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While recent detections of gravitational waves from the mergers of binary black holes match well with
the predictions of General Relativity, they cannot directly confirm the existence of event horizons. Exotic
compact objects are motivated by quantum models of black holes and can have exotic structure (or a
“wall”) just outside the (would-be) horizon. Exotic compact objects produce ringdown waveforms similar
to the General Relativistic black holes, but they are followed by delayed “echoes.” By solving linearized
Einstein equations, we can model these echoes and provide analytic templates that can be used to compare
to observations. For concreteness, we consider the GW150914 event, detected by the LIGO/Virgo
Collaboration, and study the model dependence of its echo properties. We find that echoes are reasonably
approximated by complex Gaussians, with amplitudes that decay as a power law in time, while their width
in time (frequency) grows (shrinks) over subsequent echoes. We also show that trapped modes between a
perfectly reflecting wall and angular momentum barrier in the Kerr metric can exhibit superradiant
instability over long times, as expected.
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I. INTRODUCTION

Motivated by the black hole (BH) information paradox
and cosmological constant problems, it has been suggested
that nonperturbative quantum gravitational effects may lead
to Planck-scale modifications of BH horizons. Proposals to
solve the BH information paradox [67] include gravastars
[1], fuzzballs [2–6], and firewalls [7,8], among others
[9,10]. These exotic compact objects (ECOs) all modify
the standard structure of BH horizons and should form by
Page time ∼M3 but can emerge as early as the “scrambling
time” ∼M logM [11,12].
Gravitational aether theory [13,14], which modifies the

Einstein field equations by adding an incompressible fluid
(aether), is a possible solution to the cosmological constant
problem(s). BH solutions in this theory link the BH mass
with the aether pressure at infinity and yield a pressure
comparable to the observed dark energy pressure for stellar
BH masses of 10–100 M⊙. The solution of the modified
Einstein field equation deviates from General Relativity
(GR) within the order of the Planck length proper distance
outside the (would-be) horizon. It is also suggested that
replacing the horizon with a “wall” could be a source of
high energy astrophysical neutrino flux [15], which is a
possible source for the PeV neutrinos recently detected by
the IceCube observatory.

A concrete physical model for replacing the event
horizon due to quantum gravitational effects is provided
in Ref. [16]. The spacetime ends at about the order of the
Planck length proper distance outside the (would-be)
horizon with a wall containing a surface fluid. It is then
shown that Israel junction conditions imply that the fluid
has the thermodynamic entropy matching the Bekenstein-
Hawking area law, for charged rotating BHs (also see
Ref. [17] for a similar horizonless spacetime solution).
Recent detections of gravitational waves from binary BH

mergers by the LIGO/Virgo Collaboration [18–26] provide
a way to test the structure around the horizon scale. Shortly
after LIGO’s first detection, GW150914, Refs. [27,28]
argued that introducing a wall to replace horizon might
yield a ringdown waveform similar to GR BHs but produce
delayed echoes (see Refs. [29,30] for a review) in the
gravitational wave signal. Using a phenomenological tem-
plate by truncating the GR merger waveforms, Ref. [31]
carried out the first search for echoes and claimed a 2.5σ
tentative evidence for them in the first three (candidate)
events in the LIGO public data (but see Refs. [32–34] for a
critique/rebuttal).
An independent search [35], using a different method-

ology, has recently found evidence for echoes in each of
LIGO’s merger events (with the notable exception of
GW150914) at ∼3σ significance level. However, we should
note that the echoes reported in Refs. [31,35] are for
different events, even though they are both broadly con-
sistent with the hypothesis of near-horizon Planck-scale
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structure. In particular, Refs. [33,34] failed to find echoes in
GW151226, which has the most significant evidence for
echoes in Ref. [35], suggesting that the two methods
capture different parts of the echo waveform.
Most recently, Ref. [36] claimed a tentative detection of

(lower harmonics of) echoes, at 4.2σ level, from a “black
hole” remnant in the aftermath GW170817 binary neutron
star merger.
While one may consider other phenomenological echo

templates (e.g., Ref. [37]), more realistic templates for
fitting data may be found by solving (linearized) Einstein
equations with modified boundary conditions near the
horizon. Along this direction, most studies have so far
focused on Schwarzschild BHs (e.g., Refs. [27,28,38–41]).
In this paper, we extend this to the Kerr metric as realistic
BHs have spin. Reference [42] also presented echo tem-
plates by modeling the reflectivity of the angular momen-
tum barrier in the Kerr spacetime. We, however, model the
propagation in the full spacetime, which provides a more
realistic treatment at lower frequencies.
Another related work is Ref. [43], which studies the

echoes of scalar Gaussian wave packets in Kerr-like
wormholes. In contrast, we study generic propagation in
Kerr spacetime, with arbitrary boundary conditions, which
can be applied not only to scalar fields (s ¼ 0) but also
massless Dirac (s ¼ �1=2), electromagnetic (s ¼ �1), or
gravitational (s ¼ �2) fields. Interestingly (but not surpris-
ingly), we come to some similar conclusions, e.g., (i) spin-
ning ECOs give rise to unstable modes which, however, do
not affect the echoes till very late times (depending on
whether the initial frequency range is within the super-
radiance regime), and (ii) it is hard to make a model-
independent prediction for the first echo.
A related phenomenological issue that arises when we

replace the horizon with a wall is the emergence of super-
radiant instability for horizonless ergoregions [44–47].
While this might suggest the long-term instability of
spinning ECOs, which may be in conflict with astrophysi-
cal spin measurements for BHs [48], it was suggested by
Ref. [49] that an absorption rate of the wall as small as 0.4%
is sufficient to quench the instability completely.
We organize this paper as follows. Section II provides the

linear Einstein equations and boundary conditions used.
Instead of the normal boundary condition with no outgoing
wave on the horizon, we put a wall standing just outside the
would-be horizon. The reflection rate of the wall depends on
the specific model of quantum BHs. Section III presents
echo solutions for different positions of a perfect wall and
time delays of a geometric formula given in Ref. [31], while
Sec. IV discusses how the superradiance of Kerr geometry is
manifested in echo templates. In Sec. V, we provide an
analytic fit to the echo templates, based on solutions in
Sec. III. We explore a soft wall with frequency-dependent
reflection as well as nonlinear corrections to initial con-
ditions in Sec. VI for a more realistic picture. In the

Appendix, we briefly discuss ergoregion instability devel-
oped in the presence of a perfect wall. While in principle the
instability is significant at high spins, we show that these
instabilities do not affect the first several echoes of typical
binary merger events. Finally, Sec. VII concludes our work.
If not specified, we use units with G ¼ ℏ ¼ kB ¼ c ¼ 1.

For concreteness, we use the best-fit properties and wave-
forms resulting from the GW150914 merger event, pro-
vided by the LIGO/Virgo Collaboration [18,19] [50]. In
particular, the detector frame mass and reduced spin
parameter of the remnant used for the echo calculation
areMfin ¼ 67.6M⊙ and a ¼ 0.67. Echo templates for other
final masses can be found by rescaling our analytic
templates, as long as the dimensionless binary properties
are not too different from those of GW150914.

II. PROPAGATION AND BOUNDARY
CONDITIONS IN KERR SPACETIME

We study the propagation of gravitational waves using
linearized Einstein equations in Kerr geometry which
describes the spacetime of a spinning BH. In order to model
an ECO, we simply replace the Kerr event horizon with a
wall, where boundary conditions for linear perturbations are
modified. The initial condition here is an incoming wave
packet hin from infinity, and we calculate the outgoing wave
packet hout by solving the linear Einstein equations. As
usual, we use the Newman-Penrose (NP) formalism which
greatly simplifies perturbation in the Kerr metric, reducing to
only a single master equation (known as the Teukolsky
equation) which describes propagation of all scalar (s ¼ 0),
massless Dirac (s ¼ �1=2), electromagnetic (s ¼ �1), and
gravitational (s ¼ �2) fields (see Ref. [51] for details),
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where the field ψ for each spin weight s corresponds to NP
quantities presented in Table I.

TABLE I. Corresponding field ψ for different spin weight s in
Master equation. Here, ρ−1 ¼ −ðr − ia cos θÞ.
s 0 −1=2, 1=2 −1; 1 −2; 2

ψ Φ χ0, ρ−1χ1 ϕ0; ρ−2ϕ2 Ψ0; ρ−4Ψ4
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The Teukolsky equation (1) is separable in coordinates in
the frequency domain and can be decomposed into four
ODEs. Furthermore, the symmetries in time and azimuth
allow for Fourier space decomposition in t and φ,

ψ ¼ 1

2π

Z
dωeið−ωtþmφÞS½θ�R½r�; ð2Þ
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�
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where K¼ðr2þa2Þω−am and λ¼Aslmþa2ω2−2amω.
The solution for the angular mode is a spin-weighted
spheroidal harmonic (the full discussion can be found in
Ref. [52]). We solve the radial mode numerically based on
Brito et al. [53], with the publicly available Mathematica
code, which was developed to study superradiance in the
Kerr metric [54]. Equation (3) has the following asymptotic
solutions,

R ¼ T Δ−se−ikhr
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where r� is the tortoise coordinate (defined as r� ¼R
r2þa2

r2−2Mrþa2 dr that approaches −∞ at horizon),

kh ¼ ω − am
2Mrþ

, and rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

In classical General Relativity, everything that reaches
the horizon will fall into the BH, and thus there is no
outgoing wave at r → rþ, i.e., O ¼ 0. However, for ECOs,
we assume that quantum gravity effects replace the horizon
with a (partially) reflective wall standing the order of
Planck length proper distance outside the (would-be)
horizon. We shall assume that this modifies the boundary
condition so that the wall reflects the incoming energy flux
(see Ref. [42] for the definition of energy near horizon)
with a rate R but does not change the phase:

jOj2 ¼ Rwall

���� CD
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arg½T Δ−se−ikhr
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Rwall ¼ 1would correspond to a perfectly reflective wall,
but the actual reflectivity and phase change depend on the
specific quantum gravity model for ECOs. In the rest of the
paper, we will present solutions to these equations with
different choices of the reflectivity and discuss the impor-
tant properties of solutions, such as echo templates, time
delays, and superradiant instability.

III. MAKING ECHOES

Realistic predictions for echo waveforms requires non-
linear simulations of the mergers of binary ECOs in full
general relativity. As a consistent covariant formulation for
dynamics of ECOs is yet nonexistent, we have to rely on
approximate methods to produce realistic echo templates.
In order to do this using linear theory, we instead custom
design an ingoing wave packet ĥin at infinity so that the
outgoing waveform matches the LIGO best-fit template
ĥLIGO (without a wall). The higher frequencies will go
across the barrier and fall into the BH, as shown in Fig 1
(left), while the lower frequencies are reflected. We thus
assume

ĥLIGOðωÞ ¼ RBHðωÞĥinðωÞ; ð10Þ

where RBHðωÞ is the reflectivity of the Kerr angular
momentum barrier. For an ECO, however, we have one
more barrier near the would-be horizon as shown in Fig 1
(right).Wave packets with intermediate frequencies can now
be trapped between two barriers and leak slowly every time
when they hit the angular momentum barrier. Therefore,
ECOs would have a similar ringdown waveform as classical
BHs, but they are followed by delayed slowly decaying
echoes.

ĥoutðωÞ ¼ RECOðωÞĥinðωÞ ¼ RECOðωÞ
ĥLIGOðωÞ
RBHðωÞ

fcutoffðωÞ;

ð11Þ

where fcutoffðωÞ is a low-pass filter introduced to suppress
numerical noise at high frequencies, as the reflectivity of the

BLACK HOLE ECHOLOGY: THE OBSERVER’S MANUAL PHYS. REV. D 97, 124044 (2018)

124044-3



Kerr angularmomentumbarrierRBHðωÞ, in the denominator,
vanishes at high frequencies. Luckily, high frequencies leak
out quickly in the first echo and have a small effect on the
subsequent echoes. Our choice of fcutoff does not affect the
second and later echoes, but it changes the first echo slightly
by cutting the high frequency noise,

ĥout;fin ¼ ĥoutfcutoff ; ð12Þ

fcutoff ¼ exp

�
−
1

2

�
2πfðHzÞ−299.495

1347.73

�
16
�
; ð13Þ

where ω ¼ 2πf.
With the equations and boundary conditions given in the

last section, we can numerically solve for RBH and RECO as
a function of frequency. We use LIGO event GW150914
with a ¼ 0.67, M ¼ 62M⊙, and z ¼ 0.09. The mass is
measured in the source frame, and the finial mass used in
our calculation is the mass in the detector frame
Mfin ¼ ð1þ zÞM. The waveform is dominated by the
ðl; mÞ ¼ ð2; 2Þ mode, which we shall focus on for the rest
of the paper [55].
The time dependence of the waveform can then be

obtained by Fourier transforming ĥoutðωÞ and is shown in
Fig. 2. We see that changing the position of the wall
changes the time delay between the echoes but does not
affect the individual echo waveforms significantly (as long
as the wall is close the would-be horizon). As we see in
Fig. 1, in the geometric optics approximation, the time
delay between echoes, Δtecho;geom, is given by the travel
time from the angular momentum barrier to the wall and
back [31]:

Δtecho;geom ¼ 2r�jrbarrierrwall ¼ 2

Z
rbarrier

rwall

dr
r2 þ a2M2

r2 − 2Mrþ a2M2

¼ 2rbarrier − 2rwall þ 2
r2þ þ a2M2

rþ − r−
ln
rbarrier − rþ
rwall − rþ

− 2
r2− þ a2M2

rþ − r−
ln
rbarrier − rþ
rwall − r−

: ð14Þ

This can be well approximated by the following fitting
function,

FIG. 1. BHs and ECOs with an ingoing wave packet. For BHs,
the angular momentum barrier reflects the low frequency modes,
but higher frequencies cross the barrier and fall through the
horizon. For ECOs with a wall standing the order of Planck
length proper distance outside the (would-be) horizon, modes
with intermediate frequencies can be trapped between the wall
and the angular momentum barrier, slowly leaking out as
repeating echoes.
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FIG. 2. Echoes with different wall positions. Changing the positions of wall does not influence the shape of echoes a lot, but when
putting wall closer to the would-be horizon and away from angular momentum barrier, the time delay becomes bigger.
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Δtecho;geom ¼ 2
r2þ þ a2M2

rþ − r−
ln

M
rwall − rþ

þMGðaÞ; ð15Þ

GðaÞ ≃ 0.335
a2 − 1

þ 4.77þ 7.42ða2 − 1Þ þ 4.69ða2 − 1Þ2;
ð16Þ

rwall − rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
d2wall

4Mð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ
; ð17Þ

where we find the fit of GðaÞ for the angular momentum
barrier of l ¼ m ¼ 2 mode, while dwall is the proper
distance from the wall to the would-be horizon. The latter
is expected to be comparable to Planck length for ECOs of
quantum gravitational nature, but Δtecho only depends on
the exact value of dwall logarithmically (see Fig. 2).

The echoes in both the time and frequency domains for
the LIGO event GW150914 are shown in Figs. 3 and 4 with
a perfect wall standing a Planck length proper distance
outside the (would-be) horizon. Here, we show the ampli-
tude spectral density, which is the square root of the power
spectral density. The latter is the average of the square of
the fast Fourier transforms of the model. In the next section,
we will study the structure of the echo in the frequency
domain and present how superradiance affects the structure
of the echo.

IV. SUPERRADIANCE

Scattering off the Kerr BH can lead to superradiance of
modes with frequency 0 < ω < mΩH, which can extract
energy from a spinning background [56]. Adding a
(partially) reflective wall near the horizon could turn this
amplification to an instability, since modes trapped
between the wall and the angular momentum barrier can
extract the spin energy repeatedly [44,45]. In this section,
we study this effect for the echoes in frequency domains.
There is an odd-looking spike in Fig. 4’s frequency

domain around 183 Hz (see the top panel in Fig. 5 for a
zoom-in). Indeed, this is exactly the threshold frequency for
the superradiance. This is demonstrated in the middle panel
of Fig. 5, which shows the scattering amplification with the
horizon, perfect wall, and soft wall around that frequency.
The vertical axis is the relative energy, extracted from
around black hole by scattered gravitational waves. The
blue dashed line shows superradiance slowly turning off
with increasing the frequency, and we confirm that it ends
exactly at frequency fmax ¼ am=½2πðr2þ þ a2Þ� ¼ 183 Hz,
for m ¼ 2 as shown in the plot. In contrast, superradiance
by the soft wall (gray and thin curve) occurs at resonance
peaks, corresponding to the ergoregion trapped mode
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FIG. 3. Predicted echoes for LIGO event GW150914 in the time domain with different resolution, assuming a prefect wall at a Planck
length proper distance outside the horizon.
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FIG. 4. Predicted echoes for LIGO event GW150914 in the
frequency domains, assuming a prefect wall at a Planck length
proper distance outside the horizon.

BLACK HOLE ECHOLOGY: THE OBSERVER’S MANUAL PHYS. REV. D 97, 124044 (2018)

124044-5



(for more details, see the Appendix). Since superradiance
ends at 183 Hz, the resonance peaks shift the direction,
which is the reason we have an odd spike in Figs. 4’s and
5’s top panels.
The perfect wall (the red thick curve) in Fig. 5’s middle

panel is a constant zero without any resonance peaks, since
a perfect reflective wall kills superradiance, as all the
energy that goes in comes out eventually (see the
Appendix for a subtlety in this argument). However,
the odd spike structure remain in the amplitudes, as shown
in Fig. 5’s bottom panel, where we change the vertical
axis to a real part of an outgoing to ingoing wave at infinity.
We still see the sign flip in the resonance structure
at 183 Hz.
In the next section, we study the echo templates resulting

from solving the linearized Einstein equations, which
improves the simplistic geometric picture in Fig. 1.

V. MINIMAL ECHO TEMPLATES

Now that we have numerical predictions for echoes, we
would like to provide simple fitting functions that could be
used for quick visualization and data-fitting purposes. We
call these fitting functions templates. In order to find our
templates, we define echoes in the time domain by the
regions that surround the peaks of jhðtÞj and exceed a limit:
ln ½jhðtÞj=jhjmax;n� > −1;−1.5 or −2. jhjmax;n is the height
of the nth peak of jhðtÞj, which we call the nth echo. Then,
we fit the nth echo to a complex Gaussian,

hnðtÞ ¼ exp½ΨnðtÞ þ IΦnðtÞ�; ð18Þ

ΨnðtÞ ¼ a0 þ a1tþ a2t2; ð19Þ

ΦnðtÞ ¼ b0 þ b1t; ð20Þ

where a0, a1, a2, b0, and b1 are real numbers. This form is

the same as fitting the nth echo to A exp
h
ðt−t0Þ2
2σ2

i
, where A

and t0 are complex, while the width σ is real.
As an example, Fig. 6 compares the numerical solutions

and Gaussian fits for the 2nd, 10th, and 30th echoes, with
the time origin shifted to the center of each echo and fitting
the region with ln ½jhðtÞj=jhjmax;n� > −1.5.
Within this approximation, there are five real parameters

for every echo that quantify its amplitude, width, and
center, in both the time and frequency domains, as well as
the overall phase at the center of the echo, as shown in
Table II.
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FIG. 5. Superradiance in the frequency domain for a GR Kerr
BH and ECO with a wall.
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FIG. 6. Best-fit Gaussians to the 2nd, 5th, 10th, and 30th echoes
within ln ½jhðtÞj=jhjmax;n� > −1.5. We see that, as high frequency
modes leak out faster, later echoes decay in amplitude and
become wider in the time domain, and high frequency is cut in the
frequency domain.
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Table III provides the best-fit parameters of our echo
templates for all echoes, based on the LIGO event
GW150914 and averaging over the best-fit functions with
different echo domains ln ½jhðtÞj=jhjmax;n� > −1;−1.5,
or −2.
The best fits for each echo domain are also provided in

Fig. 7. For correction to Δtecho;geom, we define the time
delay asΔtn ¼ tn − tn−1. For all other plots, the first echo is
not included since it is very sensitive to the properties of the
wall as well as nonlinear effects from the early stage of
merger (see details in Sec. V). The top three panels in Fig. 7
show the time domain properties as a function of the echo
number. Starting from the left, peak echo amplitudes in
time are all fit well by decaying power laws (Ref. [57]

argues that the decay of echoes at early stages is poly-
nomial). In the middle is the width of the echoes, becoming
wider for later echoes in the time domains, as the high
frequency modes leak out more quickly. The top right panel
gives a correction to Δtecho;geom (15), while the bottom left
panel shows the decay of the mean echo frequency. The
bottom middle and right provide the overall phase at tcenter
and the residuals of the best fit for the phase. We only show
the residuals for the phase, as the numerical error for the
phase is relatively big.
To visualize the quality of the template to fit data, Fig. 8

shows the SNRtemp=SNRmodel, where SNRmodel is the
predicted signal-to-noise ratio for our numerical solution
of echoes (assuming white noise) while SNRtemp is a
reduced value, if we use our Gaussian approximations of
Fig. 6 (gray circles in Fig. 8). Using a second fit for how
properties (i.e., width, center, and amplitude) of ΨnðtÞ ¼
log jhnðtÞj depend on n (Table III) further reduces SNRtemp

(red triangles in Fig. 8). We notice that the quality of
Gaussian fit drops for later echoes, which could be due to
either the build-up of numerical error or systematic devia-
tions from a single Gaussian fit. The secondary fit forΨn vs
n further reduces the SNR as the width in time and time

TABLE II. Some physical quantities of a single echo defined by the five parameters from the Gaussian echo template [Eq. (19)].

Width Center Peak amplitude

Time
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=ð2a2

p Þ −a1=2a2 exp½a0 − a21=4a2�
Frequency

ffiffiffiffiffiffiffiffiffiffiffi
−2a2

p
=ð2πÞ b1=ð2πÞ exp½a0 − a21=4a2 − 1=2 log½2

ffiffiffiffiffi
a22

p
��

Overall phase b0 − b1a1=ð2a2Þ

TABLE III. Best-fit Gaussian echo template quantities (see
Table II and Fig. 7), for our minimal model of GW150914.

Peak amplitude in time (strain) 2.91 × 10−19=n1.32

Width in time (msec) 4.29þ 0.883n
Correction to Δtecho;geom (msec) 1.52þ 1.71=ð1þ nÞ
Peak frequency (Hz) 177þ 102=n0.3

Overall phase −7.26þ 27.1n0.945 þ 22.6n

FIG. 7. Best-fit Gaussian template parameters (for ln ½jhðtÞj=jhjmax;n� > −1;−1.5 or −2), in our minimal model of LIGO event
GW150914, showing second and later echoes. The top three panels are in the time domains. Starting from left, peak amplitudes of
echoes in time are fit well by power laws. The middle panel is the width of the echoes, which become wider in time, as the high
frequencies leak out more quickly. For the same reason, the peak frequency (bottom left) also decays with time. The top right panel gives
corrections toΔtecho;geom [Eq. (15)]. Finally, the bottom middle and right provide the overall phase at tcenter of each echo and the residuals
of the best fit. This is the only plots in which we show the residuals since the numerical error for the phase is relatively big.
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delay, shown as Fig. 7, do not have a simple behavior.
However, the power law fit to the peak amplitude in time
∝ n−4=3 is surprisingly good. Also, as we discussed
before, since the shapes of the first few echoes are much
more dependent on the initial conditions, it might be
better to use independent Gaussians to fit them in data.
Finding a reasonable fit for phase information Φn vs n
proves even more challenging, as a small change in phase
leads to a significant change in echo profiles. Fortunately,

model-agnostic searches (e.g., Ref. [35]) based on cross-
correlating different detectors can be done independently of
the phase information.

VI. BEYOND THE MINIMAL MODEL

While our minimal model for echoes has only one free
parameter (the wall distance to the horizon, dwall) in
addition to those of GR, the reality can be more compli-
cated. Here, we explore the two main deviations expected
from the minimal model due to nonlinear effects in GR and
quantum gravity.

A. Nonlinear mergers effects

Our assumption of a custom-designed incoming wave
packet, as a placeholder for a black hole binary merger, is
almost certainly too naive to provide a realistic echo
template, as it misses the nonlinear nature of the merger.
While numerical simulations can now provide realistic
waveforms for black hole mergers in GR, a covariant
formulation of ECOs that could produce realistic echo
waveforms is currently missing. However, we can get an
idea about the extent of nonlinear corrections to linear

FIG. 8. SNRtemp compared to SNRmodel, showing the quality of
Gaussian templates.
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FIG. 9. Echoes predicted for GW150914, expected for redshifted (blueshifted) initial conditions with respect to our minimal model.
We see that lower frequency initial conditions lead to lower amplitude, but more persistent, echoes as they cannot penetrate the angular
momentum barrier efficiently.
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FIG. 10. SNR and energy for blueshifted echoes compared with the first echo. We see that there is more (less) information in
subsequent echoes for lower (higher) frequency initial conditions. Furthermore, the amplitude of the first echo is hard to predict and can
change by more than 1.5 orders of magnitude. We also list SNRs and energy for blueshifted first echoes compared with the event. Since
we assume white noise to calculate the SNR in time domain, we trim the merger template at around 0.076 sec before the peak (similar to
the LIGO noise whitening for GW150914 template).
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results by noticing that the Kerr background for the
Teukolsky equation (1) is dynamical during the merger
event, and thus the frequencies can be shifted by Oð30%Þ,
between the ingoing and outgoing waves at merger [58].
We shall explore the extent of this effect on echoes by
introducing a blueshift parameter s, in the ingoing linear
initial conditions:

ĥLIGO;shifted½f� ¼ ĥLIGO½f=s�: ð21Þ
As shown in Fig. 9, redshifted (blueshifted) initial

conditions give echoes which damp more slowly (quickly),
since low frequencies leak more slowly through the angular
momentum barrier. This also dramatically changes the
amplitude of the first few echoes. Blueshift parameter s
can be a free parameters for data-fitting purposes.
The effect is clearer if we compare the SNR of echoes to

the first echo, as shown in Fig. 10. SNR2
n is SNR2 of our

numerical solution of the nth echo, and we trimmed a single
echo with ln ½jhðtÞj=jhjmax;n� > −1.5. We assume white
Gaussian noise σω ¼ 1 so that

SNR2
n ¼

X
ω

jĥn;ωj2
σω

2
¼

X
t

jhnj2: ð22Þ

Figure 10 (right panel) shows that later echoes contain
more (less) information in redshifted (blueshifted)

templates, since they decay more slowly (quickly). The
left panel also shows the relative SNR of the first echo
compared to the trimmed main event in our model. The fact
that this number can change by more than 1.5 orders of
magnitude suggests that the amplitude of the first echo is
very sensitive to the nonlinear merger physics and cannot
be reliably predicted. Reference [59] simulates a binary
black hole merger and finds the ratio of the energy falling
into the black hole to the energy out is around 1∶1, which
can be used as a normalization of amplitude of echoes.
Table IV and Fig. 11 compare the best-fit echo param-

eters for different blueshift factors. We see in the left panels
that the blueshifted initial condition (s ¼ 1.2) has a
transient excess in amplitude that decays quickly and falls
in line with the minimal model. In contrast, the redshifted
model (s ¼ 0.8) has a significantly smaller but more
persistent amplitude. Surprisingly, the middle panels show
that the redshifted echoes remain narrower in time. Even
more puzzling is that the redshifted initial conditions have
higher frequency echoes as shown in Fig. 11’s bottom left
panel. This is due to the fact that the echo peak frequency
depends on the slope (and not the amplitude) of the spectral

density ĥoutðωÞ ¼ RECOðωÞ ĥLIGOðωÞRBHðωÞ fcutoffðωÞ from Eq. (11),

which involves several complicated components. As we see
in the middle panel of Fig. 9, this slope is not monotonic,
which leads to the counterintuitive behavior, even though

TABLE IV. Same as Table III, but contrasting with redshifted/blueshifted initial conditions, fitted within ln ½jhðtÞj=jhjmax;n� > −1.5.

Blueshift factor s 0.8 1 1.2

Peak amplitude in time (strain) 5.91 × 10−20=n1.14 2.92 × 10−19=n1.33 5.31 × 10−19=n1.54

Width in time (msec) 3.91þ 0.678n 5.5þ 0.808n 9.48þ 0.711n
Correction to Δtecho;geom (msec) −47.8 − 57.0=ð1þ nÞ 15.4þ 1.64=ð1þ nÞ 76.2þ 60.4=ð1þ nÞ
Peak frequency (Hz) 227þ 95.2=n0.3 175þ 104=n0.3 144þ 97.8=n0.3

Overall phase −3.06þ 30.2n0.945 − 25.9n −6.65þ 28.5n0.945 − 23.8n −12.7þ 35.2n0.945 − 29.4n

FIG. 11. Same is Fig. 7, but using the different blueshift factors s [Eq. (21)] for echo initial conditions (fitted for
ln ½jhðtÞj=jhjmax;n� > −1.5). We see that redshifted initial conditions yield weaker, but more persistent, echoes (see the text for details).
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the amplitude of the redshifted model is smaller compared
to the blueshifted one.

B. Soft wall

Motivated by quantum models of black holes, the wall
must at least partially absorb the energy incident on the
wall [31]. For example, in fuzzball models [6], high energy
particles (with ℏω ≫ kTH, where TH is the Hawking
temperature) excite the fuzzball microstates and thus will
be absorbed by the wall. On the other hand, particles with
ℏω ≤ kTH may be (at least partially) reflected (but see
Ref. [60] for recent counterarguments). The ringdown
phase of mergers of two BHs is in the intermediate range
(∼100 Hz for GW150914). Therefore, a realistic quantum
gravity model for the echoes is expected to involve a soft
wall. For example, the frequency of electromagnetic
emissions from accretion into BHs is much higher, which
is expected to be absorbed by the wall [61,62]. However,
possible loopholes that could lead to astrophysical observ-
ables from quantum effects have been exploited in
Refs. [15,63].
A wall that absorbs high frequency modes will dramati-

cally decrease the amplitude of the first echo, since these
modes leak out quickly every time the wave packet hits the
angular momentum barrier. Therefore, the first echo con-
tains most of the high frequency modes which, as shown in

the top left panel in Fig. 14, would be absorbed for a
soft wall.
Of course, the actual frequency-dependent reflection of

the wall depends on the specific quantum theory of black
holes. We explore a phenomenological model for the wall
with a Gaussian-like energy reflection rate,

RwallðωÞ ≃ exp

�
−
�
α
ω

TH

�
q
�
; ð23Þ

where TH ¼ r2þ−a
2

4πrþðr2þþa2Þ is the Hawking temperature for

Kerr BH. While smooth Rwall’s, such as Gaussian or
Boltzmann reflectivity (q ¼ 2 or 1, respectively) may
appear natural, they do tend to essentially wipe out the
echoes, unless α ≪ 1, which is inconsistent with the
tentative echoes found in Ref. [31]. In contrast, a sharper
function with, e.g., q ¼ 12 then can damp the first echo,
but not significantly influence later echoes, as shown in
Fig. 13 [64]. We can also compare these reflectivity
functions with that of the angular momentum barrier of
the Kerr BH, for the same spin and mass, as shown
in Fig. 12, which provides another motivation for sharper
Rwall’s.
Table Vand Fig. 14 compare the template for the perfect

and soft walls, similar to Figs. 7 and 11. We see in the top
left panel that, due to absorption of high frequency modes,

RAngular Potential Barrier

Rwall=Exp[-( 0.055 2 f
TH

)12]

Rwall=Exp[-( 0.06 2 f
TH

)8]
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FIG. 12. Comparison of soft wall reflectivity coefficients that
we use, with that of the Kerr angular momentum barrier [42]. The
thin and dashed lines are the two reflectivity rates used in Fig. 13.
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FIG. 13. Echoes for GW15014, for soft vs perfect walls. The
top (gray) curve assumes a perfect wall/mirror, while the lower
curves show soft walls with different energy reflectivity coef-
ficients.

TABLE V. Same as Table III, but contrasting perfect (Rwall ¼ 1) and soft (Rwall ¼ exp½−ð0.055 ω
TH
Þ12�) walls, fitted

within ln ½jhðtÞj=jhjmax;n� > −1.5.

Wall type Perfect Soft

Peak amplitude in time (strain) 2.78 × 10−19=n1.31 2.33 × 10−19=n1.36

Width in time (msec) 5.5þ 0.808n 8.17þ 0.659n
Correction to Δtecho;geom (msec) 15.4þ 1.64=ð1þ nÞ 14.3þ 1.52=ð1þ nÞ
Peak frequency (Hz) 175þ 104=n0.3 177þ 96.8=n0.3

Overall phase −6.65þ 28.5n0.945 − 23.8n −5.2þ 26.8n0.945 − 22.6n
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the power law fit to the amplitudes could be extended to the
first echo for the soft walls. More generally, echoes decay
faster for a softer wall. As echoes for a wall with Rwall ¼
exp½−ð0.06 ω

TH
Þ8� decay too fast, we only focus on the

Rwall ¼ exp½−ð0.055 ω
TH
Þ12� case in subsequent panels of

Fig. 14 and provide numerical fits for echo properties in
Table V. With this choice, the evolution of echo properties
is similar to those in Figs. 7 and 11, with the notable
difference that peak frequency decays more rapidly as the
soft wall absorbs high frequencies.

VII. CONCLUSIONS

We have provided realistic templates for echoes of BH
mergers by numerically solving the linearized Einstein
equation (or Teukolsky equation) in Kerr spacetime with
boundary conditions at a Planck length proper distance
outside the (would-be) event horizon. We obtain analytic
approximations for the echo waveforms and time delays
and explore their dependence on the softness of the wall (or
frequency dependence of the reflection rate), as well as
nonlinear effects during the merger event. These analytic
templates should be useful in echo searches in current and
future gravitational wave data. Finally, we studied the
occurrence of superradiant instability and showed that it
has a negligible effect, for the first few dozen echoes of in
typical BH mergers such as GW150914.
Let us close with some open questions and future

directions:
(i) The strain is dominated by mode l ¼ 2,m ¼ �2. We

only show mode m ¼ 2 here, and the solution of
m ¼ −2 can easily be foundbyRslm½ω� ¼ R�

sl−m½−ω�.
More realistic templates should combine all other
modes by the appropriate weight.

(ii) We cannot provide a reliable waveform for the first
echo as it is too sensitive to the ad hoc cutoff
function (13) that we use to set up our initial
conditions. This highlights the need for a covariant
numerical implementation of ECOs within a
dynamical spacetime, which could provide realistic
nonlinear initial conditions for echoes.

(iii) Another big uncertainty is the expected softness of the
wall. While this is ultimately a question for the
quantum models of black holes, it highlights the need
for a covariant and causal description of the wall
dynamics. It might be possible to describe this dy-
namics in terms of the properties of a surface (2+1d)
fluid and Israel junction conditions (e.g., seeRef. [16]).

(iv) The computation of the echo phase beyond ∼20
echoes is limited by numerical precision and fre-
quency resolution. This can be improved in the
future, by either brute force or novel numerical/
analytic methods.
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FIG. 14. Same as Fig. 7, comparing walls with different energy reflectivity coefficients (fitted for ln ½jhðtÞj=jhjmax;n� > −1.5). We see
that echo amplitudes and peak frequencies decay more quickly for softer walls (see the text for details).
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APPENDIX: ERGOREGION INSTABILITY

In this Appendix, we further discuss the emergence of
superradiance and ergoregion instability in ECOs.
Figure 15 shows the superradiance in the frequency

domain. We notice that the amplification develops reso-
nance peaks in the presence of an imperfect wall [66], and
these peaks become sharper with increasing the reflectivity
of the wall. However, a perfect wall seems to kill the
superradiance for scattered waves. It is much more plau-
sible that we in fact develop infinitely sharp resonance
peaks, associated with trapped ergoregion w-modes, which
cannot be captured by finite resolution in the frequency
domain. We integrate the plots over the superradiance range
for different reflectivity of the wall, shown in Table VI. The
area is roughly conserved for all soft walls and equal to the
area of a classical BH. Hence,we conclude that when
approaching Rwall ¼ 1 we still have the superradiance, but
only at discrete frequencies. The zeros of both Fig. 15 and
Table VI are just because of finite resolution in the
frequency domain, and we are not able to see the infinitely
sharp resonances when approaching Rwall → 1.
Figure 16 shows that resonance superradiant peaks dis-

appear as a → 0, while Fig. 17 shows that they shift whenwe
shift the position of the wall, as expected.
Note that, even in the absence of superradiant scatter-

ing, there could still be instabilities that manifest

themselves as the poles of the amplification in the upper
complex plane of frequency space. Indeed, ergoregion
instability was predicted in Ref. [44] in the absence of
horizons and/or dissipation. However, we do not see any
significant growth, at least in the first 50 echoes we
predict for GW150914 in Fig. 3. This can be understood
by noticing that, as shown in Fig. 7, the echoes are
dominated by frequencies f ≳ 210 Hz, but superradiance
happens at f < mΩH ≃ 180 Hz for this event. Hence, the
instability does not take over until peak frequency drops
below this limit.
We can increase the spin to see the superradiant

instability develop faster, as shown in Fig. 18. For spin
a ¼ 0.80, the echoes stop decaying at some point, and for
a ¼ 0.99, they start to increase. While this example does
demonstrate the appearance of ergoregion instability, it
should be treated as a toy model, as the initial wave packet
was designed to reproduce the merger/ringdown template
LIGO event GW150914 with a ¼ 0.67.
As we mentioned in Sec. I, whether or not ergoregion

instability acts in nature depends on the wall absorption
properties [49]. Indeed, observation of astrophysical black
holes at significant spins [48] does suggest that the
instability must be suppressed.
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FIG. 15. Superradiance by a spinning ECO/BH with a ¼ 0.99
andM ¼ 67.6M⊙, assuming different wall reflection coefficients
Rwall

1, with wall position rwall ¼ rhð1þ δÞ; δ ¼ 0.05. The hori-
zontal axis is the frequency, while the vertical axis is the relative
energy extracted from the ECO/BH. Rwall ¼ 0 is the classical BH
(with no reflection on the horizon), showing a smooth response
with superradiance at low frequencies. A soft wall with 0 <
Rwall < 1 shows several peaks, corresponding to the resonance
frequencies of the cavity formed by the wall and the angular
momentum barrier, which amplify superradiance. A perfect
reflective wall kills superradiance by definition, as all the energy
that goes in comes out eventually.

TABLE VI. Integrals of superradince profiles (curves in Fig. 15,
up to the superradiance threshold) for different wall positions δ,
or absorptions Rwall. We see that the integrated superradiance
appears to have a universal value, independent of the wall
presence or properties. The same is likely to be the case of
the perfect wall (last row) but cannot be resolved numerically due
to infinitely sharp resonance structure.

δ ¼ 0.05 0.015 0.0005

Rwall ¼ 0 0.2202 0.2202 0.2202
0.2 0.2226 0.2226 0.2225
0.4 0.2246 0.2246 0.2243
0.6 0.2260 0.226r 0.2256
0.8 0.2223 0.2276 0.2190
1 0.0000 0.0000 0.0000
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FIG. 16. Same as Fig. 15, but with a ¼ 0. We see that
superradiance and superradiant resonance peaks disappear as
spin goes to zero.

1For simplicity, we present results with scalar mode ðl; m; sÞ ¼
ð2; 2; 0Þ, but we have confirmed the same results for gravitational
waves.
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