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In this paper we compute the Arnowitt-Deser-Misner (ADM) mass, the angular momentum, and the
charge of the Kerr black hole solution in the scalar-tensor-vector gravity theory [known as the Kerr-MOG
(modified gravity) black hole configuration]; we study in detail as well several properties of this solution
such as the stationary limit surface, the event horizon, and the ergosphere, and conclude that the new
deformation parameter α affects the geometry of the Kerr-MOG black hole significantly in addition to the
ADM mass and spin parameters. Moreover, the ADM mass and black hole event horizon definitions allow
us to set a novel upper bound on the deformation parameter and to reveal the correct upper bound on the
black hole spin. We further find the geodesics of motion of stars and photons around the Kerr-MOG black
hole. By using them we reveal the expressions for the mass and the rotation parameter of the
Kerr-MOG black hole in terms of the red- and blueshifts of photons emitted by geodesic particles,
i.e., by stars. These calculations supply a new and simple method to further test the general theory of
relativity in its strong field limit: If the measured red- and blueshifts of photons exceed the bounds imposed
by the general theory of relativity, then the black hole is not of Kerr type. It could also happen that the
measurements are allowed by the Kerr-MOG metric, implying that the correct description of the dynamics
of stars around a given black hole should be performed using MOG or another modified theory of gravity
that correctly predicts the observations. In particular, this method can be applied to test the nature of the
putative black hole hosted at the center of the Milky Way in the near future.
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I. INTRODUCTION

The presence of a great number of extremely compact
and massive objects in our Universe has led to the
hypothesis that they are black holes (BHs). Current and
near-future precise observations of the orbital motion near
these black hole candidates have the potential to determine
if they possess the spacetime structure predicted by the
general theory of relativity (GTR), providing a test of the
theory in its strong gravitational regime.
Recently, a method to compute the spin a and the mass

M parameters of the Kerr black hole, which is an exact
solution of Einstein’s field equations of the GTR, in terms
of red- and blueshifts (zr and zb) of photons emitted by
massive geodesic objects was proposed in [1]. The authors
have shown that in principle with an observational data set
of these red- and blueshifts of photons emitted by stars

orbiting in the background of the Kerr spacetime with
different radii, one can easily compute the mass M and the
spin a ¼ J=M parameters of the Kerr BH (here J stands for
the BH angular momentum).
This method has been applied as well to a higher-

dimensional Myers-Perry BH in [2] and to the Kerr-Sen
BH arising in the heterotic string theory in [3]; it was further
used to derive mass formulas for a Reissner-Nordstrom BH
and boson stars in [4] and for a noncommutative geometry
inspired Schwarzschild black hole in [5]. A similar approach
was implemented to model a binary system in the external
gravitational field of a Schwarzschild BH in order to fit the
timing data from the x-ray pulsars that move in the
neighborhood of our Galactic Center (Sgr A*) in [6] (for
a review regarding the observations of Sgr A* and processes
around it in the electromagnetic spectrum see [7]).
It turns out that most of the tests of the GTR, which is

considered as one of the most beautiful of all existing
physical theories, have been performed in the weak field
regime [8–12]; however, the recent detection of gravita-
tional waves produced by coalescing black holes has
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opened a new era in the study of gravity in the strong
coupling regime [13–17]. Therefore, tests of the GTR are
important in the strong gravitational limit; these tests will
also probe modified theories of gravity that can show a
significant departure from GTR only in such a regime. And,
to probe the strong gravity regime, BHs are the most
promising candidates because of their large gravitational
field near the event horizon.
There have been several generalizations of rotating BH

solutions both within the GTR and within modified
gravitational theories. Among them we can mention the
generalization of the Kerr-Newman spacetime possessing a
full set of mass-multipole momenta which describes the
exterior gravitational field of a charged rotating arbitrary
axisymmetric mass [18] (see as well [19] for the bumpy
Kerr BH version). A study of prolate/oblate deformations
of Kerr spacetimes using this family of metrics was
performed in [20]. The so-called quasi-Kerr metric [21]
that incorporates just one independent quadrupole moment
has been used to propose a test of the no-hair theorem in
[22]. Thus, these deformed BHs differ from the Kerr metric
in (at least) one multipole moment and allow for a test that
distinguishes a Kerr BH from an object of a different kind.
Moreover, a deviation of the quadrupole moment from the
predicted Kerr BH value will lead to either prolate or oblate
images of BHs, depending on the sign and magnitude of the
measured deviation. In particular, there will appear changes
in the structure of the BH shadow [23].
On the other hand, BHs are supposed to be hosted at the

center of every galaxy, including our own Milky Way.
Therefore, one can compute observable quantities that can
be measured directly with either current or near-future
instruments. These observational experiments allow for the
formulation of a GTR test in the strong gravity regime: If
the central object of a galaxy is a black hole, there must be
no deviation from the Kerr metric. If, however, the
deviation is measured to be different from zero, then it
indicates that either the central object is of a different type,
or that the GTR itself breaks down at the strong gravita-
tional regime very close to the event horizon of the BH.
However, one should always keep in mind that the Kerr BH
solution to the GTR field equations is indistinguishable
from exact solutions of a wide variety of gravity theories
that add dynamical vector and tensor degrees of freedom to
the Einstein-Hilbert action [24].
An interesting family of metrics that contain an infinite

amount of parameters, is regular everywhere outside of the
event horizon, and predicts a different shadow from that
expected from the GTR Kerr BH solution was proposed in
[25]; a simplified version of this general metric that
contains just three parameters can be found in [26]. In
these metrics, circular equatorial orbits of massive and
massless test particles around the BH, as well as innermost
stable circular orbits, significantly change for even mod-
erate deviations from the Kerr BH metric, providing a

suitable arena for carrying out strong gravitational field
tests of the GTR.
The above-mentioned phenomenological modifications

of the Kerr BH metric have been supplemented by several
exact solutions to the field equations of modified gravita-
tional theories. For instance, a generalization of the bumpy
Kerr BH solution [19] has been mapped to known analytical
BH solutions in alternative theories of gravity in [27]; within
the context of the fðRÞ gravity theory rotating BH configu-
rations have been constructed in [28,29]; in dilatonic and
axidilatonic string theories, rotating BH solutions were
obtained in [30,31], respectively; in the Einstein-Dilaton-
Gauss-Bonnet (EDGB) theorywith large coupling constants
a rotating BH was reported in [32]; within the scalar-tensor-
vector modified gravitational (MOG) theory, a new class of
rotating BHs (known as Kerr-MOG BHs) was proposed in
[33]. The latter Kerr-MOG BHs are defined by the spin
parameter a, the mass parameter Mα, and a deformation
parameter α [34], in contrast to the Kerr BH which is only
defined by the spin a and the mass M parameters. This
family of metrics produces a photon sphere which obser-
vationally differs from the one generated by the pure
Kerr BH [35]. Moreover, gravitational lensing of the BH
and the images of the BH shadow provide observational
signatures for distinguishing between Kerr and Kerr-MOG
BH configurations.
An interesting parametrization for a general stationary

and axisymmetric BH metric has been proposed in [36].
With a small number of parameters, this formalism yields
several known rotating BH configurations, among them
we find the Kerr BH, the rotating dilaton (or Kerr-Sen)
and the EDGB BHs, and the Johannsen-Psaltis metric [25].
On the basis of this parametrization, the shadow analysis
of various BHs in alternative theories of gravity was
performed in [37].
Most of the aforementioned BH metrics allow, in

principle, for a test that distinguishes a Kerr BH from a
different compact object. For interesting reviews on the
subject see [38,39].
Many other tests of GTR have been proposed. A study

of the evolution of the spin parameter of accreting compact
objects with a non-Kerr quadrupole moment showed that if
these supermassive objects are not Kerr BHs, the accretion
process can make them reach a superspinning regime [40].
The profiles of fluorescent broadened iron lines emitted
from the accretion flows around a BH were calculated
as a function of its mass, spin parameter, and a free
parameter that measures potential deviations from the
Kerr metric in [41]. For complete reviews of different tests
of the GTR in the strong gravitational field regime we refer
to [42–44].
In this paper we obtain the following new results: We

compute the ADM mass for the Kerr-MOG metric. We
establish upper bounds on both the deformation and spin
parameters of the Kerr-MOG spacetime (the ADM mass
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definition leads to a novel upper bound on the deformation
parameter and reveals the correct upper bound on the black
hole spin parameter). We reveal the correct structure of the
ergosphere of the Kerr-MOG BH on the basis of the ADM
mass definition since it changes the expressions of both the
stationary limit surface and the event horizon, yielding
interesting effects that differ from those predicted by
Moffat’s original metric. We obtain a correct definition
of the extremal limit for the Kerr-MOG BH metric,
allowing us to correctly compute the red- and blueshifts
of photons in subsequent sections. We generalize the
method for computing the spin and mass parameters of
the Kerr-MOG BH in terms of red- and blueshifts of
photons emitted by massive geodesic particles, in the spirit
of [1]. We also provide a formulation of a novel concrete
test of the Kerr BH hypothesis on the basis of these red- and
blueshifts of photons: given an observational data set of
red- and blueshifts of photons emitted by stars orbiting
around a rotating BH with different radii, one can, in
principle, determine whether the spin and mass parameters
correspond to the predicted values of the Kerr BH of the
GTR, to the Kerr-MOG BH of the scalar-tensor-vector
gravity (STVG) modified gravitational theory for a given
value of the α parameter, or correspond to a BH or compact
object of a different theory, providing a further test of the
GTR in the strong gravitational regime. We finally provide
new algebraic expressions for estimating the mass and spin
parameters of the Kerr-MOG BH from observational data;
these expressions radically differ from those found for
the Kerr metric, in particular, the order of the algebraic
equations for a andMα is doubled for the Kerr-MOG BH in
comparison to the Kerr BH.
Thus, in Sec. II we shall start with the line element of the

Kerr-MOG BH and we shall compute its ADM mass, its
angular momentum, and its charge; we shall also study the
behavior of its stationary limit surface (SLS), its event
horizon (EH), and its ergosphere with emphasis on the
variation along the α parameter; with the expressions for
the ADM and event horizon at hand we set an upper bound
on the deformation parameter and show that the spin
parameter is bounded from above as for the Kerr BH of
the GTR. In Sec. III, we shall compute the geodesics of
both massive and massless particles in the background of a
Kerr-MOG BH and particularize them for the equatorial
(i.e., in the θ ¼ π=2 plane) and circular cases. Further, in
Sec. IV we shall discuss the red- and blueshifts of photons
emitted by the geodesic particles orbiting around the Kerr-
MOG BH, whereas in Sec. V, we set bounds on these red-
and blueshifts in terms of the spin parameter and formulate
a novel possible test for the Kerr BH hypothesis; in Sec. VI
we shall find the expressions for the spin a and mass Mα

parameters of the Kerr-MOG BH in terms of these red- and
blueshifts, and finally, we shall end the paper by summa-
rizing our results and evoking some future prospects in
Sec. VII.

II. THE KERR-MOG BLACK HOLE METRIC

The field equations for scalar-tensor-vector gravity (also
known as MOG in the literature) have a stationary,
axisymmetric black hole solution named the Kerr-MOG
black hole, which is determined by its mass, its angular
momentum, and a deformation parameter α [33]. The Kerr-
MOG BH metric of modified gravity in Boyer-Lindquist
coordinates with c ¼ 1 reads

ds2 ¼ −
�
−a2sin2θ þ Δ

Σ

�
dt2 þ Σ

Δ
dr2

− 2

�
r2 þ a2 − Δ

Σ

�
asin2θdtdϕþ Σdθ2

þ
�
−Δa2sin2θ þ ðr2 þ a2Þ2

Σ

�
sin2θdϕ2; ð1Þ

where

Δ ¼ r2 − 2GMrþ a2 þM2αGGN;

Σ ¼ r2 þ a2cos2θ; ð2Þ

where G ¼ GNð1þ αÞ is an enhanced gravitational con-
stant defined with the aid of Newton’s gravitational

constant GN and the deformation parameter α ¼ ðG−GNÞ
GN

introduced in [45].
At this point it is worth remembering that a proportion-

ality relation between the chargeQ of the MOG vector field
and the mass parameter M of the metric (1) was postulated
in [33]:

Q ¼
ffiffiffiffiffiffiffiffiffi
αGN

p
M ð3Þ

endowing the chargeQwith a gravitational character, since
astrophysical bodies, including black holes are electrically
neutral. This gravitational charge yields the modified
Newtonian acceleration that is used to fit galaxy rotation
curves, galaxy cluster dynamics, as well as Solar System
and binary pulsar dynamics [46]. From now onwards,
throughout this paper, we are taking GN ¼ 1.
The metric (1) is stationary and axially symmetric. We

denote by ξ and ψ the Killing vector fields which are the
generators of the corresponding symmetry transformations

ξi ¼ ð1; 0; 0; 0Þ timelike Killing vector field; ð4Þ

ψ i ¼ ð0; 0; 0; 1Þ rotational Killing vector field: ð5Þ

The presence of these Killing vectors is very useful when
computing the invariant parameters that define the Kerr-
MOG metric (1): the ADM mass, the angular momentum,
and the total charge [47], namely
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MADM ¼ −
1

8π

Z
S
ϵijkl∇kξl ¼ ð1þ αÞM ≡Mα; ð6Þ

J ¼ 1

16π

Z
S
ϵijkl∇kψ l ¼ Mð1þ αÞa≡Mαa; ð7Þ

4πQ ¼ 1

2

Z
S
ϵijklBkl; ð8Þ

where S is an asymptotic 2-sphere and Bkl ¼ ∂kϕl − ∂lϕk
is the strength tensor of the vector field ϕk of the MOG
theory [45].

Thus, we should stress here that the ADMmassMα is the
gravitational mass of the Kerr-MOG BH since it corre-
sponds to the value of the energy when considering the
Hamiltonian formalism of the GTR [48]. Therefore, we
shall further denote the Kerr-MOG BH mass as Mα since
this quantity is precisely the source of the gravitational
force acting on a test particle (i.e., a star, for instance)
moving around the black hole.
On the other hand, we know that, unlike the

Schwarzschild BH, the Kerr BH has two important surfa-
ces: the SLS and the event horizon one. Hence, it is
interesting to calculate and study these surfaces for the
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FIG. 1. The behavior of the stationary limit surface (gtt ¼ 0) vs r for different values of α is shown at different θ’s (forMα ¼ 1). Here,
the solid (black) line corresponds to the extremal Kerr-MOG black hole and the large-dashed (red) line to the Kerr BH (i.e., when α ¼ 0).
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metric (1). At the SLS, the Killing vector ξ becomes null
which further implies that the prefactor of dt2 (which
determines the rate of flow of time) vanishes. The equation
of this surface is

a2 sin2 θ − Δ ¼ 0: ð9Þ

It can be also written in explicit form r ¼ rSLS, where rSLS
is given by the relation

rSLS ¼ Mα �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

α

ð1þ αÞ − a2cos2θ

s
: ð10Þ

The horizons of the BH (1) are calculated by equating the
grr to zero, i.e.,

Δ ¼ r2 − 2Mαrþ a2 þ α

ð1þ αÞM
2
α ¼ 0: ð11Þ

This equation defines two event horizons which lie at
r ¼ r� ¼ rEH, where

rEH ¼ Mα �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

α

ð1þ αÞ − a2

s
: ð12Þ

Here it is worth noticing that both the positiveness of the
radicand in (3) and the positiveness of the radicand in
Eq. (12) impose physical bounds on the α parameter

0 ≤ α ≤
M2

α

a2
− 1; ð13Þ

inequalities that correspond to a black hole configuration. If
the second inequality is inverted, we obtain a naked
singularity; however, if it holds, then jaj < Mα, a relation
which is valid as well for the Kerr BH of the GTR. In fact,
the following upper bound can be established for the spin
parameter:

jaj ≤ Mαffiffiffiffiffiffiffiffiffiffiffi
1þ α

p ð14Þ

a relation that tells us that the spin parameter of the Kerr-
MOG BH will be more restricted with respect to its ADM
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FIG. 2. These plots show the behavior of the event horizon ðΔ ¼ 0Þ vs r for different values of the deformation parameter α. In these
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mass than the rotation parameter of the Kerr BH since the
deformation parameter α is positive.
Thus, the correct definition of the ADM mass for the

Kerr-MOG BH influences the correct determination of the
SLS, the EH, and the ergosphere.
The behavior of the SLS is shown in Fig. 1, and that of

the event horizon in Fig. 2. It is clear from the figures that
there exists a set of values for the parameters for which we
have two horizons, i.e., an inner (Cauchy) horizon and an
outer (event) horizon. In Fig. 3 and Table I we present the
range of the parameter α for which a BH EH exists; from
them one can easily conclude that the range of parameter α
decreases as the value of the spin parameter increases.
Clearly, from Fig. 4 the SLS and the EH surfaces touch
each other at the poles (θ ¼ 0, and θ ¼ π); otherwise the
SLS is outside the horizon. The region between the SLS
and EH is popularly known as the ergosphere and the
reason for the name is that any massive object going into

the ergosphere enables us to “extract” energy from the
spinning BH. One can also obtain the radius and the
corresponding values of the parameters for which there
exists an extremal BH (a BH for which both horizons
coincide):

rext ¼ Mα ¼ jaj ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
when M2

α ¼ a2ð1þ αÞ: ð15Þ

III. GEODESICS OF MASSIVE PARTICLES
AND PHOTONS IN THE KERR-MOG BH

A. Geodesics of massive particles

We start this section by studying the motion of
a particle with mass m ¼ 1 orbiting in the background
of a Kerr-MOG BH. The motion of stars around a BH, for
instance, can be approximately described by these dynam-
ics. The Hamilton-Jacobi equation guiding geodesic
motion in this spacetime with the metric tensor gij is
given by

2
∂S
∂τ ¼ −gij

∂S
∂xi

∂S
∂xj ; ð16Þ

where S denotes Hamilton’s principal function, and τ is an
affine parameter along the geodesics. For this BH back-
ground, the Hamilton’s principal function S can be sepa-
rated as

S ¼ 1

2
τ − Etþ Lϕþ SrðrÞ þ SθðθÞ; ð17Þ

where Sr and Sθ are functions of r and θ, respectively. The
constants E and L correspond to conserved energy and
angular momentum per unit mass through the normaliza-
tion condition 1¼−pipi and are given by the following
equations

E ¼ Ẽ
m

¼ −gijξiUj; ð18Þ

L ¼ L̃
m

¼ gijψ iUj: ð19Þ

There is also a Carter constant of motion K due to the
existence of a Killing tensor Kμν for the Kerr-MOG metric.
Its derivation a straightforward generalization of the Carter
constant of motion for the Kerr spacetime [49] in the sense
that the only difference resides in the new form of the Δ
function defined in (11) compared to the same function for
the Kerr BH metric (see [1] as well for details). Thus, the
Carter constant of motion defined according to the
Hamilton-Jacobi method reads

K≡ KijUiUj − ðL − aEÞ2 ¼ C − ðL − aEÞ2; ð20Þ
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FIG. 3. Plot showing the plane of the deformation parameter (α)
vs the spin parameter (a) of the Kerr-MOG BH for Mα ¼ 1. The
curve separates the BH from no BH regions (i.e., where there is
no real root of Δ ¼ 0).

TABLE I. The range of the deformation parameter α corre-
sponding to different values of the spin parameter a is shown for
the Kerr-MOG BH. Here the value of the mass parameter Mα is
unity.

No. a Range of α

1 0.3 0 ≤ α ≤ 10.111
2 0.4 0 ≤ α ≤ 5.250
3 0.5 0 ≤ α ≤ 3.0
4 0.6 0 ≤ α ≤ 1.777
5 0.7 0 ≤ α ≤ 1.040
6 0.8 0 ≤ α ≤ 0.562
7 0.9 0 ≤ α ≤ 0.234
8 0.99 0 ≤ α ≤ 0.020
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where C is a constant that arises from the contraction
KijUiUj; the Carter constant provides a measure of how
much the trajectory of a test particle departs from the
equatorial plane θ ¼ π=2, where this quantity vanishes.
Thus, the necessary and sufficient condition for a particle
that initially is located in the equatorial plane to remain in it
is to have K ¼ 0. Any particle which crosses the equatorial
plane necessarily has K > 0.
Thus, the geodesics for massive particles in the Kerr-

MOG BH background can be obtained as first-order
differential equations for every direction following the
procedure presented in [50] and have the form

ΔΣUt¼½ðr2þa2Þ2−Δa2sin2θ�E−ðr2þa2−ΔÞaL; ð21Þ

Σ2ðUrÞ2 ¼ T2 − Δ½r2 þ ðL − aEÞ2 þK�≡ V2
rðrÞ; ð22Þ

Σ2ðUθÞ2 ¼K−
h
a2ð1−E2Þþ L2

sin2θ

i
cos2θ≡Θ2ðθÞ; ð23Þ

ðΔΣsin2θÞUϕ¼ asin2θðr2þa2−ΔÞEþðΔ−a2sin2θÞL;
ð24Þ
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FIG. 4. The shape of the ergosphere for the different values of the spin parameter a is plotted. Here, the ergosphere region (pink region)
increases with the increase in the value of the parameter α for a fixed value of the spin parameter a [where, the solid (red) lines represent
the SLS and the dashed (black) lines represent the EH]. Here, we keep the value of the mass parameter Mα ¼ 1.
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where V2
rðrÞ and Θ2ðθÞ are functions that respectively

depend on the r and θ coordinates alone, and we have
introduced the following quantity

T ≡ Eðr2 þ a2Þ − La: ð25Þ

For bounded orbits we have E < 1, while for unbounded
orbits we obtain E ≥ 1 (see [50,51] for details).
Thus, the geodesic equations of a massive test particle

moving in the Kerr-MOG BH background with given
constants of motion E, L, K, and initial conditions xi0
are encoded in Ui and are given by the relations (21)–(24).
A similar calculation of the circular orbits of massive

particles in the Kerr-MOG spacetime was performed in
[52]; moreover, in [53] the authors have also studied more
general trajectories of massive particles moving around this
spacetime metric.

B. Geodesics of photons

The same procedure can be performed to obtain the null
geodesics of photons with 4-momentum ki moving outside
the event horizon of the Kerr-MOG BH spacetime. In this
case, the null character of the geodesics implies that
kiki ¼ 0 and the motion of photons preserve the following
constants quantities

Eγ ¼ −gijξikj; ð26Þ

Lγ ¼ gijψ ikj; ð27Þ

Qγ ≡ Kijkikj − ðLγ − aEγÞ2 ¼ Cγ − ðLγ − aEγÞ2; ð28Þ

where Cγ is a constant. In [54], a detailed analysis of null
geodesics in an arbitrary spacetime is given.
Therefore, the geodesic equations that describe the

motion of photons in the Kerr-MOG BH spacetime with
given constant parameters Eγ , Lγ ,Qγ , and initial conditions
yi0 are parametrized by the components of the 4-momentum
ki and read

ΔΣkt ¼ ½ðr2 þ a2Þ2 − Δa2sin2θ�Eγ

− ðr2 þ a2 − ΔÞaLγ; ð29Þ

Σ2ðkrÞ2 ¼ T2
γ − Δ½ðLγ − aEγÞ2 þQγ�; ð30Þ

Σ2ðkθÞ2 ¼ Qγ −
�
−a2E2

γ þ
L2
γ

sin2θ

�
cos2θ; ð31Þ

ðΔΣsin2θÞkϕ ¼ asin2θðr2 þ a2 − ΔÞEγ

þ ðΔ − a2sin2θÞLγ; ð32Þ

where again the right-hand side of the expressions (30) and
(31) depend only on the radial r and polar θ coordinates,
respectively, and we have defined

Tγ ¼ ðr2 þ a2ÞEγ − aLγ: ð33Þ

Thus, at this point we have completely characterized the
motion of massive particles (which can approximately
describe the motion of stars) and photons in the gravita-
tional field of the Kerr-MOG BH in terms of the 4-velocity
Ui and the 4-momentum ki.

C. Geodesics of massive particles
in the equatorial plane

Now we shall consider the motion of massive and
massless particles in the equatorial plane ðθ ¼ π=2Þ as a
particular case, implying that both Uθ and kθ vanish and
that K ¼ 0 ¼ Qγ .
Thus, in this case the components of the 4-velocity adopt

a simple form

r2Ut ¼ aðL − aEÞ þ ðr2 þ a2Þ T
Δ
; ð34Þ

r2Ur ¼ �
ffiffiffiffiffiffi
Vr

p
; ð35Þ

r2Uϕ ¼ ðL − aEÞ þ aT
Δ

: ð36Þ

Here Vr is an “effective potential” governing the particle
motion in the radial coordinate r.
We shall further consider circular trajectories, a relevant

class of orbits that are very important to get physical insight
about the dynamics of orbiting stars around a BH; however,
for real applications of this method it is necessary to
consider more general classes of stars’ orbits, elliptical and
not restricted to lie in the equatorial plane, in particular.
For circular orbits in the equatorial plane the radial

component of the 4-velocity (35) must vanish at a fixed
distance r, i.e., Ur ¼ 0, and possess a minimum that allows
for bound orbits. Thus, Eq. (35) gives the condition on the
effective potential and on its first derivative as [50,51]

Vr ¼ 0; and
dVr

dr
¼ 0: ð37Þ

Remarkably, these equations can be nontrivially solved for
the conserved energy E and the conserved angular momen-
tum L to give

E ¼ 1ffiffiffiffiffiffiffi
Q�

p
�
1 − 2

Mα

r
þMβ

r2
� a

ffiffiffiffiffi
ϖ

r3

r �
; ð38Þ

L ¼ �
ffiffiffiffiffiffiffi
rϖ
Q�

r �
a2

r2
þ 1 ∓ a

ffiffiffiffiffiffiffiffiffi
1

r3ϖ

r �
2Mα −

Mβ

r

��
; ð39Þ
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where we have defined

Mβ ¼
α

ð1þ αÞM
2
α; ð40Þ

Q� ¼ 1þ 2Mβ

r2
−
3Mα

r
� 2a

ffiffiffiffiffi
ϖ

r3

r
; ð41Þ

ϖ ¼ Mα −
Mβ

r
: ð42Þ

One can easily check that Eqs. (38) and (39) reduce to
conserved energy E and angular momentum L for the Kerr
BH as the parameter α → 0. In the Appendix we provide a
detailed computation of these quantities following the
algorithm of [55].
By substituting the expressions (38) and (39) into

Eqs. (34) and (36), we obtain useful expressions for the
4-velocity components in terms of the metric parameters

Ut ¼ r
3
2 � a

ffiffiffiffi
ϖ

p

r
3
2

ffiffiffiffiffiffiffi
Q�

p ; ð43Þ

Uϕ ¼ � ffiffiffiffi
ϖ

p

r
3
2

ffiffiffiffiffiffiffi
Q�

p : ð44Þ

Finally, the condition for stable orbits is given by

d2Vr

dr2
¼ ð6r2þa2ÞðE2− 1Þ−L2þ 6Mαr−Mβ ≤ 0: ð45Þ

This condition sets a bound that must be obeyed by the
radial coordinate r in order for the star to have a stable
orbit:

MαrΔ − 4ðMαr −MβÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mαr −Mβ

p ∓ a
�
2
≥ 0: ð46Þ

This relation leads to an algebraic expression of sixth order
for r that cannot be solved analytically.

D. Geodesics of photons in the equatorial plane

We now consider the null geodesics kiki ¼ 0 of photons
which move outside the event horizon of the modified Kerr
BH along the equatorial plane where θ ¼ π=2.
Similarly, as we obtained Eqs. (34)–(36) in terms of

conserved energy E and angular momentum L, we can also
write the null geodesics of photons parametrized by the
4-momentum components ki in the equatorial plane in
terms of Eγ and Lγ in the following way

r2kt ¼ aðLγ − aEγÞ þ ðr2 þ a2ÞTγ

Δ
; ð47Þ

r2kr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
γ − ΔðLγ − aEγÞ2

q
; ð48Þ

r2kϕ ¼ ðLγ − aEγÞ þ
aTγ

Δ
: ð49Þ

Since the motion of the photons is not bound, the radial
component of the 4-momentum is in general different
from zero.

IV. RED- AND BLUESHIFTS OF PHOTONS
IN THE MODIFIED KERR BACKGROUND

Nowwe shall calculate the red- and blueshifts that emitted
photons by massive objects orbiting around the modified
Kerr spacetime experience while traveling along null geo-
desics in the direction of an observer situated far away from
the source. Here, it is worth mentioning that the following
algorithm deals with the problem on the basis of directly
observable quantities: the red- and blueshifts of photons,
which are coordinate independent in comparison with the
tangential velocities, which are coordinate dependent.
Now, wewrite the general expression for the frequency of

a photon in termsof the 4-velocityUi
e=d and the4-momentum

kie=d measured by an observer located at point D,

νe=d ¼ −kiUijDe=d
; ð50Þ

where the index e=d stands for emission (e) or detection (d)
at the spacetime point D.
Therefore, the frequency of signals emitted by a comoving

observer at the emissionpoint (e) anddetected by anobserver
located far away from the source at point (d), in terms of the
4-velocities of the emitter Ui

e ¼ ðUt; Ur; Uθ; UϕÞje and the
detector Ui

d ¼ ðUt; Ur; Uθ; UϕÞjd is

νe=d ¼ −ðkiUiÞje=d;

where the kie ¼ ðkt; kr; kθ; kϕÞje and kid ¼ ðkt; kr; kθ; kϕÞjd
are the 4-momenta of photons at the emission and detection
points, respectively.
The redshift of photons is defined as

z ¼ νe − νd
νd

¼ νe
νd

− 1; ð51Þ

from where we can write the general expression for
the redshift of photons with arbitrary motion in terms of the
4-velocity of the stars Ui and the 4-momentum of the
photons ki in the following form

1þ z ¼ νe
νd

¼ ðEkt − Lkϕ − grrUrkr − gθθUθkθÞje
ðEkt − Lkϕ − grrUrkr − gθθUθkθÞjd

¼ ðEγUt − LγUϕ − grrUrkr − gθθUθkθÞje
ðEγUt − LγUϕ − grrUrkr − gθθUθkθÞjd

; ð52Þ
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where we have used Eqs. (18), (19), (26), and (27) for
the constants E, L, Eγ, and Lγ , respectively, and the
definition for frequency (50), together with the expressions
for the 4-velocity of the emitter and the detector, as well as
for the 4-momentum of the emitted and the detected
photons. Any of these formulas can be used for practical
purposes.

A. Redshifts in the equatorial plane

For the special cases when the observer moves in the
equatorial plane, Uθ

e=d vanishes; moreover, when the
detector is ideally situated at an infinite distance from
the source ðr → ∞Þ, we can conclude from Eqs. (34)–(36)
that both Ur

d and Uϕ
d vanish, while Ut

d tends to E ¼ 1,
rendering the following 4-velocity Ui

d ¼ ð1; 0; 0; 0Þ.
Further, if we consider that photons are moving in the

equatorial plane, then kθ vanishes and the 4-momentum of
the emitted or detected photon at point De=d reads

kie=d ¼ ðkt; kr; 0; kϕÞje=d: ð53Þ

Thus, the general expression for the redshift in the case
when both the photons and the stars are restricted to move
along the equatorial plane is given by any of the following
equations:

1þ z ¼ νe
νd

¼ ðEkt − Lkϕ − grrUrkrÞje
ðEkt − Lkϕ − grrUrkrÞjd

¼ ðEγUt − LγUϕ − grrUrkrÞje
ðEγUt − LγUϕ − grrUrkrÞjd

; ð54Þ

where we just have made use of Eq. (53).

B. Redshifts for circular equatorial orbits

Here we shall return to circular orbits as a simple but
important class of trajectories that allow us to get physical
insight about the dynamics of the rotating stars around a
BH as it was mentioned above. Thus, for circular orbits of
stars (when Ur ¼ 0), the redshift (54) takes the following
simple form

1þ z ¼ νe
νd

¼ ðEγUt − LγUϕÞje
ðEγUt − LγUϕÞjd

¼ Ut
e − beU

ϕ
e

Ut
d − bdU

ϕ
d

: ð55Þ

This quantity can be used for the calculations of the mass
and rotation (spin) parameter of the modified Kerr BH in
terms of red- and blueshifts of photons (zr and zb, see
below) detected by a distant from the source observer; here,
b≡ Lγ=Eγ has been defined as the apparent impact
parameter.

We would like to point out here that corresponding to
maximum and minimum values of the emitter fre-
quency (νe), there are two shifts, namely, the redshift
(zr, corresponding to a photon source which is going away
from the observer) and the blueshift (zb, corresponding to a
photon source which is coming towards the observer),
respectively. We shall further note that the conserved
quantities Eγ and Lγ are constant throughout (from the
point of emission till the point of detection) along the null
geodesics; hence be ¼ bd should also remain constant
throughout the photons’ geodesics.

C. Kinematical redshifts and light bending

We are now going to calculate the kinematic redshifts zk
of photons on both sides of the central value of the impact
parameter (i.e., b ¼ 0) as it is important from the astron-
omers’ point of view because they usually use a kinematic
redshift to account for their data.
To obtain zk we need first to calculate the redshift of the

photon emitted by an object located at the position where
b ¼ 0,

1þ zc ¼
Ut

e

Ut
d
; ð56Þ

and then subtract this expression from Eq. (55):

zk ≡ ð1þ zÞ − ð1 − zcÞ ¼ z − zc;

¼ ðUt − bUϕÞje
ðUt − bUϕÞjd

−
Ut

e

Ut
d
¼ Ut

eU
ϕ
dbd −Ut

dU
ϕ
e be

Ut
dðUt

d − bdU
ϕ
dÞ

: ð57Þ

In order to take into account the bending of light due to
gravitational field around the massive astrophysical object,
i.e., the Kerr-MOG BH, we need to find the correlation
between the impact parameter b and the radius r of the
emitter’s (or detectors’) circular orbit, i.e., the mapping
bðrÞ, as discussed in detail in [1].
Hence, the maximized impact parameter b for equatorial

orbits is obtained from the null geodesic relation kiki ¼ 0
by taking into account that kr ¼ 0 and reads

b� ¼
ð−2MαrþMβÞa� r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2−2MαrþMβ

q
r2−2MαrþMβ

; ð58Þ

where the two obtained values of the impact parameter b�
can be either calculated at the emitter or detector position
(recall that be ¼ bd along the whole photons’ trajectory).
Furthermore, these two values give rise to two different
shifts, namely z1 and z2 as pointed out in [1], which
corresponds to the redshift of photons of a receding and an
approaching object with respect to a distant observer:
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z1 ¼
Ut

eU
ϕ
dbd− − Ut

dU
ϕ
e be−

Ut
dðUt

d − Uϕ
dbd−Þ

; ð59Þ

z2 ¼
Ut

eU
ϕ
dbdþ − Ut

dU
ϕ
e beþ

Ut
dðUt

d −Uϕ
dbdþÞ

: ð60Þ

Thus, the kinematical red- and blueshifts of photons require
three measurements along the stars’ trajectories to be
determined: two of them at the points where the impact
parameter b achieves its maximal value, and another one
where the impact parameter vanishes b ¼ 0 (see Fig. 5 for
an illustrative picture).
We now define the angular velocity of an emitter or a

detector which is situated at some distance from the source
of photons in the following form

Uϕ
e=d

Ut
e=d

¼ dϕ
dt

≡ ωe=d; ð61Þ

where the subscripts e and d correspond to the angular
velocity of the emitter and the detector of photons,
respectively.
In terms of ωd, the shifts z1 and z2 can be written as

z1 ¼
Ut

eωdbd− −Uϕ
e be−

Ut
dð1 − ωdbd−Þ

; ð62Þ

z2 ¼
Ut

eωdbdþ −Uϕ
e beþ

Ut
dð1 − ωdbdþÞ

: ð63Þ

By knowing the expression for Ut and Uϕ from Eqs. (43)
and (44), one can express the angular velocity of an object
(i.e., photon source) revolving in a circular equatorial orbit
around the modified-Kerr BH:

ω� ¼ � ffiffiffiffi
ϖ

p
r3=2 � a

ffiffiffiffi
ϖ

p : ð64Þ

Here, þ and − signs in the angular velocity represent a
corotating and a counterrotating object, respectively.
From Eq. (61) it is easy to see that Eq. (64) with the

subscripts e and d corresponds to the angular velocity of
the emitter and the detector of photons, respectively.
Now we can write the red- and blueshifts (62) and (63)

by using Eqs. (43), (44), and (61) in the form

zr ¼
ffiffiffiffiffiffi
ϖe

p
r
3
2

d

ffiffiffiffiffiffiffiffiffi
Qd�

p
ωd�ðωd�bd− − ωe�be−Þffiffiffiffiffiffiffi

ϖd
p

r
3
2

d

ffiffiffiffiffiffiffiffiffi
Qe�

p
ωe�ð1 − ωd�bd−Þ

; ð65Þ

zb ¼
ffiffiffiffiffiffi
ϖe

p
r
3
2

d

ffiffiffiffiffiffiffiffiffi
Qd�

p
ωd�ðωd�bdþ − ωe�beþÞffiffiffiffiffiffiffi

ϖd
p

r
3
2

d

ffiffiffiffiffiffiffiffiffi
Qe�

p
ωe�ð1 − ωd�bdþÞ

; ð66Þ

where, the subscripts � stand for the corotating and
counterrotating objects with respect to the direction of
the angular velocity of the Kerr-MOG BH.

V. BOUNDS ON THE REDSHIFTS OF PHOTONS
AND A KERR HYPOTHESIS TEST

The above expressions for the red- and blueshifts of
photons in terms of the Kerr-MOG BH parameters, mass
Mα, deformation parameter α, and spin parameter a, as well
as in terms of the detector radius rd and the radii of the
orbits of stars (sources) re, are found to be

zr ¼ � r
3
2

d

ffiffiffiffiffiffiffiffiffi
Qd�

p ð2Mαrea −Mβaþ r2e
ffiffiffiffiffiffi
Δe

p Þ
r
3
2
e

ffiffiffiffiffiffiffiffiffi
Qe�

p ðr32d � a
ffiffiffiffiffiffiffi
ϖd

p Þ

×
ðr32d

ffiffiffiffiffiffi
ϖe

p − r
3
2
e

ffiffiffiffiffiffiffi
ϖd

p Þ
r
3
2

dðΔe − a2Þ � r2e
ffiffiffiffiffiffiffi
ϖd

p ðaþ ffiffiffiffiffiffi
Δe

p Þ
; ð67Þ

zb ¼ � r
3
2

d

ffiffiffiffiffiffiffiffiffi
Qd�

p ð2Mαrea −Mβa − r2e
ffiffiffiffiffiffi
Δe

p Þ
r
3
2
e

ffiffiffiffiffiffiffiffiffi
Qe�

p ðr32d � a
ffiffiffiffiffiffiffi
ϖd

p Þ

×
ðr32d

ffiffiffiffiffiffi
ϖe

p − r
3
2
e

ffiffiffiffiffiffiffi
ϖd

p Þ
r
3
2

dðΔe − a2Þ � r2e
ffiffiffiffiffiffiffi
ϖd

p ða −
ffiffiffiffiffiffi
Δe

p Þ
; ð68Þ

where we have made use of the relation be ¼ bd.
When rd ≫ M ≥ a and the source is located at a far

distance from the detector, the above Eqs. (67) and (68)
reduce to

FIG. 5. The ray diagram shows the three required measure-
ments along the stars’ trajectories revolving around the Kerr-
MOG BH in the equatorial plane in order to determine the
kinematical red- and blueshifts of photons: two of them at the
points where the impact parameter b achieves its maximal value
(points a and e where photons will be respectively blue- and
redshifted for a corotating star), and another one where the impact
parameter vanishes b ¼ 0 (point c where the photons achieve
their minimal shift).
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zr ¼
� ffiffiffiffiffiffi

ϖe
p ð2Mαrea −Mβaþ r2e

ffiffiffiffiffiffi
Δe

p Þ
r
3
2
e

ffiffiffiffiffiffiffiffiffi
Qe�

p ðΔe − a2Þ
; ð69Þ

zb ¼
� ffiffiffiffiffiffi

ϖe
p ð2Mαrea −Mβa − r2e

ffiffiffiffiffiffi
Δe

p Þ
r
3
2
e

ffiffiffiffiffiffiffiffiffi
Qe�

p ðΔe − a2Þ
: ð70Þ

These red- and blueshifts possess the following bounds
with respect to the static (a ¼ 0) and extremal rotating
(jaj ¼ Mα=

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
) limits of the Kerr-MOG BH:

zmin
r ≤ zr ≤ zmax

r and zmin
b ≤ zb ≤ zmax

b ; ð71Þ

where we have defined

zmin
r ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mαre −Mβ

p
reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2e − 3Mαre þ 2MβÞðr2e − 2Mαre þMβÞ
q ;

zmax
r ¼ � ffiffiffiffiffiffiffiffiffiffi

ϖere
p ½ð2Mαre −MβÞMα þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
r2eðre −MαÞ�

reðΔe − a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞðr2e − 3Mαre þ 2MβÞ � 2Mα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ αÞϖere
pq ;

zmin
b ¼ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mαre −Mβ

p
reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2e − 3Mαre þ 2MβÞðr2e − 2Mαre þMβÞ
q ;

zmax
b ¼ � ffiffiffiffiffiffiffiffiffiffi

ϖere
p ½ð2Mαre −MβÞMα −

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
r2eðre −MαÞ�

reðΔe − a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞðr2e − 3Mαre þ 2MβÞ � 2Mα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ αÞϖere
pq ;

note that zmin
r and zmin

b have the same magnitude but
different sign as it is expected for red- and blueshifts
generated by the gravitational field of a nonrotating BH.
In the case when the deformation parameter α vanishes,

we obtain the corresponding bounds on the red- and
blueshifts of the Kerr BH metric:

Zmin
r ≤ zKerrr ≤ Zmax

r and Zmin
b ≤ zKerrb ≤ Zmax

b ; ð72Þ

where now we have introduced

Zmin
r ¼ � ffiffiffiffiffiffiffiffiffi

Mre
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðre − 3MÞðre − 2MÞp ;

Zmax
r ¼ � ffiffiffiffiffi

M
p ½2M2 þ reðre −MÞ�

ðre − 2MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
reðr2e − 3Mre � 2M

ffiffiffiffiffiffiffiffiffi
Mre

p Þ
p ;

Zmin
b ¼ ∓ ffiffiffiffiffiffiffiffiffi

Mre
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðre − 3MÞðre − 2MÞp ;

Zmax
b ¼ � ffiffiffiffiffi

M
p ½2M2 − reðre −MÞ�

ðre − 2MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
reðr2e − 3Mre � 2M

ffiffiffiffiffiffiffiffiffi
Mre

p Þ
p :

Thus, if a given set of observational data of red- and
blueshifts falls within the intervals (72), this implies a
confirmation of the Kerr black hole hypothesis in the strong
gravitational regime and this would also impose some
observational constraints on the deformation parameter of
the Kerr-MOGBH and on the parameters that have the Kerr
metric as a particular BH solution.

On the other hand, if the set of data does not fall within
the intervals (72) predicted by the GTR for the Kerr BH
metric, but are allowed by the bounds (71) corresponding to
the Kerr-MOG BH, we would have a breakdown of the
GTR in favor of the STVG theory and we should have to
describe the observed star dynamics with the latter theory
or any theory whose parameters allow for such set of
observations.
It could also happen that the observed red- and blueshifts

do not match the predictions made by any one of the Kerr or
Kerr-MOG BHmetrics, implying that we shall need to look
for an alternative theory of gravity in order to consistently
explain the observational data.
The bounded red- and blueshifts of photons for different

values of the deformation parameter α (for both corotating
and counterrotating cases), including the Kerr BH case for
comparison, are plotted in Fig. 6 as a function of the
rotation parameter a and the normalized mass variable
u ¼ Mα=re. From the figure it is clear that considerable
differences between Kerr and Kerr-MOG BHs will start
being noticed when the ratio u is at least of order 10−1–10−2
since the greater the u, the bigger the difference between
the predictions of both theories, confirming the fact that
general relativistic effects and tests of the Kerr BH
hypothesis will be more detectable in the vicinity of the
BH horizon, where gravity is strong.
For completeness we have also plotted the difference of

red- and blueshifts Δz of photons emitted by corotating and
counterrotating particles (stars) around the Kerr-MOG
black hole and the red- and blueshifts of photons corre-
sponding to the Kerr BH in Fig. 7. Again, from the figure
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we can infer that these differences point to the need of
having u at least of order 10−1 − 10−2 in order to
distinguish between a Kerr and a Kerr-MOG BH configu-
ration. In this regard, the current available data for the S02
star orbiting around SgrA* yield a mass-to-radius ratio of
order u ∼ 10−4, indicating that we need to improve our
resolution to track orbits with at least 2 orders smaller.
In this regard, a natural question is if a near to the event

horizon orbit of a star with a sufficiently high velocity is
still outside the distance from the BH beyond which stars
are tidally disrupted. Since relativistic effects of super-
massive BHs (related to its mass and spin) that tidally
disrupt most of the main-sequence stars start being rele-
vant when M > 107 M⊙ [56], for SgrA* the Newtonian

approach can be used in a good approximation. Thus, the
Newtonian tidal disruption radius of a supermassive BH
reads [57,58]

rtd ¼ 7 × 107
�

MBH

106 M⊙

�1
3

�
M⋆
M⊙

�
−1
3

�
r⋆
r⊙

�
km; ð73Þ

where M⋆ and r⋆ denote the mass and radius of the star,
respectively, and MBH is the mass of a supermassive black
hole. By considering this relation, we can roughly estimate
the Roche (tidal) radius and therefore its normalized mass
utd for different kinds of stars and see its effect on the
measurement of their red- and blueshifts. For instance, for
a neutron star we obtain utd ∼ 5 × 103; for a white dwarf we

FIG. 7. The left (right) panel plot shows the differences in shifts of photons emitted by corotating (counterrotating) particles around the
Kerr-MOG black hole vs the rotation parameter a and the variable u ¼ Mα=re. The purple/violet color corresponds to the difference
Δz ¼ zðα ¼ 0Þ − zðα ¼ 0.5Þ and the green/yellow one to Δz ¼ zðα ¼ 0Þ − zðα ¼ 0.9Þ.

FIG. 6. The left (right) panel plot shows the shifts (named z in the vertical axis) of photons emitted by corotating (counterrotating)
particles around the Kerr-MOG black hole vs the rotation parameter a and the variable u ¼ Mα=re. The brown (redshift) and blue
(blueshift) surfaces correspond to the deformation parameter α ¼ 0 (Kerr BH case), the green (redshift) and yellow (blueshift) surfaces
correspond to α ¼ 0.5, and the violet (redshift) and purple (blueshift) surfaces correspond to α ¼ 0.9.
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get utd ∼ 5, whereas for a star with a solar mass we arrive at
utd ∼ 5 × 10−2. The first two cases correspond to orbits
much closer to the event horizon of a supermassive BH
compared to the S0 set of stars which revolve SgrA*; the
case of a star like our Sun seems to be critical in the sense
that it matches the region in which we need to track the star
orbits with sufficiently high star velocities (or red-/blue-
shifts) to observe the desired effect. Notwithstanding, this
Newtonian estimation is quite rough, a relativistic approach
to this issue is much more complicated, there is not much
literature available [56,59], and it definitely deserves more
attention.
On the other hand, in order to detect the aforementioned

redshift differences for the S0 orbits around SgrA* that we
have at hand now, we need a very precise spectrometer.
However, nowadays the precision required by a spectrom-
eter to measure these red- and blueshifts of photons, and
therefore to constrain mass and spin-related quantities is
not currently affordable with the facilities available at the
moment. Hopefully, future instruments like MICADO at
the ELT [60] will allow such measurements and therefore
will allow us to perform tests of the Kerr BH hypothesis in
the near future. One more project that has recently started is
the STRONGGRAVITY EU FP7-SPACE [61]; this facility
will also aim to measure both spin and mass parameters of a
BH through measurements of x-ray radiation, a region
where the precision is considerably better in comparison
with the infrared and radio regions.
We should mention as well that it is important to keep in

mind the systematic uncertainties of the proposed method
for determining the mass and spin parameters of the Kerr-
MOG BH; this issue is mostly related to the emission and
propagation of photons in the astrophysical space, the
orbital properties of the stars revolving the BH, and the
limit in which stars can be considered geodesic particles,
like in a binary system, among others (please see the
discussion in Sec. VII).

VI. THE MASS AND SPIN PARAMETERS
OF THE KERR-MOG BLACK HOLE IN TERMS

OF RED- AND BLUESHIFT OF PHOTONS

The mass Mα and spin a parameters of the Kerr-MOG
BH can be obtained from red- and blueshifts of the photons
emitted by the source with the help of Eqs. (69) and (70) as
it was pointed out in [1].
We first deduce an expression for the spin parameter in

terms of the mass and the parameters of the Kerr-MOG BH
metric:

a2 ¼ λr4eðr2e − 2Mαre þMβÞ
ð2Mαre −MβÞ2η − λr4e

; ð74Þ

where we have introduced the following quantities λ ¼
ðzr þ zbÞ2 and η ¼ ðzr − zbÞ2. The equation for the mass

Mα calculated below from Eqs. (69)–(74) is of sixteenth
order and cannot be solved analytically:

fðr2e þ 2Mβ − 3MαreÞðr2e − 2MαrþMβÞ
× ½ð2Mαre −MβÞ2η − λr4e� − 4r3eϖeð2Mαre −MβÞ2g2

¼ 4λr5eϖeðr2e − 2MαrþMβÞ3½ð2Mαre −MβÞ2η − λr4e�:
ð75Þ

However, even this form of the equation is useful for
extracting the value of the mass parameter Mα in terms of
the red- and blueshifts (zr, zb) and the deformation
parameter α by making use of a Bayesian estimation.
Hence, to calculate the mass of a Kerr-MOG BH from
astrophysical data one must use a statistical approach. For
the case when α → 0, Eq. (75) becomes

½16reM3 − ð4ηM2 − λr2eÞðre − 2MÞðre − 3MÞ�2
¼ 4λr2eMðre − 2MÞ3ð4ηM2 − λr2eÞ; ð76Þ

which is the polynomial equation of the mass parameter M
of the Kerr BH as shown in [1].
Once we have statistically determined the value of the

Kerr-MOG BH mass Mα, then we should proceed to
compute the spin parameter a with the aid of the for-
mula (74); both parameters will depend on alpha and they
can give an estimation of departures from the predictions of
the Kerr BH of the GTR.

VII. CONCLUSION AND DISCUSSION

We studied the Kerr-MOG BH, which has an additional
deformation parameter α with respect to the Kerr BH. This
extra parameter α, other than mass and spin parameters,
directly influences the geometry of the Kerr-MOG BH as
seen in Figs. 1, 2, 4. From Fig. 4, we concluded that with
the increase in the deformation parameter α the ergoregion
increases for given values of the spin parameter a, making
the Kerr-MOG BH very interesting from the physical point
of view.
We then showed in Fig. 3 the separation of the region in

which the BH exists from the region where there is no BH.
Hence, with this figure, we showed how the deformation
parameter α restricts the value of the spin parameter a of the
Kerr-MOG BH. Thus, we concluded from Eq. (13), Fig. 3,
and Table I that the upper bound on parameter α decreases
as the parameter a increases.
We further studied the geodesic motion of both massive

and massless particles in the gravitational field of the Kerr-
MOG BH which was followed by the computation of the
red- and blueshifts that emitted photons by massive
geodesic particles experience when moving in the back-
ground of the Kerr-MOG spacetime.
We then computed the physical bounds on the red-

and blueshifts of photons emitted by stars orbiting the
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Kerr-MOG BH by considering the static (a ¼ 0) and
extremal (jaj ¼ Mα=

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
) limits. By comparing them

to the Kerr BH metric predictions of GTR, we identified a
novel simple test of the Kerr hypothesis in the strong
gravitational regime. However, from the presented plots it
is clear that considerable differences between Kerr and
Kerr-MOG BHs will be noticeable when the mass-to-radius
ratio u is of order 10−1–10−2; current available data for the
S02 star orbiting around SgrA* yield a ratio of order
u ∼ 10−4, indicating that we need to improve our resolution
by at least 2 orders and detect stars revolving closer to the
BH. Another possibility that allows one to detect these
differences is a very precise spectrometer. Notwithstanding,
the required spectrometer precision to measure these red-
and blueshifts of photons, and therefore to constrain BH
mass and spin-related quantities is not currently available.
Hopefully, future instruments like MICADO at the ELTand
STRONGGRAVITY EU FP7-SPACE will allow such
measurements and therefore will allow us to perform tests
of the Kerr BH hypothesis in the near future.
Finally, we obtained a formula for the spin parameter a in

Eq. (74) in terms of the red- and blueshifts of photons
emitted by the geodesic massive particles, the deformation
parameter α, and the radius of the massive objects orbiting
around the Kerr-MOGBH emitting light. On the other hand,
the mass parameter Mα was obtained as the root of the
polynomial Eq. (75). The polynomial Eq. (75) in Mα is of
sixteenth order, which cannot be solved analytically, but can
be addressed statistically, which means that if we have an
astronomical data set of red- and blueshifts of photons, the
deformation parameter α, and the orbital radii re of different
stars, we can compute the most possible value of the mass
Mα of the Kerr-MOG BH with a Bayesian fitting, for
instance. Once the value for Mα is fixed, one can return
to Eq. (74) in order to obtain a value for the spin parameter a.
Wewould like to point out as well that this analysis can be

applied to astrophysical phenomena like active galactic
nuclei and accretion disks, making it very important from
the astrophysical point of view. Moreover, this method can
also be implemented in several 4D BH solutions that have
been obtained within the framework of higher-dimensional
theories, like the stringy black hole considered in [5,31], for
instance. Other stringy BH configurations that include a
different amount of scalar parameters can be found in
[62,63]. Moreover, our algorithm can be adapted to estimate
the mass and spin of astrophysical BHs that have an
accretion disk around them. The recent research project
of the European Space Agency named STRONGGRAVITY
EU FP7-SPACE has come up with an objective to develop
analytical tools to study the properties of black holes (like its
mass [64] and spin [65]). Within this project the mass of the
black hole can bemeasured from the accretion disk around it
because the outer parts of the disk are cooler in comparison
to its inner parts where the temperature can reachmillions of
degrees and the radiation coming from this part will fall in

the x-ray region, whereas the radiation coming from the
outer parts of the disk falls in the UVand visible region. This
radiation which falls in the visible region can be both red-
and blueshifted depending upon the position of the accretion
disk in a binary. If it is coming towards the observer the
photons which are ejected from the disk are blueshifted and
the photons are redshifted if the disk is receding from the
observer. This is an interesting issue that we are currently
addressing.
Herewe should finally recall that, in general, the proposed

method to compute the spin a and mass M parameters of a
rotating BH in terms of observations relies on the use of a
minimal set of assumptions; namely, the bodies that move
around the BH are massive test particles that follow stable
geodesic orbits and the photons they emit propagate towards
us along null geodesics. The so-far reported formulas for the
red- and blueshifts correspond to particular circular equa-
torial orbits. The fact that stars follow stable geodesic orbits
is a quite good approximation when considering stars
revolving around a supermassive BH since the distance
which separates them is huge, even when considering the
central BH of our Galaxy; however, quite often we find
highly eccentric orbits that lie out of the equatorial plane,
like the stars orbiting around SgrA*, these orbits require a
refinement of the method that considers these orbital
properties and is a topic in which we are currently working.
On the other hand, photons can (and most probably do)

be absorbed and reemitted during their propagation in the
astrophysical medium from the moment of emission till
detection. We are also studying the possibility of incorpo-
rating this effect in our approach; another possible exit from
this trouble is to subtract this effect from the observations.
This problem gets worse when considering accretion disks
since their complicated magnetohydrodynamic processes
may strongly influence the photon dynamics and therefore
may impact the relation between their red-/blueshifts and
the black hole parameters. The application of this method to
BHs accreting gas is an interesting open problem that
definitely deserves more attention. Another interesting
project consists of applying a suitable version of this
method to binary systems [either BHs or neutron stars
(NSs) or a BH with a NS]. However, here there are two
major caveats that should be taken into account; namely,
the masses of the two orbiting objects can be comparable to
each other, and hence there will be no test particle
approximation, and the orbits of the bodies can be non-
geodesic due to their size. This issue is also under current
research.
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APPENDIX: DETAILED CALCULATION OF
CONSERVED QUANTITIES

Here we shall derive with some detail the relations (38)
and (39) by starting from the conditions (37):

Vr ¼ T2 − ðr2 − 2Mαrþ a2 þMβÞ
× ½r2 þ ðL − aEÞ2� ¼ 0; ðA1Þ

V 0
r ¼ 2ET −

�
1 −

Mα

r

�
½r2 þ ðL − aEÞ2�

− ðr2 − 2Mαrþ a2 þMβÞ ¼ 0: ðA2Þ

In terms of the reciprocal radius u ¼ 1=r these equations
reduce to

½E − aðL − aEÞu2�2 − ½1þ ðL − aEÞ2u2�
× ð1 − 2Mαuþ a2u2 þMβu2Þ ¼ 0; ðA3Þ

2E½E − aðL − aEÞu2� − ð1 −MαuÞ½1þ ðL − aEÞ2u2�
− ð1 − 2Mαuþ a2u2 þMβu2Þ ¼ 0: ðA4Þ

By subtracting one expression from the other we can obtain
the following expression

E2 ¼ ð1 −MαuÞ þ x2ðMα −MβuÞu3; ðA5Þ

where we have introduced x ¼ L − aE. By inserting this
expression into (A4) we obtain

2aEux ¼ Mα − a2u −Mβu

þ x2ð−1þ 3Mαu − 2Mβu2Þu: ðA6Þ

By equating Eqs. (A5) and (A6) we obtain a quadratic
equation for x2u:

½ð1−3Mαuþ2Mβu2Þ2−4a2ðMα−MβuÞu3�x4u2
−2½ð1−3Mαuþ2Mβu2ÞðMα−a2u−MβuÞ
þ2a2ð1−MαuÞu�x2uþðMα−a2u−MβuÞ2¼ 0; ðA7Þ

with the following discriminant

ðb=2Þ2 − ac ¼ 4a2ðMα −MβuÞu
× ½1 − ð2Mα −MβuÞuþ a2u2�2; ðA8Þ

which, upon multiplication by u and some algebraic
manipulations, allows us to write the solution as

x2u2 ¼ Q�Δu −QþQ−

QþQ−
¼ Δu −Q∓

Q∓
; ðA9Þ

where we have introduced the following quantities

Q� ¼ 1−3Mαuþ2Mβu2�2au
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMα−MβuÞu

q
; ðA10Þ

Δu ¼ 1 − ð2Mα −MβuÞuþ a2u2: ðA11Þ

Remarkably, the numerator in (A9) can be written as a
squared quantity

Δu −Q∓ ¼
�
au�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMα −MβuÞu

q �
2
; ðA12Þ

enabling us to get a simple expression for the x variable:

x ¼ −
a

ffiffiffi
u

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα −Mβu

p
ffiffiffiffiffiffiffiffiffiffi
uQ∓

p ; ðA13Þ

where one should notice that only the minus sign satisfies
the condition (A2). We further insert this solution into
Eq. (5) and note that the rhs can be written as a squared
quantity as well, leading to the following expression for E,

E ¼ 1ffiffiffiffiffiffiffi
Q∓

p h
1 − ð2Mα −MβuÞu ∓ au

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMα −MβuÞu

q i
ðA14Þ

and by finally making use of the x definition we obtain
for L:

L ¼ 1ffiffiffiffiffiffiffiffiffiffi
uQ∓

p h
∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mα −Mβu
p ð1þ a2u2Þ

− ð2Mα −MβuÞau3=2
i
: ðA15Þ

It is straightforward to check that expressions (A14) and
(A15) coincide with (38)–(42).
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