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The recent interest in modified theories of gravity, involving some type of non-minimal coupling to the
Ricci scalar and the calculation of cosmological observables in the Einstein or the Jordan frame, motivate
the formulation of these theories in terms of quantities that are invariant under frame transformations.
Furthermore, in view of the description of gravity and its geometry motivated by string theory, such a
formulation could be extended to include theories of extra spatial dimensions. In the present article, we
generalize the construction of frame-invariant quantities, concerning a general, D-dimensional scalar-
tensor theory. Then, we limit our scope to the five-dimensional braneworld scenario, where we study thick
brane solutions that are localized on the 3-brane and extend the invariant formulation to the case of multiple

scalar fields nonminimally coupled to gravity.
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I. INTRODUCTION

The extension of General Relativity into a scalar-tensor
theory of gravitation has been a topic of much interest,
dating back to the Brans-Dicke theory [1]. Recent efforts
toward higher-dimensional theories lead to extra scalar
fields coupled nonminimally to gravity. A common feature
of these models is a coupling term f(¢)R between the
scalar field ¢ and the Ricci scalar, while the scalar field is
absent from the matter action. This is known as the Jordan
frame and is beneficial for studying physical properties of
the theory, as for example masses, coupling constants,
decay rates, cross sections, etc. Nevertheless, the equations
governing the gravitational dynamics of the theory are
complicated and difficult to interpret physically. A rescal-
ing of the metric, followed by a reparametrization of the
scalar field, can transform the theory into different con-
formal frames or even into the standard Einstein-Hilbert
form. This is has been dubbed the Einstein frame, where the
matter sector gains a factor—dependent on the nonminimal
coupling—due to the metric rescaling. Common wisdom
on the subject accepts that formulations in different
conformal frames are equivalent at the classical level
[2-23], although that does not guarantee physical equiv-
alence when quantum corrections are considered [24-30].
Adopting the point of view that formulations in different
conformal frames are classically equivalent, it is useful to
define quantities that are invariant under frame transfor-
mations and formulate the scalar-tensor theory in terms of
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them. Such a formulation has been introduced in
Refs. [31,32] and has been employed in the analysis and
predictions of various models [33-38].

In what follows, we start with a general scalar-tensor
action describing a theory of gravitation in arbitrary D
dimensions, nonminimally coupled to a real scalar field,

S— / de\/——g{%A(@R - %B(@)(W)Z - V(d))}

+ Sm [eza(q))g/w ’ l//] .

Each particular model is defined by a set of model functions
{A,B,V, ¢} in a conformal frame. It will be shown that a
conformal transformation accompanied by a scalar field
redefinition preserves the functional form of the above
action through a redefinition of the model functions. Then,
we can define a set of frame-invariant quantities which do
not change under the aforementioned conformal trans-
formation and field redefinition. Nevertheless, these quan-
tities depend on the model, i.e., the model functions in the
particular frame in which the model is defined. Thus, we
proceed to formulate the theory in terms of these invariants
and write the action exclusively in terms of them and the
chosen metric.

For an application of this formalism, we consider theories
of gravity with extra spatial dimensions. Higher-dimensional
models with infinite extra dimensions require the localization
of gravitational degrees of freedom on a four-dimensional
brane [39-47], since gravity permeates throughout the bulk.
Such a brane could be dynamically localized in the higher-
dimensional continuum. Additionally, the Standard Model
particles are confined on the 3-brane. This scheme has been
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dubbed the braneworld scenario. A number of models have
been proposed [48—65], realizing the idea of modeling the
brane with a scalar field configuration, and the gravitational
part of the action is nonminimally coupled to a fundamental
or an auxiliary scalar field, as in the case of f(R) gravity. In
the present article, we examine five-dimensional (5D)
models of scalars coupled nonminimally to gravity, in the
framework of a frame-invariant formulation, and focus on the
study of thick braneworld solutions.

The paper is organized as follows. In Sec. II, we
generalize the frame-invariant formalism to D dimensions
and derive the equations of motion arising from a general
action depending only on these invariant quantities. We
also discuss the frame-invariant formulation of f(R)
theories in their scalar representation. In Sec. III, we
introduce a warped ansatz for the 5D metric in terms of
frame-invariant quantities and proceed to give examples of
thick braneworld solutions. In Sec. IV, we study the
localization of gravity on the brane. In Sec. V, we discuss
the frame-invariant formulation of multiscalar theories.
Finally, in the last section, we state our conclusions.

II. FRAME-INVARIANT FORMALISM

The most general D-dimensional scalar-tensor action has
the form [6]

S = / de\/—_g{lA(CD)R - %B(CD)(VQ)Z - V((I))}

+8,[e% (2.1)

@) g ).
In this section, we shall limit our analysis in the simplest
case of one real scalar field ®, although the multiple scalar
fields case can be analyzed in an analogous manner (see
Sec. V). In this work, we have assumed units where
¢ = 1= MP=2, with M, being the effective Planck mass.
The model functions A, B, V, and o are unspecified
dimensionless functions of the scalar field ®, depending
on each particular model. Here, A is the nonminimal
coupling between the scalar field and the Ricci scalar, B
is the nonminimal kinetic function, V is the scalar potential,
and the matter action is denoted by §,, containing addi-
tional matter fields represented by y and can be taken to be
the action of the Standard Model. Finally, ¢ denotes the
coupling of the scalar field to the matter action S, and is
often called the matter coupling.

Consider now a general Weyl rescaling of the metric'
[6,32]

9w = 627(@)9//”” (22)

"Tn what follows, we have assumed that ¥ is a smooth
function—at least up to order 2—in order to avoid introducing
singularities through a conformal transformation.

accompanied by a redefinition of the scalar field
O = f(D). (2.3)

The resulting form of the action—up to boundary terms—
retains its functional form

5= /dbxr{ A@)R - SB(®)(T 8 - V(@)
+ Sule g, wl, (24)
provided that
A(D) = P27 A(®D), (2.5)
B(®) = P27{(f')? B~ (D -1)(D-2)(7')*A
-2(D -7 A}, (2.6)
V() = ePTV(D), (2.7)
5(®@) = o(®@) +7(®), (2.8)

where the unbarred quantities are meant as functions of @,
while the barred ones are functions of ®. The primes denote
differentiation with respect to the corresponding argument,
ie., 7 = dy/d®, while A’ = dA/d®. Using the transforma-
tions (2.2) and (2.3), we can fix two out of the four
independent model functions. For example, a standard para-
metrization corresponds to B =1, ¢ = 0, while A(®) and
V(@) are independent—known as the Jordan frame in
Boisseau—Esposito-Farése—Polarski parametrization [66,67].
Alternatively, the Jordan frame in Brans-Dicke-Bergmann-
Wagoner parametrization [68,69] is A = ®, B = o(®)/®,
c=0,V(D).

Next, we introduce the following quantities, which
are invariant under a change of frame,’

o(D-2)0(®)

I, = W (2.9)
__ V(@
I, = (A(®))P/ (2.10)
—:I:/de\/}"((I)), (2.11)
where the quantity F is defined as
1B 1(D-1) (A2
f:§Z+§(D—2) <z> . (212)

2Alternatively, one can define Z, as 15‘2, which is also
invariant under the transformations (2.2) and (2.3).
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Note that this quantity rescales as

F=(f)°F. (2.13)

The requirement F > 0 is directly related to the absence of
ghosts.

The first invariant quantity Z; characterizes the type of
nonminimal coupling of the theory. Clearly, if Z, is
constant, the theory is minimally coupled. The second
invariant 7, encompasses the self-interacting dynamics of
the scalar field and represents the invariant potential. The
invariant Z5 can be seen as the volume integral over the
field space of the scalar field” and therefore corresponds to
the invariant distance in that space [35]. If phantom fields
are considered in the theory, one has to recover the minus
sign in (2.11). In what follows, we consider only the
positive branch in (2.11).

Next, we may introduce an invariant metric [32] as

Gy = AYDP g, (2.14)
Note that this metric is not unique in the sense that it can be
multiplied with any combination of the invariant quantities
Z;. For example, another definition of an invariant metric
could be g, = (Z,4)¥P2g,,.

The resulting frame-invariant form of the action is—up
to surface terms—given by [32]

S= /def{ —(VI,) - }+S 27 P g 0.
(2.15)

We are using the shorthand notation (@I )F =
¢V, I;V,Z; and do not include the hats in the covariant
derivatives. It is understood that the covariant derivatives
are acting on the fields with respect to the spacetime
coordinates of the corresponding metric.* Note that the
action is expressed in a way reminiscent of the Einstein
frame. Variation with respect to g,, gives the Einstein
equation

27
(2.16)

w 2(vﬂz3)(vyz3) + gﬂy(®13)2 + .@/41/1-2 =

Similarly, variation with respect to the scalar field invariant
T4 gives the equation of motion

3This can be better understood in the multiscalar formulation
of the theory, where the measurement in (2.11) is promoted to
d®! A d®? A ... A d®", for n scalar fields.

It will become clear by the introduction of another invariant
metric later on that, if we were interested in comparing results
between “frames,” we would have to also specify the spacetime
coordinates.

1, 1 d7,

2d7; 47,47’
(2.17)

1 _ A
\/—__gvﬂ(\/ 99"V, I3) = 0I5 =

where 7 = @””T,(,Z’).

A particular alternative metric is the one for which the
nonminimally coupled scalar does not enter explicitly into
the matter action through the metric. It is defined as

g;w = ezo-g/w (218)
and is related to the invariant metric g, as
2/(D-2
G =775, (2.19)

Thus, it is manifestly invariant. The action in terms of this
metric is

S= / Px\/=F {%IIR—I—I(VL) %Jﬁ(wl)z

—7,7Pg }+5 G- (2.20)

which we refer to as the invariant Jordan frame action. The
resulting equations of motion are

s I 172D -1
Gﬂu_IlTuu_gﬂu[(vz3) _Tm(VI) +I]I4
D-1_,

+2V,7,V,7; - I7°V,I,V,1,
+7,V,V,7;! —IlgWDI] , (2.21)
1 = - -
75 —T(Vfl) (VI3) + (VZ3)?
1
dZ, ( 3 D-1 1 D-1-
i S T.)?
+d13{41§1)—2( 2 2°D-2
1 = 1 . Z,dZ
— (VI;)? - — St 2.22
+211( 3) 47, } 2 dZ;’ (2:22)
where Z, = Iz/I?/(D_Z).

Closing this section, we also consider the case of f(R)
gravity for which there is also a scalar representation in
terms of a scalar field nonminimally coupled to the Ricci
scalar (for some reviews, see Refs. [70-74]). The general
D-dimensional action of f(R) gravity is

S= [ @x/Taf R + Sple gl (223

The corresponding scalar representation is [for f”(R) # 0]
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5= / P/ F OR =V} +S,[eg, 0], (224)
where

V() =xF'(x) = Fx)

and y is an auxiliary scalar field, satisfying the on-shell
condition y = R. This action is a particular case of (2.1) for
which, in this frame, we have the relations

A(x) =2F'(x). B(x)=0 and V(y)=xF'(x)—F(x).
(2.26)

(2.25)

Introducing the invariants in the same way as in the case of
a fundamental scalar field, we may ultimately express the
action in terms of them. Nevertheless, now, there is an extra
relation between the invariants Z; and Z5. We will revisit
this in the multifield case in Sec. V.

ITI. THICK BRANES

In this section, we shall briefly review the paradigm of
thick branes’ before proceeding to their frame-invariant
formulation.

Consider a D =5 theory based on (2.1) with B =1,
while ignoring §,, and setting ¢ = 0. The equations of
motion are

1
A (RMN - EQMNR> - VyuVyA+gyyA

1

1
Oo -V + ERA/ =0. (3.2)
We introduce a warped ansatz for the metric in terms of a
warp function Z as

; :<€2Z(y)7hw 0)
MN 0 L)

(3.3)
where we have denoted with y and v the standard four-
dimensional spacetime indices, while y stands for the fifth
spatial coordinate, and M and N refer to the five-
dimensional coordinate indices. For the four-dimensional
Minkowski metric, we adopt the sign convention
N, € R'3. Note that the extra dimension is assumed to

°In the context of braneworld scenarios, domain walls are
categorized as thin or thick with respect to the surface where
matter is localized. For example, it has been well studied [42—44]
that thin branes are described by a § function potential corre-
sponding to an ideal surface with matter fields on it.

be flat and infinite as well as respecting no a priori
symmetry. We have explicitly assumed that the warp
function depends only on the fifth coordinate and is a
smooth function of it. For a scalar field ®(y) depending
only on the fifth coordinate, the equations of motion take
the form

(@) = -A-3AZ+Z A, (3.4)

W =—A-3AZ+42)?2) -1ZA, (3.5
where the dots refer to differentiation with respect to the
fifth coordinate. Next, we may choose a quadratic form for
the nonminimal coupling function

A@) =1-2@2,

. (3.6)

with a > 0 and dimensionless. Inserting a particular kink
configuration for the scalar field
®(y) = vtanh(by) (3.7)
and considering the above system of (3.4) and (3.5) as
equations determining the warp function and the supporting

potential in terms of this configuration, we obtain a solution
for the warp function®

2
Z = —Aln(cosh(by)) = %ln (1 - :I))—2>, (3.8)

for the parameter values

A=2a"! -6, v =32/(1 —a), (3.9)
valid for 0 < @ < 1/3. This stems from the constraint that
the warp function e*4 has to vanish at distances far away
from the brane, y — o0, leading to the condition that
A > 0. The corresponding supporting scalar potential,
expressed in terms of the field @ turns out to be a quartic
positive definite potential. An analogous solution can be
obtained also for the same configuration (3.7) even for

A =1, namely [46]

v? v?
Z= —3ln(cosh(by)) - %tanhz(by)

v? ®? 1
=—In(l-— |-
8 n( 02) 36

Solutions of the form of (3.8) and (3.10) exhibit a Z,
symmetry with respect to the y coordinate, leading to an
asymptotic AdSs/Z, bulk geometry. It has been well

(3.10)

®Without loss of generality, we have assumed the following
initial conditions: Z(0) = 0 = Z(0).
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documented that the above warp functions and the asso-
ciated geometry lead to graviton localization [46,57].

In order to investigate a frame-invariant generalization of
the above configurations, we may start from the action
(2.20), which, for D = 5 in terms of the metric Gy, takes
the form

S = /de\/_{—R—— (VZ5)?

2 v - ~
-=I73(VI)?* -1, 5/322} +SulGuw-x]. (3.11)

3

Next, we consider the metric ansatz

2Z 0
Jun = 12/3(6 i >, (3-12)

0 1

where again the warp factor is assumed to depend on the
fifth coordinate denoted by y. Similarly, the scalar field is
only a function of the fifth coordinate as well. Therefore, all
the invariant quantities depend only on the fifth coordinate.
In terms of this ansatz, the components of the Einstein
tensor are

. Ty, 2T 2T,
Gy =1 0> {3Z+622+ +321—<1> }

7, 7, 3\Z,
(3.13)
Gos = 627 42 L 2+4ZI— (3.14)
3 3\7, 7, '
The resulting equations of motion are
3Z4+2(15)* =0, (3.15)
324+122*+1,=0. (3.16)

In what follows, we assume again that the scalar field
represented by the invariant 75 will correspond to a given
configuration. Then, the warp factor Z will be determined
by (3.15), while the potential that can sustain this configu-
ration will be given by (3.16). We may look for a solution
where 7 3 is a function of 73, expandable in powers of Z3.
We assume the simplest choice

1y =Cy+ C T3 (3.17)
Then, we have
2. dz 2
Z=-7t= 2 =27, =-2(Cy+ C,7%), (3.18
343 iz, 373 3( o+ CiI3), ( )

or, by taking Z(0) = 0 = Z(0),

Z= —2—21 (1 2(1)22> —ézg‘. (3.19)
For C,/Cy = —1, we have
2% = (1 =T3)*9e™%, (3.20)
Introducing a kink configuration,’
75 = tanh(by), (3.21)
we obtain the localized warp factor
¢2Z = (cosh(by))8/%¢stanh’(by) (3.22)

This has the localized form of the known Einstein-frame
kink solution [46].

The invariant Z, corresponding to the scalar potential in
the case of the above example is easily determined from

(3.16) to be
C112 -3 1+# ’
Co 2777 1+872) |
L3

(3.23)

I, = 2C3<1

The solution (3.22), obtained in terms of the frame-
invariant quantities Z3, Z;, and gy, stands also as a
solution for the particular case of a theory based on the
action

5= / dsx\/—_g{%A(CD)R —%(ch)z - V((/))}. (3.24)

For this theory, the invariant Z5 in terms of A is

7o fao(MATAN) "

e (3.25)

For an example, we may take

L+5(5-1)e?
1—20?
(3.26)

_ 1 _%a2 _ L
A@)=1-%0 :13_ﬂ/dd>

The integration is elementary and can be easily inverted for
the conformal choice a = 3/8. Proceeding for this case, we
obtain

"An alternative configuration is 73 = cosh™ Y(by), leading to
i Iz/ %=1 with an analogous localized behavior.
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2 (1+%0
Ty=y/=In|—4—
3 \1-Yo

= ®= % (:\\Zﬁ) = %tanh <\/§I3). (3.27)

Note that the configuration of @ corresponding to our
choice above of Z; = tanh(by) is

O = %tanh (\/gtanh(by)>

and has a similar kinklike profile as Z5. Therefore, it is
evident that the above formulation in terms of the invariant
75 covers a broad class of possible configurations. Using
the expression of @ as a function of the invariant 75, one
can derive a relation between the 7| and 75 invariants, i.e.,

T, = cosh? <\/§I3>. (3.29)
(3.28)
In the general case (@ < 3/8), the integral gives
|
T, = /1-8a/3 arcsin( % <1 ——) (D) _ ij{ln(%)
~ m(l — (1 -8a/3)\/a/2® + \/8a/3\/1 - (1 - sa/s)ac1>2/2> } (3.30)
1+ (1 =8a/3)\/a/2® + \/8a/3\/1 - (1 - 8a/3)a®?/2) | '

Note that for a kinklike configuration like @ ~ tanhy or
® ~ cosh™! y the invariant Z; moves between zero and a
finite value. Near @ ~ 0, we have 75 ~ 0.

IV. GRAVITON LOCALIZATION

The above warped geometries are known to be supported
by graviton localization around y = 0. In order to examine
a frame-invariant formulation of this, we may consider
fluctuations in the four-dimensional (4D) Minkowski
metric according to our ansatz (3.12)

ds? = I%Bezz(nw + hy, )dx*dx” —|—I%/3dy2. (4.1)
The fluctuations can be thought of as dg,n = hyn, Where
hyn is a symmetric matrix of order 5 (D in general).
Clearly, &),y has ten (2D) gauge degrees of freedom due to
the fact that General Relativity is invariant under spacetime
diffeomorphisms. Therefore, after a complete gauge fixing
(hsyy =0, hjy =0=0h,), we end up with five [or
D(D - 3)/2] physical degrees of freedom for the massless
five-dimensional graviton. Assuming that the scalar
field ® has vanishing fluctuations, 6® = 0, the resulting
equations of motion in the transverse-traceless gauge
(hy =0 = 0"h,,) are

(e7228% + 02 +420,)h,, = 0, (4.2)
where 9? refers to the 4D coordinates. Replacing y by the
coordinate w = f dye™2, we can rewrite (4.2) as

(0> + 92 + 32'0,,)h,,(x,w) = 0, (4.3)

where the prime denotes differentiation with respect to w. A
solution can be obtained in the form of a plane-wave
decomposition &, (x, w) = e=3%/%¢,, ey (w) with k* =
m? and y(w) satisfying the Schrodinger-like equation

(- 0 o) =), (44
where
U(w) E%Z”—F%Z’Z. (4.5)
Note that (4.4) can be factorized as
{%+%Z’}{—%+%Z’}w(w) =m?y(w). (4.6)

This form excludes tachyonic modes and singles out a
normalizable zero mode,

wo(w) = Ne32/2, (4.7)
For these types of theories, the case of the localization of

matter fields on the brane has been studied [45,46,75-95].
Therefore, we expect a similar result in our case.

V. MULTIFIELD CASE

The case of multiple scalar fields can be treated in a
manner similar to that of a single field [34]. This will prove
useful when one considers the case of f(R) gravity coupled
minimally to a scalar field ¢p. Expressing f(R) in the scalar
representation, another auxiliary scalar field is introduced

124036-6
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in the action. When one formulates the theory in the
Einstein frame, the two scalar fields mix nontrivially,
and the multifield approach treats this case in general,
allowing for different types of couplings with gravity and
more scalar fields. Let us consider the general action

S— / de\/—_g{%A@)R—%Bab(dJ)(VCD“VdDb)—V(d))}

+Sm [eQGguw)(]’ (51)
where ®“ stands for N scalar fields (¢ = 1,2,...,N). In
general, the model functions depend on any and all of the
scalar fields ®“, henceforth referred to as @ to alleviate
the notation. Note that B, is a symmetric matrix and the
Einstein summation convention extends to the scalar field
indices a and b, as well. Now, the general field redefinition
accompanying a conformal transformation is ®¢ = f*(®).
The model functions transform as

A(D) = P27 A(D), (5.2)

Bab(é) = e<D_2>7[_,CaJ_CﬁyBcd - (D - 1)(D - 2)7,u7,b-’4

- Z(D - 1)7(.(1]_63,)“40]7 (53)
V() = eP7V, (5.4)
5(®) = o(®@) +7(®). (5.5)

where (Z), = 9(Z)/0®“ and 2}7(.af_cb) = }7.af_cb + 75 f%
The frame invariants Z; and Z, have the same functional
form as in the single field case, i.e.,

(D=2)o

=@y 7

V(D)
(A(®))P/(P=2)"

(5.6)

while an invariant 75 can be defined in terms of the frame-
covariant quantity

_ 1By 1(D-1)A,A,
Fa =374 D=2 A (5.7)
as
= / \/ Fpd®eddb. (5.8)

The quantity F, transforms as F,, = ]_‘f;lj_‘f‘bf q under the
field redefinition.

Next, we specialize in the D =5 case. The action in
terms of the above quantities and the metric

Jun = ezagMN (5-9)

reads
1 . - .
S = / dxy /=54 — R - 2L (Vopavor) - 7751,
27, 7,
+ SnlGun. X): (5.10)
where
2
wabEfab—g(lnzl),a(lnzl),b- (5.11)

If we introduce now the metric ansatz (3.12) and assume
dependence of the scalar fields only on the fifth coordinate,
the Einstein equations resulting from a variation with
respect to gy are (ignoring the matter action S,, and
setting ¢ = 0)

3Z+2(I0) =0, (5.12)

32 4122% +27, =0, (5.13)

having the same form as in the case (3.15) and (3.16) in
terms of the multifield invariant Ig") defined in (5.8).

VI. CONCLUSIONS

In the present article, we considered a D-dimensional
theory of gravity coupled to scalar fields through a general
action (2.1) and studied its formulation in terms of
quantities that are invariant under general Weyl trans-
formations of the metric accompanied by scalar field
redefinitions. As a result, only these invariants appeared
in the action apart from the metric and the Ricci scalar. We
proceeded with the derivation of the equations of motion,
expressed exclusively in terms of invariants and the choice
of metric, g, in the case (2.16) and (2.17) or g, in the case
(2.21) and (2.22), in order to study different theories at the
level of the equations of motion, instead of the action level.
Then, we applied this formalism to the case of D =5
models with an infinite extra dimension and a warped
metric of the Randall-Sundrum type, where a thick brane is
formed dynamically from the scalar field configuration
and its self-interacting potential. We introduced a metric
ansatz expressed in terms of frame-invariant quantities and
proceeded to find solutions of the equations of motion with
the condition that the quantities living in the bulk are
localized and well defined on the brane. Lastly, we
examined the case of multiple scalar fields coupled to
gravity encompassing the case of f(R) gravity coupled to
extra scalar fields.

As was demonstrated, the frame-invariant formalism has
proven to be effective in describing the dynamics of modified
gravity theories at the level of the equations of motion.
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Instead of expressing the action of a theory in each frame and
carry out the calculations, we can easily analyze it at the level
of the equations of motion. The parametrization dependence
is shifted to the model dependence of the invariant quantities
Z;. This allows us to effortlessly calculate quantities that are

dependent on these invariants and make predictions with
respect to physical observables in each frame. Moreover, the
proposed formalism can be used to readily test and constrain
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