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We study relations between hydrodynamical (H) and scalar field (SF) models of the dark energy in the
homogeneous isotropic universe. The focus is on the SF described by the Lagrangian with the canonical
kinetic term within spatially flat cosmology. We analyze requirements that guarantee the same
cosmological history for the SF and H models at least for special solutions. The differential equation
for the SF potential is obtained that ensures such equivalence of the SF and H models. However, if the
“equivalent” SF potential is found for a given equation of state (EOS) of the H model, this does not mean
that all solutions of this SF model have corresponding H-model analogs. In this view we derived a
condition that guarantees an “approximate equivalence,” when there is a small difference between energy-
momentum tensors of the models. The equivalent SF potentials and corresponding SF solutions for linear
EOS are found in an explicit form; we also present examples with more complicated EOS.
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I. INTRODUCTION

Observations show [1] that about 70% of the average
mass density in the Universe owes to the dark energy (DE)
that drives the acceleration of the cosmological expansion.
It is widely assumed that some form of DE or its
constituents that dominated in the very early Universe
must have a dynamical nature owing to an action of
unknown physical fields and/or due to modifications of
general relativity [2,3]. Theories with scalar fields (SF)
occupy an important sector of this area (see, e.g., [2–6]).
Though observational data restrict some of the SF models
[4], there is still a considerable uncertainty in their choice,
not to mention the revision of the underlying gravitational
theory [3,5]. The abundance of various cosmological
models draws attention to unifying schemes and interrela-
tions between competing dark energy candidates [5–7] that
can be used to explain observational data.
To this end, the phenomenological hydrodynamic (H)

approach is often used [5,6,8–10]. It is well known that the
matter in the spatially homogeneous and isotropic
Universe can be described by means of the energy-
momentum tensor of an ideal fluid. Under certain con-
ditions SF models allow for a H description with some
equivalent equation of state (EOS) beyond homogeneity
as well [9]. The H analogs of the SF models typically
involve such phenomenological parameters as the EOS
parameter, effective sound speed, and adiabatic sound

speed, which can be limited in view of available astro-
nomical data [9,11]. The transition from simplest hydro-
dynamical EOSs to SFs and vice versa deals with rather
unusual models, whereas in the spirit of Occam’s razor, it
would be desirable to restrict the choice of the SF
Lagrangian to a canonical one, which is more familiar
from the point of view of particle physics. This is possible
within the approach of papers [5,6,8,12], which treat the
equivalence problems by directly comparing solutions for
the cosmological scale factor and the energy density in the
homogeneous isotropic Universe. As distinct from these
papers, we propose a differential equation for the SF
potential in closed form guaranteeing some equivalence of
H and SF models. We note, however, that in any approach,
the H-SF correspondence is not universal; this is well
known though not always clearly stated. A typical
situation is that two different models mimic each other
for some area of the original data, but they have different
solutions outside this area.
We study the H-SF equivalence on the basis of equality

of the corresponding energy-momentum tensors (Sec. II).
This problem becomes more complicated if we impose
some additional conditions either on the form of the EOS,
or on the SF Lagrangian. We focus on the relationship
between the H model and the SF model with the canonical
kinetic term and a self-interaction potential for the real SF.
We call this “restricted1 equivalence,” in contrast to the case
in which no such restrictions are imposed. As a result, the

*valeryzhdanov@gmail.com
†tunerzinc@gmail.com 1because we deal with the special form (5) of the Lagrangian.

PHYSICAL REVIEW D 97, 124033 (2018)

2470-0010=2018=97(12)=124033(9) 124033-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.124033&domain=pdf&date_stamp=2018-06-14
https://doi.org/10.1103/PhysRevD.97.124033
https://doi.org/10.1103/PhysRevD.97.124033
https://doi.org/10.1103/PhysRevD.97.124033
https://doi.org/10.1103/PhysRevD.97.124033


equivalence considerations deal with some restrictions on
the initial data (Sec. III).
Then we consider a case in which the relations that

guarantee some kind of equivalence of SF and Hmodels are
valid approximately. In this case the equations of the H and
SF models can lead to different energy-momentum tensors
(and correspondingly different evolution equations), and
the question is when this difference remains small, pro-
vided that it is small at the initial moment. We derived
conditions for such approximate equivalence (Sec. IV).
The results are applied to the linear EOS, including a

situation near the phantom line (Sec. VI A), to some
nonlinear EOS known from papers [5,12] (Sec. VI B),
and to a simple two-parametric EOS (Sec. VI C). Here we
present examples showing when one can speak about an
equivalence between the H and SF models.

II. GENERAL CONSIDERATIONS

The general Lagrangian LðX;φÞ for the real SF φ with
X ¼ 1

2
φ;μ φ;μ and space-time metric gμν yields the energy-

momentum tensor2

TðsfÞ
μν ¼ 2ffiffiffiffiffiffi−gp ∂

∂gμν ½
ffiffiffiffiffiffi
−g

p
L� ¼ ∂L

∂X φ;μφ;ν − gμνL ð1Þ

that can be equated to the energy-momentum tensor of an
ideal fluid,

TðhÞ
μν ¼ huμuν − pgμν; ð2Þ

where h ¼ eþ p is the specific enthalpy, p is the
pressure, e is the invariant energy density, and uμ is the
four-velocity of the fluid. It is assumed that some EOS is
known that relates the pressure to the other parameters of
the problem: p ¼ Pðe;φÞ.
We have TðsfÞ

μν ¼ TðhÞ
μν if

p ¼ LðX;φÞ; h ¼ 2X∂L=∂X; X > 0: ð3Þ

At the points where X changes its sign (i.e., φ;μ is not
timelike), the hydrodynamical interpretation is no longer
valid. The relations (3) yield an ordinary differential
equation with respect to LðX;φÞ, where φ is involved as
a parameter,

EðL;φÞ ¼ 2X∂L=∂X − L: ð4Þ

The solution L of (4) exists in the case of rather a general
EOS; this solution contains an arbitrary function of φ.
Additional constraints that ensure equality of (1) and (2) for
all values of φ and its derivatives are outlined in Appendix.

These constraints are fulfiled identically in the case of a
homogeneous isotropic universe to be discussed further.
However, under additional restrictions on the functions

LðX;φÞ and/or Eðp;φÞ in (4) the solution of this equation
for all X;φmay not exist. For example, if we want to define
the EOS parametrically from (3), then a general Lagrangian
L cannot yield the barotropic EOS, because in this case the
right-hand sides of (3) may depend on two independent
variables X and φ.
In this view we require that Eqs. (3) and (4) be satisfied

not for arbitrary hydrodynamical and/or SF variables, but
only for certain cosmological solutions in the isotropic
homogeneous Universe. We wonder, is it possible to
compare the H model with the SF model, if the SF
Lagrangian has the canonical form

L ¼ X − VðφÞ? ð5Þ

Then Eqs. (3) and (4) yield

e ¼ X þ VðφÞ; pðe;φÞ ¼ X − VðφÞ: ð6Þ

If we demanded that (6) be fulfiled for all variables ðe;φÞ or
ðX;φÞ, we would have very special EOS p ¼ e − 2VðφÞ,
whereas in the case of another equation of state the relations
(6) cannot be identities. However, we deal with the unique
Universe, so in fact we do not need that the equivalence
conditions be satisfied for all possible values of the
variables that enter the EOS and/or Lagrangian. If we
compare different cosmological models, then the main
question is when they predict the same observational data,
when they mimic each other, etc.
We say that there is an equivalence of H and SF models,

if both predict the same Hubble diagram and, consequently,
the same Hubble parameter HðzÞ as a function of the
redshift z. In this case we have the same HðtÞ as a function
of the cosmological time t, yielding the same3 dependence
of the cosmological scale factor aðtÞ.
Within the homogeneous isotropic cosmology, a solution

aðtÞ;φðtÞ of the SF model4 yields eðtÞ, pðtÞ as a parametric
representation of EOS due to (6) and vice versa; this
approach is often considered (see, e.g., [5,6]). The main
difference in the present paper is that we are looking for a
direct criterion on the SF potential VðφÞ, which yields the
same cosmological history as in the case of the H model
with the prescribed EOS.

III. STATEMENT OF THE PROBLEM

We consider the spatially flat cosmology described by
the Friedmann-Lemaitre-Robertson-Walker metric

2We use the signature ðþ;−;−;−Þ.

3Up to unessential constant factor in the case of the spatially
flat cosmology.

4This is specified in the next section.
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ds2 ¼ gμνdxμdxν ¼ dt2 − a2ðtÞ½dχ2 þ χ2dO2�: ð7Þ

It should be noted that the supposition of spatial flatness
agrees with observations [1] and is perfectly explained in
the framework of widely known ideas of inflation in the
early Universe [4]. In the case of the Universe filled with
an ideal fluid we have the Friedmann equations (spatially
flat case)

d2a
dt2

¼ −
4π

3
aðeþ 3pÞ; ð8Þ

H2 ¼ 8π

3
e; H ¼ a−1da=dt ð9Þ

(G ¼ c ¼ 1Þ. One more (hydrodynamical) equation

_eþ 3Hðeþ pÞ ¼ 0 ð10Þ

also follows from (8) and (9); on the other hand, (8) follows
from (9) and (10). Further we use (9) and (10) as the
independent equations keeping in mind that they must be
supplemented by an equation of state.
In the case of the isotropic homogeneous Universe filled

with uniform scalar field φ ¼ φðtÞ; X ¼ _φ2=2 the evolution
equations corresponding to (5) are

d2a
dt2

¼ −
8π

3
að _φ2 − VðφÞÞ; ð11Þ

H2 ¼ 8π

3
ef; ð12Þ

where ef ≡ _φ2=2þ VðφÞ is the field energy density, and
the field equation is

φ̈þ 3H _φþ V 0ðφÞ ¼ 0: ð13Þ

Analogously, these equations are not independent and we
use further (12) and (13) as the evolution equations of the
SF model with the initial conditions

_φðt0Þ ¼ _φ0; φðt0Þ ¼ φ0: ð14Þ

If (9), (10), (12) and (13) are fulfiled with the sameHðtÞ,
then

e ¼ ef ≡ _φ2=2þ VðφÞ; ð15Þ

and substituting this into (10) and using (13), we get

_φ2 ¼ eþ p: ð16Þ

Analogously, on account of (15) and (16) Eqs. (10) and
(12) yield (9) and (10). Conversely, (9), (10), (13) and (15)
yield (16). The relations (15) and (16) are necessary for

the equivalence of H and SF models. These conclusions
do not depend on either p ¼ PðeÞ or p ¼ Pðe;φÞ.
However, the statement of the initial value problem of
the H model and its comparison with SF models looks
somewhat different in the case of (i) one-parametric and
(ii) two-parametric EOS.

(i) Barotropic EOS: p ¼ PðeÞ. The H model is defined
by Eqs. (9) and (10) with the initial condition

eðt0Þ ¼ e0: ð17Þ

(ii) Two-parametric EOS. We see below that the require-
ment of equivalence of H and SF models imposes
severe limitations on cosmological solutions. In order
to generalize the discussion and verify that the
limitations are not due to the one-parametric form
(i), we consider the EOS that contains two param-
eters. Following [10] we suppose that p ¼ Pðe;ϕÞ;
this generalization can be used to construct phenom-
enological models of the dark energy. Obviously, this
demands that the dynamical equation for the addi-
tional variable ϕ must also be involved in the H
model. Now we wonder, is it possible to describe the
solutions of this model with the help of some scalar
field φ alone, without using the hydrodynamic
variables? The very first step in this direction and
the most economic way within our restricted ap-
proach is to suppose that ϕ ¼ φ obeys the same
Eq. (13). Therefore, we assume that the equations of
the H model include (9), (10), and (13) with corre-
sponding initial conditions (14) and (17). Our formal
aim is to find criteria for existence of the H-model
solution eðtÞ and the SF-model solutionφðtÞwith the
same HðtÞ, such that efðtÞ≡ eðtÞ.

Obviously, considering (ii) of the H model with two-
parametric EOS and its comparison to the SF model differs
from considering (i), in particular, because we have differ-
ent dimensions of the space of initial data. However, the
mathematics we deal with below is formally the same and
the equivalence criterion (26) derived below is applicable
both to (i) and (ii). So further we work with (ii), having in
mind the reservation concerning the difference of (i)
and (ii).
We assume hðe;φÞ to be a continuously differentiable

function of e;φ. Further for brevity we denote

Gðx; yÞ≡ x2 − hðx2=2þ VðyÞ; yÞ:

Using this function, in view of the relations (15) and (16),
we have

Gð _φðtÞ;φðtÞÞ ¼ 0: ð18Þ

As we have seen, this condition along with (15) ensures that
both the H model and SF model lead to the same Hubble
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diagram (at least for specially chosen initial data). In this
sense we speak about restricted5 equivalence of H and SF
models. The condition (18) must be fulfiled for initial data
(17) as well,

Gð _φðt0Þ;φðt0ÞÞ ¼ 0: ð19Þ

Also, we consider deviations from Eq. (18); in this case
we consider the function

gðtÞ ¼ Gð _φðtÞ;φðtÞÞ: ð20Þ

It should be noted that for fixed VðφÞ, hðe;φÞ it is
generally impossible to satisfy (19) with ∀ _φ0;φ0; this
relation singles out a particular solution to Eq. (13).
Therefore most of the solutions of the SF model cannot
be H-model solutions.
After the comments about the initial data we proceed to

conditions for the potential, which must be fulfiled to
ensure (18). We suppose that the function hðe;φÞ is known.
The problem we are interested in can be formulated as
follows.
(A) Let φðtÞ be a solution of (12) and (13). What

are sufficient conditions for VðφÞ so as to ensure
gðtÞ≡ 0 at least for special initial data (14)
satisfying (19)?
After finding the potential VðφÞ that solves the

problem (A) for special initial data satisfying (19), it
is natural to ask about other solutions of the SF
model with the same potential, which do not
satisfy (19).

(B) For some VðφÞ there are solutions φðtÞ; φ̄ðtÞ of
Eqs. (12) and (13), and

Gð _̄φðtÞ; φ̄ðtÞÞ ¼ 0; Gð _φðtÞ;φðtÞÞ ≠ 0: ð21Þ

What we can say about gðtÞ in (20)?
If φðt0Þ satisfies (19) approximately, does this

approximation work for t > t0? If yes, we can say
that we have an approximate equivalence of H and
SF models.

IV. COMPARISON OF S AND H MODELS

Equation (20) can be solved with respect to _φ2. With this
aim we introduce function ΘðV; g;φÞ, which is defined as a
solution of the equation

Θ ¼ gþ hðΘ=2þ V;φÞ: ð22Þ

Uniqueness of the solution of (22) can be easily established
if, for ε ¼ const > 0 (arbitrarily small),

∂h
∂e ≤ 2 − ε: ð23Þ

The uniqueness follows from consideration of ζðϑÞ ¼ ϑ−
hðϑ=2þ V;φÞ, which is a monotonically increasing func-
tion of ϑ. Then ζðϑÞ takes the value ζðϑÞ ¼ g only once;
therefore we have a unique solution ϑ ¼ ΘðV; g;φÞ of (22).
A sufficient condition of existence is hðV;φÞ ≥ −g,
because in this case ζð0Þ ≤ g and ζðϑÞ → ∞ as ϑ → ∞
due to (23); so in virtue of continuity of ζðϑÞ there exists the
solution ϑ of (22). In case of g ¼ 0 this sufficient condition
is simply the requirement for the positive specific enthalpy.
Note that (23) means ∂P=∂e ≤ 1 − ε < 1, which avoids
superluminal speed of sound.
We also introduce EðV; g;φÞ ¼ ΘðV; g;φÞ=2þ V that

satisfies the equation

E −
1

2
hðE;φÞ ¼ 1

2
gþ V: ð24Þ

Further we consider solutions of (24) such that e ¼
EðV; g;φÞ > 0; _φ2 ¼ ΘðV; g;φÞ > 0.
After differentiation of (20) and in view of (12) and (13)

we get

_g ¼ − _φ

�
_φ

ffiffiffiffiffiffiffiffiffiffi
24πe

p �
2 −

∂h
∂e

�
þ ∂h
∂φþ 2

dV
dφ

�
; ð25Þ

where h≡ hðe;φÞ and we denote e ¼ 1
2
_φ2 þ VðφÞ > 0.

If we require g≡ 0, then, for _φ ≠ 0, we have

dV
dφ

þ 1

2

∂h
∂φþ S

�
2 −

∂h
∂e

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πE0Θ0

p
¼ 0; ð26Þ

where h¼ hðe;φÞ, e¼E0ðV;φÞ≡EðV;0;φÞ, Θ0ðV;φÞ≡
ΘðV; 0;φÞ, S ¼ signð _φÞ, and we used (22) and (24). Note
that Eq. (26) is a formal consequence of (25) only for those
φ that belong to the range of solutions φðtÞ of (13).
The differential equation (26) for the potential VðφÞ is a

sufficient condition to have (18) provided that gðt0Þ ¼ 0.
Thus, the problem (A) of equivalence is reduced to the
equation for potential VðφÞ in closed form, which, how-
ever, is different for different signs of _φ.
In the case of a barotropic EOS h ¼ hðeÞ Eq. (26) is

simplified to the form

dV
dφ

¼ −S
�
2 −

∂h
∂e

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πE0ðV;φÞΘ0ðV;φÞ

p
: ð27Þ

In virtue of (24) we have for V ¼ E0 − hðE0Þ=2.
Substitution to (26) yields a more compact equation,

dE0

dφ
¼ −S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πE0hðE0Þ

p
: ð28Þ

For given EOS, Eqs. (27) and (28) allow us to find VðφÞ
such that certain modes of cosmological evolution HðtÞ;5Because we deal with the restricted Lagrangian (5).
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eðtÞ ¼ efðtÞ can be obtained by means of either the H
model or SF model. This, however, does not apply to all
possible solutions to this SF model, in particular, when _φ
changes its sign. From (27) it follows that the potential
VðφÞ must be a monotonically increasing function pro-
vided that we consider an interval where _φ < 0. This
includes, e.g., the case of the slow-roll modes of the
chaotic inflation.

V. INITIAL DATA NOT SATISFYING (19)

Now we proceed to (B). Let V ¼ VðφÞ satisfies (26) and
φ̄ðtÞ;φðtÞ satisfy (21). We consider an interval of t, where
S ¼ sign½ _φðtÞ� ¼ sign½ _̄φðtÞ� is constant.
Using (20), (22), and (24), we substitute expressions for

e; _φ into Eq. (25) to have a first order ordinary differential
equation with respect to gðtÞ,

_g ¼ − _φ

�
SKðφ; gÞ

�
2 −

∂h
∂e

�
þ ∂h
∂φþ 2

dV
dφ

�
; ð29Þ

where in the rhs Kðφ; gÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48πeðe − VÞp

, h ¼ hðe;φÞ,
e ¼ EðV; g;φÞ, V ¼ VðφÞ.
Denoting

Dðφ; gÞ ¼ SKðg;φÞ
�
2 −

∂h
∂e

�
þ ∂h
∂φ ; ð30Þ

where h ¼ hðe;φÞ, e ¼ EðVðφÞ; g;φÞ; in virtue of (26),
which is true for any φ, we have

2
dV
dφ

¼ −Dðφ; 0Þ;

yielding

_g ¼ −g _φRðφ; gÞ; ð31Þ

where Rðφ; gÞ ¼ g−1fDðφ; gÞ −Dðφ; 0Þg is a regular
function. From (31) we get

gðtÞ ¼ gðt0Þ exp
�
−
Z

t

t0

ds _φðsÞR½φðsÞ; gðsÞ�
�
:

The behavior of gðtÞ depends on the monotonicity sign of
Dðφ; gÞ as a function of g, which defines the sign of
Rðφ; gÞ. If

SRðφ; gÞ > 0; ð32Þ

then jgðtÞj ≤ jgð0Þj for t > 0 and we arrive at the approxi-
mate equivalence for a sufficiently small initial gð0Þ.
Moreover, if _φðsÞRðφ; gÞ ≥ β > 0; β ¼ const, then we have
gðtÞ → 0 for t → ∞ exponentially.

One can estimate the sign of (32) under supposition of
differentiability of (30). Equations (22) and (24) yield

∂E
∂g ¼ ∂Θ

∂g ¼
�
2 −

∂h
∂e

�
−1
: ð33Þ

The monotonicity condition (32) transforms to

S
∂D
∂g ¼

ffiffiffiffiffiffiffiffi
24π

p ffiffiffiffiffiffiffi
EΘ

p
�
Θ
2
þ E −

EΘ
2 − ∂h=∂e

∂2h
∂e2

�

þ S
2 − ∂h=∂e

∂2h
∂e∂φ > 0; ð34Þ

where h ¼ hðe;φÞ, e ¼ EðVðφÞ; g;φÞ,Θ ¼ ΘðVðφÞ; g;φÞ.
Since Rðφ; 0Þ ¼ ∂D=∂g for g ¼ 0, if this inequality is
fulfiled for g ¼ 0, then we have the approximate equiv-
alence; i.e., at least for sufficiently small gð0Þ we have
jgðtÞj ≤ jgð0Þj for t > 0 and in this sense we say that φðtÞ
well approximates φ̄ðtÞ on an interval where the signs of
_̄φðtÞ and _φðtÞ are equal.

VI. EXAMPLES

A. Linear equation of state

Now we consider an example with a concrete equation of
state. The simplest one is the linear barotropic EOS,

hðeÞ¼ ξðe−e0Þþh0 ¼ ξe−η; η¼ ξe0−h0: ð35Þ

Solutions of Eqs. (22) and (24) are

Θ0ðVÞ ¼
2ðξV − ηÞ
2 − ξ

; E0ðVÞ ¼
2V − η

2 − ξ
;

they are uniquely defined for ξ ≠ 2, so we assume this
condition instead of (23). Equation (27) takes on the form

dV
dφ

¼−S1S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πξ

��
V−

2þξ

4ξ
η

�
2

−
�
2−ξ

4ξ
η

�
2
�s
; ð36Þ

S1 ¼ signð2 − ξÞ.
For ξ > 0 the solution of (36) that obeys inequalities

Θ0 ≥ 0; E0 ≥ 0 is

VðφÞ ¼ ð2þ ξÞη
4ξ

þ ð2 − ξÞ
4

jηj
ξ
cosh½2αðφ − ψ0Þ�; ð37Þ

α ¼ ffiffiffiffiffiffiffiffi
6πξ

p
, under the condition that

sign½ _φðφ − ψ0Þ� ¼ −1; ð38Þ

ψ0 is an integration constant. The other options that
do not yield positive Θ0 and E0 have been discarded.
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For 0 < ξ < 2 the potential (37) has minimum at φ ¼ ψ0;
for ξ > 2 the potential is unbounded from below.
The particular solution φ̄ðtÞ of the SF problem (12) and

(13) with the initial data satisfying (19) can be found from
the first order differential Eq. (18); it generates the solution
of the H problem eðtÞ ¼ ēfðtÞ≡ _̄φ2=2þ Vðφ̄Þ.
Consider, e.g., the case of η > 0; here (18) on account of

(38) leads to the equation

_̄φ ¼ −
ffiffiffi
η

p
sinh½αðφ̄ − ψ0Þ�;

yielding two solutions,

φ̄ðtÞ ¼ ψ0 �
1

α
arsinhfsinh½α ffiffiffi

η
p ðt − t1Þ�g−1; ð39Þ

t > t1 ¼ const.
Correspondingly

eðtÞ ¼ ēfðtÞ ¼
η

ξ
fcoth½

ffiffiffiffiffiffiffiffiffiffi
6πξη

p
ðt − t1Þ�g2

is the solution of (9) and (10), ξ > 0; η > 0.
For any S1 (39) represents the monotonically decreasing/

increasing function that never reaches φ ¼ ψ0 and ēfðtÞ
never reaches the value e ¼ η=ξ. The other solutions of (12)
and (13), with the same VðφÞ but not satisfying (19) at
t ¼ t0, do not fulfil (9) and (10) with the same hðeÞ (35) with
eðtÞ ¼ efðtÞ. For example, for ξ < 2 the solutions of (13)
that oscillate near the minimum of the potential cannot be
described by the H model (35): this would contradict (38)
after passing either the turning point _φ ¼ 0 or the
point φ ¼ ψ0.
There is some freedom in the choice of the solution of

(36), which can be used if we study a correspondence not
between models with fixed hðeÞ and/or VðφÞ, but between
families of potentials and equations of state. Suppose that
for initial data (14) we have _φ2

0 ≠ η sinh2 ½αðφ0 − ψ0Þ�; i.e.,
(19) is not valid. However, by transforming parameters ξ, η
of the EOS (35) or ψ0 of the potential, one can find some
new values of these parameters to satisfy (19) and to find
the other special solution of the SF model that corresponds
to the H model.
The condition (34) is fulfiled at least for close to (39)

solutions because Θ0=2þ E0 > 0. Therefore φ̄ðtÞ well
approximates such solutions on whole intervals where
sign½ _φðtÞ� ¼ sign½ _̄φðtÞ�. Though in the case of (37) is easy
to study the qualitative behavior of solutions of (12) and
(13); it is easy to see that φðtÞ → ψ0 and, in view of
continuous dependence of the solution on any finite interval
upon the initial data, the deviation of φðtÞ from φ̄ðtÞ is
small for all t > t0, provided that it is small at t ¼ t0.
Now we proceed to the case ξ < 0, η < 0. This example6

is unlikely to be of cosmological significance, but it

illustrates problems that can arise when in the course of
evolution there are points with zero energy density. From
(36) we obtain the periodic potential

VðφÞ ¼ ηð2þ ξÞ
4ξ

þ ηð2 − ξÞ
4ξ

cosΦ; ð40Þ

where Φ ¼ 2αðφ − ψ0Þ, α ¼ ffiffiffiffiffiffiffiffiffiffi
6πjξjp

; the additional con-
dition for (36) to be fulfiled is _φ sinΦ > 0. On account of
this condition and restricting ourselves to the range
Φ ∈ ð0; πÞ, using (18) we have the solution φ̄ðtÞ of (13),

φ̄ðtÞ ¼ ψ0 þ
1

α
arccos ftanh½α

ffiffiffiffiffi
jηj

p
ðt1 − tÞ�g; ð41Þ

for t < t1 ¼ const. This relation describes the SF evolution
from φ̄ ¼ ψ0 to φ̄ ¼ ψ0 þ π=ð2αÞ. There is no analytic
continuation7 of this solution for t > t1. Correspondingly,

eðtÞ ¼ ēfðtÞ ¼
				 ηξ
				ftanh½ ffiffiffiffiffiffiffiffiffiffiffiffiffi

6πjξηj
p

ðt − t1Þ�g2 ð42Þ

is the solution of hydrodynamical equations (9) and (10) for
t < t1, where hðeÞ is given by (35). There is a trivial
extension of (42) for t > t1.
At last, consider the important case ξ < 0, η ¼ 0,

yielding the famous “Big Rip” hydrodynamical solution
[13]. In this case the rhs of (36) is not real; there is no
nontrivial solution for the potential and there is no
canonical SF counterpart.

B. Example of a nonlinear EOS

Consider the barotropic EOS [5,12]

hðeÞ ¼ ξe½1 − ðe=e0Þμ�; ð43Þ

where μ > 0. We are looking for possible solutions of (28).
For 0 < ξ < 2 the conditions for existence, uniqueness,

and positivity ofΘ0,E0 of (26) can be verified directly using
the solution below. Equation (28) yields the solution
E0ðφÞ¼e0ðcoshΦÞ−2=μ≤e0, where Φ ¼ μ

ffiffiffiffiffiffiffiffi
6πξ

p ðφ − ψ0Þ,
ψ0 is an integration constant, under the condition that
sign½ _φðφ − ψ0Þ� ¼ 1. Then we have the potential (cf., [12])

VðφÞ ¼ E0 −
1

2
hðE0Þ

¼ e0
2ðcoshΦÞ2ð1þ1=μÞ ½ξþ ð2 − ξÞcosh2Φ�: ð44Þ

The SF model with this potential has the particular solution
φ̄ðtÞ satisfying (18); correspondingly efðtÞ satisfies Eqs. (9)
and (10) of the H model. Equation (18) takes on the form

6The case ξ < 0, η > 0 is ruled out in view of the requirement
Θ0 > 0; E0 > 0. 7There is a loss of Lipschitz continuity in (13).
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_̄φ ¼
ffiffiffiffiffiffiffi
ξe0

p
sinh Φ̄

ðcosh Φ̄Þ1þ1=μ ; Φ̄ ¼ μ
ffiffiffiffiffiffiffiffi
6πξ

p
ðφ̄ − ψ0Þ:

Forφ > ψ0 thismeans that φ̄ðtÞ descends down the potential
hill to the right ofψ0; it grows logarithmically and ēfðtÞ → 0

for t → ∞. For t → −∞wehave φ̄ðtÞ → ψ0 and ēfðtÞ → e0.
The condition (34) for g ¼ 0 yields

Θ0

2
þ E0 þ

ξμðμþ 1ÞΘ0

2 − ξþ ξðμþ 1ÞðE0=e0Þμ
�
E0

e0

�
μ

> 0:

This is always fulfiled for 0 < ξ < 2, thus guaranteeing that
φðtÞ ≈ φ̄ðtÞ on appropriate intervals in the case of small
deviation of the initial data.
Note that the SF model with ξ > 0 does not admit

divergent solutions like the Big Rip [13] of the hydrody-
namical counterpart.
The case ξ < 0 is possible for e > e0; Eq. (28)

yields E0ðφÞ ¼ e0ðcos ΦÞ−2=μ ≥ e0 for jΦj < π=2, Φ ¼
μ

ffiffiffiffiffiffiffiffiffiffi
6πjξjp ðφ − ψ0Þ. We have a potential pit with infinite

walls (with a periodic continuation),

VðφÞ ¼ e0
2ðcosΦÞ2ð1þ1=μÞ ½ξþ ð2 − ξÞcos2Φ�; ð45Þ

and the SF solutions with this potential lead to the same
evolution of HðtÞ as the hydrodynamical ones if

sign½ _φðφ − ψ0Þ� ¼ −1:

In this view, Eq. (18) for the corresponding particular
solution of (13) yields

_̄φ ¼ −
ffiffiffiffiffiffiffiffiffiffijξje0

p
sin Φ̄

ðcos Φ̄Þ1þ1=μ :

The scalar field slides off the wall and tends to the potential
minimum with energy e ¼ e0, φ → ψ0 for t → ∞.

C. Two-parametric EOS

To illustrate how Eq. (26) works in the case of two-
parametric EOS, we consider hðe;φÞ ¼ ξe −UðφÞ,
ξ ¼ const, which is obtained as a generalization of (35)
by changing η → UðφÞ. We assume in this subsection
0 < ξ < 2.
After substitution Ṽ ¼ V −U=2 Eq. (26) yields

dṼ
dφ

¼ −S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πṼ

h
ξṼ −

2 − ξ

2
UðφÞ

ir
; ð46Þ

where S ¼ signð _φÞ.
This equation can be used either to derive VðφÞ for given

UðφÞ or, vice versa, to find EOS on the condition that VðφÞ
is given,

UðφÞ ¼ 2

2 − ξ

�
ξṼ −

1

24πṼ

�
dṼ
dφ

�
2
�
:

By considering various Ṽ one can generate examples with
subsequent verification of Eq. (46) and inequalities
Θ0 > 0; E0 > 0. We give two such examples dealing with
simple elementary functions.

(i) For ṼðφÞ ¼ A2φ2, A ¼ const > 0, we have

UðφÞ ¼ 2A2

2 − ξ

�
ξφ2 −

1

6π

�
;

VðφÞ ¼ 2A2

2 − ξ

�
φ2 −

1

12π

�
:

Equation (46) is valid if _φðtÞφðtÞ < 0. The non-
trivial particular solution satisfying both the equa-
tions of H and SF models exists for t < t1 ¼ const,

φðtÞ ¼ � Aðt1 − tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πð2 − ξÞp ; eðtÞ ¼ 2A4ðt − t1Þ2

3πð2 − ξÞ2 :

(ii) The choice ṼðφÞ ¼ A2 exp ðαφÞ, where α; A > 0 are
constants, generates

UðφÞ ¼ 2A2eαφ

2 − ξ

�
ξ −

α2

24π

�
;

VðφÞ ¼ A2eαφ

2 − ξ

�
2 −

α2

24π

�
:

Equation (46) is valid if α _φðtÞ < 0. The particular
solution of (13) is

φðtÞ ¼ 2

α
ln

"
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πð2 − ξÞp

Aα2ðt − t1Þ

#
; t > t1 ¼ const:

The corresponding solution of hydrodynamical equa-
tion (10) is eðtÞ ¼ efðtÞ ¼ 96πα−4ðt − t1Þ−2.

VII. DISCUSSION

It is clear that the hydrodynamic description of DE is an
oversimplification of the real cosmological situation in
comparison with field-theoretic models. A consistent
description of hydrodynamic phenomena assumes the local
thermodynamical equilibrium. It is unclear how this
assumption works as regards DE in the early Universe
and in the modern era. Nevertheless, this does not prevent
us from using the hydrodynamical model on a formal level
by equating the scalar field energy-momentum tensor to the
hydrodynamical one. On the other hand, some solutions of
hydrodynamic models that are widely used in cosmological
considerations can be interpreted in terms of the SF models.
In this paper we found conditions for the SF model that

make this possible in the case of the homogeneous isotropic
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spatially flat cosmology, under additional restriction on the
form of the SF Lagrangian to be a canonical one. This is a
very restrictive requirement; it leads to the differential
equation for the potential VðφÞ, which is effective on
intervals with the constant S ¼ signð _φðtÞÞ. Moreover, the
space of solutions of the SF model is much wider than that
of the barotropic H model. In any case, the global
equivalence between H and SF models for all modes of
cosmological evolution is impossible. This is clearly seen
in the examples of Sec. VI.
This, however, does not prohibit using the H-SF analogy

to study some special regimes. The hydrodynamical sol-
utions with EOS (35) yield the SF solutions for the
potential (37), when the SF rolls down the potential well
or descends down the potential hill (Sec. VI). But the H
model cannot describe the SF oscillations near the mini-
mum of the potential, though this regime is important for
particle creation at the postinflationary stage of the cos-
mological evolution [4]. On the other hand, some singular
solutions like the Big Rip [13] that may take place for
certain EOS are ruled out in the case of the SF counterparts.
The restriction on the initial data reduces possibilities to

use the hydrodynamical representation of the restricted SF
model. This trouble is mitigated by the possibility to
investigate close solutions.Wederived conditions that ensure
a certain closeness of the SF-model energy-momentum
tensors to that of the H model. In this sense the fiducial
solution, which satisfies equations of both H and SFmodels,
well approximates nearby solutions and describes their
qualitative properties.
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APPENDIX: SF-H CORRESPONDENCE
WITHOUT RESTRICTIONS

The hydrodynamical and scalar field approaches are
equivalent, if

TðhÞ
μν ¼ TðsfÞ

μν ; ðA1Þ

This equivalence can be used to find special solutions of
hydrodynamics equations by means of the SF equations
[14]. However, (A1) presupposes that the perfect fluid flow
involved is a relativistic analog of the classical potential
flow [14,15]. Indeed, besides (3), Eq. (A1) yields

uμF ¼ φ;μ; X > 0; F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ p
∂L=∂X

r
; ðA2Þ

where X > 0 is a solution of Eq. (4) for given EOS.
This can be easily shown by considering (A1) in a locally
Lorentz frame [where at some point x0 we have
gμνðx0Þ ¼ ημν, ∂αgμνðx0Þ ¼ 0], which is also an instanta-
neous proper frame for uμðx0Þ ¼ ð1; 0; 0; 0Þ. The inequality
X > 0must be fulfiled because uμ is timelike; therefore, the
Hmodel cannot be equivalent to the SF model in the case of
a stationary SF. On account of (1) and (2) and (A2) we get

∂ν½Fðe;φÞuμ� ¼ ∂μ½Fðe;φÞuν�: ðA3Þ

Usually for a given EOS e ¼ Eðp;φÞ, the differential
equation (4) has a solution L that transforms (4) into an
identity. On the other hand, for given LðX;φÞ, Eq. (3)
represent the EOS parametrically, and the domain of E as a
function of p depending upon the range of L. In this sense
we can speak about some equivalence of H and SF models,
provided that conditions (A3) are fulfiled; the latter
depends on the initial conditions of the hydrodynamical
problem. Obviously, these conditions may not be satisfied
if we deal with an arbitrary hydrodynamic flow; i.e., there is
no full equivalence between H and SF models. However,
the conditions (A3) are always fulfiled in the case of a
homogeneous cosmology, where the gradient ∂μφ ≠ 0 is
timelike and all the functions involved depend on the time
variable only. In a more general case, the relativistic ideal
fluid flows satisfying (A3) may be considered as an
analogue of classical irrotational flows.
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