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We consider the Horndeski theory in four-dimensional space-time as the most general theory with a
single scalar field and second order field equations. We show that this theory does not admit stable, static,
spherically symmetric, asymptotically flat, Lorentzian wormholes.
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I. INTRODUCTION

Wormholes [1-6] and semiclosed worlds [7-10] are
spatial configurations with a throat which connects either
two flat spaces or a flat space and a closed world,
respectively. They can be traversable in theories violating
the null energy condition (NEC) only [1-3,11-13]. This
condition states that the Einstein tensor G, obeys

Gun'n’ >0, (1)

for any null vector #*. This condition in case of minimal
coupling to gravity writes 7, n'n" > 0, where T, is the
energy-momentum tensor of matter. It is known, however,
that this condition is very hard to violate. In the case of the
scalar field theories whose Lagrangians contain only the
first derivatives over time and spatial coordinates, it
was shown that NEC violation inevitably causes ghost
and/or gradient instabilities [14]. This raises interest in
models containing second derivatives in the Lagrangian
leading, however, to the second order field equations,
as they appear to admit stable NEC-violating solutions
[15-20]. The Horndeski theory (generalized Galileons
plus gravity) is the most general one with such a
property [21]. It was originally introduced in an unnoticed
work by Horndeski in 1974 [21], reintroduced by
D. B. Fairlie, J. Govaerts and A. Morozov in 1992 [22-
24] and became popular quite recently [15,17-19,25-37].

This theory is described by the following action
[15,21,28,38]:

* .
_oa.evseev @physics.msu.ru
‘oi.melichev @physics.msu.ru

2470-0010/2018,/97(12)/124040(7)

124040-1

5
N
S—/d x;[,i
Ly =K(¢.X),
L3=-G;3(¢.X)0g.
L4=G4(¢.X)R+Gax[(O9)’ = (V,V,0)*]
Ls=Gs(¢.X)G, V'V

~ £ Gaxl(C9) =30V, V.7 +2(9,9.9). (2)

where X = -1V, ¢VFp, O =V, Vg, R is the scalar
curvature and G, = R, — % guwR is the Einstein tensor,
metric signature is (—, +, +, +).

It has been shown that both asymptotically flat, static,
spherically symmetric wormholes [39,40] and semiclosed
worlds [41] are unstable for all nonsingular configurations
in L5 theories with minimal coupling to gravity, i.e.,
G4 - M%I/Z, G5 - 0

The purpose of this paper is to extend this result to
wormbholes in the most general Horndeski theory (2). The
proof of the analogous (by interchanging radial coordinate
and time) no-go theorem for bouncing cosmologies within
a subclass of Horndeski theories was given in [42] and
generalized to the case of the interaction of the Galileon
field with an extra scalar field in [43]. Afterwards, this
proof was further extended to the full Horndeski theory in
[44] and the multi-Galileon Horndeski theory in [45].

The paper is organized as follows. We give a brief review
of some of the results obtained by T. Kobayashi, H.
Motohashi and T. Suyama [46,47] in Sec. II, as they are
essential for our argument. We prove the instability in
Sec. III. Finally, we discuss our results in Sec. IV.

II. STABILITY CONDITIONS

We consider static, spherically symmetric, asymptoti-
cally flat Lorentzian wormholes. The general form of
metric describing them is

© 2018 American Physical Society
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FIG. 1. Behavior of ¢(r) for a wormhole.
d 2
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With the convenient gauge choice

a(r) = b(r) 4)
the metric becomes

dr?
a’(r)
In the wormhole case, the functions a(r) and ¢(r) have the
following asymptotic behavior as r — Foo:

ds® = —a(r)di* + + 2(r)(d6? + sin®0de?).

a(r) =1, c(r) = r,

and ¢(r) > 0 is bounded from below reaching its minimum
at r =0, see Fig. 1.

T. Kobayashi, H. Motohashi and T. Suyama in [46,47]
obtained the stability conditions for perturbations about this
background by performing the analysis in terms of spheri-
cal harmonics within the Regge-Wheeler approach [48-50]
described below.

We consider metric perturbations £,
metric is

so the perturbed

9 = 921/ + h/wv (5)

where gg,, denotes the background metric: the interval ds?
from (3) writes ds®> = gﬂ,,dx”dx”.

To provide the analysis in spherical harmonics we need
to understand how different types of perturbations trans-
form under rotations of 2D-sphere. Perturbations #,,
consist of h,, h, and h,. which are scalars under
2D-rotations on sphere, h,, and h,, which transform as
vectors and h,;, transforming as a second-order tensor.
Here and below a and b stand for either 9 or ¢. Scalar field
¢ is a scalar under 2D-rotations.

Any scalar s, vector V, and second-order (symmetric)
tensor T, can be decomposed in the following way:

© l
s(t,r,é,q))—ZZslmterHgo) (6)

=0 m=—

¥ 4
Vo(t.r.0.0) =V, @ (t.1.0.90) + EgV,@:(1.7.0.0).  (7)

|
Tab(t’ r, 67 (,0) = vavblPl (t’ r, 9’ ¢) + 7ablp2([’ r, 9’ (ﬂ)
+

1 vy
5 (Etczvcvb\y3(t’ r, 0, (,0)
E

|4
+ ESV,V W5(1, 7.0, 9)). (8)

where y,,, is the metric of a two-dimensional sphere, éa is
the covariant derivative' in metric Yab» Eqp = v/detyeyp,
€4 18 Levi-Civita symbol with gy, = 1, @y, @,, ¥, '¥,, V3
are scalar functions and Y7*(0, ¢) are spherical harmonics.
The above allows one to rewrite any scalar, vector or
second-order tensor in terms of spherical harmonics by
applying the decomposition (6) to ®;, ®,, ¥, ¥,, ¥;.
From now on we reffer to the variables not containing E ,,
as even-type variables and others as odd-type ones. Notice
that even-type modes get a factor (—1)" under parity
transformation (0, ¢) — (x — 0,7 + @) while odd-type
modes get a factor (—1)"*! stipulating (at / = 0) the names
of modes: they are also called even- and odd-parity modes.

A. Odd-parity sector
The odd-parity part of the perturbations is given by

5¢ =0, htt =0, htr =0, hrr =0, (9)

uMg ng&

!
Z ho.um (1. 7)Eqp@Y1'(0, ), (10)

Z hy (8. 1)Eg0"Y7(0. ). (11)

ah_ E
12

+ EgVCVaY;” (6. go)] . (12)

M

hzlmtr|: VV (H(p)

m=—1

lThough the Christoffel symbols for the metric y,;, and for the

7
angular part of metric g, are the same, the difference between V,,
and V, is significant, e.g., while acting on the angular part of
a 4-vector (which is a vector under 2D-rotations as well):

v

VoV =0,V =TV,

V Vb 8 Vb abV” = aaVb FabV F V F V
=V, V, — TV, ~T",V,.
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Not all of these variables are physical due to the general
covariance: we can use gauge transformation x* — x* 4 &
to set some of them equal to zero. & here is an infinitesimal
function and in odd-parity sector it can be written as

0 [
Eo=D ) A, End" Y1 (0.9),  (13)

1=0 m=-1

where A, (¢, r) are arbitrary functions. The metric pertur-
bation transforms as

h/u/ - h;u/ + vﬂfu + vy&;u (14)

where V,, is the covariant derivative for metric g,,. For odd-
type perturbations we find

hO,lm - hOVlm + Alm(t’ }’), (15)

/

c
Ry g = By + N, (2 7) + 2?Alm(tv r), (16)

hy 1 = ho g + 20, (2, 7). (17)

Here dot and prime denote the derivatives with respect to ¢
and r, respectively. As h,;, transformation does not
contain derivatives, we can fix the gauge completely by
implementing the condition A, ;,, = 0 for / > 2. This gauge
fixing is called Regge-Wheeler gauge [48]. For [ =1 hy,
vanishes identically so we have to implement another gauge
condition. This is described in detail in [46] but is irrelevant
for our discussion as we are interested in obtaining
particular stability conditions, and the high-momentum
sector is sufficient for our purposes.

As we consider each set (I,m) separately and the
corresponding perturbation modes do not mix we can omit
hereafter all the indices [ and m. The additional benefit of
using the Regge-Wheeler gauge is that the field equations
do not depend on m so we can fix m = 0 without loss of
generality [46,48,51]. Then the spherical harmonics
become Legendre polynomials:

Y10, ) = \/ @+ 1) El - m)!'P}”(cos 0)eime

4z (I+m)!
(21+1)
— i P;(cos@). (18)

The action expanded to the second order in the pertur-
bations is

5@ = / dtdrL®, (19)

where we have integrated over angles 6 and ¢. £?) here is

/
LO = a2 + ayl? + a <h§ - h2 = 2y ) +4%h1h0>.

(20)
The coefficients in the Lagrangian (20) are given by
(I+1)[d , (I-1)(142)
= — —_— 21
a 502 {dr (cc’H) + 0 Fl, (21)
I(1+1) ,[(I=1)(1+2)
=— 22
@ 2 ¢ [ Y| (22)
(141
4
where background field equations are applied and
a2
F = 2<G4 + ?¢’X’G5X - XGS(/,>, (24)
g = 2[G4 - 2XG4X + X(aa’c'tb’GSx -+ G5¢)], (25)

/
H =2 [G4 —2XGuyx + X(a2%¢’G5X + G5¢>} . (26)

Following [52] we can rewrite the above Lagrangian as

/ !
LO = |:al -2 (Ccc?) } h + a,h?
: ¢ \2
+ as <h1 - ,’l6 + 2?}10) s (27)

or, introducing new auxiliary field g, as

(cc'as)’
cz l’l% + azh%

mn:[m_z
. o

4 as |:2q <l’l1 - l’l6 + 2—h0) - q2:| . (28)
c

We integrate by parts and put all derivatives on g leaving
hy and h, as auxiliary fields. The variations with respect to
ho and h; yield the algebraic expressions from which A
and £, can be found:

(020361)/ as .

h = —_—— h - —dq. 29
0 ca; —2(cc'as) ! azq (29)

We now substitute these /g and £, into the action and
obtain the Lagrangian in terms of a single variable g:
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I(1+1) .
@ _-__ v 2 _Rr,2 _ 2 _ 2
where
> H? ) 27’(2 )
A—?—g, B—aC—]__, C—CIH, (31)

and V(r) is an effective potential, whose exact form is not essential for our purposes. The C-part of the Lagrangian (30)
represents wave propagation along the angular direction as /(I + 1) corresponds to the two-dimensional Laplacian.
Thus we obtain the following stability conditions from the odd-type sector:

F > 0 to avoid gradient instabilities along the radial direction, (32)
G > 0 to avoid ghost instabilities, (33)
‘H > 0 to avoid gradient instabilities along angular directions. (34)

As we will see in Sec. III the essential ones for our proof are (32) and (34).

B. Even-parity sector

The even-type part of the perturbations is [48]:

oo ] 00 ]
6 = Z Z 8un (1, 7)Y (0, ), azz Z Ho (1. 7)Y (0, 9). (35)
=0 m=-1 =0 m=-I1
oo 1 1 oo ]
ZZHllmtr)Yl (9 90) rr:?Z H21mtrYl Q(p) (36)
=0 m=— =0 m=—
00 i 0 i
:ZZﬂzmameW =ZZa .9), (37)
1= =0 m=—
0 i y 7
= CZZ Z Klm t r yahY[ (9 (P) + Glm(t’ r)vavbY;n(ev 47)] (38)

=0 m=—

We shall note here that the scalar field is also perturbed in the even-parity sector. Like in the odd-parity sector, some of the
perturbations are not physical and can be eliminated by using the gauge transformation x* — x* 4 &. The three gauge
functions are [48]:

) 1 ) 1
=> Z (0. ). Z Z Ry(t.1)YP(0.9). &= ) 0,(t.rd Y1 0.9). (39)
1=0 m=

— =0 m=-1 =0 m=-1

where T,,(t,7), Ry, (¢, r) and ©,,,(¢, r) are arbitrary functions of ¢ and r. Using (14) again we find the corresponding gauge
transformations of perturbations:

2 . !
Hom(t,7) = Hopm(t, 1) +—5 Tp(t, 1) = za_blem<[7 r), (40)
a a
/
Hy g, (tr) = Hygp(t,r) + R(t, r)+ T (t,r)— 2£T(t, r), (41)
a
Hy (2, 7) = Ho (1, 7) 4+ 2b°R), (1, 7) = 2bb'R, (1, 1), (42)
ﬁlm(t’ }") _’ﬁlm(t’ r)+Tlm(tﬂ r>+®lm(t’ I"), (43)
/
A (8, 7) = 0y (2, 7) + Ry (2,7) + O], (2,7) = 2£®lm(t’ r), (44)
c
!
Kin(t.1) = K (1.7) + 267 < Ry, (1.7, (45)
c
2
Glm(t’r) _)Glm(t’r)—'—?@lm(t’r)' (46)
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Hereafter we again omit / and m indices as the correspond-
ing perturbations do not mix with each other. For the
purpose of generality we did not use the gauge (4) in this
equations.

Now we can fix the gauge completely by setting
p(t,r) =0, K(t,r) =0 and G(t,r) =0 and substitute
field and metric perturbations into the action (2) to obtain
the quadratic Lagrangian depending on é¢, Hy, H,, H,
and a.

This approach applies, like in the odd-parity case, for
[ > 2 only: for [ = 1 the metric perturbation /,;, depends on
the combination K — G but not separately on K and G and
thus we have a gauge freedom left which we can use to set
0¢p = 0. For [ =0 a, § and G vanish making &, useless. &,
is fixed by setting K equal to zero and &, can be used to
eliminate either H, or H,. The whole procedure is
described in detail in [47], we here just give a brief review.

H, and H| become auxiliary fields and can be excluded
immediately leaving the Lagrangian depending on d¢), H,
and a and a constraint depending on 6¢, 8¢, 6¢", H,, HY,,
a and o'.

We use a new variable y and perform a field redefinition

2

Hy=—~ "
0 2cc"H + B¢

(izw —Bs¢' — (1 + 1)c’Ha>,
a
(47)

where H is given by Eq. (26) and
C/
B =2c? |:_XG3X + 202;¢/{G4X + 2XGaxx — (XGsy)x }

1
+ G4¢ + 2XG4¢X - ?XGSX

2
e Cc—2 (3XGsy + 2X2Gsyy) |. (48)

This change of variables allow us to exclude both second
derivatives of 8¢ and first derivatives of a from the
constraint and thus make it an algebraic equation for a.
Finally, excluding @ we come up with the Lagrangian for
two variables (y and 6¢), which can be written in the
following form:

L :%/Cijij"iﬂ —%QUU”M’—%Qijvivj’—%/\/lijvivf, (49)
where v!' =y, v>’=6¢ and i, j run from 1 to 2.
Expressions for the matrices’ Gij» Q;; and M,; are very
cumbersome and are not essential for our purposes. KC;; on
the other hand gives us conditions for the absence of the
ghost instabilities which will play a definitive role in the
proof below. The ghost are absent when

2g,- ; should not be confused with G from (25).

ICII > O, det > 0. (50)

We will use the second one in our proof:

- / =2 B
O (Rt v b
(51)
where
! =2/ 44

Pr= (2“27:2;;(#) '% [(zcc/;z a¢’)2}’ G2)

or, considering (32), simply
2P, = F > 0. (53)

III. NO-GO THEOREM FOR
HORNDESKI THEORY

The stability conditions relevant for our purposes are
(32), (34), and (53). We define a variable

_ 2ccHA+E¢

and write (53) in the following form:

/
2P, —]-":—232—}">0
or
o' 1
o< (54)

By integrating this relation from r to ¥ > r we obtain
(ct. [40])

071(r) - 071 (r") < -5[7‘”‘ G3)

Now, let Q! (r) be negative at some r. Then we write (55)
as follows:

0°'(r) > 07\(r) +% / " Far, (56)

and notice that if the integral on the right side of the
inequality (56) diverges as ¥’ — +oo, then Q~!(#') has to
become positive, meaning that Q~!(r*) = 0 at some point
r* and Q is singular at this point.

Conversely, let Q7' (') be positive at some r, then we
write (55) as

124040-5
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0 <0 -y [ Far 67

and see that if the integral diverges as r — —oco then Q' ()
has to become negative, meaning again a singular Q at
some point r* where Q~!(r*) = 0. Considering (26) and
the fact that ¢ is bounded from below we conclude that
either 2 or ¢’ has to be singular, which leads to the singular
Lagrangian.
Assuming general relativity is restored away from the
wormhole throat
2
{ G4 = My /2 at r - too. (58)
G5 -0

Equation (24) then leads to F(r) — M3, as r — oo, so the
integral in Eq. (55) diverges as r' — +oco and r — —oo.
This completes the argument.

IV. DISCUSSION

The argument given in this paper shows that the static
spherically symmetric Lorentzian wormholes cease to exist
in the Horndeski theory. This theorem is quite general
besides the assumption on the divergent behavior of the
integral

/rfdr

both at » - —oco and r — 400 which is natural if we want
to obtain a flat Minkowski spacetime far enough from the
wormhole in both worlds it connects.

To make contact with Ref. [40], we notice that in the
cubic Galileon theory with G, = M3,/2, Gs = 0, we have

Q

Q:—27 f:Ml%p
MP]

where Q is the variable introduced by V. Rubakov in [40].
Thus, the inequality (55) coincides with that used in [40].

In spite of the generality of this no-go theorem, there is a
chance that a stable wormhole solution can be constructed
in beyond Horndeski theory, similarly to the cosmological

bounce which can be stable throughout the whole evolution
[53-56].
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