh=2
2ðμ0eρ − 3K0Þ½ð3K0 − μ0eρÞh=2 þ 9K0P0�

: ð26bÞ

This solution corresponds to the Bowers-Liang solution
for a constant density object [23], which in radial coor-
dinates reads
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ds2 ¼ −Adt2 þ Bdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð27aÞ

A ¼ A0

��
1 −

μ0
3
r2
�

h=2
þ 3P0

�
2=h

; ð27bÞ

B ¼ 3

3 − μ0r2
; ð27cÞ

with

pr ¼ −
μ0½ð1 − μ0r2

3
Þh=2 þ P0�

ð1 − μ0r2

3
Þh=2 þ 3P0

; ð28aÞ

p⊥ ¼ pr −
μ20P0r2ð1 − hÞð1 − μ0r2

3
Þh2−1

3½ð1 − μ0r2

3
Þh=2 þ 3P0�2

; ð28bÞ

and P0 < 0.
Another interesting strategy to obtain exact solutions of

Eq. (23) is to find a convenient constraint for the aniso-
tropic pressure term. For example, setting P ¼ Pþ P and
imposing

P ¼ 1

6
Mð1 − 4KÞ; ð29Þ

the first of Eq. (23) reduces to

P;ρ þ P2 þ P
�
3K −M −

7

4

�
¼ 0; ð30Þ

which is analogous to the TOV equation of an isotropic
system with pressure P. It is easy to check that in the trivial
case P ¼ 0, the above equations give the solution found by
Florides [24]. As a consequence, Florides’s solution can be
considered the simplest element of an entire class of
solutions for which Eq. (29) holds.
Using the covariant TOV equations, one can easily find

some other simple examples with a nontrivial P. Indeed,
working with a constant density, we have

ds2 ¼ −Adt2 þ Bdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð31aÞ

A ¼ A0ðeP0r20 þ r2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ0r2

p ; ð31bÞ

B ¼ 3

3 − μ0r2
; ð31cÞ

together with the radial and tangential pressure,

pr ¼
3 − μ0r2

3ðr2 þ eP0r20Þ
; ð32aÞ

p⊥ ¼ μ20r
2

4ð3 − μ0r2Þ
þ pr: ð32bÞ

The solution is well behaved in the origin. Unfortunately, in
the value of r in which the radial pressure becomes zero, the
orthogonal pressure diverges; thus, the solution can only be
matched with Schwarzschild exterior before this singular-
ity. Naturally, since pr ≠ 0 at the junction, the object
represented by this solution will be enclosed in a shell,
defined by the stress-energy tensor in Eq. (22).1

A more regular example is (we set r0 ¼ 1 for brevity)

ds2 ¼ −Adt2 þ Bdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð33aÞ

A¼A0ψð12a2−3að4b−1Þr2þbð4b−2Þr4Þ4b−58b−4; ð33bÞ

ψ ¼ exp

 ffiffiffi
3

p ð4bþ1Þtan−1ðað3−12bÞþ2bð4b−2Þr2
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48b2−24b−9

p Þ
ð2−4bÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4b−3Þð4bþ1Þp

!
; ð33cÞ

B ¼ 12ðbr2 − aÞ2
12a2 − 3að4b − 1Þr2 þ bð4b − 2Þr4 ; ð33dÞ

where a is an arbitrary constant and b < −1=4 or b > 3=4.
The thermodynamical quantities are

μ ¼ ð4bþ 1Þð9a2 − 7abr2 þ 2b2r4Þ
12ðbr2 − aÞ3 ; ð34aÞ

pr ¼
1

a − br2
; ð34bÞ

p⊥ ¼ ½4b2r4þ 3að4aþ r2Þ−bð12ar2þ 2r4Þ�−1
48ðbr2−aÞ3

× f9a3ð64aþ 19r2Þ−b3ð624a2r4þ 800ar6þ 100r8Þ
þab2r2ð432a2þ 1608ar2þ 356r4Þ
− 9a2br2ð168aþ 47r2Þ
þ 80b4r6ð4aþ 2r2Þ− 64b5r8g: ð34cÞ

Notice that the radial pressure in this solution is never zero.
Hence, in principle, we have two different options. A first
one is to consider the metric above as representing an object
with a thin atmosphere that covers the entire spacetime. A
second option would be to make a junction with the
Schwarzschild solution by introduction a thin shell, like
in the previous example. However, the component A of the
metric and the speeds of sound are growing functions of the
radial coordinate. This implies that the first option would
lead to an unphysical situation and suggests a natural range
of radii in which the solution can be soldered to the
Schwarzschild solution.

1Naturally, one could choose another type of exterior, like the
Vaidya metric. In this case, since the exterior spacetime is
nonempty no shell would be required. Although physically
interesting, we will not consider this case here.

SANTE CARLONI and DANIELE VERNIERI PHYS. REV. D 97, 124057 (2018)

124057-4



In Fig. 1, we give the behavior of the solution for a
convenient choice of the parameters.
Yet a different resolution strategy for Eq. (23) consists in

separating the isotropic and anisotropic d.o.f. Shifting the
position of the coupling term 2PP and of the term
ð1
4
−KÞM, one can decompose this equation in a system

of equations which, given a choice for the behavior of the
energy density, is composed by a Bernoulli and a Riccati
equation.
A particularly interesting way to perform this separa-

tion is

P;ρ þ P2 − P

�
M − 3Kþ 7

4

�

þ
�
1

4
−K

�
M ¼ P;ρ − P2 þ P

�
2PþM − 3Kþ 1

4

�
;

K;ρ ¼ −2K
�
K −

1

4
−M

�
: ð35Þ

This setting suggests that any isotropic (P ¼ 0) solution of
the TOV equations can be associated to an anisotropic
solution in which P, K and M are the same and the P is
determined by the equation

P;ρ − P2 þ P

�
2PþM − 3Kþ 1

4

�
¼ 0: ð36Þ

Notice, however, that these new anisotropic solutions will
have a different Y and therefore a different (0,0) component
of the metric because the constraint (18) is changed by the
presence of P.
One can indeed find a number of different ways to

connect isotropic and anisotropic solutions. For example,
setting

P ¼ P0 − P; M ¼ M0 þ αM1; ð37Þ

where P0 and M0 are part of a known solution of the
isotropic equations. With these assumptions, the Eq. (35)
return an algebraic equation that can be solved for P:

P ¼ 1

6
½P0ð4αM1 þ 4M0 − 12Kþ 7Þ

− 4P0;ρ − 4P2
0 − ð4K − 1ÞðαM1 þM0Þ�: ð38Þ

Now the TOVequations can be solved completely if one is
able to integrate the second of Eq. (35). The latter equation
is of the Bernoulli type and admits the following formal
solution:

K ¼ eF

K� − 2
R
eFdρ

;

F ¼
Z

1

2
ð4αM1 þ 4M0 þ 1Þdρ: ð39Þ

As an example, one can start with the classical isotropic
constant density solution
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FIG. 1. Graphs of the solution (33a) in the case r0 ¼ 1, a ¼ 2,
μ1 ¼ −1, a ¼ −7=4. The values of the parameters has been
chosen in such a way to make the features of the solution as clear
as possible.
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ds2 ¼ −Adt2 þ Bdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð40aÞ

A ¼ A0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ0r2

q
þ P0Þ

2

; ð40bÞ

B ¼ 3

3 − μ0r2
; ð40cÞ

with

p ¼ −
μ0ðP0 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ0r2

p
Þ

3ðP0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ0r2

p
Þ

: ð41Þ

Setting

M1 ¼
μ1eρ

K0

K; ð42Þ

where μ1 is a constant, the solution for K is

K ¼ 3K0

4ð3K0 − 4eρ½αμ1 þ μ0�Þ
: ð43Þ

This leads, after long but trivial calculations, to the
following solution for the metric and the fluid thermody-
namics,

ds2 ¼ −Adt2 þ Bdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð44aÞ

A ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ0r2

p
ð3 − P2

0r
2
0 − μ0r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − r2ðαμ1 þ μ0Þ
p × ð44bÞ

exp

�
2tanh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ0r2

p
P0r0

��
; ð44cÞ

B ¼ 3

3 − r2ðαμ1 þ μ0Þ
; ð44dÞ

where P0 is an integration constant. The radial and
tangential pressure read

pr ¼
μ0½3 − r2ðαμ1 þ μ0Þ�ð3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ0r2

p
þ P0r0Þ

3ðμ0r2 − 3Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ0r2

p
þ P0r0Þ

; ð45aÞ

p⊥ ¼ −192ðμ0r2 − 3Þ2ðr2ðβμ1 þ μ0Þ − 3Þpr

−
36βμ1r2ð8μ0ðr2ðβμ1 þ μ0Þ − 3Þ − 12βμ1Þ

48ðμ0r2 − 3Þ2ð12 − 4r2ðβμ1 þ μ0ÞÞ
: ð45bÞ

In this solution, the pressures at the center are regular for
any value of the parameters, and one can have the central
value of these quantities to be positive. In addition, the
parameters can be set in such a way to avoid any
singularity. Figure 2 gives an example in which the radial
pressure goes to zero at a finite radius.

The reason behind the connection between isotropic and
anisotropic solutions will become clear in the next section
when we will look into the details of the generating
theorems for anisotropic solutions. We will discover that
ultimately these theorems are behind the methods pre-
sented above.

IV. GENERATING THEOREMS FOR
ANISOTROPIC TOV SOLUTIONS

In Refs. [7,8,25], a number of interesting theorems were
proved, dubbed “generating theorems”. These theorems
allow us to connect different solutions of the TOV
equations in the isotropic case, in the sense that given a
solution of the equations, one can recover new solutions
which differ only in a given set of quantities (e.g., the
pressure and (0,0) component of the metric). In Ref. [16],
using the 1þ 1þ 2 covariant formalism, we were able to
prove that these theorems can be related to linear defor-
mations of the solutions of the isotropic TOVequations. We
also showed that the constraints between the variables Y,K,
P, M can be used as a guide to deduce such generating
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r

0.5

1.0

1.5

2.0

FIG. 2. Graphs of the solution (44) in the case r0 ¼ 1,
μ0 ¼ 3=2, μ1 ¼ −1=2, β ¼ −1, P� ¼ −7. The values of the
parameters have been chosen in such a way to make the features
of the solution as clear as possible.
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theorems. In this section, we will extend these generating
theorems to the case of anisotropic solutions. We will show
that, in addition to the theorems already found for the
isotropic case, new theorems can be formulated.
Let us start from a shift in the isotropic pressure and the

variable Y,

P ¼ P0 þ P1; Y ¼ Y0 þ Y1; ð46Þ

which corresponds to the transformation

A → A0ðρÞ exp
�Z

Y1dρ

�
; ð47aÞ

B → B0ðρÞ; ð47bÞ

C → C0ðρÞ ð47cÞ

of Theorem 2 in Ref. [7].
Using the Eq. (35), the constraint in Eq. (18) and

Eq. (14), we obtain

P1;ρ þ P2
1 þ P1

�
3K0 −M0 þ 2P0 þ 2P0 −

7

4

�
¼ 0;

Y1 ¼ P1: ð48Þ

whose solution is

P1 ¼
eF

P� þ
R
eFdρ

;

F ¼
Z �

3K0 −M0 þ 2P0 þ 2P0 −
7

4

�
dρ: ð49Þ

In other words, starting form the solution ðY0;K0; P0;M0Þ,
we have obtained a new solution ðY;K; P;MÞ by solving
two integrals.
In [16], we proved a similar theorem for the isotropic

case. Comparing the two results, it is easy to see that the
only difference consists in the presence of the additional
term 2P0 in the integral that defines F.
Let us consider now the case of a combined shift of the

pressure and the energy density by setting

P¼P0þP1; M¼M0þM1; K¼ 1

K0þK1

; ð50Þ

which leads to

A → A0ðρÞ; ð51aÞ

B−1 → B0ðρÞ þ
eρ

K0

K1; ð51bÞ

C → C0ðρÞ; ð51cÞ

and corresponds to Theorem 1 in Ref. [7] (see also [25]).
Equation (35), the constraint in Eq. (18) and (14) return

K1;ρ ¼ −K1Φþ Γ;

Φ ¼ 12K0 − 4M0 − 1þ Y0ð8K0 − 8M0 − 2Þ
2ð1þ 2Y0Þ

;

Γ ¼ 8K2
0ðY0 þ 1Þ þK0ð4M0 þ 1Þð2Y0 þ 1Þ − 4

1þ 2Y0

;

P1 ¼
K2

0 þK1K0 − 1

K0 þK1

;

M1 ¼ −
½K0ðK0 þK1Þ − 1�ð2Y0 þ 3Þ

ðK0 þK1Þð2Y0 þ 1Þ : ð52Þ

The first equation above is a linear differential equation
which can always be solved exactly as

K1 ¼ e−F
�
K� −

Z
eFΓdρ

�
;

F ¼
Z

Φdρ: ð53Þ

Different from the previous case, the theorem that we have
obtained matches exactly the corresponding theorem in the
isotropic case given in [16].
Exploiting the similarity of the role of the isotropic and

anisotropic pressures in Eq. (23), we can, moreover, give
additional theorems. For example, keeping the isotropic
pressure unchanged, one can set

P ¼ P0 þ P1; Y ¼ Y0 þ Y1; ð54Þ

and we obtain

Y1 ¼ P1;

P1 ¼
eF

P� þ
R
eFdρ

;

F ¼
Z �

3K0 −M0 þ 2P0 þ 2P0 −
1

4

�
dρ; ð55Þ

which mirrors the theorem of Eq. (46).
Also the theorem in Eq. (50) has a similar analogue.

Indeed, setting

P ¼ P0 þ P1;

M ¼ M0 þM1;

K ¼ 1

K0 þK1

; ð56Þ

we obtain
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K1;ρ ¼ K1Φþ Γ;

Φ ¼ Y0ð8K0 − 8M0 − 2Þ − 4M0 − 1

2ð1þ 2Y0Þ
;

Γ ¼ K2
0ð8Y0 þ 2Þ −K0ð4M0 þ 1Þð2Y0 þ 1Þ þ 2

1þ 2Y0

;

P1 ¼
K2

0 þK1K0 − 1

K0 þK1

;

M1 ¼ −
2½K0ðK0 þK1Þ − 1�Y0

ðK0 þK1Þð2Y0 þ 1Þ : ð57Þ

Again, the first equation above is a linear differential
equation which can be solved exactly as

K1 ¼ eF
�
K� −

Z
e−FΓdρ

�
; F ¼

Z
Φdρ: ð58Þ

A third generating theorem allows us to shift the isotropic
pressure, maintaining the energy density fixed. Setting

P¼ P0 þP1; P¼ P0 þP1; K¼ 1

K0 þK1

; ð59Þ

we obtain

K1;ρ ¼ −K1Φþ Γ;

Φ ¼ 1

2
ð4M0 þ 1Þ;

Γ ¼ 1

2
½4K2

0 − 2K0ð4M0 þ 1Þ þ 4�;

P1 ¼
ðK0ðK0 þK1Þ − 1Þð2Y0 þ 3Þ

3ðK0 þK1Þ
;

P1 ¼
2

3

�
1

K0 þK1

−K0

�
Y0; ð60Þ

which can be solved by

K1 ¼ e−F
�
K� −

Z
eFΓdρ

�
;

F ¼
Z

Φdρ: ð61Þ

Like in the isotropic case, one can further consider non-
linear deformations of a known solution. For example, in
the case of a linear shift of the isotropic and anisotropic
pressure with a generic change of K, that is

P ¼ P0 þ P1; P ¼ P0 þ P1; K ¼ K1; ð62Þ

we obtain

K1;ρ ¼ −K1

�
−2M0 −

1

2

�
− 2K2

1;

P1 ¼ ð2K0 − 1ÞP0 − P0 þ Y0 þ
1

4

×
1

6
K1ð−4P0 − 4P0 − 5Þ þ 2

3
K0ðM0 þ 3P0Þ;

P1 ¼
1

6
K1ð4P0 þ 4P0 − 1Þ −

2

3
K0ðM0 þ 3P0 þ 3P0Þ:

ð63Þ

Similar results can also be found if one considers variations
of P and M or P and M together with a change of K.
As in the isotropic case, one can obtain hints about the
existence of new theorems by looking at the constraints in
Eqs. (17)–(19).

V. RECONSTRUCTING ANISOTROPIC
SOLUTIONS

To conclude, we give a reconstruction algorithm for
anisotropic stellar interior solutions. In Ref. [16], we
proposed a similar algorithm for isotropic stellar interior
solutions. In that case, it turned out that the metric
coefficients have to satisfy a differential constraint which
can be difficult to solve. We will make a similar con-
struction here, showing that, surprisingly, the algorithm for
anisotropic solutions does not present any such constraints.
Solving Eqs. (14)–(19) for the matter variables, one

obtains

M ¼ Kρ

2K
þK −

1

4
; ð64Þ

P ¼ 1

3
ð2Yρ þ 2Y2 þ YÞ− 2Y þ 1

6

Kρ

K
−
1

3
Kþ 1

12
; ð65Þ

P¼ ð2Yþ 1ÞKρ −4K2 −K½4Yρþ 4ðY − 1ÞY − 1�: ð66Þ

In the isotropic case, one should set P ¼ 0 in (66) and this
relation corresponds to the differential constraint we
encountered in Ref. [16]. This result implies that the
differential constraint found in the isotropic case corre-
sponds to the very condition of isotropy.
The structure of Eqs. (64)–(66) shows that reconstructing

anisotropic solutions is considerably simpler than recon-
structing isotropic ones. Indeed, in the anisotropic case the
equation above leads to a double infinity of solutions.
It is useful at this stage to give the expression of the

speeds of sound in terms of the variables K and Y:

c2s;r ¼
dpr

dμ

¼ K2ð−4K − 4Y;ρ þ 4Y þ 1Þ þ ð4Y þ 1ÞKK;ρ

4K3 −K2 þKðK;ρ − 2K;ρρÞ þ 4K2
;ρ

; ð67Þ
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c2s;⊥ ¼ dp⊥
dμ

¼ −
1þ 16KY2ðK;ρ þKÞ þKK;ρð1 − 12Y;ρÞ
½4K3 −K2 þKðK;ρ − 2K;ρρÞ þ 4K2

;ρ�

þ 2K2ð−8Y;ρ þ 8Y;ρρ þ 1Þ − 8K3

½4K3 −K2 þKðK;ρ − 2K;ρρÞ þ 4K2
;ρ�

þ Yð4KðK;ρ þKð−4Kþ 8Y;ρ þ 1ÞÞ − 2Þ
½4K3 −K2 þKðK;ρ − 2K;ρρÞ þ 4K2

;ρ�
: ð68Þ

These expressions can be used to select the suitable forms
of the metric variables Y and K.
We will now use the above algorithm to generate some

physically relevant solutions in the sense of Sec. II. We
shall limit ourselves to give all the results directly in the
parameter r.
Let us start form the metric coefficients,

A ¼ ðaþ br2ρÞδ;

B ¼ 3μ0
3μ0 − r2ðμ0 − μ1r2αÞβþ1F

; ð69Þ

where F is the Gaussian hypergeometric function

F ¼ 2F1

�
1; β þ 3

2α
þ 1; 1þ 3

2α
;
r2αρμ1
μ0

�
: ð70Þ

In this way, setting for brevity r0 ¼ 1, we get

μ ¼ ðμ0 − μ1r2αÞβ;

pr ¼
2bδμ0

μ0ðaþ br2Þ −
½aþ bð2δþ 1Þr2�ðμ0 − μ1r2αÞβþ1

3μ0ðaþ br2Þ F ;

p⊥ ¼ 2½a2 þ abð2 − 3δÞr2 þ b2ð−2δ2 þ δþ 1Þr4�F
μ012ðaþ br2Þ2ðμ0 − μ1r2αÞ−ðβþ1Þ

þ 12bδð2aþ bδr2Þ − 6ðaþ br2Þðaþ bðδþ 1Þr2Þ
12ðaþ br2Þ2ðμ0 − μ1r2αÞ−β

:

ð71Þ

Notice that the radial and tangential pressure converge to
the same value in the center of the star. The radial and
tangential speed of sound read

c2s;r ¼
ðμ0 − μ1r2αÞ

3αβμ0μ1r2αðaþ br2Þ2
�
3

2
μ0ðaþ br2Þ½aþ bð2δþ 1Þr2� − F

2
ðμ0 − μ1r2αÞ½2bδr2ðaþ 3br2Þ þ 3ðaþ br2Þ2�

þ 6b2δμ0r2ðμ0 − μ1r2αÞ−β
�
; ð72Þ

c2s;⊥ ¼ r−2α

12αβμ1ðaþ br2Þ3
�
F
μ0

ðμ0 − μ1r2αÞ2½3a3 − 3a2bðδ − 3Þr2þab2ð2ðδ − 8Þδþ 9Þr4 þ 3b3ð−2δ2 þ δþ 1Þr6�

þ 12b2δr2½bδr2 − aðδ − 4Þ�ðμ0 − μ1r2αÞ1−β − 3μ0ðaþ br2Þ½a2 þ abð2 − 5δÞr2þb2ð−2δ2 þ δþ 1Þr4�

−3μ1r2αðaþ br2Þ½abδr2ð2αβ þ 5Þ þ 2b2δ2r4þb2δr4ð2αβ − 1Þ þ ð2αβ − 1Þðaþ br2Þ2�
�
: ð73Þ

In Figs. 3 and 4, we give a plot of the above solution for a set of values of the parameters which return physically relevant
results.
As a second example, let us consider the case

A ¼ ½aþ ðc − br2Þγ�δ;

B ¼ 3μ0
3μ0 − r2ðμ0 − μ1r2αÞβþ1F

;

F ¼ 2F1

�
1; β þ 3

2α
þ 1; 1þ 3

2α
;
r2αρμ1
μ0

�
; ð74Þ

which can be seen as a generalization of the Bowers-Liang solution for nonconstant densities.
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Setting for brevity r0 ¼ 1, we have

μ ¼ ðμ0 − μ1r2αÞβ; ð75Þ

and

pr ¼
1

6ðbr2 − cÞðaþ ðc − br2ÞγÞ
�
12bγδðc − br2Þγ − 2

F
μ0

½aðbr2 − cÞþðc − br2Þγðbr2ð2γδþ 1Þ − cÞ�
�
; ð76Þ

p⊥ ¼ μβ0ðμ0 − μ1r2αÞ−β
12ðbr2 − cÞ2ðaþ ðc − br2ÞγÞ2 f2F ðμ0 − μ1r2αÞβ½a2ðbr2 − cÞ2 − aðc − br2Þγ½b2r4ð4γ2δ − γδ − 2Þ

þ bcr2ð4 − 3γδÞ − 2c2� þ ðc − br2Þ2γðb2r4ð−2γ2δ2 þ γδþ 1Þ þ bcr2ð3γδ − 2Þ þ c2Þ�
− 3μ−β0 ðμ0 − μ1r2αÞβ½2a2ðbr2 − cÞ2ðμ0 − μ1r2αÞβ þ 2aðc − br2Þγðb2r4ðγδþ 2Þðμ0 − μ1r2αÞβ
− 4b2γ2δr2 þ bcð4γδ − r2ðγδþ 4Þðμ0 − μ1r2αÞβÞ þ 2c2ðμ0 − μ1r2αÞβÞ
þ ðc − br2Þ2γðb2r2ð2r2ðγδþ 1Þðμ0 − μ1r2αÞβ − 4γ2δ2Þ
þ 2bcð4γδ − r2ðγδþ 2Þðμ0 − μ1r2αÞβÞ þ 2c2ðμ0 − μ1r2αÞβÞ�g: ð77Þ

0.2 0.4 0.6 0.8 1.0
r

5

10

50

100

0.2 0.4 0.6 0.8 1.0
r

0.001

0.010

0.100

1

FIG. 3. Graphs of the solution (69) in the case r0 ¼ 1, α ¼ 1,
β ¼ 1, δ ¼ 2, a ¼ 10, b ¼ 1, μ0 ¼ 1, μ1 ¼ 1=4. The values of the
parameters have been chosen in such a way to make the features
of the solution as clear as possible.

FIG. 4. Graphs of the solution (69) in the case r0 ¼ 1, α ¼ 1,
β ¼ 1, δ ¼ 2, a ¼ 10, b ¼ 1, μ0 ¼ 1, μ1 ¼ 1=4. The values of the
parameters have been chosen in such a way to make the features
of the solution as clear as possible.
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Notice that the radial and tangential pressure converge to
the same value in the center of the star. The radial and
orthogonal speeds of sound are too long to be reported here,
but their calculation is trivial. In Figs. 5 and 6, we give a
plot of the above solution for a set of values of the
parameters fulfilling the physical criteria of Sec. II. In
light of the theorems that we have presented in the previous
section, this solution is somehow expected. It corresponds
to the application of the theorem on the shift of the energy
density, the isotropic pressure and the radial component of
the metric.
We end this section pointing out an interesting aspect of

the above solutions. At least in the cases that we have
explored in Figs. 3 and 5, the radial and tangential pressure
are relatively close to each other. For an object of this type,
therefore, the degree of anisotropy even if present is rather
small. This fact points to the conclusion that a class of
regular objects can exist which are quasi-isotropic. Quasi-
isotropic stars would behave like an isotropic star upon
isolated observation, but they would differ dynamically

because of the different properties of the anisotropic
pressure. Such differences might appear evident and be
studied, for example, at the perturbative level.

VI. CONCLUSIONS

In this paper, we have used the 1þ 1þ 2 covariant
formalism and a tailored variable choice to develop a
covariant version of the Tolman-Oppenheimer-Volkoff
equations for objects that present the maximum degree
of anisotropy compatible with spherical symmetry. Within
this framework, it becomes clear that the anisotropy
generates additional pressure terms which modify one of
the isotropic TOV equations. This anisotropic pressure
corresponds to the anisotropy term Δ which generally
appears in literature.
The covariant equations clarify the role of the anisotropic

pressure in the structure of an object interior and immediately
suggest a number of analytical resolution strategies. Indeed,
some of these strategies have already been employed in
literature in specific cases like the Bowers-Liang one.

FIG. 5. Graphs of the solution (74) in the case r0 ¼ 1, α ¼ 1,
β ¼ 1, γ ¼ 2, δ ¼ 2, a ¼ 10, b ¼ −1, c ¼ 2, μ0 ¼ 9, μ1 ¼ 15,
A0 ¼ 1. The values of the parameters have been chosen in order
to make the features of the solution as clear as possible.

FIG. 6. Graphs of the solution (74) in the case r0 ¼ 1, α ¼ 1,
β ¼ 1, γ ¼ 2, δ ¼ 2, a ¼ 10, b ¼ −1, c ¼ 2, μ0 ¼ 9, μ1 ¼ 15,
A0 ¼ 1. The values of the parameters have been chosen in such a
way to make the features of the solution as clear as possible.
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The structure of the covariant TOV also suggests that
there exists a number of algorithms that allow us to map
isotropic solutions in anisotropic ones. Indeed, one of these
methods has been recently proposed in Ref. [26]. These
procedures can be useful to appreciate the physical role of
the anisotropy in these systems as well as to explore further
the solution space for anisotropic stars. We proposed some
new algorithms of this type. In some cases, these methods
allow us to recognize general properties of known sol-
utions, like in the case of Florides’s one.
In the isotropic case, a number of generating theorems

were discovered which allow us to connect different
isotropic solutions to each other. The formalism that we
have used allows us to extend these theorems to the
anisotropic case in a straightforward way. Indeed, we were
able to find a number of new theorems that involve directly
the anisotropic pressure. As in the isotropic case we can
therefore talk about seed metrics and organize the known
solutions in terms of their relations via these theorems.
Finally, the new equations were used to derive a

reconstruction algorithm able to generate anisotropic sol-
utions. Unexpectedly this algorithm is much easier than its
isotropic counterpart. In fact, it allows us to straightfor-
wardly generate a double infinity of solutions. We should
however bear in mind that only few of these solutions
correspond to sources with the necessary physical

characteristics (see Sec. III). Hence, we can expect that
most of these solutions will not have relevance for compact
objects.
We used this algorithm to derive some new exact

solutions. One of them is in a generalization of the
Bowers-Liang solution for which the density is not con-
stant. Its existence is expected by the generating theorems
we have proven, but a closer analysis revealed an unex-
pected feature: for some values of the parameters, they
show a radial and tangential pressure very close to each
other. Since the other solution we reconstructed has the
same properties one is lead to think that these “quasi-
isotropic relativistic stars” might be a new class of objects
never considered before. It would be interesting to explore
further and in more detail the properties of this class of
objects. A future work will be focused specifically on
this task.
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