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We report a gravitational BF-type action principle propagating two (complex) degrees of freedom that,
besides the gauge connection and the B field, only employs an additional Lagrange multiplier. The action
depends on two parameters and remarkably is polynomial in the B field. For a particular choice of the
involved parameters the action provides an alternative description of (complex) general relativity with
a nonvanishing cosmological constant, whereas another choice corresponds to anti-self-dual gravity.
Generic values of the parameters produce “close neighbors” of general relativity, although there is
a peculiar choice of the parameters that leads to a Hamiltonian theory with two scalar constraints. Given the
nontrivial form of the resulting scalar constraint for these models, we consider a more general setting where
the scalar constraint is replaced with an arbitrary analytic function of some fundamental variables and show
that the Poisson algebra involving this constraint together with the Gauss and vector constraints of the
Ashtekar formalism closes, thus generating an infinite family of gravitational models that propagate the
same number of degrees of freedom as general relativity.
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I. INTRODUCTION

The pure connection formulation [1] expresses complex
general relativity with a nonvanishing cosmological con-
stant as a diffeomorphism-invariant gauge theory where the
sole dynamical variable is an SOð3;CÞ-valued connection.
This action emerges after integrating out the auxiliary fields
present in the Plebanski formulation [2] (see Ref. [3] for a
rigorous derivation), and it is perhaps surprising that such
an economical gauge formulation for general relativity
exists. Since it involves the square root of a matrix
quadratic in the curvature of the connection, its form is
rather complicated, making it difficult to directly use this
formulation in applications to quantum gravity. However,
several aspects of the pure connection formulation have
been scouted out in a perturbative framework [4–6].
An interesting feature of the pure connection formulation

is that although we take as the starting point Plebanski’s
action, which is a BF theory supplemented with constraints
(see Ref. [7] for an overview of the relationship between
BF theories and general relativity), we end up obtaining an
action principle that, apart from the dependence on a gauge
connection, does not resemble the original one: all the BF

character of the initial action is completely destroyed
during the process. In order to describe general relativity
with few variables and still have a BF-type action after
integrating out some fields in the action, a slight modifi-
cation of Plebanski’s action was proposed in Ref. [8],
showing that it led to the action principle introduced in
Ref. [9] to describe general relativity as a BF theory
with a potential term depending only on the B field.
Nevertheless, the latter action also involves square roots
of matrices, and so it seems that the appearance of these
annoying roots is inexorable when we wish to describe
general relativity with few variables.
In this paper we report a BF-type action embodying a

class of gravitational models that propagate two (complex)
physical degrees of freedom, the same number as general
relativity before imposing the appropriate reality conditions
[2,10,11] (see also Refs. [12,13]). As dynamical variables,
the action only employs the B field, an SOð3;CÞ con-
nection, and a scalar density playing the role of a Lagrange
multiplier. The action itself does not require the presence of
square roots of matrices nor the introduction of additional
variables imposing extra constraints as in the case of the
Plebanski formulation. Moreover, it depends on two free
parameters and is constructed in such a way that the B field
enters in a polynomial fashion. Notably, a particular choice
of the involved parameters provides a polynomial action for
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complex general relativity with a nonvanishing cosmologi-
cal constant. Likewise, another selection of these param-
eters also allows us to describe anti-self-dual gravity, and so
the action reported in this paper, like the one posed in
Ref. [8], provides a unified treatment of general relativity
and anti-self-dual gravity. In fact, it is the parameter playing
the role of the cosmological constant in the case of general
relativity that causes the switch to anti-self-dual gravity
when turned off. Later on, we perform the canonical
analysis of the two-parameter action and show that in
addition to the usual Gauss and vector constraints, we also
have a nontrivial scalar constraint. We compute the con-
straint algebra and show that it closes, concluding that the
theory indeed possesses two (complex) physical degrees of
freedom per space point. In particular, in the cases of
general relativity and anti-self-dual gravity we show that
the corresponding scalar constraints reduce to those already
found in the literature. Furthermore, we find that another
choice of the involved parameters, which seems not to play
a significant role at the Lagrangian level, produces a
Hamiltonian theory with two scalar constraints. Finally,
motivated by the complicated form of the ensuing scalar
constraint in the general case, we promote it to an arbitrary
analytic function (with the right weight) depending on
some fundamental quantities and show that even in that
case the Poisson algebra among the modified scalar
constraint and the Gauss and vector constraints closes,
indicating that the associated theory still propagates the
same number of degrees of freedom as before.

II. POLYNOMIAL BF-TYPE ACTION

Let M be an orientable four-dimensional manifold and
consider an SOð3;CÞ principal bundle over M.1 We start
by setting up the BF-type action principle

S½A;B; η� ¼
Z
M

�
Bi ∧ Fi½A� − b

6
Bi ∧ Bi

þ ̰η
�
TrÑ2 −

a
2
ðTrÑÞ2

�
d4x

�
; ð1Þ

where d4x stands for the ordered product dx0 ∧ dx1 ∧dx2 ∧
dx3, Ai is an SOð3;CÞ connection with curvature
Fi½A� ¼ dAi þ ð1=2ÞεijkAj ∧ Ak, Bi are three nondegen-
erate 2-forms in the sense that the symmetric matrix Ñ
defined by Ñijd4x ≔ Bi ∧ Bj is nonsingular, ̰η is a scalar
density of weight −1 (the number of tildes “∼” above or
below a quantity specifies its weight) acting as a Lagrange
multiplier, a is a dimensionless parameter and b is a
parameter with the same dimensions as the cosmological
constant (in our approach the action as a whole has
dimensions of the inverse of the cosmological constant).

The internal indices i; j;… ¼ 1, 2, 3 are raised and lowered
with the three-dimensional Euclidean metric δij, and εijk is
the Levi-Civita symbol (ε123 ¼ þ1). It is worth pointing
out that although the first line of Eq. (1) is topological (it is
just BF theory with a volume term), the addition of the
second line breaks part of this topological symmetry and
endows the resulting theory with local dynamics, as we
shall see below.
The equations of motion arising from the variation

of Eq. (1) with respect to each independent variable are
given by

δA∶ DBi ≔ dBi þ εijkAj ∧ Bk ¼ 0; ð2aÞ
δB∶ Fi þ 4̰ηÑi

jBj − 2a̰ηðTrÑÞBi −
b
3
Bi ¼ 0; ð2bÞ

δη∶ TrÑ2 −
a
2
ðTrÑÞ2 ¼ 0: ð2cÞ

The first equation says that the 2-form Bi is covariantly
constant, a feature that is shared by all the formulations of
general relativity in the framework of BF theories [7]. The
second equation expresses the curvature of the connectionAi

as a function of Bi. The third equation constitutes a
constraint involving only the traces of the matrix Ñ.
We assert that the action (1) describes (complex) general

relativity with a nonvanishing cosmological constant for
a ¼ 1 and b ≠ 0, whereas the case a ¼ 1 and b ¼ 0 leads to
anti-self-dual gravity. For other values of the parameters a
and b (3a − 2 ≠ 0), the action (1) embodies a family of
diffeomorphism-invariant theories that, as we shall see in the
Hamiltonian approach, propagate two complex degrees of
freedom. Surprisingly, the canonical analysis reveals that
for 3a − 2 ¼ 0 the theory possesses two scalar constraints.
Let us see all this in detail.

III. GENERAL RELATIVITY

In this section we assume a ¼ 1 and b ≠ 0. To establish
that in this case Eq. (1) is an action for general relativity, it
is enough to show that the ensuing equations of motion lead
to Plebanski’s equations for general relativity. After all,
Plebanski’s equations (plus some suitable reality conditions
[2], which we must assume too) are equivalent to Einstein’s
equations with or without a cosmological constant where
the Urbantke metric [14] constructed from the B’s (which is
conformally related to a Lorentzian metric) plays the role of
the spacetime metric [7,12].
The first step consists in finding a set of 2-forms

satisfying the simplicity constraint, which is the chief
ingredient of Plebanski’s approach. Let us introduce the
following quantities:

Σi ≔ −
6

b
̰η½2Ñi

jBj − ðTrÑÞBi�; ð3aÞ

Ψ ≔
b2

36̰η det Ñ

�
Ñ2 −

1

2
ðTrÑÞÑ

�
: ð3bÞ

1SOð3;CÞ is the structure group employed to describe the
Lorentzian theory. In the Euclidean case, the structure group is
just SOð3Þ and all the quantities are real valued.
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Making the wedge product of Eq. (3a) with itself and using
the characteristic equation of the matrix Ñ, namely

Ñ3 − ðTrÑÞÑ2 þ 1

2
½ðTrÑÞ2 − TrÑ2�Ñ − det Ñ ¼ 0; ð4Þ

together with Eq. (2c), we obtain

Σi ∧ Σj −
�
12

b
̰η
�

2

det Ñd4xδij ¼ 0: ð5Þ

Thus Σi ∧ Σj ∼ δij, which is the simplicity constraint.
Consequently, the 2-forms Σi given by Eq. (3a) constitute
the Plebanski 2-forms, that is, the ones satisfying the
simplicity constraint. On the other hand, by appealing
again to Eq. (4), the product of Eqs. (3a) and (3b) yields

Ψi
jΣj ¼ b

3
Bi: ð6Þ

Then, by using this result and Eqs. (3a), (2b) takes the form

Fi ¼
�
Ψi

j −
b
3
δij

�
Σj: ð7Þ

Taking the SOð3;CÞ covariant derivative on both sides of
Eq. (7), noting that Eqs. (6) and (2a) imply DðΨijΣjÞ ¼ 0,
and bearing in mind the Bianchi identity DFi ¼ 0, we
conclude that

DΣi ¼ 0; ð8Þ
which means that Σi is covariantly constant. Finally, notice
that because of Eq. (2c), the matrix Ψ is traceless:

TrΨ ¼ 0: ð9Þ
Equations (5), (7), (8), and (9) are the Plebanski equations
of motion for general relativity, which have been obtained
from the set of equations (2a)–(2c) with a ¼ 1 and b ≠ 0.
In other words, for these values of the parameters a and b,
the action (1) describes general relativity with a non-
vanishing cosmological constant given by Λ ¼ −b. On
shell, Ψij gets identified with the self-dual part of the Weyl
tensor. It is worth recalling that in order to make full contact
with Einstein’s equations we must impose the reality
conditions on the Σ’s (the same as in Plebanski’s case)
and introduce the Urbantke metric for them, which, because
of Eq. (6), turns out to be conformally related to the
Urbantke metric defined by the B’s.

IV. ANTI-SELF-DUAL GRAVITY

We now focus our attention on the case a ¼ 1 and b ¼ 0.
After solving Eq. (2b) for Fi, we compute the product
Fi ∧ Fj, which, because of Eqs. (4) and (2c), yields

Fi ∧ Fj −
1

3
Fk ∧ Fkδij ¼ 0; ð10Þ

where Fk ∧ Fk ¼ 48̰η2 det Ñd4x. This is the so-called
instanton equation [15,16] and it is the defining feature

of (conformally) anti-self-dual gravity. It says that the
curvature of the gauge connection Ai satisfies the simplicity
constraint, thus making Fi proportional to the Plebanski
2-forms Σi:

Fi ¼ Λ
3
Σi; ð11Þ

where Λ is a nonvanishing constant that is identified with
the cosmological constant. The consequence of this relation
[cf. Eq. (7)] is that all the classical solutions of anti-self-
dual gravity are solutions of Einstein’s equations with a
nonvanishing cosmological constant and vanishing self-
dual Weyl curvature (they are known as gravitational
instantons [17]). In conclusion, for a ¼ 1 and b ¼ 0 the
action (1) describes anti-self-dual gravity.
We remark that, according to the action (1) for a ¼ 1, the

origin of the cosmological constant in general relativity is
different from that in anti-self-dual gravity. For the former,
the cosmological constant is identified with the negative
of the nonvanishing parameter b appearing in Eq. (1), while
for the latter this parameter is set to zero and the cosmological
constant is the proportionality factor relating Fi and the
Plebanski 2-forms. Therefore, the parameter b switches
between general relativity with a nonvanishing cosmological
constant (b ≠ 0) and anti-self-dual gravity (b ¼ 0). As far as
we know, the case of general relativity with a vanishing
cosmological constant is not encompassed by Eq. (1).

V. CANONICAL ANALYSIS

For a ≠ 1 the equations of motion (2a)–(2c) cannot be
expressed in nice forms as in the previous cases, and hence
the action (1) describes othermodels of gravity fora ≠ 1 and
arbitraryb. Since the same action describes general relativity
with a nonvanishing cosmological constant for the particular
choice a ¼ 1 and b ≠ 0, these models can be regarded as
“close neighbors” of general relativity or deformations of it.
(Even anti-self-dual gravity itself fits into this class.)
In order to dig deeper into the structure of the family of

models depicted by Eq. (1), let us go to the canonical
formalism. We assume that the spacetime manifold M has
topology R ×Ω, where, for the sake of simplicity, Ω is a
compact spatial 3-manifold without a boundary. Then,
there exists a global time function t such that the (spatial)
3-manifolds with constant t have the topology of Ω. The
coordinates adapted to this decomposition are chosen such
that the spatial components of tensors are denoted by
a; b;… ¼ 1, 2, 3, whereas the function t labels their time
components. By performing the 3þ 1 decomposition of the
action (1), we obtain

S½A;B; η� ¼
Z
R
dt

Z
Ω
d3x

�
Π̃ai _Aai þ AtiG̃

i

þ BtaiẼai þ ̰η
�
TrÑ2 −

a
2
ðTrÑÞ2

��
; ð12Þ
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where we have defined Π̃ai ≔ ð1=2Þη̃abcBbc
i, Ẽai ¼ B̃ai −

ðb=3ÞΠ̃ai with B̃ai ≔ ð1=2Þη̃abcFi
bc, and G̃i ≔ DaΠ̃ai.

Here, a dot over a variable indicates its time derivative
and η̃abc (̰ηabc) is the three-dimensional Levi-Civita symbol

satisfying η̃123 ¼ 1 (̰η123 ¼ 1).
Notice that the action (12) is a quadratic polynomial in

the components of the B field because

Ñij ¼ Bta
iΠ̃aj þ Bta

jΠ̃ai: ð13Þ
Furthermore, since no time derivatives of Btai appear in the
action, we can simplify the analysis by getting rid of these
variables through the use of their corresponding equation of
motion. The variation of Eq. (12) with respect to Btai gives

Ẽai þ 4̰η
�
Ñi

j −
a
2
ðTrÑÞδij

�
Π̃aj ¼ 0: ð14Þ

To continue, let us assume that Π̃ai is nonsingular; its
inverse, denoted here by Π̰ai, fulfills Π̰aiΠ̃aj ¼ δji and
Π̰aiΠ̃bi ¼ δba.
The solution of Eq. (14) involves the two cases discussed

in what follows.

A. Case 3a − 2 ≠ 0

Equation (14) is a linear system of nine equations for the
nine unknowns Btai. The system is notwithstanding degen-
erate and has rank six, implying that the solution for Btai
can be written as

Btai ¼ −
1

8̰η
Ẽb

i Π̰b
j Π̰aj þ

a
8ð3a − 2Þ ̰η Ẽ

bj Π̰bj Π̰ai

þ εijkÑk Π̰a
j; ð15Þ

where Ñk is an arbitrary internal 3-vector (of weight þ1).
Accordingly, the first line of the previous relation corre-
sponds to a particular solution of Eq. (14), whereas the
second line comprises the homogeneous solution. Plugging
Eq. (15) back into the action (12), we obtain the (classi-
cally) equivalent action

S½Aai; Π̃ai; Ati; Na; ̰η�

¼
Z
R
dt

Z
Ω
d3x

�
Π̃ai _Aai þ AtiG̃

i

þ NaṼa −
1

16̰η

�
Trψ2 −

a
3a − 2

ðTrψÞ2
��

; ð16Þ

where we have defined Na ≔ −ðdet Π̃Þ−1Π̃a
iÑi, Ṽa ≔

Π̃b
iFi

ba, and ψ ij ≔ Ẽai Π̰a
j, the latter being a symmetric

matrix as a consequence of Eq. (14). Using the characteristic
equation for the matrix ψ ij [replacing Ñ by ψ in Eq. (4)] to
rewrite the last term on the right, we can finally express the
action (16) as

S½Aai; Π̃ai; Ati; Na; M̰�

¼
Z
R
dt

Z
Ω
d3xðΠ̃ai _Aai þ AtiG̃

i þ NaṼa þ M̰ ˜̃HÞ; ð17Þ

which exhibits that the canonical pair ðAai; Π̃aiÞ parametrizes
the phase space, while the variables Ati, Na and M̰ ≔
ð3=8Þð ̰η det Π̃Þ−1 appear linearly in the action and thus play
the role of Lagrange multipliers imposing the constraints

G̃i ¼ DaΠ̃ai ≈ 0; ð18aÞ

Ṽa ¼ Π̃b
iFi

ba ≈ 0; ð18bÞ

˜̃H ≔ ΠBB −
2

3
bΠΠBþ 1

9
b2ΠΠΠ

− γðΠΠΠÞ−1
�
ΠΠB −

1

3
bΠΠΠ

�
2

≈ 0; ð18cÞ

with γ ≔ 3ða − 1Þ=ð3a − 2Þ and we have introduced the
notation ΠΠB ≔ ð1=6Þ̰ηabcεijkΠ̃aiΠ̃bjB̃ck, etc. Notice that
the Gauss G̃i and vector Ṽa constraints have the same form
as those of the Ashtekar formalism of general relativity.

However, the scalar constraint ˜̃H turns out to be more
complicated than Ashtekar’s one and depends on the
parametersa andb. Tobetter understand the set of constraints
(18a)–(18c), we shall split the family of theories described by
Eq. (1) into two sectors: one with b ≠ 0 containing general
relativity and another with b ¼ 0 including anti-self-dual
gravity.
Let us first consider the sector with b ≠ 0. In this case

we can perform the canonical transformation ðAai; Π̃aiÞ ↦
ðAai; π̃ai ≔ Π̃ai − ð3=bÞB̃aiÞ, under which the Gauss and
vector constraints remain invariant, but the scalar constraint
is promoted to

˜̃H ¼ b
3

�
ππBþ b

3
πππ

−
γ

3

ð9πBBþ 6bππBþ b2πππÞ2
ð27BBBþ 27bπBBþ 9b2ππBþ b3πππÞ

�
≈ 0:

ð19Þ

As expected, in the case of general relativity, which
according to Sec. III corresponds to the choice a ¼ 1
and b ≠ 0, we have γ ¼ 0, and Eq. (19) reduces to the usual
scalar constraint of the Ashtekar formalism for general
relativity, modulo the global factor b=3. This independently
verifies that the action (1) indeed describes general rela-
tivity for the above choice of the parameters. For generic
values of a (different from a ¼ 2=3), we are compelled to
verify whether the Poisson algebra of the constraints closes
or not, in which case new constraints could arise. Since the
Gauss and vector constraints are not modified, the only
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nontrivial Poisson bracket we have to compute is that of the
scalar constraint (19) with itself. To that end, we introduce

the smeared scalar constraint H½M̰� ≔ R
Ω d3xM̰ ˜̃H, where

the test field M̰ has weight −1. We must then compute the
Poisson bracket

fH½M̰1�; H½M̰2�g

¼
Z
Ω
d3x

�
δH½M̰1�
δAai

δH½M̰2�
δπ̃ai

−
δH½M̰2�
δAai

δH½M̰1�
δπ̃ai

�
; ð20Þ

which has the same expression if the canonical variables
ðAai; Π̃aiÞ are used instead. After some algebra, we obtain

fH½M̰1�; H½M̰2�g ¼
Z
Ω
d3x ˜̃Q

ab ̰M̰bṼa; ð21Þ

where ̰M̰a ≔ M̰1∂a M̰2 − M̰2∂a M̰1 and ˜̃Q
ab

is the sym-
metric tensor density given by

˜̃Q
ab ≔

�
b
9

�
2

½π̃aiπ̃bi

−3γα0ðα1π̃aiπ̃bi þ α2π̃
ðaj

iB̃jbÞi þ α3B̃a
iB̃biÞ�; ð22Þ

with

α0 ≔
9πBBþ 6bππBþ b2πππ

ð27BBBþ 27bπBBþ 9b2ππBþ b3πππÞ2 ; ð23aÞ

α1 ≔ 18bBBBþ 3ð9 − 4γÞb2πBB

þ 4ð3 − 2γÞb3ππBþ 1

3
ð5 − 4γÞb4πππ; ð23bÞ

α2 ≔ 54BBBþ 36ð3 − 2γÞbπBB
þ 6ð9 − 8γÞb2ππBþ 8ð1 − γÞb3πππ; ð23cÞ

α3 ≔ 3ð3 − 4γÞð9πBBþ 6bππBþ b2πππÞ: ð23dÞ

Therefore, the constraint algebra closes and the constraints

G̃i, Ṽa, and
˜̃H are first class. Thus, the kind of gravitational

models with b ≠ 0 and 3a − 2 ≠ 0 propagate two (com-
plex) physical degrees of freedom. In particular, for general
relativity we have γ ¼ 0, which implies that the Poisson
bracket (21) reduces to the usual one up to a global factor.
The quantity (22) can actually be interpreted as a densitized
version of the inverse of the spatial metric [13,18,19], and
we see that its expression is rather nontrivial in general,
although in the case of general relativity it takes the
expected form. We point out that the algebra of constraints
closes directly from Eqs. (18a)–(18c) (see Sec. VI); we only
performed the previous canonical transformation in order to
make the passing from the general Hamiltonian theory to

the Ashtekar formalism of general relativity more
straightforward.
On the other hand, for b ¼ 0 the scalar constraint (18c)

yields

˜̃H ¼ ΠBB − γðΠΠΠÞ−1ðΠΠBÞ2 ≈ 0; ð24Þ

and it is readily seen that in the case of anti-self-dual
gravity, namely a ¼ 1 according to Sec. IV (equivalently
γ ¼ 0), we recover the expression for the scalar constraint
found in Ref. [8]. The Poisson bracket of Eq. (24) with

itself then takes the same form as Eq. (21), but with ˜̃Q
ab

this
time given by

˜̃Q
ab ¼ 1

9
B̃a

iB̃bi −
γ

9

ΠΠB
ðΠΠΠÞ2 ½ð3 − 4γÞðΠΠBÞΠ̃a

iΠ̃bi

þ 2ðΠΠΠÞΠ̃ðaj
iB̃jbÞi�: ð25Þ

Thus, the Poisson algebra among the constraints G̃i, Ṽa, and
˜̃H closes, and so they are first class. Because of this, these
models also propagate two (complex) physical degrees of
freedom. Notice that in the case of anti-self-dual gravity
(the inverse of) the spatial metric is constructed solely from

the curvature, ˜̃Q
abjASDG ¼ ð1=9ÞB̃a

iB̃bi, whereas for gen-
eral relativity its simpler form is quadratic in the canonical
variable Π̃a

i.

B. Case 3a− 2 = 0
This case is quite special, since from the Lagrangian

point of view, nothing interesting seems to happen in the
action (1) at the particular value a ¼ 2=3. Actually, as far as
the equations of motion are concerned, we have not found a
way to express them in a closed form as we did for the case
of general relativity.
For a ¼ 2=3, we find, from Eq. (14), that the matrix

ψ ij ¼ Ẽa
i Π̰aj is traceless symmetric (it is proportional to

the trace-free part of Ñij). Since this matrix is constructed
out of the phase-space variables, this means that there is an
additional constraint coming from the traceless property;
the matrix ψ ij being symmetric is just another way of
establishing the vector constraint. In this case, the action
(12) can be written as

S½Aai;Π̃ai;Ati; ̰η;Na;ρ̃�

¼
Z
R
dt
Z
Ω
d3x

�
Π̃ai _AaiþAtiG̃

iþNaṼaþ ρ̃Trψ−
1

16̰η
Trψ2

�
;

ð26Þ

where Na and ρ̃ are Lagrange multipliers imposing the
constraints mentioned above. In turn, the variable ̰η
imposes the constraint Trψ2, which, together with the
constraint Trψ ¼ 0 and the characteristic equation for
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ψ ij, implies that Trψ−1 ¼ 0. (Alternatively, we can redefine
the variable ρ̃ so that Trψ ¼ 0 and Trψ−1 ¼ 0 are the
resulting constraints.) Using the definition of ψ ij, the action
(26) acquires the form

S½Aai; Π̃ai; Ati; Na; M̰1; M̰2�

¼
Z
R
dt

Z
Ω
d3xðΠ̃ai _Aai þ AtiG̃

i þ NaṼa

þ M̰1
˜̃H1 þ M̰2

˜̃H2Þ; ð27Þ

where M̰1 ≔ ð3=8Þð ̰ηΠΠΠÞ−1 and M̰2 ≔ 3ρ̃ðΠΠΠÞ−1,
while ˜̃H1 and ˜̃H2 are respectively given by

˜̃H1 ≔ ΠBB −
2

3
bΠΠBþ 1

9
b2ΠΠΠ ≈ 0; ð28aÞ

˜̃H2 ≔ ΠΠB −
b
3
ΠΠΠ ≈ 0: ð28bÞ

Notice that ˜̃H1 corresponds to Eq. (18c) with γ ¼ 0 (or
a ¼ 1, which is the case of general relativity if b ≠ 0),

whereas ˜̃H2 is the scalar constraint of the Ashtekar formal-
ism for general relativity. Thus, the action principle (1)
for a ¼ 2=3 and b ≠ 0 somehow manages to include
at the same time both scalar constraints for general relativity
with a nonvanishing cosmological constant. It is worth
realizing that for b ≠ 0 the canonical transformation
ðAai; Π̃aiÞ ↦ ðAai; π̃ai ¼ Π̃ai − ð3=bÞB̃aiÞ allows us to
relate both constraints:

˜̃H1ðAai; Π̃ai; bÞ ¼ b
3
˜̃H2ðAai; π̃ai;−bÞ; ð29aÞ

˜̃H2ðAai; Π̃ai; bÞ ¼ −
3

b
˜̃H1ðAai; π̃ai;−bÞ: ð29bÞ

On the other hand, for b ¼ 0 ˜̃H1 becomes the scalar

constraint for anti-self-dual-gravity, while ˜̃H2 reduces to
the Ashtekar scalar constraint for general relativity with a
vanishing cosmological constant (there is no way to relate
these constraints by using the above canonical transforma-
tion). Whether the simultaneous presence of both constraints
leads to a consistent Hamiltonian theory for the different
choices of b is still being explored.

VI. MODELS WITH AN ARBITRARY
SCALAR CONSTRAINT

As we have seen in Sec. V, the scalar constraint corre-
sponding to the action principle (1), namely Eq. (18c) or (19)
forb ≠ 0, is a rather complicated function of the fundamental
blocks ΠΠΠ, ΠΠB, ΠBB, and BBB. Nevertheless, the set
made up of this constraint together with the Gauss and vector
constraints, Eqs. (18a) and (18b) respectively, is closed under

the Poisson bracket. As a function of the previous funda-
mental blocks, how general can the scalar constraint be in
order to form a closed set with the Gauss and vector
constraints? In this section we show that we can consider
as a scalar constraint any analytic function (of weightþ2) of
the aforementioned fundamental blocks and still have a
closed constraint algebra. Notice that particular instances
of this statement have already been established in the
literature [20] (see also Refs. [21,22]).
To proceed, let us consider a scalar constraint of the form

˜̃H ¼ ˜̃HðΠΠΠ;ΠΠB;ΠBB;BBBÞ ≈ 0; ð30Þ

which is analytic in the four arguments. Since the Gauss and
vector constraints form a closed set under the Poisson bracket
by themselves, we just have to compute the Poisson bracket
involving them and the scalar constraint (30) and, of course,
the bracket of Eq. (30) with itself. We now introduce the
smeared versions of the Gauss and vector constraints as
G½Λ� ≔ R

Ω d3xΛiG̃
i and V½N� ≔ R

Ω d3xNaṼa, respectively,
where the internal vectorΛi and the spatial tangent vectorNa

play the role of test functions. Note that fundamental blocks
constructed from Π̃ai and B̃ai are internal scalars, and so the
scalar constraint (30) is also an internal scalar. Hence, it
Poisson commutes with the Gauss constraint.
For any functional F½A; Π̃� of the phase-space variables

ðAai; Π̃aiÞ, the action of the vector constraint on it is given by

fV½N�; F½A; Π̃�g ¼ £NF½A; Π̃� − fG½ρ�; F½A; Π̃�g; ð31Þ

where ρi ≔ NaAai and £N stands for the Lie derivative along
the vector field Na, which in this case is understood as the
result of a functional variation, that is,

£NF ¼
Z
Ω
d3x

�
£NAai

δ

δAai
þ £NΠ̃ai δ

δΠ̃ai

�
F: ð32Þ

Toget ridof the second termon the right-hand sideofEq. (31)
it is customary to supersede the vector constraint by the
diffeomorphism constraint D̃a ≔ Ṽa þ AaiG̃

i. The latter
generates spatial diffeomorphisms according to the rule

fD½N�; F½A; Π̃�g ¼ £NF½A; Π̃�; ð33Þ

where D½N� ≔ R
Ω d3xNaD̃a.

Using Eq. (31), the Poisson bracket between the vector
constraint and the constraint (30) can be written as

fV½N�; H½M̰�g ¼ H½−£N M̰� þG½θ� ð34Þ

for θi ≔ −M̰Nað∂ ˜̃H=∂Π̃a
iÞ, and thereby it closes. Finally,

some algebra shows that the Poisson bracket between
Eq. (30) and itself takes the same form as Eq. (21) with

the following expression for the spatial metric ˜̃Q
ab
:
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˜̃Q
ab ¼ 1

3

�
−

∂ ˜̃H
∂ΠΠΠ

∂ ˜̃H
∂ΠBBþ1

3

� ∂ ˜̃H
∂ΠΠB

�2�
Π̃a

iΠ̃bi

þ
�
−

∂ ˜̃H
∂ΠΠΠ

∂ ˜̃H
∂BBBþ1

9

∂ ˜̃H
∂ΠΠB

∂ ˜̃H
∂ΠBB

�
Π̃ðaj

iB̃jbÞi

þ1

3

�
−

∂ ˜̃H
∂ΠΠB

∂ ˜̃H
∂BBBþ1

3

� ∂ ˜̃H
∂ΠBB

�2�
B̃a

iB̃bi: ð35Þ

Accordingly, the Poisson algebra generated by the Gauss
constraint (18a), the vector constraint (18b), and the general
scalar constraint (30) closes. In consequence, a theory
subject only to this set of first-class constraints still
propagates the same number of degrees of freedom as
general relativity, thus giving rise to a huge family of
gravitational models propagating two degrees of freedom,
one for each noncanonically equivalent choice of the scalar
constraint (30). One of such models is the one embodied in
the scalar constraint (18c), which in turn produces different
gravitational models (including general relativity) depend-
ing on the value of the parameters contained in the original
polynomial action (1). To check this, we can easily verify
that the spatial metric (35) yields Eqs. (22) and (25) for
their corresponding scalar constraints (19) and (24).

VII. CONCLUSIONS

In this paper we have posed a new BF-type action for
general relativity with a nonvanishing cosmological constant
that is polynomial in theB field. The action itself turns out to
be a particular member of a family of gravitational models
depicted by the action (1), which depends on two parameters
a and b. According to Sec. III, general relativity with
a nonvanishing cosmological constant corresponds to the
choice a ¼ 1 and b ≠ 0, where (the negative of) the latter
gets identified with the cosmological constant. Likewise, in
Sec. IV we showed that for a ¼ 1 and b ¼ 0 the action (1)
describes anti-self-dual gravity. Thus, the parameter b
switches between general relativity and anti-self-dual gravity
when a ¼ 1. As far as we know, general relativity with
a vanishing cosmological constant cannot be described using
the action (1), although it would be nice to have an analogous
polynomial description of it to complete the landscape.
We also performed the canonical analysis of the BF-type

action inSec.Vand established that for3a − 2 ≠ 0 the theory
propagates two (complex) physical degrees of freedom,

which applies to general relativity and anti-self-dual-gravity
as well. We point out that this restraint on the value of a only
shows up at theHamiltonian level, whereas at the Lagrangian
level taking a ¼ 2=3 in the action (1) does not seem to create
any obstacles (although no closed form for the equations of
motion was found). The case a ¼ 2=3 is actually something
special, since the resulting canonical theory has two scalar
constraints, namely Eqs. (28a) and (28b). The consistency of
the presence of these two constraints and their meaning is
currently being investigated. It is worthmentioning that from
theLagrangian standpoint, thismodel can also be regarded as
Plebanski’s action SPl½A; B;Ψ; ρ� plus an additional term
imposing either the constraint TrΨ2 ¼ 0 or TrΨ−1 ¼ 0.
In addition, based on the nontrivial form of the scalar

constraint resulting from the canonical analysis of Sec. V,
we generalized it by allowing as a scalar constraint an
arbitrary analytic function of the fundamental blocks ΠΠΠ,
ΠΠB, ΠBB, and BBB, and showed in Sec. VI that even in
that case the Gauss, vector, and new scalar constraints form
a closed set under the Poisson bracket. The constraints are
then first class and the theory propagates the same number
of degrees of freedom as before. Thus, we have an infinite
family of gravitational models propagating the same
number of degrees of freedom as general relativity, some
of which have already been explored in the literature and
have a Lagrangian counterpart [20–23].
Looking ahead into the future, we think the action (1),

being polynomial in the B field, might become a good
candidate to explore a nonperturbative path integral quan-
tization of gravity. The fact that Eq. (1) actually gives
a family of “close neighbors” to general relativity could be
really helpful to attain this goal, since we can select among
them one or several gravitational models with nice theo-
retical features such as renormalizability that might render
them more amenable to quantization.
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