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It is well known that global topological defects induce a repulsive gravitational potential for test
particles. “What is the gravitational potential induced by black holes with a cosmological constant
(Schwarzschild-de Sitter (S-dS) metric) on finite thickness global topological defects?” This is the main
question addressed in the present analysis. We also discuss the validity of Derrick’s theorem when scalar
field configurations are embedded in nontrivial gravitational backgrounds. In the context of the above
stated question, we consider three global defect configurations: a finite thickness spherical domain wall
with a central S-dS black hole, a global string loop with a S-dS black hole in the center and a global
monopole near a S-dS black hole. Using an analytical model, numerical simulations of the evolving
spherical wall and energetic arguments we show that the spherical wall experiences a repelling gravitational
potential due to the mass of the central black hole. This potential is further amplified by the presence of a
cosmological constant. For initial domain wall radius larger than a critical value, the repulsive potential
dominates over the wall tension and the wall expands towards the cosmological horizon of the S-dS metric
where it develops ghost instabilities (the kinetic term changes sign). For smaller initial radius, tension
dominates and the wall contracts towards the black hole horizon where it also develops ghost instabilities.
We also show, using the same analytical model and energetic arguments that a global monopole is
gravitationally attracted by a black hole while a cosmological constant induces a repulsive gravitational
potential as in the case of test particles. Finally we show that a global string loop with finite thickness
experiences gravitational repulsion due to the cosmological constant which dominates over its tension for a
radius larger than a critical radius leading to an expanding rather than contracting loop.
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I. INTRODUCTION

It is well known that a nontrivial background metric has a
significant effect of the dynamical equations determining
the evolution of scalar fields. For example a nontrivial
spherically symmetric background metric of the form

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2ðdθ2 þ sin2θdϕ2Þ ð1:1Þ

leads to a modified Klein-Gordon equation of the form

�
−

r2

fðrÞ
∂2

∂t2þ
∂
∂r

�
r2fðrÞ ∂∂r

�
−L2−m2r2

�
Φ¼ 0; ð1:2Þ

where L is the angular momentum operator in spherical
coordinates. Equation (1.2), its generalization for axisym-
metric backgrounds and the corresponding Dirac equation
have been well studied [1–13], exact solutions have been
found using separation of variables and physical implica-
tions have been investigated (normal modes, Hawking
radiation etc).

In the presence of a nonlinear scalar field potential VðΦÞ
the corresponding generalized scalar field dynamical equa-
tions have been studied at a smaller extend and mainly in
the context of the existence of stable static solutions. In a
flat 3þ 1 dimensional background such solutions are not
allowed by Derrick’s theorem [14] which states that in
3þ 1 dimensions, any finite energy initially static scalar
field configuration with canonical scalar kinetic terms and
non-negative potential energy is unstable and energetically
favored to shrink and collapse. In a curved background this
instability and lack of static solutions has been shown to
persist in specific cases (e.g., charged rotating black hole
[15,16]) but no general statement has been made for
arbitrary gravitational background. In the present analysis
we demonstrate (among other results) that a proper choice
of fðrÞ in the background metric can lead to static and
perhaps to metastable solutions thus evading the conclusion
of Derrick’s theorem.
It has been shown that it is possible to evade Derrick’s

theorem [14,17] even in flat space and construct static
topologically stable (or nontopological metastable
[18–24]) scalar field solutions. Such approaches include*leandros@uoi.gr
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the introduction of gauge fields [25–30], the consideration of
stationary rather than static solutions [23,31–34] and the
violation of the finite energy assumption made [33,35–37]
with the possible introduction of non-standard kinetic terms
[38] in 3þ 1 or in higher dimensions [39,40]. A scalar field
configuration with diverging energy in 3þ 1 dimensions
would require a large scale cutoff which is naturally present
in many physical systems. For example in a cosmological
setup the role of the cutoff can be played by the horizonwhile
in a condensed matter system the cutoff scale would be the
size of the system. Global topological defects [41–45] in
three spatial dimensions constitute such stable scalar field
configurations with diverging energy and have observable
effects in both condensed matter systems [46–50] and in
cosmology [43,51–67]. They include global monopoles
[68–72] (spherical field configurations) global strings
[73–75] (axial field configurations) and domain walls
[53,56,76–78] (planar configurations).
Global defects constitute regions of physical space that

may form during phase transitions in the Early Universe
where vacuum energy of an early symmetric phase gets
trapped for topological reasons. Unlike their gauged
counterparts [44], global defects cannot be approximated
as being infinitely thin since the scalar field approaches its
vacuum expectation value as a power law rather than
exponentially. Thus they generically have a core of finite
thickness of the order of the symmetry breaking scale that
gave rise to the defects. This core may in general have
nontrivial field structure with interesting effects in cosmol-
ogy and condensed matter systems [79,80].
The evolution of topological defects and especially

strings in curved backgrounds has been investigated
[81–92] under the thin defect approximation where the
defects are assumed to have zero thickness and thus
propagate via simplified forms of the action. For example
the action that describes the evolution of a zero thickness
string is the Nambu-Goto action which is proportional to the
area of the world-sheet of the string. This is a good
approximation for gauged defects but it is not applicable
for global defects where the finite thickness and the field
structure can not usually be ignored. The evolution of global
defects in nontrivial gravitational backgrounds requires the
solution of the full dynamical field equations derived by
variation of the scalar field action with the appropriate
background metric. Such analyses and numerical simula-
tions have been performed in the context of homogeneous
expanding Friedmann-Robertson-Walker background met-
rics for global defects [93–96] and gauged strings [97–103]
but not (to our knowledge) in inhomogeneous, spherically
symmetric or axisymmetric black hole metrics.
Thus, an interesting question that needs to be addressed

is the following: Is there an attractive interaction between
black holes and global defects? How does the answer
change if a cosmological constant is also present?
Previous studies investigating the global defect metric,

have indicated that due to their vacuum energy, global
topological defects induce a repulsive gravitational poten-
tial on test particles [53,69,73,104] in addition to a deficit
angle. Based on this fact, a repulsive gravitational inter-
action between black holes and global defects could
have been anticipated. On the other hand the equivalence
principle [105] could imply that global defects would be
attracted towards black holes. These apparently conflicting
arguments motivate the more detailed study of the inter-
action of global defects with black holes and their evolution
in black hole spacetimes. Such a study is performed in
this paper. We focus on particular global defect configu-
rations with symmetric geometries. We use both an
analytical model based on energetic arguments and numeri-
cal simulations of scalar field evolution which confirm the
qualitative conclusions of the analytical model analysis.
In particular, we consider the following global defect

configurations:
(i) A spherical domain wall with a Schwarzschild-de

Sitter (S-dS) black hole at its center. We investigate
analytically (using an approximate analytical model)
and numerically (simulation) the evolution of the
domain wall. Thus, we test both approaches by
verifying the agreement of their results. We focus on
identifying the gravitational interaction potential
which is superposed with the spherical wall tension.

(ii) A global monopole at a given distance from a
S-dS black hole. Using the above analytical model
we investigate the gravitational potential that de-
scribes the evolution of the monopole in the S-dS
background.

(iii) A circular global string loop with a S-dS black hole
at its center. We use the same analytical model tested
in the case of the spherical wall to derive the
gravitational potential that describes the evolution
of the loop in the S-dS spacetime.

In all the above cases we ignore the gravitational back-
reaction of the global defect on the S-dS spacetime.
The structure of this paper is the following: in Sec. II we

review the field dynamical equation describing the evolu-
tion of scalar fields in a nontrivial background metric as
well as the energy of such field configuration. We also
generalize the derivation of Derrick’s theorem in a non-
trivial gravitational background and demonstrate the pos-
sibility of evading this theorem in a gravitational
background with specific properties. The case of scalar
fields in a S-dS background metric is discussed in some
detail. In Sec. III we consider a spherical domain wall with
degenerate vacua in and out of the sphere. A gravitational
background metric corresponding to a S-dS black hole
in the center of the sphere is assumed. The dynamical
evolution of the spherical wall is analysed starting from an
initially static configuration using an analytical model and
numerical simulations of the field evolution. In Sec. IV we
implement the analytical model introduced and tested in
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Sec. III to derive the gravitational interaction potential
between a central S-dS black hole and a circular string loop
or with a global monopole situated beyond the black hole
horizon. Finally is Sec. V we conclude summarize our basic
results and discuss implications as well as prospects for
extensions of this project. Throughout this analysis we set
G ¼ c ¼ 1. We also rescale spacetime and mass scales to
dimensionless form by using the scale of symmetry break-
ing η of the global topological defects.

II. SCALAR FIELD EVOLUTION IN
A NONTRIVIAL BACKGROUND METRIC AND
IMPLICATIONS FOR DERRICK’S THEOREM

The action describing the evolution of a canonical scalar
field in a background metric gμν is of the form

S ¼
Z �

gμν
∂Φ
∂xμ

∂Φ
∂xν − VðΦÞ

� ffiffiffiffiffiffi
−g

p
d4x ð2:1Þ

where g is the metric tensor determinant. Its variation leads
to the dynamical field equation

1ffiffiffiffiffiffi−gp ∂
∂xμ g

μν ffiffiffiffiffiffi
−g

p ∂Φ
∂xν ¼ −

1

2
V 0ðΦÞ ð2:2Þ

where the ’ denotes derivative. Using the isotropic metric
(1.1), the dynamical Eq. (2.2) takes the form

1

fðrÞ
∂2

∂t2 −
1

r2
∂
∂r

�
r2fðrÞ ∂Φ∂r

�
¼ −

1

2
V 0ðΦÞ ð2:3Þ

where we have assumed a spherically symmetric field
configuration. The energy of such a static field configura-
tion is

E¼
Z

d3x
ffiffiffiffiffiffi
−g

p
T0
0¼ 4π

Z
r2

r1

�
r2fðrÞ

�
dΦ
dr

�
2

þVðΦÞr2
�
dr

ð2:4Þ

where fðrÞ ≥ 0 and r1 and r2 correspond to the radial
coordinates of the horizons (fðriÞ ¼ 0, i ¼ 1, 2) of the
metric (1.1) and for a flat space they take the values r1 ¼ 0
and r2 ¼ þ∞. For a S-dS metric

fðrÞ ¼ 1 −
2m
r

−
Λ
3
r2 ð2:5Þ

and r1 corresponds to the black hole horizon while r2
corresponds to the cosmological horizon and fðrÞ > 0
between the horizons. The regions beyond the horizons
(r > r2 or r < r1) are causally disconnected and corre-
spond to ghost instabilities due to the change of sign of the
kinetic term. Thus the integration is performed within the
causally connected region between the horizons.

According to arguments based on Derrick’s theorem, in
flat space (fðrÞ ¼ 1), Eq. (2.3) does not have a finite energy
static solution for VðΦÞ ≥ 0. An intersting question to
address is “Is there a physically interesting form of fðrÞ for
which Derrick’s theorem is evaded and thus there may be
static solutions to the dynamical field equation (2.3)?”
In order to address this question we may consider an

initially static field configurationΦðrÞ and its rescaled form
Φα ≡ΦðαrÞ. We now search for an extremum and pref-
erably a minimum of the energy functional (2.4) with
respect to the scaling parameter α. Let Eα be the energy of
the rescaled field configuration

Eα ¼ 4π

Z
r2

r1

�
r2fðrÞ

�
dΦα

dr

�
2

þ VðΦαÞr2
�
dr ð2:6Þ

Using a change of variable r0 ≡ αr and the facts
fðr1Þ ¼ fðr2Þ ¼ 0, VðΦðr1ÞÞ ¼ VðΦðr2ÞÞ ¼ 0 it is
straightforward to show that for the existence of a static
solution a necessary condition is

1

4π

dE
dα

����
α¼1

¼ I1 þ I2 þ I3 ¼ 0 ð2:7Þ

where

I1 ¼ −
Z

r2

r1

r03f0ðrÞ
�
dΦ
dr

�
2

dr ð2:8Þ

I2 ¼ −
Z

r2

r1

r2fðrÞ
�
dΦ
dr

�
2

dr ð2:9Þ

I3 ¼ −
Z

r2

r1

r2VðΦÞdr ð2:10Þ

Since I3 < 0 and I2 < 0 we need I1 > 0 in order to
satisfy Eq. (2.7) and have a static solution. Thus, we need
f0ðrÞ < 0 at least for some range between the horizons.
This condition can not be satisfied in a flat space (fðrÞ ¼ 1)
and this is consistent with Derrick’s theorem. It is also not
satisfied in a Schwarzschild metric (fðrÞ ¼ 1 − 2m

r ) where
fðrÞ is a monotonically increasing function (Fig. 1). Thus
Derrick’s theorem is also applicable for this metric (no
static solution exists). A similar argument [15,16] exists for
charged Reissner-Nordström black holes where

fðrÞ ¼ fðrÞ ¼ 1 −
2m
r

þ e2

r2
ð2:11Þ

In this case r1 ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ e2

p
and r2 ¼ þ∞ and as in

the Schwarzschild metric fðrÞ is monotonically increasing
in the integration range, leading to I1 < 0 and no static
solution exists.
As shown in Fig. 1, a metric for which fðrÞ is not

monotonic is the S-dS metric [Eq. (2.5)]. For this metric
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fðrÞ has a maximum fðrmaxÞ in the range ½r1; r2� and
is a decreasing function for r ∈ ½rmax; r2�. In this range
f0ðrÞ < 0 and thus it is possible to have I1 > 0 (static
solution). Thus, Derrick’s theorem is not applicable for this
metric and a static solution is allowed to exist. However
such a solution is unstable for the spherical domain wall in
S-dS background configuration as discussed in the next
section.
In general the stability of the static solution depends on

the sign of the second derivative of the energy. The
necessary condition for stability is

d2E
dα2

����
α¼1

> 0 ð2:12Þ

The left-hand side of this inequality depends on both the
f0ðrÞ and f00ðrÞ and thus we anticipate that for proper
choice of fðrÞ it may be satisfied leading to metastable
static scalar field configuration. We thus conclude that
Derrick’s theorem can be evaded in properly chosen non-
trivial gravitational backgrounds.

III. SPHERICAL DOMAIN WALL IN A
SCHWARZSCHILD-DE SITTER BACKGROUND

We now focus on the particular class of scalar field
potentials that correspond to spontaneous symmetry break-
ing and give rise to global topological defects. The simplest
topological defect, the domain wall, may form in theories
where the potential VðΦÞ has a discrete set of degenerate
minima. Such is the double well potential leading to a
spontaneous breaking of Z2 symmetry. It is of the form

VðΦÞ ¼ 1

2
ðΦ2 − η2Þ2 ð3:1Þ

where η is the scale of symmetry breaking. A spherical
domain wall is a field configuration that interpolates

between the two degenerate minima �η of the potential
(3.1) as the surface of the wall sphere in physical space is
crossed. An example of such a spherically symmetric field
configuration is

ΦðrÞ ¼ η tanh ½ηðr − r0Þ� ð3:2Þ

The basic features of the evolution of this configuration
describing a spherical domain wall may be obtained
analytically via a simple analytical model based on an
approximate form of the energy functional. They may also
be obtained numerically by either explicit minimization of
the full energy functional or by numerical simulation of the
wall evolution by solving the dynamical equation (2.3) with
the initial condition (3.2).

A. Analytical model

The only scale of the model in a flat background space is
the scale of symmetry breaking η which also describes both
the width Δr of the domain wall as

Δr ≃ η−1 ð3:3Þ

and the scale of variation of the scalar field

ΔΦ ¼ 2η ð3:4Þ

from one vacuum to the other. The geometry of the
spherical domain wall described by the ansatz (3.2) is
shown in Fig. 1.
In what follows we rescale spacetime coordinates and

energy/mass scales by the scale of symmetry breaking η.
We thus set η ¼ 1 and use the rescaled dimensionless
quantities.
The evolution of the spherical domain wall (3.2) is

described by the action (2.1) and the corresponding
dynamical equation (2.3). The energy of the spherical
wall, assumed initially static is given by Eq. (2.4).
Assuming a small but finite thickness of the domain wall
(Fig. 2) and a S-dS background metric we may approximate
its energy as

E
4π

≃
�
r20 − 2mr0 −

Λ
3
r40

��
ΔΦ
Δr

�
2

Δrþ Vð0Þr20Δr ð3:5Þ

Using Eqs. (3.3) and (3.4) in (3.5) with η → 1 we find

E
4π

≃
9

2
r20 − 8mr0 −

4

3
Λr40: ð3:6Þ

This approximate expression for the domain wall energy as
a function of its radius r0 is shown in Fig. 3.
For small values of r0 the repulsive term proportional to

the black hole mass m dominates leading to a decreasing
energy. For intermediate values of r0 the tension ∼r20

m= 2, = 0.02

m= 2, = 0.0

m= 0, = 0.05

r1 r2

0 2 4 6 8 10

–20

–10

0

10

20

r

r2
f(

r )

FIG. 1. The function r2fðrÞ for a S-dS background metric is a
decreasing function for a range of r between the two horizons.
Similarly for the de Sitter metric (m ¼ 0). In contrast for the
Schwarzschild fðrÞ is monotonically increasing.
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dominates leading to an increasing energy while for large
wall radius the repulsive term due to the cosmological Λ
dominates and the energy becomes again a decreasing
function of r0. For m ¼ 0 the energy is maximized for

r0crit ¼
ffiffiffiffiffiffiffiffiffi
27

16Λ

r
: ð3:7Þ

For r0 > r0crit the wall is expected to expand due to the
repulsive potentials of the cosmological constant and the
black hole mass while for r0 < r0crit contraction is expected
due to the tension. The existence of an unstable static
solution is also anticipated for r0 ¼ r0crit. Clearly, the
approximate expression for the energy (3.6) can only by

trusted in regions between the horizons where the coef-
ficient of the gradient term remains positive.
The attractive/repulsive nature of each term is also seen

via the total force applied on the domain wall due to the
tension, the black hole mass and cosmological constant.
This force is obtained as

F≡ −
∂E
∂r0 ¼ −9r0 þ 8mþ 16

3
Λr30: ð3:8Þ

The above described predicted evolution of the spherical
wall obtained using this simple analytical model is verified
by numerical simulation of its evolution in the next
subsection.

B. Numerical derivation of domain wall evolution

The repulsive potential due to the mass of the central
black hole predicted by the analytical model may be
verified numerically by simulating the domain wall evo-
lution. Thus we solve the dynamical equation (2.3) for a
S-dS background metric (2.5) and the symmetry breaking
potential (3.1). In order to focus on the effects of the mass
term we first set Λ ¼ 0 in Eq. (2.5).We use the initial field
configuration of Eq. (3.2) corresponding to a spherical
domain wall and boundary conditions at the two horizons

Φðr1Þ ¼ −1 ð3:9Þ

Φðr2Þ ¼ 1 ð3:10Þ

We evolve the configuration in time in both a flat back-
ground space (m ¼ 0) and in the presence of the black hole.
The results are shown in Fig. 4. Clearly, the repulsive
gravitational interaction originating from the black hole
mass delays the collapse of the spherical wall due to its
tension. The equivalence principle is not violated by this
repulsive interaction since the spherical wall is a nonlocal
object and thus the gravitational effects on it cannot be
eliminated at any frame.
A simple way to derive numerically the basic features of

the evolution of the domain wall initial configuration (3.2)
is to explicitly minimize the energy functional (2.4) with
fixed boundary conditions at the two horizons r1, r2
corresponding to the two distinct vacua of the potential
(3.1) [Eqs. (3.9) and (3.10)]. We approximate the integral
(2.4) as a discrete sum over 200 lattice points and minimize
with respect to the 200 values of the field (one value at each
lattice point) starting from the initial configuration (3.2).
Thus the energy integral (2.4) is written as

E ¼ dx
XN
i¼1

�
r2i fðriÞ

�
Φi −Φi−1

dx

�
2

þ r2i VðΦiÞ
�

ð3:11Þ

where we have set N ¼ 200 and VðΦiÞ is given by
Eq. (3.1). For simplicity we set m ¼ 0, Λ ¼ 0.2 in

Φ=–1Φ=+ 1

Δr

r1

r2

Spherical Domain Wall

Black Hole
r0

FIG. 2. The geometry of the spherical domain wall described by
the ansatz (3.2) with the presence of a S-dS black hole in its
center. The horizons are also shown.

m= 2,Λ= 0.02

m= 0,Λ= 0.05

m= 2,Λ= 0.0

r0 crit=
27

16 Λ
r0 crit

0 2 4 6 8 10 12
r0

E
/ 4

π

–50

0

50

100

FIG. 3. An approximate form of the spherical domain wall
energy as a function of its radius r0 as obtained from Eq. (3.6).
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evaluating fðriÞ from Eq. (2.5) which implies that r1 ¼ 0
and r0crit ≃ 2.9 as obtained from Eq. (3.7).
As expected based on the above described analytical

model and the energy shown in Fig. 3, the field configu-
ration that minimizes the energy subject to the boundary
conditions (3.9)–(3.10) depends on the initial location of
the domain wall (value of r0 of the initial guess used for
the minimization). For r0 < r0crit (r0 > r0crit) the final
field configuration corresponds to a domain wall col-
lapsed (expanded) on the inner (outer) horizon at r1 (r2)
where the boundary condition stops its further collapse
(expansion). This effect is demonstrated in Fig. 5
which shows the initial guess wall configuration and
the final configuration emerging after the energy
minimization.

These results imply that there is an unstable static spherical
domain wall solution for a radius r0 ¼ r0crit. The instability
of this solution may also be seen by evaluating the second
derivative of the energy (3.6) with respect to r0 and showing
that as expected it is negative at the maximum r0crit.
If the boundary conditions (3.9) and (3.10) of the energy

minimization are imposed beyond the two horizons where
the field gradient term in the energy changes sign, then the
expected oscillating instabilities become manifest in the
regions beyond the horizons. These causally protected
ghost instabilities are demonstrated in Fig. 6.
The collapsing/expanding behavior of the spherical

domain wall which depends on its initial radius may also
be demonstrated by explicit numerical solution of the
dynamical field equation (2.3) in the region between the

m=0, t=0

m=5, t=0

m=0, t=80 m=5, t=80

0 20 40 60 80 100
–2

–1

0

1

2

r

Φ
(r

,t)

m= 0
m= 5

0 20 40 60 80 100

20

40

60

80

t

r(
t)

FIG. 4. Left panel: Evolved spherical wall field configuration in flat space (black dotted line) and in the presence of a central black
hole with m ¼ 5 Λ ¼ 0 (red line) at t ¼ 80. The blue line corresponds to the initial condition. Clearly the black hole delays the collapse
of the wall as expected from the analytical approximate model. Right panel: The location of the zero of the scalar field (domain wall)
as a function of time in the absence (black dots) and in the presence (red dots) of a central black hole. The continuous line in the black
dots is a fit with a cosine harmonic function and the line in the red dots is a cosineþ quadratic term in time. Due to the constant repulsive
force, the black hole introduces a repulsive term quadratic in time that becomes apparent at late times.

r0 crit

m = 0, Λ= 0.2

r0 > r0 crit

0 1 2 3

–1.0

–0.5

0.0

0.5

1.0

r

Φ
(r

)

r0 crit

m= 0, Λ= 0.2

r0 < r0 crit

0 1 2 3

–1.0

–0.5

0.0

0.5

1.0

r

Φ
( r

)

FIG. 5. The field configuration corresponding to minimum energy is expanded to the outer boundary-horizon (left panel) if the initial
guess wall radius r0 is larger than the critical radius r0crit corresponding to the energy maximum of Fig. 3. Similarly, the minimum
energy field configuration is collapsed to the inner boundary-horizon (right panel) if the initial guess wall radius r0 is smaller than the
critical radius r0crit corresponding to the energy maximum of Fig. 3. The energy minimization was performed numerically using
200 lattice points.
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horizons with boundary conditions (3.9) and (3.10) and
initial condition given by Eq. (3.2). As shown in Fig. 7 the
evolution of the spherical wall depends crucially on its
initial radius r0. If r0 > r0crit the wall expands to the outer
horizon while if r0 < r0crit the wall contracts towards the
inner horizon. Despite of the approximations used in the
analytical derivation of r0crit from Eq. (3.6) we have found
numerically that its value is accurate to within better than
5%. This is surprising in view of the significant approx-
imations involved in deriving Eq. (3.6).

IV. GLOBAL MONOPOLE AND GLOBAL
STRING LOOP IN A S-DS SPACETIME

A. Global monopole in a S-dS spacetime

The analytical model introduced in Sec. III A has been
demonstrated to describe the qualitative features of the
evolution of the spherical domain wall in the presence of a

non-trivial background metric in a satisfactory manner.
Motivated by this result we apply the same model in this
section to obtain the gravitational interaction potential
between a global monopole and a S-dS black hole. A
global monopole with unit topological charge corresponds
to a topologically stable, spherically symmetric hedgehog
triplet scalar field configuration of the form

Φa ¼ ΦðrÞna ð4:1Þ
where a ¼ 1, 2, 3, na ≡ ðsin θ cosφ; sin θ sinφ; cosφÞ and
the boundary conditions for ΦðrÞ are

Φðr ¼ 0Þ ¼ 0 ð4:2Þ

Φðr → ∞Þ ¼ 1 ð4:3Þ

The action describing the dynamics of a global monopole is
of the form

rcrit

m= 0, Λ= 0.2
r0 > rcrit

0 1 2 3 4

–20

–10

0

10

20

r

Φ
(r

)

rcrit

m= 0, Λ= 0.2

r0 < rcrit

0 1 2 3 4

–20

–10

0

10

20

r

Φ
(r

)

FIG. 6. The field configuration emerging after energy minimization with boundary conditions imposed beyond the horizon. If the
boundary conditions are imposed beyond the cosmological horizon the oscillating instabilities develop due to the negative kinetic term
in the region beyond the horizon. These instabilities however do not affect the collapsing/expanding properties of the field in the region
where the gradient term is positive. Similar results are obtained if we use m ≠ 0 and impose the inner boundary condition inside the
black hole horizon.
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FIG. 7. The numerical evolution of the spherical wall depends crucially on the initial conditions. If the initial radius r0 is larger than the
energy maximum of Fig. 3 the wall expands while if the initial radius r0 is smaller than the energy maximum of Fig. 3 the wall contracts.
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S ¼
Z �

gμν
∂Φa

∂xμ
∂Φa

∂xν − Vð
ffiffiffiffiffiffiffiffiffiffiffiffi
ΦaΦa

p
Þ
� ffiffiffiffiffiffi

−g
p

d4x ð4:4Þ

where Vð ffiffiffiffiffiffiffiffiffiffiffiffi
ΦaΦa

p Þ ¼ VðΦÞ is given by Eq. (3.1) and in this
case leads to the breaking of a global Oð3Þ symmetry to
Oð2Þ. The energy of the global monopole in a spherical
coordinate system whose center coincides with the monop-
ole center is

E ¼
Z

T0
0

ffiffiffiffiffiffi
−g

p
drdθdϕ

¼
Z �

−grrð∂rΦÞ2 − gθθð∂θΦÞ2 − gθθΦ2 − gφφð∂φΦÞ2

− gφφΦ2sin2θ þ VðΦÞ
� ffiffiffiffiffiffi

−g
p

drdθdϕ ð4:5Þ

The terms proportional to Φ2 originate from the angular
gradients and lead to a contribution to the energy that is
independent of r0 and would be diverging in flat space. In
the S-dS spacetime where the horizons provide natural
cutofs the integral of these terms is proportional to a natural
cutoff scale Rmax of the S-dS spacetime provided by
cosmological S-dS horizon ie

Eang ¼ −
Z

ðgθθΦ2 þ gφφΦ2sin2θÞ ffiffiffiffiffiffi
−g

p
drdθdϕ

≃ 2

Z
sin θdrdθdϕ ∼ 8πRmax ð4:6Þ

where Rmax is the cutoff scale of the order of the
cosmological S-dS horizon r2. The rest of the terms in
the bracket of Eq. (4.5) may be written in the form
gij∂iΦ∂jΦ which is invariant under coordinate transforma-
tions. The total energy is also invariant under a change of
the origin of the coordinate system used and thus we can
shift the coordinate system from the monopole center to the
black hole center keeping the same expression for the
energy. This configuration is shown in Fig. 8. In this shifted
coordinate system, the monopole field depends on both r
and θ but retains its azimuthal invariance (independence
from φ). Thus the energy (4.5) may be expressed as

E ¼ 2π

Z
r2

r1

Z
π

0

�
fðrÞð∂rΦðr; θÞÞ2 þ 1

r2
ð∂θΦðr; θÞÞ2

þ 2

r2
Φðr; θÞ2 þ VðΦÞ

�
r2 sin θdrdθ ð4:7Þ

where fðrÞ corresponds to the S-dS metric [Eq. (2.5)]. For
a coordinate distance r0 between the black hole and the
monopole that is large compared to the scale Δr ≃ η−1 of
the monopole core1 (Δr ≪ r0) the monopole energy may

be approximated up to a constant diverging term propor-
tional to Rmax (independent of r0) as

E≃2π

�
r20fðr0Þ

�
ΔΦ
Δr

�
2

þ
�
ΔΦ
Δθ

�
2

þ r20Vð0Þ
�
Δr

Z
Δθ

0

θdθ

ð4:8Þ

where Vð0Þ ¼ η4

2
→ 1

2
and we have set sin θ ≃ θ ≪ 1 (see

Fig. 8). Also Δθ ≃ Δr
r0

is the angular scale of the global
monopole core as seen from the center of the black hole.
Setting ΔΦ ≃ η → 1, Δr ≃ η−1 → 1 and

Z
Δθ

0

θδθ ¼ Δθ2

2
≃
Δr2

2r20
→

1

2r20
ð4:9Þ

we find an approximate expression for the gravitational
interaction energy between monopole and black hole as

E ≃ π

�
5

2
−
2m
r0

−
Λ
3
r20

�
ð4:10Þ

leading to a gravitational force on the monopole from the
black hole of the form

Δr

Δθ

r0

Black Hole

Monopole

FIG. 8. The global monopole as viewed from the spherical
coordinate system with center on the black hole.

1η is the scale of symmetry breaking which we set equal to 1.
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F ¼ −
∂E
∂r0 ¼ −

2πGmη

r20
þ 2πΛη

3
r0 ð4:11Þ

where we have restored η and G for clarity. Thus the
monopole behaves like a point test particle with mass equal
to 2πη. As in the case of a test particle, the force consists of
an attractive component due to the black hole mass (as
expected from the equivalence principle) and a repulsive
component from the cosmological constant. There is an
unstable equilibrium point at r0 ¼ ð3GmΛ Þ1=3.

B. Global string loop in a S-dS spacetime

The global field configuration corresponding to a global
string loop is shown in Fig. 9. In this case the energy
density is concentrated at θ ≃ π

2
rather than θ ≃ 0 and the

axial symmetry remains. Setting sin θ ≃ 1 in Eq. (4.7) and
using similar approximations and arguments as in the case
of the global monopole we find an approximate expression
for the energy of the loop which up to a constant diverging
term (independent of r0) is of the form

E ≃ 2π

�
r20fðr0Þ

�
ΔΦ
Δr

�
2

þ
�
ΔΦ
Δθ

�
2

þ r20Vð0Þ
�

× ΔrΔθ ≃ 2π

�
5

2
r0 − 2m −

Λ
3
r30

�
ð4:12Þ

The corresponding effective force is obtained as

F≡ −
∂E
∂r0 ≃ −5πGη2 þ 2πGη2Λr20 ð4:13Þ

where we have restored G and η for clarity. The first term is
an attractive term due to the loop tension while the second
term is the repulsive term due to the cosmological constant.
The black hole mass does not contribute to the effective
force in this case. As in the case of the spherical domain
wall we anticipate the existence of an unstable static

solution for r0 ≃
ffiffiffiffiffi
5
2Λ

q
.

V. CONCLUSION

The main results of this analysis can be summarized as
follows:

(i) Derrick’s theorem can be violated in the presence
of a nontrivial gravitational background. In fact
rescaling arguments indicate that static scalar field

configurations can exist in the presence of a S-dS
background metric.

(ii) A spherical domain wall in a S-dS background
metric is subject to three types of potentials: a
potential that favors contraction due to its tension,
a potential that favors expansion due to the central
black hole mass and a potential that favors expan-
sion due to the cosmological constant. Expansion
occurs for domain wall radius r0 larger than a critical
radius r0crit while contraction occurs r0 < r0crit. This
result has been demonstrated both analytically and
numerically.

(iii) A global monopole in a S-dS background metric is
subject to two types of potentials: an attractive
potential due to the central black hole mass and a
repulsive potential due to the cosmological constant.
Repulsion dominates for a monopole coordinate
distance r0 larger than a critical distance r0crit while
attraction occurs r0 < r0crit.

(iv) A global string loop in a S-dS background metric
with a central black hole is subject to two types of
potentials: an attractive potential towards the central
black hole due to its tension and a repulsive potential
due to the cosmological constant. Repulsion domi-
nates for a loop radius r0 larger than a critical
distance r0crit while attraction occurs r0 < r0crit.

In all three cases of global defects interacting with a S-dS
black hole we anticipate the existence of unstable static
solutions for a distance (radius) from the black hole where
the above effective forces vanish.
Interestingly, the mass of the central black hole acts with

a repulsive force towards the spherical domain wall but
with an attractive force towards a global monopole. This
difference does not necessarily lead to violation of the
equivalence principle since global defects are nonlocal
objects. The cosmological constant acts in a repulsive
manner in all three cases of defects.
Interesting extensions of the present analysis include the

following:
(i) Extensive numerical simulations of the evolution of

a global defects in the vicinity of a S-dS black hole
including the cases of global string loops and global
monopoles. Such simulations can lead to a more
detailed study of the interaction potentials and the
investigation of scattering of global defects from a
S-dS black hole.

(ii) Consideration of more general background metrics
including for example a black hole-monopole or a
Kerr background.

(iii) Derivation of the predicted gravitational wave fea-
tures induced by the motion of global defects in
nontrivial gravitational backgrounds. Particularly
interesting could be the possible gravitational wave
and γ-ray bursts created during the merging of global
monopoles with black holes.

r0 Δr

Δθ

Loop Cross Section

Black Hole

FIG. 9. Cross section view of the global string loop with the
central black hole.
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(iv) Consideration of alternative coordinate systems that
may allow the more detailed investigation of the
scalar field instabilities that appear to develop
beyond the black hole and the cosmological hori-
zons. This will also allow the study of the fate of the
global defects as they cross the black hole horizon.

(v) Investigation of the deformation induced on global
defect configurations by black holes located at a
distance r0 from the center of the defects.

Numerical Analysis Files: TheMathematica file used for
the numerical analysis of this study and for the construction
of the Figures may be downloaded from this url.
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