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We investigate the dynamics of a number of f(R) theories in the background of the spatially

homogeneous as well as isotropic Friedmann-Leimaitre-Robertson-Walker (FLRW) model and anisotropic

Bianchi type I and V models in Palatini formalism using the dynamical systems approach. Considering
theories of the type f(R) = R + yR™ — §/R", it is examined whether this model is capable of allowing all
four phases of cosmological evolution or not. Additionally, we have performed the analysis for

f(R) = R+ yR?, as these theories have attracted great attention in recent years. For the theories of
the type f(R) = R — §/R", the sequence of the radiation-dominated, matter-dominated, and accelerated
expanding epochs has been reproduced. In the case of anisotropic models, the evolution of the anisotropy
parameter, i.e., the shear, is also investigated, where it is found that the initial anisotropic Universe evolves
to a stable accelerated expanding Universe. Moreover, corresponding to the Bianchi type V model, the

evolution of spatial curvature is also investigated.
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I. INTRODUCTION

Observational cosmology has strongly supported
the notion of late-time accelerated expansion of the
Universe. This has motivated several modifications in
Einstein’s general relativity (GR) to explain such expan-
sion. f(R) gravity theories [1-9] are widely used as one of
the simplest modifications to GR. This modification
corresponds to the replacement of the Ricci scalar (R) in
Einstein-Hilbert action by any arbitrary function of R.
Three different formalisms of f(R) gravity are used to
derive the field equations from the action. The first
formalism is the metric f(R) gravity, in which the affine
connection depends on the metric, and the field equations
are obtained by varying the action with respect to the metric
only. The second formalism is the Palatini f(R) gravity,
where the field equations are obtained by varying the action
with respect to the metric and the connection separately, as
both are considered independent variables. In this formal-
ism, an assumption is made regarding the matter action that
it is independent of the affine connection. One can extend
the Palatini f(R) gravity by avoiding this particular
assumption. This extension of Palatini f(R) gravity is
known as the metric-affine f(R) gravity. In our analysis, we
have considered the Palatini version of f(R) gravity, as the
field equations obtained are simple second order field
equations, while at the same time it is found to be free
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from gravitational instability for the form f(R) =
R — p/R" [5,8]. Metric f(R) gravity does not show such
stability in favor of this particular form of f(R) [5,9]. In [9],
it has been shown that gravitational instability occurs in
1/R theory. Such instability can be significantly improved
[10,11] with the addition of the positive power (higher than
1) of the scalar curvature to the action. The author of [8]
also studied this type of instability in the presence of matter
considering a specific model of the form f(R) = R — u*/R,
where u is a constant. Their analysis revealed that no such
instability exists in the Palatini version of f(R) gravity.
They also investigated the reasons for the occurrence of the
instability in metric formalism but not in the Palatini
formalism of f(R) gravity. The author of [12] has shown
that the 1/R theory, which is equivalent to some scalar
tensor theories of gravity, cannot pass the Solar System test.
It has been proved in [10,11] that with the addition of the
scalar curvature squared term to the action, the Solar
System test for this section of modified gravity theory
can be passed. The author of [13] studied the Palatini
version of modified gravity models, including the higher
order terms, in the scalar curvature in a nearly Newtonian
regime and showed that as long as the coefficients
corresponding to the higher order terms are reasonably
small, such models can achieve a good Newtonian limit.

It is generally difficult to find the exact solution of the
nonlinear field equations obtained by the variation of
action. Hence, we are in need of a suitable approach to
solve this problem. One such approach is the dynamical
system approach (DSA) [14-18]. Chan in his Ph.D. thesis
[14] gave a survey on the application of DSA and its role in
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cosmology. Leach [17] studied the extended theories of
gravity using DSA in great detail. Fay et al. [5] presented
a qualitative discussion on the application of DSA for the
Friedmann-Leimaitre-Robertson-Walker (FLRW) model
corresponding to three different families of f(R) in the
case of Palatini f(R) gravity.

The Einstein-Hilbert action has been the backbone of
gravitational theory for almost a century. However, in 1924
Eddington proposed an intriguing, alternative theory of
gravity based on a connection field without introducing
a metric [19]. Eddington’s original theory of gravity is
incomplete because it does not include matter fields. A new
Eddington-inspired Born-Infeld (EiBI) gravity theory [20]
in the Palatini formulation including matter fields has been
proposed by Bafiados and Ferreira [21]. In vacuum, this
theory reproduces Eddington’s gravity and is completely
equivalent to Einstein’s general relativity (GR), but it leads
to several attractive new features in the presence of matter
[22]. We expect singularities such as in the beginning of
the Universe or in the interior of black holes, but
Eddington-inspired Born-Infeld gravity is often singularity
free [21-23]. However, other singularities may appear in an
astrophysical framework [24]. The appearance of such
behavior makes Eddington-inspired Born-Infeld gravity
interesting and exciting.

A purely metric proposal of Born-Infeld gravity can be
found in [25]. Born-Infeld Lagrangians are viable modifi-
cations of the Einstein-Hilbert action provided the action is
varied in accordance with the Palatini formalism, in contrast
to the metric formalism [26]. A Palatini formulation of the
gravitational action was first proposed in [27-29]. The Born-
Infeld action is given by [21]

1
S= 2. d4x |:\/_|g/,w + €R/41/<F)| - l\/_lg/u/|:| + Sm'

(1)

The theory introduces a coupling parameter e (the
Eddington parameter), a constant with inverse dimensions
to that of a cosmological constant. 4 is a dimensionless
constant. For small values of ¢R, the EiBI action reduces to
the Einstein-Hilbert action with cosmological constant
A = (A—1)/e. From the observational perspective, it is
an appealing property of Born-Infeld theory that it recovers
GR with an effective cosmological constant. On the other
hand, for large values of eR, the Eddington’s action will be
obtained approximately. Therefore, the coupling parameter
€ interpolates between two different gravity theories. By
suitably tuning this parameter the theory can be made to
agree with all current observations [30].

The cosmological implications of the EiBI theory have
also been investigated in the literature [30-35]. The
evolution of the Universe filled with barotropic perfect
fluid in the EiBI theory was considered in [31], for both
isotropic and anisotropic universes. At the early stage of the

Universe, when the energy density is high, the evolution is
modified considerably as compared with that in GR. For the
equation of state parameter w > 0, there is no initial
singularity and for pressureless dust (w = 0), the initial
state approaches a de Sitter evolution. This fact provides
anew possibility of the singularity-free nature of the theory.
The dynamics of a homogeneous as well as isotropic
FLRW Universe considering the Eddington-inspired theory
of gravity were explored in [32]. For a positive coupling
parameter there is a singularity-avoiding behavior in the
case of a perfect fluid with equation of state parameter
w > 0. The range —1/3 < w < 0 leads to universes that
experience an unbounded expansion rate, while still at
a finite density. In the case of a negative coupling parameter
the addition of spatial curvature leads to the possibility of
oscillation between two finite densities. Domination by
a scalar field with an exponential potential also leads to
singularity-avoiding behavior when the coupling parameter
is positive. The evolution of a spatially flat, homogeneous
anisotropic Kasner universe filled with a scalar field, whose
potential has various forms, was analyzed in Eddington-
inspired Born-Infeld gravity in [33]. An exact solution for
each scalar field potential, describing the initial state of the
Universe, was found by imposing a maximal pressure
condition. Makarenko er al. [30] worked out a gravity
theory that combines the Born-Infeld gravity with an f(R)
gravity theory within the Palatini approach to address a
number of important questions, such as the dynamics of the
early Universe and the cosmic accelerated expansion of the
late-time Universe. Harko et al. [34] considered a baro-
tropic cosmological fluid in an anisotropic, Bianchi type I
space-time in Eddington-inspired Born-Infeld gravity and
obtained the general solution of the field equations. The
behavior of the geometric and thermodynamic parameters
of the Bianchi type I Universe has been studied, using both
analytical and numerical methods, for some classes of high-
density matter, described by the stiff causal, radiation, and
pressureless fluid equations of state. For the dust-filled
Universe, the cosmological evolution always ends in an
isotropic phase, while for high-density, matter-filled uni-
verses, the isotropization of Bianchi type I universes is
essentially determined by the initial conditions of the
energy density. Bambi ef al. [35] investigated the possibil-
ity of finding analytical solutions for axially symmetric
magnetic fields (Melvin universe) in the Born-Infeld theory
of gravity formulated in the Palatini approach. Their results
set the basis for further extensions that could allow the
embedding of pairs of black hole remnants in geometries
with intense magnetic fields. Motivated by these studies,
we perform an analysis that is aimed at investigating the
Born-Infeld f(R) gravity in Palatini formalism using DSA
in the background of an isotropic as well as anisotropic
model.

It is well established that the present state of the Universe
is highly homogeneous and isotropic. The FLRW model
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[5,21,26,30,36-38] mimics the best representation of this
isotropic and homogeneous behavior of the present
Universe. However, the existence of inhomogeneity and
anisotropy in the early Universe has also been believed
[39-48]. Anisotropy plays an important role in explaining
the structure formation in the Universe existing in the early
Universe that isotropizes with the evolution of time. The
cosmic microwave background radiation (CMBR)
described by Penzias and Wilson in 1965 fills the whole
Universe with an almost isotropic thermal blackbody
distribution at a temperature of about 2.725 K. However,
in 1992, the Cosmic Background Explorer (COBE) team
[49] found that the measure of the anisotropies available in
the temperature of the CMBR is about one part in 10°, and
for this discovery J.C. Marther and G.F. Smoot were
awarded the Nobel Prize in Physics in 2006. The present
Universe is homogeneous as well as isotropic, but on large
scales as recovered by the anisotropies present in the
CMBR. Recent probes and experiments such as the
Wilkinson Microwave Anisotropy Probe (WMAP) [50-
53] and Planck’s results [54,55] also confirmed the exist-
ence of small anisotropies of the CMBR. Therefore,
anisotropic models such as Bianchi type models have
gained importance in recent days to investigate large scale
structures like galaxies, clusters of galaxies, etc., in the
Universe. The Bianchi models are required not only to
investigate the anisotropy of the early Universe, but also to
study the accelerated expansion at late times. In our
analysis, we have considered the FLRW model as well
as the Bianchi type I and V models to investigate the
behavior of the early and late Universe. In recent papers, the
evolution of the anisotropic Bianchi model is explored
using DSA in the case of metric [56,57] and Palatini
[58-60] f(R) gravity. Various physical and kinematical
features of the spatially homogeneous and anisotropic
Bianchi type I and V models have been discussed in [61-64].

There are excellent reviews [65,66] available in the
literature on f(R) gravity theory. The authors of [65]
provided an overview of the latest developments in modi-
fied gravity, paying special attention to inflation, bouncing
cosmology, and the late-time cosmic acceleration epoch. In
their work, they assembled different types of modified
gravity techniques and provided a virtual modified gravity
toolbox containing all the necessary information on infla-
tion, bouncing cosmology, and late-time acceleration in the
context of modified gravity. The authors of [66] provided
an excellent review on the unification of early-time
inflation and late-time cosmic acceleration in the back-
ground of FLRW cosmology considering a number of
modified gravity models, such as the f(R) gravity model,
modified Gauss-Bonnet and scalar-Gauss-Bonnet gravities,
nonminimal models, nonlocal gravity, modified f(R)
Horava-Lifshitz theory, and power-counting renormaliz-
able covariant gravity. The authors of [10,11,66] unified the
early- and late-time cosmic acceleration considering the

theories of the form f(R) = R+ aR™ — f/R"(m,n > 0).
At large curvature, the term R dominates, describing the
inflationary phase of the early Universe. For 1 < m < 2,
one obtains the power law inflation, whereas for m = 2,
anomaly-driven (Starobinsky) inflation appears at early
times. At small curvature, the term 1/R" dominates, which
depicts the late-time cosmic acceleration. However, the
authors of [5,67] have shown that theories of the form
f(R) = R+ aR™ — 3/R" have shown difficulties in pro-
ducing the unified models of inflation and late-time
acceleration with the radiation- and matter-dominated
epochs. The authors of [5] also presented that it is possible
to accomplish the sequences of a radiation-dominated,
matter-dominated, and de Sitter period, corresponding to
f(R) =R+ aR™ — f/R" when 0 < m < 1. In addition, it
has also been shown that the theories of the type f(R) =
R — f/R"(n > —1) are capable of attaining the sequence of
a radiation-dominated, matter-dominated, and late-time
accelerated expanding period.

In this paper, we study a number of f(R) theories which
have attracted a great deal of attention, with a number of
studies attempting to determine their viability as cosmo-
logical models. Despite the efforts carried out in this
direction, the cosmological dynamics of models based
on such theories are not fully understood. It is important
to examine whether these models are capable of allowing
all four phases of cosmological evolution or not. It should
be noted that such theories should be able to produce all
four phases as a maximal demand [5]. Thus the question of
whether such theories could successfully account for
a sequence of such phases or not provides a strong
motivation for the analysis carried out here. In particular,
the dynamical behavior of the chosen models has not been
explored yet in the Born-Infeld f(R) gravity.

The content of the paper is organized as follows. In Sec. II,
the Born-Infeld f(R) gravity in Palatini formalism is briefly
discussed. In Sec. III, we proceed to study the cosmological
dynamics for the FLRW model using DSA. The analysis is
extended corresponding to anisotropic models, namely,
Bianchi type I and V in Secs. IV and V, respectively.
Ultimately, the conclusions are summarized in Sec. VL.

II. BORN-INFELD f(R) THEORY IN
PALATINI FORMALISM

Let us consider the action for Born-Infeld f(R) theory of
gravity as follows [30]:

1
SBI = @/d“x |:\/_|g;w + €R/4V(F)| - ’1\/_|gﬂv|J

53 | V=G (R) + S, @)

where g, is the metric tensor. R, (I") represents a Ricci
tensor which is constructed from the connection I',. f (R)
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acts as a function of the Ricci scalar R, S,, is the matter
action, A represents a constant of first order, k2 = 87G, and
G is the gravitational constant.

For ¢ — 0, the above equation reproduces the action of
f(R) gravity theory and the Born-Infeld f(R) action takes
the form ([d*x,/=gLs+S,,), where the Lagrangian

Lg = B2Maf(R) ang A:%. On the other hand, for

2i?
a — 0, we regenerate the Born-Infeld theory with action

(éfd“x[\/—mﬂy +€R,, (D) — 2y/~|9ul] + ). In addi-
tion, for « — 0 and ¢ — 0, we recover the GR term.

In the Palatini f(R) gravity, the field equations are
obtained by independent variations of the action, with
respect to the metric and the affine connection. The
variation of action (2) with respect to the metric g,,, yields

V= (15 ) ) ey (R 7R,

= —K2TH, (3)

where a prime stands for the derivatives with respect to
R and T, is the energy-momentum tensor.

The variation of action (2) with respect to the connection
I, yields

Vilv=a4" + af'(R)\/=gg"] = 0. (4)
In the above equations we have used the notation
Q;w = g;w + €RMD(F)‘ (5)

In Born-Infeld theory ¢, can be written in terms
of g,, as

G = P(R) G- (6)

Using the above assumption in (5), the resulting equation
reduces to

Vil(p(R) + af'(R))y/=g99"] = 0. (7)

Therefore we can define an auxiliary tensor of the form

w” = (p(R) + af'(R))g" (8)
such that the corresponding equation becomes
Vly/—uu] = 0.

Therefore we can consider
a 1 af
F/w = E u (a/,tuuﬂ + 81/”;!/3 - a/}u;w)' (9)

This equation provides us with an exact and complete
solution of the affine connection.

In the following, we will consider three different models
to analyze the cosmological dynamics, using the above
equations and considerations. We first study the spatially
homogeneous and isotropic FLRW model and then con-
tinue for spatially homogeneous and anisotropic Bianchi
type I and V models.

III. BORN-INFELD f(R) THEORY
IN FLRW COSMOLOGY

The line element of the spatially flat FLRW metric is
given by

ds? = —di* + a®(1)[dx® + dy* + d7?), (10)

where x, y, z represent the comoving coordinates, a(t) act
as the expansion scale factors, and ¢ is the cosmologi-
cal time.

In order to find the connection between the main and
auxiliary tensor, let us consider u(7) = (p(R) + af'(R))
and r(¢) = (p(R) — 1)/e. Using these relations, one can
find that R(uap),, = r(t)g,,- All these considerations lead
to the following equations:

r(l‘):%[zg-i-g%-i-s—(%)z] (11)

1) = E%S%%H(Sﬂ (12)

where the dots stand for the derivatives with respect to ¢ and
the Hubble parameter is given by H = a/a.
Combining Egs. (11) and (12), one can obtain

3 A 13
N =3(H+L
=3+ 52 (13)
. w3 (u\? i
p); T (e R 14
u+2(u> u’ (14)
and hence,
u r
—=-. 1
u r (15)

The solution of Eq. (15) is
r(t) = cu(r), (16)

where ¢ is a constant. In the light of the equations above,
one arrives at the following:
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PR = | (1= 1)) + ar ®p(R) - 1)
e (17)

The above equation in the background of the FLRW
model can also be written as

2 AR
g(/l— )+a(f/R-f)—-6(1 +af/)(H+ﬂ>
= (P +2p,); (18)
where p,, and p, represent the energy densities of matter
and radiation, respectively. The conservation equations
corresponding to both the energy densities are given by
pr+4Hp, =0. (20)

Contracting Eq. (3) and considering that the trace of the
radiative fluid vanishes, we obtain

41 =2) +e(l —af')R + 2acf = ’ep,,.  (21)

Using Egs. (18)—(21), it can be shown that

I szm
R=-3H—F  ————
1—a(f'R-f")
B 4(1 =2) + €eR — ae(f'R - 2f)
=3 e—ae(f"R—f) (22)
Using Eqgs. (18) and (22), one can find that
s 2% (pwtp) Fal(fR=f)+2(2=1)
= 6(1 +af')& - B
where
B L_ _i4(1—l)+eR—ae(f’R—2f)
5_1+2uH_1 2R e—ae(f"R—f)
(24)

To study the complete and exact nature of cosmological
solutions of the field equation using DSA, we define the
following dimensionless variables:

_ K*p, _ Kpm
S =30 rap@R O T30 ar)2HY
a(f'R = f) R 5)

T 6(1+ af \EH? 3e(l +af \EH?

Therefore, the constraint equation reduces to
1=Q,+Q, +x+y. (26)

Differentiating Eq. (23) and using the variables (25) in
the resulting equation, we get

H 1 f'RR
2 =-3-Q +3x+3y+—s——
72 r+3x + y+6H3(1+af’)§2

TH(taf) HE 27

The first variable of (25) is

2
Q=P
31+ af\&H

Taking the log on both sides of the above equation, we
have

2
nQ, = ln%—l—lnp,—ln(l taf')—2Iné—2InH.

Differentiating with respect to time, we have

o _j_ark b
Q p (I+af) "¢ "H

=H[-1+Q, —3x -3y — C(R)x].
Now 7 =Ina.

Therefore, the evolution equations corresponding to the
variables €, can be written as follows:

dQ,_ldQ,_
dr  H dr

Q. [-1+Q,-3x—-3y—C(R)x]. (28)
The third variable of (25) is

_ alfR-))
6(1 +af)&H>
Taking the log on both sides of the above equation, we
have
Inx = ln%—l— In(fR—f)—In(l +af')—2Iné—2InH.

Differentiating with respect to time, we have

)_.Cf f//RR ~ af”fi’ _2§_2E
x (fR-f) (I+af) "¢ "H

=H[3+Q,-3x-3y+ C(R)(1 —x)].
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Therefore, the evolution equations corresponding to the
variables x can be written as follows:

dx 1dx
e Q, —3x— R(1-x). (2
R 7 x3+Q,-3x-3y+C(R)(1-x)]. (29)

The fourth variable of (25) is

A—=1

YT 3e(1 1 af ) EHE

Taking the log on both sides of the above equation, we
have

Iny =1In

—In(l4+af)-2InéE-2InH.
Differentiating with respect to time, we have

y (I+af) "¢ "H
=H[3+Q,—-3x—-3y—C(R)x].

j af'R & H

Therefore, the evolution equations corresponding to the
variables y can be written as follows:

dy ldy
In the above equations C(R) is defined as

1 f'RR

CH(R-)

_ o J'R(A(1=2) + R — ae(f'R - 2f))
(f'R = f)(e = ae(f"R = ["))

In the dynamical system (28)—(30) corresponding to
FLRW cosmology, it is seen that only time dependence (or
7 dependence) is contained in the parameter C(R).
However, in the following section it is seen that the value
of this parameter is always constant. Therefore the above
dynamical system does not depend on time (or 7) explicitly
and hence the system is autonomous. The authors of [68]
presented a detailed investigation on the autonomous
dynamical system approach in f(R).

Using Egs. (22) and (25) in the constraint equation (26),
one can have

C(R)

(31)

4(1-A)+eR—ae(fR-2f) 1-Q,—x—y
ae(f'R - f) B 2x ’

Equation (32) clearly shows that C(R) can be expressed
in terms of the dimensionless dynamical variables (25).

In order to study the dynamics of the system under
consideration, we are interested in the equilibrium points of

(32)

the system. Such points can be obtained by equating the
evolution equations (28)—(30) to zero. The equilibrium
points obtained in our case are as follows:

P.: (Q,,x,y)=(1,0,0)
Pt (Q,x,y) =(0,0,0)
P.: (Q,,x,y)=(0,1,0)
P,: (Q,,x.y) =(0,0,1)

To study the dynamics of a system, we also have to look
at the stabilities of the equilibrium points. Such stabilities
can be studied from the eigenvalues which are obtained in
linearizing the system of equations (28)—(30). The eigen-
values associated with each of the equilibrium point are as
follows:

P (M. 2025 = [1,4.4 + C(R)]

Po: [ dou 2y = [-1.3.3 + C(R)]

P [A1. 20, 43] = [-C(R), =3 = C(R), =4 = C(R)]
Py [A1, 42, 3] = [-3, -4, C(R)].

It is very useful to define the effective equation of
state (EoS) parameter weg, in terms of the dynamical
variables (25):

_Peff
Weft =
Pett
1 1 af’R &
—EQ,—x—y—gC(R)x+3H(l+af,>—|—3H€. (33)

We can also define the deceleration parameter g, which
has a relation with the Hubble parameter H as

==(l+a), (34

where ¢ can be expressed in terms of the dynamical
variables (25) as

3 1 1
q:—1+—[1+—ﬂr—x—y—§C(R)x

2 3
af”R 5
3H(0 +af) 3H§] ' (35)

Integrating Eq. (34) and setting the big bang time ¢, = 0,
one can find the solution of the average scale factor a
associated to each fixed point. For g # —1, the average
scale factor is written as

a = ag|f, (36)

where aj is a constant and ¢ = (1 +¢)7 L.
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For ¢ = —1, the average scale factor is written as
a = age?’, (37)

Equations (36) and (37) indicate that a power law
solution exists for g # —1, whereas a de Sitter solution
exists for ¢ = —1. One can use the average scale factor a
and the deceleration parameter ¢ to study the contracting as
well as the expanding nature of solutions associated with all
the fixed points [56-60].

A. Cosmological dynamics for model
S(R)=R+yR"™ - /R"

To investigate the dynamics of the f(R) model based on
these theories, we will follow the approach used in [5]. In
this case the terms yR" (y > 0) and /R"(f > 0) are very
important to describe the early and late times, respectively.
This type of model was also discussed in [10,11,66]. The
form of f(R) considered in their analysis is given below:

f(R) =R - +b(R-A)",  (38)

(R—Ay)"

where the coefficients n,m,a,b > 0. In [11,66] it was
shown that for n=1,m =2,A; = A, =0, and small
curvature, the scale factor is @ o 72, which is consistent
with the result as discussed in [69,70].

Considering Ay = A, =0,a=/f, and b =y, we can
attain the f(R) model of the form

f(R) :R—%erRm. (39)
In this case Eq. (32) will become

(14 a) = (m =2)ayR"Y = (n 4 2)apR="+1
(m = 1)ayR"Y + (n 4 1)apR="*1)
1-Q—x+3y
B 2x ’

(40)

To study the dynamics of such an f(R) model, we will
start the analysis by investigating the early and late
dynamics separately.

1. Cosmological dynamics for model f(R)=R -fi/R"
Considering y = 0 in Eq. (39), we have

F(R) :R—%. (41)
The term /R"(f > 0,n > 0) [69-73] appearing in this
model is very significant in studying the late-time accel-
erated expansion of the Universe.
For this particular case of f(R), C(R) and & can be

expressed as

3n
C(R> = ((1 +a) —|—n(n+2)a/3R_(1+">) |:<1 —|—(Z)
—(n aBR-(1+7 (I=ce)(1-14)
(n + 2)apR=™) + ce((1+a) + naﬁR‘(”"))]
(42)
3
S ST @) T+ 2)apR ) [(1 *ta)

— (n+2)apR~ 0+ +

(1—ce)(1-2) }
ce((1+a) + napR=U+M) |’
(43)

where R""+1) can be expressed in term of the dimensionless
dynamical variables (25) as

afp 1—-Q,+3x+3y+n(l —Q,+ x+3y)

R(1+n) _ .
1l+a 2x
(44)
Let us assume
1- 1-2
b ( Ce)( 3 ) (45)
ce(l1+a)

Therefore, the equations of C(R) and ¢ reduce to

3n
(1 + @) + n(n +2)apR=0+m) {(1 +a)
(b-1)(1+a)? ]
(1+a) + napR=(+"
(46)

C(R) =

— (n+2)apR~+") 4+

3
2((1+a)+n(n+2)apR=(1+1) [(1 +a)
(b—1)(1+a)?
(1+a)+napR=(1+7)

=1-

—(n+2)apR=0+") 4

]. (47)

Fixed points and solutions.—For the fixed point P,, both
the numerator and denominator of Eq. (44) approach zero.
Therefore we split the analysis into two different parts.
The first part corresponds to #/R"+!) <« 1 given by P,,,
and the second corresponds to /Rt > 1 given by P,,
[5]. The fixed points and their associated solutions are
listed in Table L.

The evolution of the dynamical variables €,, x, and vy,
along with the EoS parameter w.y; for B/RUtD « 1
(n =0.002,b = —1, p arbitrary), are plotted in Fig. 1.
The figure clearly depicts that the radiation-dominated era
(P,,) first approaches the matter-dominated era (P,,) and
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TABLE 1. Fixed points and their associated solutions for FLRW model corresponding to f(R) = R — f/R".
Deceleration Average scale
Points Q,, EoS parameter (w) parameter (g) factor (a) Physical behavior
P, 0 % 1 aoltf? Decelerated expansion
P, 0 -2-1 -1-3 a|t)s Decelerated expansion for =3 <n <0
‘ Accelerated expansion for n > 3,n < =3
Decelerated contraction for 0 < n < 3
Milne evolution for n = -3
P, 1 0 : ao|tff Decelerated expansion
_ _ . . 8(n+1)?
P, 0 14 n(;lfzrnZ_')—(ll)zb) 1y Sn(g(:i)l()lz b) ao|t|% Accelerated expansion for n > 0,b <1, b <1 - (2]
Decelerated expansion forn > 0,b <1, b > 1 — fl(:(':l;)
P, 0 -1 -1 a0|t|%ﬂof Accelerated expansion

then goes to either a power law (P,) or de Sitter accel-
eration era (Py).

Stability of fixed points.—It has already been mentioned in
the previous section that the eigenvalues of the linearized
equations (28)—(30) reveal information about the stability
associated to each fixed point. The eigenvalues and the
stability corresponding to each fixed point for the FLRW
model are summarized in Table II.

Phase portrait analyses in the case of a FLRW model for
f(R)=R—-p/R" (B arbitrary, n =0.002,b =—1) are
plotted in Fig. 2. In this plot, two heteroclinic sequences
of the form P, - P, —> P, and P, > P, — P, are
obtained. The first sequence mimics the evolution of the
radiation-dominated (P,) to the matter-dominated era (P,,)
and then to the accelerated expanding (P,) epoch. The

second sequence depicts the evolution of the radiation-
dominated (P,) to the matter-dominated era (P,,) and then
to the de Sitter expanding (P,) epoch.

2. Cosmological dynamics for model f(R)=R +yR™
Considering f = 0 in Eq. (39), we have

f(R)=R+yR" (48)

The term yR™(y > 0, m > 0) appearing in this model is
very significant in studying the accelerated expansion of
the early Universe.

For this particular case of f(R), C(R) and & can be
expressed as

2 2
—— -0 - = =-Q
r r
15 = x |1 tp |- v |
Wef Wef
- T - T
AN / N 7
N N N N
\ ! \ 1
0.5F N | 1 05f N | 1
\\ J \\ s
~ ~
Of— = == = = = T ——{ — — ~ — 1 Of— = == = — = T ——{ — — ~ — 1
-05 1 -0.5} 1
1}t 1 -1r T
-1.5F 1 -1.5¢ -
2 . . . . . . . 2 . . . . . . .
-30 25 20 -15 -10 -5 0 5 10 -30 -25 -20 -15  -10 -5 0 5 10
T T
(a) (b)
FIG. 1. Evolutions of the dynamical variables Q,, x and y along with the EoS parameter w.s, for FLRW model corresponding to

f(R) =R —p/R" with n =0.002, b = —1, and arbitrary f.
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TABLE II. Eigenvalues and stability of the fixed points for
FLRW model corresponding to f(R) = R — /R".
Points Eigenvalues [, 4, A3] Stability
P, [1,4, (4 + 3nb)] Unstable for n > —3;
Saddle otherwise
P, [1, 1, 4] Unstable
P, [~1,3,3(1 + nb)] Saddle
P, [3n(n+2)(12—b) Stable forn > 0,5 > 1
Ant1)” 2 Saddle otherwise
34+ 3;1(n+2)(l;b)
1)
3n(n+2)(1-b)
~4 4 2
P, [—4,-3.3nb) Stable for n > 0, < 0
—3m
C(R) = l1+a
(B) (1 + @) — m(m = 2)ayR"1) {( )
b—1)(1 2
~ (m—2)ayRinD 4 =D+ ) 1 }
(1+ @) + mayR"1)
(49)
3
=1-= 14+ a
¢ 2((1 4+ a) — m(m = 2)ayR"=1) [( )
b—1)(1 2
— (m =2)ayR") + ( ) +a) } . (50)
(1+ a) + mayR"=Y

where R(!=") can be expressed in terms of the dimension-
less dynamical variables (25) as

riiom @ m(1=Q +x+3y) = (1-Q, +3x+3y)

Cl4a 2x

(51)

FIG. 2. Phase portraits of the FLRW model corresponding to
f(R) =R —p/R", for n = 0.002,b = —1, and arbitrary f.

Fixed points and solutions.—For the fixed point P,, both
the numerator and denominator of Eq. (51) approach zero.
Therefore we split the analysis into two different parts. The
first part corresponds to the high-energy regime given by
yR""=1 > 1(P,,), and the second corresponds to the
low-energy regime given by yR("~!) <« 1(P,;) [5]. The
fixed points and their associated solutions are listed in
Table I1I.

Stability of fixed points.—The eigenvalues and the stability
corresponding to each fixed point for the FLRW model are

summarized in Table IV.

3. Cosmological dynamics for model f(R) =R +yR?
Considering m = 2 in Eq. (48), we have

f(R) =R +yR%. (52)

In this case Eq. (32) will become

ayR 2x
= . 53
(I4a) 1-Q,—x+3y (53)
In this case C can be written as
1-Q, —x+3y
C=-6|1 b—-1 . 54
[ *+ )I—Qr+3x+3y] (54)

For this particular form of f(R), the expressions for the
EoS parameter and deceleration parameter reduce to

1-Q,—x+3y
1-Q,+3x+3y

4x 1-Q,—x+3y
1-Q,+3x+3y I—Q,+3x+3y]

1-Q,—x+3y
[1 +(b=1) 1—Q,+3xtr3)y]

1
Weff:§Qr+x_y+(b_1)

[H—(b—l)

1-Q,—x+3y
8x (1-Q, +3x+3y)?

2-3 [1 + (b 1)71'_-;:3%@
13 [1
g=5+=

=20, +x— ~1
553 Ty (0=1)

+

(55)

1-Q, —x+3y
1-Q,+3x+3y

1-Q,—x+3y
1+(b-1
[ +( )I—Q,+3x—|—3y”

1-Q,—x+3y
{1 + (b - 1) I—Q,+3xx+3)y:|

I
1-Q,+3x+3y

1-Q,—x+3y
N 12x (1=0, +3x+3y)?

1-Q,—x+3 (56)
—Q,—x
2-3 |:1 + (b - 1) 1—Q,+3x+3yy:|
In this particular model, for the fixed point P,, the EoS
and deceleration parameters are undefined. Hence, this
form of f(R) does not possess a standard radiation-
dominated era. However, the fixed points P,,, P,, and
P, exist in this model. In this case point P, exists only in
the region yR < 1, whereas P, exists only in the region
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TABLE III.  Fixed points and their associated solutions for the FLRW model corresponding to f(R) = R + yR™.
EoS parameter Deceleration Average scale
Points Q,, (Wegr) parameter (g) factor (a) Physical behavior
P, 0 % 1 a0|t% Decelerated expansion
P, 0 -2+1 -1+ a0|t|n% Decelerated expans%on for0 <m <3
Accelerated expansion for m > 3, m < -3
Decelerated contraction for =3 <m < 0
Milne evolution for m =3
P, 1 0 % ao|tff Decelerated expansion
-2)(1- -2)(1- - i 8(m—1)*
P, 0 1+ m(i:l(n?_)(ll)z L 3;11(8;?’113)1()1z b) a0|t|3mi("72;()12*h> Accelerated expansion form >2,b>1,b <1~ Wl—?
Decelerated expansion for m >2,b > 1, b > 1 — fr%;l)z)
P, 0 -1 -1 ag| ;|%9f>f Accelerated expansion

TABLE IV. Eigenvalues and stability of the fixed points for the
FLRW model corresponding to f(R) = R + yR™.

Points Eigenvalues [1;, 45, 43] Stability
P, (1,4, (4 = 3mb)] Unstable for m < %
Saddle otherwise
P, [1,1,4] Unstable
P, [~1,3,3(1 — mb)] Saddle
P, {3m(n172)(17b) Stable for m > 2,b > 1
2(m—13>2 ( _’2)(1_” Saddle otherwise
RN G
3m(m—2)(1-b)
~4 420
P, [-4, -3, -3mb] Stable for m > 0,b > 0;

m<0,b<0
Saddle otherwise

yR > 1 [5]. The fixed points and their associated solutions
are listed in Table V.

An interesting feature of this form of f(R) is that the
fixed point (P,) corresponding to the unstable node
represents a dust Universe. Thus it implies that our
Universe begins with the EoS of matter (P,); enters the
matter-dominated era (P,,), which corresponds to the
saddle node; and finally ends in a stable de Sitter

phase (P). This transition is plotted in Fig. 3, which
shows the sequence of the form P, — P, — P,.

4. Cosmological dynamics for model
f(R)=R+yR" -f/R"

The f(R) of the form f(R) = R + yR™ describing the
early Universe shows that it is possible to obtain a
nonstandard high-energy radiation-dominated phase
(P,,), followed by an inflationary phase (P,). The
f(R) of the form f(R) =R —f/R" describing the late-
time Universe shows that a sequence originating from the
radiation-dominated (P,;) epoch approaches the matter-
dominated era (P,,) and finally attains the accelerated
expanding scenario (P,,Py). Combining the results of
these two forms of f(R), we can study the dynamics of
f(R)=R+yR"-pB/R" (y>0,>0). We plot the
evolution of dynamical variables ,, x, and y, along
with the EoS parameter wgy for m = 1.9, b = —0.5, and
n =1, in Fig. 4. The figure shows that the Universe
begins with a nonstandard radiation-dominated phase,
followed by inflation, and then followed by a standard
radiation-dominated phase and a matter-dominated
phase, until it finally attains the accelerated expanding
Universe phase.

TABLE V. Fixed points and their associated solutions for the FLRW model corresponding to f(R) = R + yR?.

EoS parameter Deceleration Average scale Eigenvalues
Points Q,, (Wesr) parameter (g) factor (a) (A1, 42, 43] Stability
P, 0 e e . e
P, 1 0 i atp [-1,3,3(1 = 2b)] Saddle
P, 0 0 : apltf 2,3,6] Unstable
P, 0 -1 -1 a0|;‘%6‘ot [-6b, —4, -3] Stable for b > 0

Saddle otherwise
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FIG. 3. Phase portraits of the FLRW model corresponding to
F(R) =R+ yR?, for b =1 and arbitrary f.

15 1 1 1 1 1 1
=70 -60 -50 -40 -30 -20 -10 0 10

T

FIG. 4. Evolutions of the variables Q,, x, and y, as well as the
EoS parameter weg, for the FLRW model corresponding to
f(R)=R+yR" - pB/R" with m =19;n=1;b=-0.5; and
p, vy arbitrary.

IV. BORN-INFELD f(R) THEORY
IN BIANCHI I COSMOLOGY

The line element of the spatially homogeneous and
anisotropic Bianchi I metric is given by

ds? = —di* + A2(t)dx® + B2(1)[dy? + d?],  (57)

where A(f) and B(t) are expansion scale factors.
As discussed in the previous model, it can be
proved that, for this particular model also, one obtains

r(t) = cu(r).

Equation (17) in this case can be written as

Za-DratrR-n-30+an)((045) )
= & (pm +2p,), (58)

where 0 stands for the volume expansion scalar and o for
the shear scalar, which can be defined as

0=31=32=-2

a3 (59)
1 /A B\?
02:§<Z—§). (60)

The conservation equations corresponding to the energy
densities of matter and radiation are given by

/.)m"i_apm =0 (61)
. 4

To study the evolution of the anisotropy parameter in the
case of Bianchi I spacetime, we need to investigate the
trace-free Gauss-Codazzi equation given by

so(0+5)e -

Using Egs. (21) and (61), it can be shown that

: P
R=-0— ~Fm
1—a(f'R-f")
_ 41 =2) +eR(1 — ae(f'R - 2f)
= e—ae(f"R—f") (64)
Using Egs. (58) and (64), one can find that
2 — ; 2 , 5
T2+ af)E [6" (1+af') + 66*(pn + 1)
+3a(f’R—f)+g(/1— 1)}, (65)
where
E=1 +§l: 1 _14(1 — 1)+ eR(1 — ae(f'R - 2f)
2 uf 2R € — ae(f//R _f/)
(66)

The variables that have been considered in the case of a
Bianchi I model are given below:

124041-11



BANIK, BANIK, and BHUYAN

PHYS. REV. D 97, 124041 (2018)

s _ V3o _ 3, _ 3xp
0 T (1l 4afEer " (1+af)Ee*
_ 3a(f'R-f) _ . 34-1) (67)

2(1+af)E6* e(1+af)E20%

Therefore, the constraint equation reduces to
1=224+Q,+Q, +x+y. (63)

The evolution equations corresponding to the variables
(67) can be written as follows:

Zf i[ 3435240, —3x—3y—9C(R)x—9D(R)(1-32)
—18E(R)(1-%2)] (69)
ddff —Q,[1 43524+ Q, —3x 3y —9C(R)x—9D(R)2
+ 18E(R)x?] (70)
Z’TC x[343%52+Q, —3x—3y+9C(R)(1 —x) —9D(R)%>
+18E(R)%?] (71)
% =y[3+32+Q, —3x -3y —9C(R)x —9D(R)Z?

+ 18E(R)2?]. (72)

where 7 stands for Ina, and C(R), D(R), and E(R) are
defined as

1 f"RR
R =%0r-7
_ _IfRAU=A) +eR—aelfR=21) o
3 R=f)lc—acl/’R~ )
a f”R
D(R) 39( +af')
@ f'(40 =) + R — ac(f'R—2f))
3 (1 - af)(e—acl/’R—77) (74)
E(R) — L _ L (41=) + eR - ae(f/R=2f)

30u 3R (e —ac(f"R - f"))

(75)

In the dynamical system corresponding to the anisotropic
Bianchi I model (69)—(72), it is observed that the time
dependence (or 7 dependence) is contained in the param-
eters C(R), D(R), and E(R), and they are found to be
constant in the investigation of the following sections.
Therefore the dynamical system corresponding to an

anisotropic Bianchi I model does not depend on time
(or 7) explicitly and, hence, the system is autonomous.

Using Egs. (64) and (67) in the constraint equation (68),
one can have

4(1—/1)+€R—ae(f'R—2f)_l—Zz—Qr—x—y
ae(f'R - f) N 2x )

(76)

Equations (73)—(76) clearly show that C(R), D(R), and
E(R) can be expressed in terms of the dimensionless
dynamical variables (67).

The fixed points in the case of a Bianchi I model can be
obtained by equating the evolution equations (69)—(72) to
zero. The fixed points obtained for this particular Bianchi
model are as follows:

P (Z,Q,,x,y) = (£1,0,0,0)
P (29, xy) =(0,1,0,0)
P,: (£,Q,,x,) =(0,0,0,0)
P.: (£,Q,,x,y)=(0,0,1,0)
P, (Z,Q,,x,y) =(0,0,0,1).

The eigenvalues associated with each fixed point are as
follows:

PE:[A1.42.23.4] =[2—9D(R) + 18E(R).
—9D(R)+18E(R),
—6-9D(R)+ 18E(R).

6+9C(R)—9D(R)+ 18E(R)]

Poi [ Ay dy] = {1,4,4+9C(R),—1+—D(R)—9E(R)}

Py s ds da] = [—1,3,3+9C(R),
39
——+=D(R)—-9E(R
S +5D(R)=9E(R)
Pyt A dods da] = {—9C(R),—3—9C(R),—4—9C(R),

9

~3-3C(R) +§D(R)—9E(R)]

—

A Agdg) = {—3,—4,9C(R),—3 +§D(R)—9E(R)].

The effective equation of state (EoS) parameter weg
and the deceleration parameter ¢, in terms of the
dynamical variables (67) for a Bianchi I model, can be
defined as
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IO R S P SN P
We“_peff_(l—szz) [Z +3Q, y—(1+3C(R))x
+3D(R)(1-2?) —|-6E(R)22—22§2+2§—§0] (77)

1
q-—l—F%[1+22+§Q,—y—(1+3C(R))x

+3D(R(1 —£%) + 6E(R)X* + 25‘9] , (78)

where the relation between the deceleration parameter g
and the volume expansion scalar 6 is

G=-30+a) (79)

As we are interested in the evolution of the anisotropy
parameter, it is very beneficial for us to express Eq. (63) in
terms of the dynamical variables (67):

. 1 ,
6= =10+ 3ER)e)e> (80)

Integrating the above equation, we can find the evolution
of shear for the anisotropic fixed points.

A. Cosmological dynamics for model
f(R)=R+yR" ~/R"

In this case Eq. (76) will become

(14 a) = (m =2)ayR"=Y) — (n + 2)apR~"+1)
(m = 1)ayR" Y + (n + 1)apR="+D
=52 —Q, —x+3y

- 2x '

(81)

As discussed earlier in this case also, we start the
analysis by investigating the early- and late-time dynamics
separately.

1. Cosmological dynamics for model f(R)=R -fi/R"

For the particular case of f(R), C(R), D(R), E(R), and &
can be expressed as

3((1+ @) + n(n + 2)apR=(+") {(1 o)
(b-1)(1+a) ]
(14 a) + napR=(1+")
(82)

C(R) =

— (n+2)apR~01+") +

D(R) = L[t DapR=(1+n) }

3 (1 + @) + napR=0+"
1
o (e pares =l (RS
(b-1)(1+ a)? }
(1+a) + napR=0+"
(83)

— (n+2)apR~0+") 4

1
3((1 + @) + n(n 4 2)apR=0+1) {(1 +a)
(b-1)(1+a)? }
(1 + @) + napR=(1+"
(84)

E(R) = -

— (n+2)apR~+") +

3
2((1 + @) + n(n + 2)apR=(1+m) {(1 +a)
(b—1)(1 +a)?
(1+ @) + napR=(1+")

E=1-

— (n+2)apR~U+" + ] . (85)

where R"*1) can be expressed in terms of the dimension-
less dynamical variables (67) as

R+1) — L 1-32-Q, +3x+3
2x(1+a)[ rob oy
+n(l1 =22 -Q, + x + 3y)]. (86)

Fixed points and solutions.—For the fixed points P and
P,, both the numerator and denominator of Eq. (86)
approach zero. Therefore we split the analysis into two
different parts. The first part corresponds to /R « 1,
and the second corresponds to #/R"*1) > 1 [5]. The fixed
points and their associated solutions for a Bianchi I model
are listed in Table VL

The evolution of the dynamical variables X, Q,, x,
and y, along with the EoS parameter wg for /R 1) «1
(n=0.002,b = -1, p arbitrary), are plotted in
Fig. 5. The figure clearly depicts that the anisotropic
Universe (PY) first approached the radiation-dominated
(P,;) and matter-dominated (P,,) era, respectively, and
finally went to the accelerated expanding Universe
(P, Py).

Stability of fixed points.—The eigenvalues and the stability
corresponding to each fixed point for a Bianchi I model are
summarized in Table VIIL

Phase portrait analyses in the case of a Bianchi I model
for f(R) = R—pB/R" (n =0.002,b = —1, f§ arbitrary) are
plotted in Fig. 6. In Fig. 6(a), we obtain heteroclinic
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TABLE VI. Fixed points and their associated solutions for a Bianchi I model corresponding to f(R) = R — f/R".
EoS parameter Deceleration Average scale
Points Q,, (Wetr) parameter (q) factor (a) Shear (o) Physical behavior
P 0 12 2-3b aolt[T ooag ™P)|f-1 Decelerated expansion for é) <2
Accelerated expansion for 5 < b <1
Decelerated contraction for b > 1
Milne evolution for b = %
P 0 Iy 2 243 a7 60a63(1+$) -1 Decelerated expansion for n > 0.n<-3
Accelerated expansion for —5 <n < —1
Decelerated contraction for —1 <n <0
Milne evolution for n = —3
P, 0 i 1 a0|t|% 0 Decelerated expansion
P, 0 -2-1 -1-3 aolt|s 0 Decelerated expansion for —=3 < n < 0
Accelerated expansion for n > 3,n < -3
Decelerated contraction for 0 < n < 3
Milne evolution for n = -3
P, 1 0 ! ao|tff 0 Decelerated expansion
n(n+2)(1-b 3n(n+2)(1-b n+1)? 1
P, 0 -1+ (4(+nl(1)2 ) 14 (8<:+)1(>2 ) ao\t|3"<8“(<;l<>l-/’> 0 Accelerated expansion fosf(nﬂ)z
n>0,b<1,b< 1—3n(n+2)
Decelerated expansion for
8(n+1)%
n>0,b<1,b>1—m
P, 0 -1 -1 a0|t\%‘90’ 0 Accelerated expansion

sequences of the form Pf — P, — P,, — P, for y = 0.
These sequences depict the evolution of an anisotropic
Universe (PY) to the radiation-dominated (P,) and
matter-dominated era (P,,), respectively, and then to the
accelerated expanding (P,) epoch. In Fig. 6(b) we have two
heteroclinic sequences of the type P, - P,, — P, and
P, — P, — P, for £ =0. These sequences mimic the
evolution of the radiation-dominated (P,) to the matter-
dominated era (P,,) and then to the accelerated expanding
(P, P,) epoch.

2 T
z
1.5 - - = Qr B
X
1 AN Wett
/ \
{ \
0.5 , \ b
/ \
O L.~ X IR ISSISSS—S—S——————.
-0.5 b
1t
-15¢ E
2 L L L L L L L
-30 -25 -20 -15 -10 -5 0 5 10
T
(a)
FIG. 5.

to f(R) = R — B/R" with n = 0.002, b = —1, and arbitrary f.

2. Cosmological dynamics for model f(R)=R +yR™

For the particular case of f(R), C(R), D(R), E(R), and &
can be expressed as

m
C(R) = - l1+a
0 =5 a2y 09
b—-1)(1 2
— (m—=2)ayR"=V + (b= +a) }
(1+ @) + mayR"")
(87)
2
z
15} 1
[ 7Qr
. . y
J AN Wett
osf ) Y ]
/ AN
o~ — <~ — — = = = — 1
05 1
1t
15} -
2 L L L L L L L
30 25 20 -15 -0 -5 0 5 10

T

(b)

Evolutions of the dynamical variables X, Q,, x, and y, along with the EoS parameter wg, for a Bianchi I model corresponding
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TABLE VII. Eigenvalues and stability of the fixed points for a Bianchi I model corresponding to f(R) = R — /R"
Points Eigenvalues [, 45, 13, 44] Stability
P [2(1 =3b),3(1 —=2b),6(1 = b),6+ 3(n—2)b] Stable for b > l,b>ﬁ
Unstable for b < 1,b < 5%
Saddle otherwise
P [(5 +%),(6+%),(6+%),(9+%)] Stable for =1 < n <0
Unstable for n > 0,n < —%
Saddle otherwise
P, [1,4, (4 + 3nb), (=1 + 3b)] Unstable for n > —-. b > 1
Saddle otherwise
P, [1,1,4,-1(5+2) Unstable for =2 <n <0
Saddle otherwise
P, [-1.3,3(1 4+ nb),—3 (1 - 6b)] Saddle
P, 3n(n+2)(1-b) _ 3n(n+2)(1-0) _ 3n(n+2)(1-b) _ 3(n+2)(n=4)(1-b) Stable for n > 0,0 > 1
|: 2(n+1)> 3+ 2(n+1)> 4+ 2(n+1)> 3+ 8(n+1)> Saddle otherwise
P, [-4,-3,-3(1 — b), 3nb] Stable for n > 0,6 <0
1[ m(m—1)ayR"1 E—1- 3 {(1 +a)
(R) =3 Ll @) + mayRD 2((1+ ) = m(m — 2)ayR"" D)
1 _ (b—1)(1+a)?
X (1 + {l) - (m - 2)ayR(m D + (m=1) |’ (90)
(1 +a) = m(m = 2)ayR"=") (I +a) 4+ mayR

~ (m = 2)ayR""Y + (b-1)(1+a)? ]

(1 + a) + mayR™=Y

(88)
E(R) = ] 1
(R) = _3((1 +a) — m(m —2)ayR"1) [< ta)
. (b-1)(1+a)?
— (m=2)ayR"=V + (I+a)+ mayR<’"")]
(89)

where R(!"") can be expressed in terms of the dimension-
less dynamical variables (67) as

ay
2x(1 + a)
- (1=22-Q, +3x +3y)].

RO-m) — m(1 —%%-Q, +x+3y)

©n
Fixed points and solutions.—For the fixed points P and

P,, both the numerator and denominator of Eq. (91)
approach zero. Therefore, we split the analysis into two

FIG. 6. Phase portraits of a Bianchi I model corresponding to f(R) = R — #/R" for n = 0.002, b = —1, and arbitrary /.
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TABLE VIII. Fixed points and their associated solutions for a Bianchi I model corresponding to f(R) = R + yR™.

EoS parameter Deceleration Average scale
Points Q,, (Wetr) parameter (q) factor (a) Shear (o) Physical behavior
P 0 12 2-3b ag|tTm ooag ™71 Decelerated expansion for b < z

Accelerated expansion for % <b<1
Decelerated contraction for b>1
Milne evolution for b =

+ 1 2 3 T 3
Py 0 3+ = 2—= ag |t 5o ao ‘f| 1 Decelerated expansion for m<0,m>: 2

Accelerated expansion for 1 < m < g

Decelerated contraction for 0 < m < 1
3

Milne evolution for m = 3

P, 0 % 1 aOM% 0 Decelerated expansion
P, 0 _% +% _% + % aplt 2 0 Decelerated expansion for 0 < m < 3
Accelerated expansion for m > 3, m < -3
Decelerated contraction for —3 < m < 0
Milne evolution for m = 3
P, 1 0 i ao|tff 0 Decelerated expansion
P, 0 _ _'_m(m(mZ)(l; b _q _’_3;41(8,?’”21()2 a0|t|3m(sr:i;)l()lz—b) 0 Accelerated expansion forg(m .
m>2,b>1, b<1—3m(m =)
Decelerated expansion for
m>2b>1,b>1-3l
P, 0 -1 -1 LE 6ot 0 Accelerated expansion
different parts. The first part corresponds to the high-energy 3. Cosmological dynamics for model f(R) =R +yR?
regime given by yR""! > 1 (P5, P,,) and the second In this case Eq. (76) will become
corresponds to the low-energy regime given by yR"~1) «1
(P4, P,) [5]. The fixed points and their associated ayR 2x (92)
solutions are listed in Table VIIL (I+a) 1-32-Q, —x+3y
Stability of fixed points.—The eigenvalues and the stability In this case C, D, and E can be written as
corresponding to each fixed point for an anisotropic
Bianchi T model corresponding to f(R) = R + yR™ are 2 1-32-Q, —x+3y
summarized in Table IX C=—3|1+(b-1) 2 (93)
. 3 1-27-Q, +3x+ 3y
TABLE IX. Eigenvalues and stability of the fixed points for a Bianchi I model corresponding to f(R) = R + yR™.
Points Eigenvalues [, 45, 43, 4] Stability
P [2(1 =3b),3(1 =2b),6(1 = b),6 —3(m + 2)b] Stable for b > 1, b>—
Unstable for b < b < 5 +m
Saddle 0therw1se
Ph [(5-2).(6-2).(6-2).(9-2)] Stable for 0 < m < 1
Unstable for m < 0;m > 2
Saddle otherwise
P, (1,4, (4 —3mb), (-1 + 3b)] Unstable for m < 37, b > 1
Saddle otherwise
P, [1,1,4,-3(5-2)] Unstable for 0 < m < 2
Saddle otherwise
P, [-1,3,3(1 —=mb), -3 (1 - 6b)] Saddle
P, dmm=2)(1=b) _ 5 | Im(m=2)(1=b) _ 4 | Im(m=2)(1=h) _3 | 3m(m- 2)(m+4)(lfb)} Stable for m > 2,b > 1
[ 2(m=1)? ST L T 3T ey Saddle otherwise
P, [-4,-3,-3(1 = b), —3mb] Stable for m < 0,b <0;m >0,0<b < 1
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TABLE X. Fixed points and their associated solutions for a Bianchi I model corresponding to f(R) = R + yR>.

EoS parameter Deceleration Average scale Eigenvalues
Points Q,, (Wesr) parameter (g) factor (a) [A1, 42, 43] Stability
PT 0
P, 0 .
P, 1 0 3 altf [-1,3,3(1 —2b),-3(1—6b)]  Saddle
P, 0 0 : ao|tff [2,3,3,6] Unstable
P, 0 -1 -1 ap| ! [-6b,—4,-3,-3(1 + b)] Stable for b > 0
Saddle otherwise
1 4 1-32-Q, — 3
p=-1 ¥ L4 (b 1) — o X (94)
31 -2 -Q, +3x+ 3y 1-2"-Q, +3x 43y
1 1-32-Q, —x+ 3y
E=—|14+0»-1 - . 95
3[ * )1—22—9,+3x+3y} )
For this particular form of f(R), the expressions for the EoS parameter and deceleration parameter reduce to
1 1 1-3-Q,—x+3
Wett = 2 3 1-32-Q,—x+3y \ |2 gQr+22+x_y+<b_l)1—22—Q +3x+;y
4x(1 —x2 1-32-Q, - 3 1-2-Q, - 3
- Zx( ) L (bm 1) T2 T XEIV ) psa( gy T T
1 -27—-Q, +3x+ 3y 1 -2 —-Q, +3x+3y 1 -2"—-Q, +3x+3y
1-32-Q, —x+3y 1-32-Q, —x+3y
w222 <1 +(b-1) 1-2 -0 -x+3y ﬂz 8x i, ey U+ (- Vi 503) (96)
B 2 S -Q. +3x+3 1-32-Q,—x+3y
.+ 3%+ 3y 2_3(1 + (b 1)71_22_&%”33)
I 311 1-32-Q, —x+3y 4x(1-3%?) 1-32-Q,—x+3y
== |=Q, + 22 x— b-1 A - 1+ (-1 -
R T e Dy B e NOFI: PR T o e o e Yo (LR UV o o e e Y

1-32-Q,—x+3y

1-22-Q,—x+3
(1+(b— 1)%)

2221+ (b—-1
( * >1—22—Q,+3x—|—3y

In this case for the fixed points P{ and P,, the EoS and
deceleration parameters are undefined. Hence this form of
f(R) does not possess a standard anisotropic and radiation-
dominated era. However, the fixed points P, P, and P,
exist in this model. The fixed points and their associated
solutions are listed in Table X.

As discussed in the previous case of FLRW geometry in
this geometry also, the fixed point (P,) corresponding to
the unstable node represents a dust Universe. Thus it
implies that our Universe begins with the EoS of matter
(P,), approaches the matter-dominated era (P,,), and
finally reaches the stable de Sitter phase (P,). This
sequence is plotted in Fig. 3.

4. Cosmological dynamics for model
f(R)=R+yR" - p/R"

The f(R) of the form f(R) = R+ yR™ describing the
early Universe shows that it is possible to obtain a

1-32-Q, —x+3y ) 8x(1-22—9,+3x+3y)2
R )

(97)

1-22-Q,+3x+3y

nonstandard high-energy anisotropic phase (P%) and
radiation-dominated phase (P,,), followed by an infla-
tionary phase (P,). The f(R) of the form f(R) =
R — p/R" describing the late-time Universe shows that a
sequence originating from the anisotropic phase (P%)
approaches the radiation-dominated era (P,;), then the
matter-dominated era (P,,), and finally reaches the accel-
erated expanding scenario (P,, Py). Combining the results
of these two forms of f(R), we can study the dynamics of
f(R)=R+yR"™ —pB/R" (y >0, > 0). We plot the evo-
lution of dynamical variables X,€Q,, x, and y along with
the EoS parameter wyy for m = 1.9 and n =1 in Fig. 7.
The figure shows that the Universe begins with a non-
standard anisotropic phase, then it goes to a nonstandard
radiation-dominated era, followed by inflation, a standard
anisotropic, standard radiation-dominated as well as matter-
dominated phase, and finally attains the accelerated expand-
ing epoch.
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FIG.7. Evolutions of the variables Z, Q,, x, and y, as well as the
EoS parameter wey, for a Bianchi I model corresponding
to f(R) =R+ yR"™ — f/R" withm = 1.9;n = 1;b = —0.5; and
P, y arbitrary.

V. BORN-INFELD f(R) THEORY
IN BIANCHI V COSMOLOGY

The line element of the spatially homogeneous and
anisotropic Bianchi V metric is given by

ds? = —di* + A% (1)dx?> + e~ 2P*[B2(1)dy* + C*(1)dZ?],
(98)

where A(7), B(t), and C(r) are expansion scale factors and
p acts as a constant.

For this particular model putting =1 and v =0 in
Eq. (17), one can obtain

A B C
2—=—+—.
1°3B + C (99)
Solving the above equation, one obtains
A = c¢BC, (100)

where c; is a constant.

As discussed in the previous geometries, in the
case of Bianchi V geometry also, it can be proved that
r(t) = cu(t), and Eq. (17) can be written as

11 N (o i\
—5( —l—af)[( +E) — 0

(101)

2
Z(= 1)+ alfR- /)
- 3p2(2K) = Kz(pm + Zpr)v

where 2K stands for the spatial curvature given by

1

2 —
K—?.

(102)

The volume expansion scalar 8 and shear scalar ¢ in case
of a Bianchi V metric can be defined as

A B¢ A 3B ¢
6= E+E_3X_§<E+E> (103)

L V[(AV, (BY, (CV_ab_bC_Ci
“=3|\a B c) “AB BC ca

ot

To study the evolution of the anisotropy parameter and
spatial curvature corresponding to Bianchi V spacetime, we
need to investigate the following equations:

(104)

5_—<9+§>a (105)
% — —%9(21(). (106)

Using Eq. (64) in (101), one can find that

> 1
- 2(14af")E
6

+ 6 (o +pr) +3a(fR=f) +_(A=1)|.

[6"2(1 +af') + 18p*CK)(1 + af’)
(107)

The variables that have been considered in case of a
Bianchi V model are given below:

B V3o B 3K%p, B 3kp,,
07 T (+af)EeT " (+af)E0%
3p’(’K) 3a(f'R-f)
K=——F0m XY= —nan
&0 2(14af’)é*0
3(A-1
y :(—,)22. (108)
e(l+af)&o
Therefore, the constraint equation reduces to
1=324+Q,+Q, —3K+x+y. (109)

The evolution equations corresponding to the variables
(108) can be written as follows:

dx X
d_zz[—3+322+Q,+3K—3x—3y—9C(R)x
T

—9D(R)(1 =2 +3K)—18E(R)(1-%2)]  (110)

aQ,
dr

=Q,[-1+322+Q, +3K—-3x -3y —9C(R)x

—9D(R)(2* - 3K) + 18E(R)2?] (111)
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dK
d—:K[l +3%2+Q, + 3K —3x -3y —9C(R)x
T

+9D(R)(1 — 2* + 3K) + 18E(R)%?] (112)

d
d—x:x[3+322+Q,+3K—3x—3y+9c(1e)(1—x)
T

—9D(R)(22 - 3K) + 18E(R)3?| (113)
%:yB+322+Qr+3K—3x—3y—9C(R)x
—9D(R)(X2 - 3K) + 18E(R)3?). (114)

The expressions for C(R), D(R), and E(R) are given in
(73)—(75).

In the dynamical system corresponding to the anisotropic
Bianchi V model (110)—(114), it is observed that the time
dependence (or 7 dependence) is contained in the param-
eters C(R), D(R), and E(R), and they are found to be
constant in the investigation of the following sections.
Therefore the dynamical system corresponding to an
anisotropic Bianchi V model does not depend on time
(or 7) explicitly and, hence, the system is autonomous.

Using Egs. (64) and (108) in the constraint equa-
tion (109), one can have

4(1-2)+eR—ae(f'R-2f) 1-%22-Q,+3K—-x—y
ae(f'R—f) B 2x )

(115)

The fixed points in the case of a Bianchi V model can be
obtained by equating the evolution equations (110)—(114)
to zero. The fixed points obtained for this particular Bianchi
model are as follows:

P (2,Q,,K,x,y) = (£1,0,0,0,0)
P.: (£,Q,.K,x,y) =(0,1,0,0,0)
P,: (£,9,K,x,y)=(0,0,0,0,0)

1
Pk: (Z,Qr,K,X,y) = (O,-g,0,0,0)

P.: (2,9,.K.x,y)) = (0,0,0,1,0)

Py: (2.9, K, xy) = (0,0,0,0,1).

The eigenvalues associated with each fixed point are as
follows:

PE: (A, A, 23, 4. 25) = [2— 9D(R) + 18E(R).3 — 9D(R) + 18E(R), -6 — 9D(R) + 18E(R),
4 4+ 18E(R)6 + 9C(R) — 9D(R) + 18E(R)]

Pr: [/11’]'2’/13’/14’25] =

Pm . [/11,/12, /13, /14’ /15] =

1,421 9D(R), 4 + 9C(R), -1 + gD(R) - 9E(R)]

1334 9C(R),1+9D(R), —% + gD(R) - 9E(R)}

Pt [A. A A3 A ds) = [_—2 —9D(R), =1 —9D(R),2 = 9D(R), -2 — 9E(R),2 + 9C(R) — 9D(R)]

Px: [’11’/12’/13’/14”15] =

Py: [/11,/12, /135 /14’ /15] =

—9C(R), =3 —=9C(R), -4 — 9C(R), -2 — 9C(R) 4+ 9D(R), -3 — g C(R) + gD(R) —9E(R)

-y 9C(R), -2 - 9D(R), -3 + gD(R) - 9E(R)} .

The effective equation of state (EoS) parameter w; and the deceleration parameter ¢, in terms of the dynamical variables

(108) for Bianchi I model, can be defined as

5

! [m%w—y—(l+3c<R>>x+3D<R><1—22+3K>+6E<R>22—<22+K>52+2—} (116)

=g [

3 1 :
g=-14= [1 +22+§Q,+K—y— (14 3C(R))x + 3D(R(1 — =* + 3K) +6E(R)22+2§].

2

&0

% (117)

As we are interested in the evolution of the anisotropy parameter and spatial curvature, it is useful to express Egs. (105)

and (106) in terms of the dynamical variables (108):
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TABLE XI. Fixed points and their associated solutions for a Bianchi V model corresponding to f(R) = R — /R".
EoS parameter ~ Deceleration  Average scale Spatial
Points €, (Wetr) parameter (g) factor (a) Shear (6)  curvature (?K) Physical behavior
P 0 1-2 2-3b ao\t|3<'+”> Goaa3(1—b)|t‘—| 0 Decelerated expansion for b < z
Accelerated expansion for % <b<l1
Decelerated contraction for b > 1
Milne evolution for b = %
PE 0 I+ 243 agltf™ 4, a53(1+%) ]! 0 Decelerated expansion for
n>0,n<-3
Accelerated expansion for
—% <n<-1
Decelerated contraction for
-1<n<0
Milne evolution for n = —3
P, 0 : 1 aolt|? 0 0 Decelerated expansion
P, 0 —% -1 -1-3 ao |t 0 0 Decelerated expansion for
-3<n<0
Accelerated expansion for
n>3,n<-=-3
Decelerated contraction for
0<n<3
Milne evolution for n = -3
P, 1 0 3 a0|t|% 0 0 Decelerated expansion
P, 0 -1 0 a|t| 0 Koag?|t|>  Milne evolution
P, 0 14 ﬂ%ﬁl(ll);b) 1+ 3n(gz<:i)l()lz—b) ao\t|3"<%’(g?l<)‘2‘”> 0 0 Accelerated expansion fo;(,1+1)2
n>0b<1,b<1 ~ 3t
Decelerated expansion for
n>0b<1,b>1 —2’(1'(’;;1;)
P, 0 -1 -1 a0|t\%"0’ 0 0 Accelerated expansion
P b [(1+ 3E(R))Ex)6? (118) 1. Cosmological dynamics for model f(R)=R - fi/R"
V3 For the particular case of f(R), R""*!) can be expressed
in terms of the dimensionless dynamical variables (108) as
27 2,
k = -3 (K)e. (119 gusm =% 520 13K 4 3x 43y
2x(1 + a)

Integrating the above equations, we can find the evolu-
tion of the shear as well as the spatial curvature for the
equilibrium points.

A. Cosmological dynamics for model
f(R)=R+yR" -p/R"

In this case Eq. (76) will become

(14 a)— (m—=2)ayR"V) — (n 4 2)apR~"+D
(m = )ayR™V + (n + 1)apR~ ("D
1-32—-Q, +3K—x+3y

- 2x '

(120)

As discussed earlier, we start the analysis by investigat-
ing the early- and late-time dynamics separately.

+n(1=22-Q, +3K + x + 3y)]. (121)

Fixed points and solutions.—For the fixed points Py, P,,
and P, both the numerator and denominator of Eq. (121)
approach zero. Therefore we split the analysis into two
different parts. The first part corresponds to /R « 1,
and the second corresponds to #/R"*1) > 1 [5]. The fixed
points and their associated solutions are listed in Table XI.
The evolution of the dynamical variables X, Q,, K, x, and
y, along with the EoS parameter wey for g/R"+) « 1
(n =0.002, b = —1, p arbitrary), are plotted in Fig. 8. The
figure clearly depicts that the anisotropic Universe (P¥)
first approaches the radiation-dominated (P,;) and matter-
dominated (P,,) era, respectively; then tends to a spatially
nonflat isotropic Universe (Py;); and finally approaches the
phase of an accelerated expanding Universe (P, P,).
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FIG. 8. Evolutions of the dynamical variables X, Q,, K, x, and y along with the EoS parameter wy, for a Bianchi V model
corresponding to f(R) = R — f#/R" with n = 0.002, b = —1, and arbitrary /.

Stability of fixed points.—The eigenvalues and the stability
corresponding to each fixed point for a Bianchi V model are
summarized in Table XII.

Phase portrait analyses in the case of a Bianchi V
model f(R) =R —f/R" (n =0.002,b = —1, f arbitrary)
are plotted in Fig. 9. In Fig. 9(a) we have heteroclinic
sequences of the type Pf — P, — P,— P, for
Q,=y=0. These sequences mimic the evolution
of an anisotropic Universe (PY) to the matter-dominated
era (P,,), followed by a spatially nonflat isotropic (Py)
epoch, and ultimately to the accelerated expanding
(P,) epoch.

In Fig. 9(b) we have heteroclinic sequences of the form
Pf—P.— P, — P, for K=y=0. These sequences
depict the evolution of an anisotropic Universe (PY) to
the radiation-dominated (P,) and matter-dominated era
(P,,), respectively, and then to the accelerated expanding
(P,) epoch.

In Fig. 9(c) we have a heteroclinic sequence of the form
P, - P, — P, — P, for Z =y = 0. This sequence shows
the evolution of a radiation-dominated (P,) and matter-
dominated era (P,), followed by a spatially nonflat
isotropic (P;) epoch, and then the stable de Sitter expand-
ing (P,) Universe.

TABLE XII. Eigenvalues and stability of the fixed points for a Bianchi V model corresponding to f(R) = R — §/R".

Points Eigenvalues [, 4y, A3, A4, 4] Stability

P [2(1=3b),3(1 —=2b),2(2—=3b),6(1 = b),6 4 3(n —2)b] Stable for b > 1,b>ﬁ
Unstable for b < §,b < 5%
Saddle otherwise

P (4+9).,54+2).(6+2),(6+2).(9+2)] Stable for -1 <n <0
Unstable for n > 0,n < —%
Saddle otherwise

P, [1,2,4,(4 +3nb), (-1 4+ 3D)] Unstable for n > —5-.b > 1
Saddle otherwise

Py [1.1,4,-(1+2),-1(5+2)] Unstable for =2 <n <0
Saddle otherwise

P, [-1.1.3,3(1 4+ nb),—3 (1 - 6b)] Saddle

Pu [-2,-1,2,—(2 = 3b), (2 + 3nb)] Saddle

P [FQ+D. (). 2+ 2+73). 5+ Saddle

P, 3n(n+2)(1-b) 3n(n+2)(1-b) 3n(n+2)(1-b) 3n(n+2)(1-b) 3(n+2)(n—4)(1-b) Stable for n > 0,b > 1

|: 2(n+1)2 3+ 2(n+1)> 4+ 4(n+1)> 2+ 2(n+1)2 3+ 8(n+1)? i| Saddle otherwise

[-4,-3,-2,-3(1 = b), 3nb]

Stable for n > 0,6 < 0
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(d)

FIG. 9. Phase portraits of a Bianchi V model corresponding to f(R) = R — /R", for n = 0.002, b = —1, and arbitrary f.

In Fig. 9(d) we have heteroclinic sequences of the type
P.—P,—P,and P, > P, — P forX = K = 0. These
sequences mimic the evolution of the radiation-dominated
(P,) to matter-dominated era (P,,) and then to the accel-
erated expanding (P,, P,) epoch.

2. Cosmological dynamics for model f(R) =R +yR™
For the particular case of f(R), RU=") can be expressed
in term of the dimensionless dynamical variables (108) as
RU-m) — MW
2x(1 4+ a)
- (1=-22-Q, +3K +3x+3y)).

m(1 —%*-Q, + 3K+ x + 3y)

(122)

Fixed points and solutions.—For the fixed points P¥, P,,
and Py, both the numerator and denominator of Eq. (122)
approach zero. Therefore, we split the analysis into two
different parts. The first part corresponds to the high-energy

regime given by yR"V 1 (P%,P,,,P),), and the
second corresponds to the low-energy regime given by
yR"1) <« 1 (P4, P,;, Pyy) [5]. The fixed points and their
associated solutions are listed in Table XIII.

Stability of fixed points.—The eigenvalues and the stability
corresponding to each fixed point for a Bianchi V model
corresponding to f(R) = R+ yR™ are summarized in
Table XIV.

3. Cosmological dynamics for model f(R) =R +yR?
In this case Eq. (115) will become

ayR 2x
(14+a) 1-%2-Q,+3K—x+3y’

(123)

For this particular form of f(R), the expressions for the
EoS parameter and deceleration parameter reduce to
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TABLE XIII.

Fixed points and their associated solutions for a Bianchi V model corresponding to f(R) = R + yR™.

Points Q,,

EoS parameter

(Weff)

Deceleration
parameter (g)

Average scale
factor (a)

Shear (o)

Spatial

curvature (°K)

Physical behavior

P 0

1_ 2
37 3-3b

1 2
3 + 3—4m

|
Wit
Wl
Sl

~14

m(m—=2)(1-b)
TAm-1?

23 a1

3w

|t

1
2

t

2m ao\t|~%

1 2

2 aoltfs

0 aglt|
8(m—1)2

aoay il

)

-1

ag |t}

ag ‘ t|3m(m72)(lfh)

0

Koay?|t|™*

Decelerated expansion for b < %
Accelerated expansion
for % <b<1
Decelerated contraction for b > 1
Milne evolution for b = 3
Decelerated expansion
form < 0,m > %
Accelerated expansion
forl <m< %
Decelerated contraction
forO<m<1
Milne evolution for m = 3

Decelerated expansion :
Decelerated expansion
forO0<m<3
Accelerated expansion
form>3,m<-3
Decelerated contraction
for -3 <m<0
Milne evolution for m =3
Decelerated expansion
Milne evolution
Accelerated expansion for

m>2.b>1,b<1-2l
Decelerated expansion for

8(m—1)*
3m(m-2)

m>2b>1,b>1-

Accelerated expansion

TABLE XIV. Eigenvalues and stability of the fixed points for a Bianchi V model corresponding to f(R) = R + yR™.

Points Eigenvalues [, 4y, A3, A4, 5] Stability

P [2(1=3b),3(1 = 2b).2(1 = 3b),6(1 — b).6 — 3(m + 2)b] Stable for b > 1,b > 72
Unstable for b < §,b < 2+Lm
Saddle otherwise

Py (4-5),5-2).(6-2).(6-2),(9-2)] Stable for 0 < m < 1
Unstable for m < 0;m > 32
Saddle otherwise

P, [1,2,4,(4 =3mb), (-1 + 3b)] Unstable for m < 5;.b > 1
Saddle otherwise

Py 1,1,4,-(1-2),-1(5-2)] Unstable for 0 < m <2
Saddle otherwise

P, [-1.1,3,3(1 = mb), -3 (1 — 6b)] Saddle

Py [~2,-1,2,—(2 = 3b), (2 = 3mb)] Saddle

P [F2-2)(1=2).2=2).2=2).(5-)] Saddle

P, 3m(m=2)(1-b) 3m(m=2)(1-b) 3m(m=2)(1-b) Stable for m > 2,b > 1

|: mZn(Im—l)2 =2+ erZm—l)z =3+ erZm—l)2 ’
—4 4 Al 3 3”“”"58},’:*{?“‘“} Saddle otherwise
P [-4,-3,-2,-3(1 — b),=3mb] Stable for m < 0,b < 0;

m>00<b<1
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1 1 1-X2-Q, +3K— 3
Weit = 2 3 1-22-Q,—x+3y 2[§Qr+22+K+x_y+(b_l)l—Zz—Qr—l——'_3K+3xx—:—3y
=22 -3K) 23 (1+ (- D) | ' y
_yr 43y
BO-THW0HO- DRI v sak-aey
1-32-Q,+3K+3x+3y 1-22-Q, +3K +3x+3y
3 1-32-Q, +3K - 3 2
(2K [1=2 (14 (p1) e T IR T XTI
2 1-%27-Q, +3K+3x+ 3y
1-Q,+3K—x+3y 1-32-Q, +3K—x+3y
N X T, 13K 3n ) (1 +(b-1) m)} (124)
1-32-Q, +3K—x+3)

2-3 (1 +(b-1) 1—22—9V+3K+3x+3vy)

1 31 1-32-Q,+3K—x+3y
DL A b K tx—y 4 (b1 ’
q 2+2{3 T A KAy =¥ -0, 73K 1313

2 1-32-Q, +3K—x+3y

_4x(1—2 +3K)<1+(b_1)]_22_gr+3[(+3x+3‘y)_222 Lt (b-1) 1-32-Q, + 3K —x+3y
1-%2-Q, +3K+3x+3y 1-%2-Q, +3K+3x+3y
1-Q,+3K—x+3y 1-32-Q +3K—x+3y

N 8 (176, 3K 3x 13y (1 + (- 1>W3K+3x+3)»)} (125)

1-32-Q,+3K—x+3
2-3 (1 +(b-1) I—ZZ—Q,+3K+3x+3yy)

In this case, for the fixed points P? P,,and Py, the EoS and deceleration parameters are undefined. Hence this form of f(R)
does not possess a standard anisotropic, radiation-dominated, and spatially nonflat Universe. However, the fixed points P,,,
P,, and P, exist in this model. The fixed points and their associated solutions are listed in Table XV.

As discussed in the previous two models in this form of f(R) also, the fixed point (P,) corresponding to the
unstable node mimics a dust Universe. Thus it implies that our Universe begins with the EoS of matter (P, ), approaches
the matter-dominated era (P,,), and ultimately accomplishes the stable de Sitter phase (P,). This transition is plotted
in Fig. 3.

4. Cosmological dynamics for model f(R) =R +yR™ - fi/R"

The f(R) of the form f(R) = R + yR™ describing the early Universe shows that it is possible to obtain a nonstandard
high-energy anisotropic phase (P%), radiation-dominated phase (P,,), and spatially nonflat phase (Py,), followed by an
inflationary phase (P,). The f(R) of the form f(R) = R — #/R" describing the late-time Universe shows that a sequence
originating from the anisotropic phase (Psil) approaches the radiation-dominated era (P, ), matter-dominated era (P,,), and
spatially nonflat phase (Py,), and finally reaches the accelerated expanding scenario (P,, P,). Combining the results of
these two forms of f(R), we can study the dynamics of f(R) = R+ yR™ — /R" (y > 0, > 0). We plot the evolution of
dynamical variables %, Q,, K, x, and y, along with the EoS parameter w.g for m = 1.9 and n = 1 in Fig. 10. The figure

TABLE XV. Fixed points and their associated solutions for a Bianchi V model corresponding to f(R) = R + yR>.

EoS Deceleration Average scale
Points Q,, parameter (Wegr) parameter (g) factor (a) Eigenvalues [4;, 5, 43] Stability
p* 0
P, 0 . .. . .
P, 1 0 : altf} [-1,1,3,3(1 =2b),-3(1 —6b)]  Saddle
P, 0 0 : aoltff [2,3,3.4,6] Unstable
P; 0 e .. . . e
P, 0 -1 -1 ao\t|§90’ [-6b,—4,-3,-2,-3(1 + D)] Stable for b > 0

Saddle otherwise
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FIG. 10. Evolutions of the variables Z, Q,, K, x, and y, as well
as the EoS parameter wg, for a Bianchi V model corresponding
to f(R) =R+ yR"™ — f/R" withm = 1.9;n = 1;b = —0.5; and
B, y arbitrary.

shows that the Universe begins with a nonstandard aniso-
tropic phase, then it goes to a nonstandard radiation-
dominated era and spatially nonflat phase, followed by
inflation, a standard anisotropic, standard radiation-
dominated, matter-dominated, and spatially nonflat phase,
and finally attains the accelerated expanding epoch.

VI. CONCLUSION

In this paper we have investigated the Born-Infeld theory
in Palatini f(R) gravity and explored the field equations in
the background of FLRW, Bianchi type I, and Bianchi type
V models. We have adopted a very useful approach known
as the dynamical system approach. We tried to find the
equilibrium points and to study the physical behavior for
the models under consideration. We then extended our
analysis for a number of families of f(R) of the forms
F(R) =R +yR" — p/R", f(R) = R~ p/R", and f(R) =
R+ yR™.

In the case of a FLRW model for f(R) = R — f/R", itis
shown that points describing the accelerated expanding
Universe are found to be stable. In addition, the sequence
of the radiation-dominated, matter-dominated, and
accelerated expanding epochs is also realized. For
f(R) =R+ yR™ - B/R", a sequence is obtained which
shows that the Universe begins with a nonstandard radi-
ation-dominated phase, followed by inflation, and then
followed by a standard radiation-dominated phase and a
matter-dominated phase, and finally attains the accelerated
expanding Universe. We also perform an analysis for
f(R) = R + yR?, which shows that this model does not
possess a standard radiation-dominated phase and also
shows that the Universe begins with the EoS of matter and

ends in a stable de Sitter phase following a matter-
dominated era.

The Bianchi I model is spatially homogeneous as well as
anisotropic; therefore the corresponding model imparts
information about the anisotropy parameter, i.e., shear.
In this background for f(R) = R — 3/ R", we observed that
the anisotropic Universe first approaches the radiation-
dominated and matter-dominated era, respectively, and
eventually attains the accelerated expanding Universe.
The theories of the form f(R) = R + yR™ — 3/R" show
that the Universe begins with a nonstandard anisotropic
phase, then it goes to a nonstandard radiation-dominated
era, followed by inflation, a standard anisotropic, standard
radiation-dominated, as well as matter-dominated phase,
and ultimately ends in the late-time accelerating phase. For
f(R) = R + yR?, it is realized that a standard anisotropic
and radiation-dominated phase is absent. We have also
examined the equations depicting the evolution of shear
and it is realized that anisotropy disappears as time evolves.

A Bianchi type V model is a simple generalization of
a FLRW model comprised of negative curvature. Being
spatially homogeneous and anisotropic, this model not only
provides information about the anisotropy parameter but
also about the spatial curvature. In this geometry for
f(R) = R— B/R", the system initiates from an anisotropic
Universe, followed by a radiation-dominated, matter-domi-
nated, and spatially nonflat isotropic epoch, respectively,
and ultimately reaches the accelerated expanding Universe.
Theories of the type f(R)=R+yR™—pf/R" display a
sequence starting with a nonstandard anisotropic phase,
which then goes to a nonstandard radiation-dominated era
and spatially nonflat phase, followed by inflation, a
standard anisotropic, standard radiation-dominated, matter-
dominated, as well as spatially nonflat phase, and then
enters a phase of accelerated expansion. Corresponding to
the theories of the form f(R) = R + yR?, it is found that a
standard anisotropic, radiation-dominated, and spatially
nonflat phase is not present. Equations characterizing the
evolution of shear as well as spatial curvature have also
been investigated and it is fascinating to witness that the
anisotropy and spatial curvature die out as time evolves, so
that the anisotropic and nonflat Universe proceeds to the
flat and isotropic Universe at late times.

In our analysis we have been able to reproduce the
sequence of a radiation-dominated epoch followed by a
matter-dominated and accelerating expanding epoch for the
isotropic FLRW model as well as for anisotropic Bianchi I
and V models in the case of f(R) =R —f/R". As the
FLRW model is an isotropic model, it does not provide any
information about the anisotropy parameter, i.e., the shear
parameter. Bianchi I and V not only reveal information
about the shear parameter but also show that the anisotropy
vanishes with the evolution of time. In addition to the shear
parameter, the spatial curvature disappears as time evolves
in the case of a Bianchi V model.
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The phase space portrait of the inflationary f(R) theories
containing a Starobinsky model and powers higher than
two in the Ricci scalar were already examined by
Capozziello et al. [74]. They found interesting trajectories
that undergo an inflationary expansion and reach a
Friedmannian asymptotic stable phase. Makarenko et al.
[30] considered a Born-Infeld gravity Lagrangian plus an
f(R) term in a homogeneous and isotropic FLRW back-
ground, and then focused on a particular form of
f(R) o R?. Using such a form of f(R), they studied the
inflationary stage of the early Universe and realized that
inflationary behavior may exist in a radiation-dominated
era. In our analysis, we have considered f(R) =
R+ yR™ — /R", which can be used to study the early-
time as well as late-time accelerating phase of the Universe.
This particular form of f(R) has also been considered for
an isotropic FLRW model considering an action with f(R)
gravity in [5]. They have shown the evolution from a
radiation-dominated epoch to an accelerated expanding
Universe followed by a matter-dominated era, which is
consistent with our investigation. Harko et al. [34] con-
sidered a barotropic cosmological fluid in an Eddington-
inspired Born-Infeld gravity within an anisotropic Bianchi
type I cosmology and studied the mean anisotropy param-
eter in detail. In their analysis, they realized that for the
Universe filled with high-density matter, the isotropization
of the anisotropic Universe depends on the initial con-
ditions of energy density. However, corresponding to the
dust-filled Universe, the anisotropic phase always accom-
plished the isotropic scenario. In our analysis, considering
Bianchi type I and V models in f(R) gravity, we show that
the evolution of the anisotropy parameter decreases with
time, and also we have realized the sequence of an
anisotropic Universe, radiation-dominated epoch, matter-
dominated epoch, and finally the accelerated expanding
epoch. In case of a Bianchi V model, we also performed an
investigation for the spatial curvature and have shown that
the curvature disappears as time evolves. In this model, we
obtain a sequence that originates from the anisotropic stage
and enters the stable phase of accelerated expansion,
followed by a radiation-dominated, matter-dominated,
and spatially nonflat isotropic Universe.

The exact cosmological solutions of the dynamical
system in f(R) gravity within FLRW cosmology were
discussed in [75]. The dynamics of a system was inves-
tigated considering the Noether symmetry approach, which
allows us to procure the conserved quantities that lead to
the reduction of dynamics and thus minimizes the difficulty
when solving a dynamical system. In our analysis, we
consider the dynamical system approach to achieve the
exact cosmological solution of the dynamical system.
Capozziello et al. [76] introduced the Noether symmetry
approach in a Dirac-Born-Infeld Lagrangian considering a
tachyonic potential V(7T'), where T is a a tachyon scalar
field. They also assumed a canonical scalar potential ¢ that
is coupled to the tachyonic potential through an interacting
potential B(T, ¢). In their analysis, it has been shown that
the scale factor (a) shows an exponential solution which is
consistent with the accelerated behavior of the fixed point
(Py) in our analysis.

The authors of [77] studied a specific nonlinear gravity-
scalar system in the Palatini formalism of f(R) gravity,
which leads to a FLRW cosmology different from the
standard metric one. In their work, it was shown that the
Palatini formalism in the case of nonlinear gravity-scalar
systems allows an acceptable realization of the dark energy
dominance. It is also shown that Palatini f(R) gravity
produces the effective quintessence or effective phantom
phase at late times in the same qualitative way as discussed
in the standard metric formalism. They have also estab-
lished that the dynamical mechanism used to resolve the
cosmological constant problem suggested in metric for-
malism also works in Palatini formalism. Thus one can
observe that, even though both formalisms of f(R) gravity
apparently deliver different gravitational physics, the same
cosmological phenomena may qualitatively occur in both
formalisms.
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