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We present novel analytic hairy black holes with a flat base manifold in the (3þ 1)-dimensional Einstein
SUð2Þ-Skyrme system with negative cosmological constant. We also construct (3þ 1)-dimensional black
strings in the Einstein SUð2Þ-nonlinear sigma model theory with negative cosmological constant. The
geometry of these black strings is a three-dimensional charged Bañados-Teitelboim-Zanelli black hole
times a line, without any warp factor. The thermodynamics of these configurations (and its dependence on
the discrete hairy parameter) is analyzed in details. A very rich phase diagram emerges.
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I. INTRODUCTION

The idea that one can make up fermions out of a purely
bosonic Lagrangian as solitonic excitations (for a detailed
review see [1]) is one of the most remarkable results in
quantum field theory (QFT henceforth). Skyrme’s theory
[2] is the most important example in nuclear and particles
physics. When the Skyrme term is included in the low
energy action of Pions, static soliton solutions with finite
energy, called Skyrmions (see [3–6]) describing fermionic
degrees of freedom (d.o.f.) are allowed (see [7–15] and
references therein). The agreement of the theoretical
calculations with experiments is quite good. However,
the Skyrme field equations are very difficult to solve
(one reason being that the Skyrme-Bogomol'nyi-Prasad-
Sommerfield bound cannot be saturated in the generic case)
and so, until very recently, basically no analytic solution of
the Skyrme field equations in which one could analyze
explicitly the effects of the Skyrme term was available.
Due to the close relation of the Skyrme theory with the

low-energy limit of QCD, the Einstein-Skyrme system has
attracted a lot of attention. The first important results in this
topic were constructed numerically. In particular, Droz,
Heusler, and Straumann [16] (following the findings of
Luckock and Moss [17]) constructed black hole solutions
with a nontrivial Skyrme hair with a spherically symmetric
ansatz. Such counterexample to the no-hair conjecture is
also stable against linear perturbations [18]. In [19,20]
gravitating solitons and their dynamical features have been
also considered.

When the Skyrme coupling constant vanishes, the
Skyrme action reduces to the nonlinear sigma model,
which is a very important effective field theory in itself.
The applications of the nonlinear sigma model range from
quantum field theory to statistical mechanics systems, to
the quantum hall effect, to superfluid 3He and string theory
[21]. The main use for the SUð2Þ nonlinear sigma model is,
probably, the description of the low-energy dynamics of
Pions (see for instance [22], or for a detailed review [23]).
Therefore, the Einstein nonlinear sigma model system is
also a very important topic, and the construction of
analytical solutions is as relevant as the Einstein-Skyrme
system itself, since in the same way, until recently only
numerical solutions had been found.1

It is worthwhile to emphasize that the search for analytic
solutions in models such as the Skyrme model, the non-
linear sigma model and their gravitating counterparts is not
just of academic interest. For instance it was a well known
fact, from a numerical point of view, that the Skyrmions in
flat spaces becomes unstable, when a too large isospin
chemical potential is introduced. But only very recently, in
[25,26], it was derived an analytic formula for this critical
chemical potential which also clarifies the physical mecha-
nism behind this instability. The hope is that these
techniques, which lead to such important step in the
analysis of the Skyrme phase diagram on flat spaces, will
also be useful in clarifying the phase diagrams of hairy
black holes in the Einstein-Skyrme system, as well as in the
Einstein-nonlinear sigma model system. Besides the intrin-
sic interest of these phase diagrams, the hairy black holes
and black strings solutions which will be constructed here*marco.astorino@gmail.com
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1If a suitable interaction potential is included, some interesting
analytic solutions can be constructed [24].
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have potentially many applications in the context of
AdS=CFT correspondence (see [27,28] and references
therein).
Using some recent results on the generalization of

the hedgehog ansatz to nonspherically symmetric configu-
rations2 [29–46], we construct analytic black holes with flat
horizons possessing a discrete hairy parameters: to the best
of authors knowledge, these are the first examples of this
type in Einstein-Skyrme theory. The thermodynamics of
these black holes is analyzed in details and a very rich
phase diagram is disclosed.
The same techniques also allow to construct black strings

in the (3þ 1)-dimensional Einstein nonlinear sigma model
theory with negative cosmological constant: the (2þ 1)-
dimensional transversal sections of these black strings
correspond to a charged Bañados-Teitelboim-Zanelli
(BTZ) black hole. The novel feature of these black strings
is that (unlike what happens, for instance, in the BTZ black
string constructed in [47]) the present charged BTZ black
string has no warping factor as the metric is really the direct
product of a charged BTZ with a line.
In the following section we review the Einstein-Skyrme

and Einstein nonlinear sigma model systems. In Sec. III, a
pedagogical overview of the generalized hedgehog ansatz
is presented and the matter field and metric ansatz are
constructed. In Sec. IV, the field equations and the solutions
for some interesting cases are shown. In Sec. V, thermo-
dynamics and stability of our solutions is discussed.
Concluding remarks and future prospects are summarized
in the last section. Some useful formulas are collected in the
Appendix.

II. THE SUð2Þ EINSTEIN-SKYRME AND
EINSTEIN-NONLINEAR SIGMA

MODEL SYSTEMS

The Skyrme Lagrangian describes the low-energy inter-
actions of pions or baryons. This observation of Skyrme
was, and still is, remarkable because it provided with the
first example of a purely bosonic Lagrangian able to
describe both bosonic and fermionic d.o.f. The SUð2Þ
Skyrme field is a SUð2Þ-valued scalar field described by the
following action

S ¼ SG þ SSkyrme; ð2:1Þ

where the gravitational action SG and the Skyrme action
SSkyrme are given by

SG ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ; ð2:2Þ

SSkyrme¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Tr

�
F2
π

16
RμRμþ

1

32e2
FμνFμν

�
: ð2:3Þ

Here Rμ and Fμν are defined by

Rμ ¼ U−1∇μU; ð2:4Þ

Fμν ¼ ½Rμ; Rν�; ð2:5Þ

while G is the Newton constant and the positive parameters
Fπ and e are fixed by comparison with experimental data.
The Skyrme fields satisfy physically reasonable condition,
such as the dominant energy condition [48].
For convenience, defining K ¼ F2

π=4 and λ ¼ 4=ðe2F2
πÞ,

we write the Skyrme action as

SSkyrme ¼
K
2

Z
d4x

ffiffiffiffiffiffi
−g

p
Tr

�
1

2
RμRμ þ

λ

16
FμνFμν

�
: ð2:6Þ

The nonlinear sigma model corresponds to the λ → 0 limit
of the above action. The resulting Einstein equations are

Gμν þ Λgμν ¼ 8πGTμν; ð2:7Þ

where Gμν is the Einstein tensor and

Tμν ¼ −
K
2
Tr

��
RμRν −

1

2
gμνRαRα

�

þ λ

4

�
gαβFμαFνβ −

1

4
gμνFαβFαβ

��
: ð2:8Þ

The Skyrme equations are written as

∇μRμ þ
λ

4
∇μ½Rν; Fμν� ¼ 0: ð2:9Þ

Hence, the full Einstein-sigma model field equations
correspond to the λ → 0 limit in Eqs. (2.7)–(2.9).
The winding number for a given solution is given by

B ¼ 1

24π2

Z
ρB; ρB ¼ TrðϵijkAiAjAkÞ: ð2:10Þ

It is well known (see, for instance, [21] and references
therein) that the above integral is a conserved topological
charge of the theory. When the topological density ρB is
integrated on a spacelike surface, B is the baryon number of
the configuration.
Here Rμ is expressed as

Rμ ¼ Ri
μτi; ð2:11Þ

in the basis of the SU(2) algebra generators

2The techniques developed in these references are very flexible
as they apply to the Skyrme model (both without and with extra
moduli d.o.f.), to the Skyrme-Einstein system as well as to the
Yang-Mills-Higgs theory.
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τk ¼ iσk;

(where σk are the Pauli matrices, the Latin index i ¼ 1, 2, 3
corresponds to the group index, which is raised and lowered
with the flat metric δij), which identically satisfy

τiτj ¼ −δij1 − εijkτk; ð2:12Þ

where 1 is the identity 2 × 2 matrix and εijk and εijk

are the totally antisymmetric Levi-Civita symbols with
ε123 ¼ ε123 ¼ 1.
The standard parametrization of the SU(2)-valued scalar

UðxμÞ:

UðxμÞ ¼ Y01þ Yiτi; U−1ðxμÞ ¼ Y01 − Yiτi; ð2:13Þ

where Y0 ¼ Y0ðxμÞ and Yi ¼ YiðxμÞ satisfy

ðY0Þ2 þ YiYi ¼ 1: ð2:14Þ

Thus, as expected in the SUð2Þ case, the theory describes
three scalar d.o.f. [due to the constraint in Eq. (2.14)]. From
the definition (2.4), Rk

μ is written as

Rk
μ ¼ εijkYi∇μYj þ Y0∇μYk − Yk∇μY0: ð2:15Þ

Another convenient way (which will be used in the
following) to describe SUð2Þ-valued scalar field uses the
Euler angle representation (for a detailed review see [49]).
In this representation, the most general SUð2Þ-valued scalar
field can be written as

UðxμÞ ¼ eτ3u1ðxμÞeτ2u2ðxμÞeτ3u3ðxμÞ: ð2:16Þ

As it happens in the standard representation for SUð2Þ-
valued scalar field [in Eqs. (2.13) and (2.14)], in the Euler
angle representation3 in Eq. (2.16) there are three scalar
d.o.f.: the three scalar functions u1ðxμÞ, u2ðxμÞ and u3ðxμÞ.
Thus, in order to solve the Skyrme field equations in the
Euler angle representation one needs to construct a good
ansatz for u1ðxμÞ, u2ðxμÞ, and u3ðxμÞ: we will outline the
strategy to build such an ansatz in the next section.

III. MATTER FIELD AND METRIC ANSATZ

A very important class of black holes both from the
strictly theoretical viewpoint as well as from the point of
view of holographic applications corresponds to hairy
black holes with flat horizons and negative cosmological

constant (see [27,28] and references therein). The interest
in black holes with hairy parameters arises from the fact
that often such black holes exhibit a very complex
thermodynamical behavior. The interest in having flat
horizons with negative cosmological constant lies in the
possibility to describe, via the AdS=CFT correspondence,
very interesting field theories on the boundary of the black
hole space-time itself. It is usually quite difficult to
construct hairy black holes in sectors of the standard model
minimally coupled with general relativity. These consid-
erations are behind our interest in constructing this type of
configurations within the Einstein-Skyrme system as it
describes the minimal coupling of (the low energy limit of)
QCD with general relativity.

A. The main theoretical tool: The generalized
hedgehog ansatz

In this subsection, the concept of hedgehog ansatz in the
Einstein-Skyrme system will be shortly described. The
technical difficulty to construct analytic black hole con-
figurations in the Einstein-Skyrme system arises from the
fact that already the Skyrme field equations on flat space-
times in themselves are a very difficult nut to crack (see [4]
and references therein). Thus, one may argue that the
situation in the coupled Einstein-Skyrme system is even
worse. In fact, quite recently an effective strategy suitable
to deal with this type of problems has been developed in the
Refs. [29–44]. Such a strategy is divided into two steps.
The first step: identify the symmetries of the space-times

of interest in such a way to distinguish clearly the Killing
coordinates from the non-Killing coordinates of the metric.
The second step: choose the SUð2Þ valued ansatz U in

such a way that it also depends on the Killing coordinates
of the metric4 of interest with the additional (very impor-
tant) condition

L
K
!U ≠ 0; L

K
!TU

μν ¼ 0; ð3:1Þ

where L
K
! is the Lie derivative along the Killing fields

(denoted by K
!
) of the metric while TU

μν is the energy-
momentum tensor [defined in Eq. (2.8)] corresponding to
the SUð2Þ valued ansatz U itself. The possibility to
implement the above strategy arises from the nontrivial
internal symmetry group of the field theory minimally
coupled with gravity.
The requirement in Eq. (3.1) asks to find an ansatz

which is not invariant under the symmetries of the metric
but which, nevertheless, possesses an energy-momentum

3If necessary, one can pass from one representation to the other
(as it is a standard computation to express u1ðxμÞ, u2ðxμÞ and
u3ðxμÞ in terms of the Y0 and Yi in Eqs. (2.13) and (2.14) using,
for instance, the results in [49]). However, the novel results
presented here are more easily expressed in the Euler angle
representation.

4It is worth to emphasize that, in the simple case of one scalar
field (without internal symmetries) minimally coupled with
general relativity, this is not what one would do. Consider, for
instance, a static spherically symmetric space-time. The most
obvious ansatz for the scalar field would be to assume that the
scalar field only depends on the (non-Killing) radial coordinate.
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tensor which is compatible with the symmetries of the
space-time of interest. Such a condition is somehow rigid
since often it allows to determine the functional form of the
ansatz itself almost completely.
Once Eq. (3.1) has been satisfied, it is usually a quite

easy task to verify whether or not there is still enough
freedom left in U to be able to solve (at least numerically)
the Skyrme field equations in the metric of interest.
Thus, the above two steps (and in particular Eq. (3.1)

summarize the generalized hedgehog ansatz.
The word “generalized” arises from the following fact. In

the original papers by Skyrme [2], the spherically sym-
metric hedgehog ansatz was

USðxμÞ ¼ cosðαðrÞÞ1þ sinðαðrÞÞnjτj; ð3:2Þ

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð3:3Þ

n1¼ sinθcosφ; n2¼ sinθsinφ; n3¼ cosθ; ð3:4Þ

where αðrÞ is the so-called Skyrmion profile. Although
Skyrme arrived at his ansatz following a different reason-
ing, it is a direct computation to verify that the ansatz in
Eqs. (3.2) and (3.4) satisfies Eq. (3.1) in which the Killing
fields K⃗ correspond to the SOð3Þ rotations of the flat metric
in Eq. (3.3). In other words, the Skyrme ansatz could have
been found solving Eq. (3.1) in a spherically symmetric
metric in which the Killing fields K⃗ correspond to the
SOð3Þ rotations. Once the functional form of the ansatz has
been restricted by Eq. (3.1), one can plug in it into the three
Skyrme field equations Eq. (2.9) corresponding to the
metric with the Killing fields K⃗. In the original case
analyzed by Skyrme, it can be directly verified that when
one plugs Eqs. (3.2) and (3.4) into Eq. (2.9) [for the metric
in Eq. (3.3)] the three Skyrme field equations become
proportional, so that the full system of three coupled field
equations reduces to just one scalar equation for the
Skyrmion profile αðrÞ.
All the above very convenient properties of the original

spherical hedgehog ansatz are well known of course.
However, what was not widely appreciated in the literature
is that one can construct ansatz with similar nice properties
even without spherical symmetry. The key point is that the
condition in Eq. (3.1) makes sense in more general
situations than spherically symmetric space-time. Indeed,
this simple observation in [29,30] allowed to find the first
nontrivial analytic solutions in Skyrme and Einstein-
Skyrme theories in [25,26,31,32,36]. These are the reasons
behind the name generalized hedgehog ansatz.
In the present case, there is an additional technical

problem. We are interested in hairy black holes, thus we
look for configurations possessing neither topological nor
Noether charges related with the isospin symmetry. This
issue will be analyzed in the next subsection.

1. An example

Before going into the details of the novel results, here we
will describe an example (which corresponds to the first
analytic gravitating Skyrmions in (3þ 1)-dimensional
Einstein-Skyrme system found in [36]) in which the
strategy outlined above works perfectly. Let us consider
the following space-time metric (the first step of the
strategy)

ds2 ¼ −dt2 þ ρðtÞ2½ðdγ þ cos θdφÞ2 þ dθ2 þ sin2θdφ2�;
ð3:5Þ

0 ≤ γ < 4π; 0 ≤ θ < π; 0 ≤ φ < 2π: ð3:6Þ

The spatial (t ¼ const) sections of the above metric are
three-spheres. Consequently, the above metric possesses all
the Killing fields of the three-sphere (and γ, θ and φ can be
considered to be Killing coordinates). The only nontrivial
“non-Killing” coordinate is the time t.
The second step of the strategy corresponds to find an

ansatz of U ∈ SUð2Þ such that

LK⃗U ≠ 0; LK⃗T
U
μν ¼ 0;

where K⃗ are the Killing field of the three-sphere. The
solution to the above condition is given by

UðxμÞ ¼ Y0ðxμÞI� YiðxμÞti; ðY0Þ2 þ YiYi ¼ 1;

Y0 ¼ cosα; Yi ¼ ni sinα;

n1 ¼ sinΘ cosΦ; n2 ¼ sinΘ sinΦ; n3 ¼ cosΘ

ð3:7Þ

where

Φ¼ γþφ

2
; tanΘ¼ cotðθ

2
Þ

cosðγ−φ
2
Þ ; tanα¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2Θ

p

tanðγ−φ
2
Þ :

ð3:8Þ

As it has been already emphasized, at a first glance the
situation is quite dangerous since the condition in Eq. (3.1)
is rather rigid as, in this example, it fixes the ansatz for the
SUð2Þ-valued scalar field completely while the Skyrme
field equations have not been considered yet. Nevertheless,
remarkably (as it was shown in [36]), when one plugs the
ansatz in Eqs. (3.7) and (3.8) into the Skyrme field
equations in Eq. (2.9) in the metric in Eq. (3.5), the
Skyrme field equations are identically satisfied. Thus,
despite the fact that the condition in Eq. (3.1) gives rise
to an ansatz in which, basically, there is no freedom left, the
resulting ansatz is very well suited to solve the Skyrme field
equations. Thus, we are only left with the problem to solve
the Einstein equation with the energy-momentum tensor in
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Eq. (2.8) corresponding to the ansatz in Eqs. (3.7) and (3.8).
In fact, the generalized hedgehog strategy has been
designed in such a way that this last step is compatible:
the condition LK⃗T

U
μν ¼ 0 precisely ensures that the result-

ing energy-momentum tensor is a consistent source for the
metric in Eq. (3.5). A direct computation shows [36] that
the Einstein-Skyrme equations reduce5 in this example to

ρ02¼Λ
3
ρ2þ λκK

32ρ2
þκK−2

8
; ρ00 ¼Λ

3
ρ2−

λκK
32ρ3

; ð3:9Þ

where ð0Þ denotes derivative with respect to the time
coordinate, t. In the following sections, it will be shown
that this strategy works very well even when the metric of
interest has different symmetries.

B. The concrete ansatz for the novel solutions

The first step of the generalized hedgehog strategy is to
identify the symmetries of the class of metric of interest. In
the present case, the natural metric ansatz describing both
black holes with flat horizons and black strings is

ds2¼−AðrÞdt2þBðrÞdr2þCðrÞdθ2þDðrÞdϕ2; ð3:10Þ

where the range of the angular coordinates can be fixed as

0 ≤ θ ≤ π; 0 ≤ ϕ ≤ 2π: ð3:11Þ

The second step requires to solve Eq. (3.1) for a SUð2Þ
valued scalar field which also depend on the Killing
coordinates θ and ϕ of the metric in Eq. (3.10). Form
the viewpoint of the generalized hedgehog approach, the
simplest possibility is actually to search for an ansatz U
which only depends on such Killing coordinates θ and ϕ.
As it will be now shown, this approach does lead to novel
and interesting solutions. A further motivation behind this
choice is that we are interested in black holes with hairy
parameters. These configuration are easier to identify in
case of absence of extra parameters related to topological or
Noether charges coming from the SUð2Þ symmetry of the
matter field. The simplest way to avoid the presence of a
nonvanishing topological charge is to allow the matter field
to only depend on two coordinates (which, according to the
generalized hedgehog strategy, should then be Killing
coordinates) as in this case ρB in Eq. (2.10) vanishes
identically.
In the cases in which the Killing fields of the metric of

interest are commuting [as for the metric in Eq. (3.10)] it is
more convenient to use the Euler angle representation in
Eq. (2.16). The simplest nontrivial possibility is

U ¼ eτ2u2ðθ;ϕÞeτ3u3ðθ;ϕÞ; ð3:12Þ

with ui two real functions of the Killing coordinates θ and
ϕ so that, obviously, one has

LK⃗U ≠ 0

where

K⃗ ¼ ð∂θ; ∂ϕÞ:

It is worth to emphasize here that the ansatz in Eq. (3.12)
does not possess Noether charges associated to the internal
symmetry group of the theory (the global Isospin group
SUð2Þ in the present case). The reason is that such a
Noether charge would be the spatial integral of the time-
component of the corresponding Noether current. On the
other hand, the time-component of the Noether current is
proportional to

Jt ∼U−1∂tU þ λ

4
½U−1∇νU;Ftν�;

Ftν ¼ ½U−1∂tU; U−1∂νU�;

so that it vanishes identically since the configuration is
static. Hence, the ansatz for the scalar field we will consider
here does carry neither topological nor Noether charges.
The (second part of the) second step of the strategy is

now to solve the following equation

LK⃗T
U
μν ¼ 0

in which TU
μν is the energy-momentum tensor [defined in

Eq. (2.8)] corresponding to the ansatz in Eq. (3.12) and to
the metric in Eq. (3.10). The solution to the above condition
is given by u2ðθÞ ¼ b1θ=2 and u3ðϕÞ ¼ b2ϕ=2. In matrix
form, this solution corresponds to the following U:

U¼
 

e
ib2ϕ
2 cosðb1θ

2
Þ e−

ib2ϕ
2 sinðb1θ

2
Þ

−e
ib2ϕ
2 sinðb1θ

2
Þ e−

ib2ϕ
2 cosðb1θ

2
Þ

!
; bi∈R: ð3:13Þ

Once again, as it also occurred in the example described in
the previous subsection, the ansatz produced by the present
strategy is quite rigid and, in this case, only two integration
constants (b1 and b2) are left.
Nevertheless, also in this case a direct computation

reveals that the Skyrme field equations Eq. (2.9) with the
ansatz in Eqs. (3.12) and (3.13) are identically satisfied in
any metric of the form in Eq. (3.10). This is the big
technical achievement of the generalized hedgehog strategy
developed in [29–44]: it allows to reduce the full Einstein-
Skyrme system just to the Einstein equations with the
energy-momentum tensor of the Skyrme field (as the
Skyrme field equations, which usually are the difficult

5Note that these equations corresponds to the ones in Ref. [36]
by rescaling ρ → 2ρ.
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part of the problem, are identically satisfied). Moreover, by
construction, the energy-momentum tensor is compatible
with the symmetries of the metric of interest [due
to Eq. (3.1)].

1. The topology of the horizon

In this article we will be mainly interested in compact
horizons, therefore we need to impose (anti)periodic
boundary conditions for the Skyrme field (see [4,12]), that
is, any solution of the form in Eq. (3.13) of the Skyrme field
equations in the metric Eq. (3.10) must satisfy

Uðθ;ϕÞ ¼ �Uðθ þ nπ;ϕþ 2mπÞ;

with n, m integers. In order to have a well defined U the
integration constants bi must be integers numbers,6

fb1; b2g ∈ N: ð3:14Þ

These bi parameters, as can be seen from (3.13), are related
to number of coverings of the SUð2Þ group. The angles
identifications we are considering determines not only the
topology of the event horizon but also the global topology
of the spacetime, even in the asymptotic region. This means
that even though the metric, for large values of the radial
coordinate, behaves locally as the anti-de-Sitter space, as
can be easily seen from the curvature tensors, the asymp-
totic region does not recover globally the full AdS4
spacetime. Therefore when the radial coordinate goes to
infinity the spacetime we are studying here are only
asymptotically locally anti-de-Sitter. The great physical
interest of these configurations is that they show very
clearly that the Skyrme contribution to the action is quite
relevant even for purely pionic configurations without
baryon charge. For instance, as it will be shown below,
it gives rise to a black hole metric with a 1=r2-term which
mimics the presence of a Maxwell source.

IV. ANALYTICAL SOLUTIONS

In the previous section we have reduced consistently the
full Einstein-Skyrme system for the metric in Eq. (3.10) and
the Skyrme ansatz in Eqs. (3.12) and (3.13) to the Einstein
equations with the Skyrme energy-momentum tensor
corresponding to the ansatz in Eqs. (3.12) and (3.13). In
principle there are four coupled nonlinear differential
equations (see Appendix), but it is possible to show that
one of these is a combination of the others because of the
Bianchi’s identity and the form of the metric ansatz for the

matter field. In this section we show some relevant cases
where it is possible to integrate the system analytically.
In what follows we will consider BðrÞ ¼ 1=AðrÞ and
κ ¼ 8πG.

A. Hairy black hole

If we take CðrÞ ¼ r2 and DðrÞ ¼ b2
2

b2
1

r2, the field equa-

tions leads to

AðrÞ ¼ −
b21κK
4

−
m
r
−
Λ
3
r2 þ b41κKλ

32

1

r2
;

where m is an integration constant. The metric

ds2 ¼ −
�
−
b21κK
4

−
m
r
−
Λ
3
r2 þ b41κKλ

32r2

�
dt2

þ dr2

− b2
1
κK
4

− m
r −

Λ
3
r2 þ b4

1
κKλ

32r2

þ r2dθ2 þ b22
b21

r2dϕ2;

ð4:1Þ
represents a hairy black hole with flat horizon. This
solution reduce to the black hole of [44] when λ ¼ 0,
while it is the natural flat horizon generalization of the
spherical metric found in [30]. Black hole with flat horizons
are especially relevant in view of their holographic appli-
cations (see, for instance, [47]). For λ ¼ 0 there is only one
real root for the AðrÞ function which corresponds to the
event horizon rþ

rþ ¼
b21κKΛ−

�
12mΛ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ3ðb61ðκKÞ3 þ 144m2ΛÞ

q �
2=3

2Λ
�
12mΛ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ3ðb61ðκKÞ3 þ 144m2ΛÞ

q �
1=3 :

ð4:2Þ

For λ ≠ 0, the roots of AðrÞ can also be found analytically,
but they are more involved than the ones of (4.2), because
the algebraic equation becomes of fourth order, thus is more
instructive to draw them as function of the mass parameter
m as in Fig. 1. Interestingly enough, as is shown in the
figure, neither the mass of the black hole nor the event
horizon radius can be arbitrarily small because the event
horizon is not defined for small masses, unlikely the
standard general relativity case. Even in the λ ¼ 0 case,
where there is only one killing horizon, from Eq. (4.2) one

infers that the mass parameter should satisfym ≥ b3
1
ðκKÞ3=2

12
ffiffiffiffiffi
−Λ

p in

order the square root to be real. Therefore, the event
horizon cannot be arbitrarily small either but, for the
extremal value of the mass parameter, which saturate the

previous inequality, it can be reduce at most to r̄þ ¼ b1
ffiffiffiffiffi
κK

pffiffiffiffiffi
−Λ

p .

This latter feature of the bi parameter resemble the
electric charge of the Reissner-Nordstrom solution, but, in
the Skyrme case, the parameters bi must be quantized due

6In principle, one can choose a different range for the
coordinates to rescale these values with the metric functions
and coordinate definitions. Nevertheless, being integrating con-
stant of the matter field, the bi parameters cannot be completely
reabsorbed from the solution. We leave them explicitly to better
understand their physical role and relevance, as we see below.
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to the boundary conditions satisfied by the Skyrme field. In
particular, b1 plays the role of a discrete hairy parameter
(since, as we observed in the previous section, the Skyrme
configurations in Eq. (3.13) possess neither Noether
charges nor topological charges). According to this picture
the hair cannot be considered neither of a primary type,
because it cannot variate continuously, nor secondary type
because it is not completely fixed. We might consider it
belonging to an intermediate class; a sort of semiprimary
hair. The nonremovability of b1 resembles, to some extent,
the role played by the mass parameter of the three-
dimensional BTZ black hole [50]: in that case, once the
azimuthal coordinate is fixed, it cannot be reabsorbed by a
coordinate transformation to get global AdS space-time.
Moreover, in the next section, we will show how the
thermodynamics potentials depends crucially on the hair
parameters. Depending on the identifications of the coor-
dinates (θ;ϕ), the base manifold can be considered open or
compact. When the extremal points of the range of (θ;ϕ)
are identified, the base manifold becomes a topological
torus S1 × S1 with areaA ¼ 2π2r2þ

b2
b1
. In that case the ratio

b1=b2 determines the geometry of the toroidal base mani-
fold, being b1=b2 its Teichmuller parameter. Therefore,
the discrete parameters b1 and b2 can be reabsorbed by
rescaling properly the coordinates and the integration
constants only at the price of deforming the geometry of
the base manifold and the Skyrmionic field. The spacial
infinity region is asymptotically locally AdS. When the
Skyrmionic parameters coincide, b2 ¼ b1, one can take the
limit b1 → 0. In that case the contribution of the matter
field vanishes and the pure gravitational black hole solution
of [51] is recovered.

B. Charged-like BTZ-black string

When we choose CðrÞ ¼ r2 and DðrÞ ¼ L2 (with L an
arbitrary constant), the Einstein equations are satisfied only
in the sector λ ¼ 0, and leads to

AðrÞ ¼ −μ −
b21κK
4

logðrÞ − Λ
2
r2; L2 ¼ −

b22κK
4Λ

:

In the case in which the cosmological constant is negative
and the integration constant μ > 0, the resulting metric
reads

ds2 ¼ −
�
−μ −

b21κK
4

logðrÞ þ jΛj
2

r2
�
dt2

þ 1

−μ − b2
1
κK
4

logðrÞ þ jΛj
2
r2
dr2 þ r2dθ2 þ b22κK

4jΛj dϕ
2:

ð4:3Þ
This solution corresponds to a black string with one
compactified direction (namely ϕ) whose compactification

radius L ¼ b2
ffiffiffiffiffi
κK

p

2
ffiffiffiffiffi
jΛj

p has been fixed by the field equations. The

three-dimensional metric (corresponding to the ϕ ¼ const
hypersurfaces) resemble the charged BTZ black holes [52]
with mass μ and square charge b21κK=4. The nonlinear
sigma model induce an effective electric charge in the
three-dimensional metric defining the black string. It is
worth to note that, unlike what happens for instance in the
BTZ black string constructed in [47], the present charged
BTZ black string has no warping factor, as the metric is
really the direct product of a charged BTZ with a one-
dimensional line (which can be also considered compatified
in a S1 circle). It is also worth to note that it is not possible
to turn off the nonlinear sigma model, to obtain a pure
gravitational solution, as the S1 factor would be singular.
Thus, the parameter b1 plays the role of an effective electric
charge while the parameter b2 determines the size of the
compactified direction of the black string. As the great
majority of charged black holes, this string posses, in
general, both a inner and outer horizon R�. Unfortunately,
due to the presence of the transcendental function in AðrÞ,
the position of the horizon cannot be written with elemen-
tary functions, but only through the Lambert-W function
(also known as the ProductLog function) in this way

Rþ ¼ b1
ffiffiffiffiffiffi
κK

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Λ
W−1

�
4Λ
b21κK

exp

�
−8μ
b21κK

��s
; ð4:4Þ

R− ¼ b1
ffiffiffiffiffiffi
κK

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Λ
W0

�
4Λ
b21κK

exp

�
−8μ
b21κK

��s
: ð4:5Þ

As can be seen from Fig. 2, as in the previous subsection
black hole case, the event horizon Rþ cannot vanish, as it

FIG. 1. The event horizon rþ as function of the mass parameter
m is portrayed in the yellow line, while the inner horizon r− is
drawn in blue. The value of the mass, where the blue and yellow
line touches, represent the extremal case. The other two roots r3,
r4 give negative radial distance, hence, are not physically
relevant. The numerical values of the coupling constants and
of the physical parameters of the solution, for the above image,
were chosen as follows b1 ¼ b2 ¼ 1, λ ¼ 3, K ¼ 1, κ ¼ 1,
Λ ¼ −5.

BLACK HOLE AND BTZ BLACK STRING … PHYS. REV. D 97, 124032 (2018)

124032-7



happens in the pure gravity case. In the presence of the
Skyrmionic matter Rþ, depending on the values of the
parameter b1, can only reach a positive minimum value.

V. THERMODYNAMICS

A very interesting topic is the proper dynamical stability
analysis of the present black holes and black strings
solutions. The main difficulty is revealed by a direct
computation of the fully coupled linearized Einstein-
Skyrme field equations in the black hole and black string
background solutions. When the Skyrme field equations are
taken into account (due to their matrix-valued and non-
linear nature), the linearized field equations cannot be
reduced to a single master Schrodinger-like equation for the
perturbations (unlike what happens in many situations
without matter fields). This fact prevents any analytic
attempt to analyze dynamical stability. Thus, one has to
solve numerically the matrix-valued linearized field equa-
tions around the black hole and black string background
solutions. However, this point is very difficult even from
the numerical point of view and it requires suitable
generalizations of the methods available in the literature.
We hope to come back on this issue in a future publication.
On the other hand, as it is well known, the analysis of

thermodynamics of black holes and black strings solutions
(besides to be very interesting in itself) provides with very
good qualitative indications on the possible appearance of
instabilities. Thus, in this section we study the thermody-
namic of these solutions and also perform a thermody-
namical stability analysis through comparison between the
thermodynamic potentials.

A. Mass, temperature and entropy

The Hawking temperature, related to the surface gravity
κs, is given by

T ¼ κs
2π

¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
∇μχν∇μχν

r 				
rþ

¼ A0ðrþÞ
4π

; ð5:1Þ

where χ is the timelike killing vector ∂t. From the
Bekenstein-Hawking formula, we can take the entropy
as a quarter of the area

S ¼ A
4G

: ð5:2Þ

To compute the mass will use the standard ADM result, as in
[53]. Consider S as the two-dimensional spacelike surface at
spatial radial infinity at constant time. The radial orthonormal
vector to S is given by nμ ¼ ð0; ffiffiffiffiffiffi

grr
p

; 0; 0Þ, the extrinsic
curvature of S is given by Kμν ¼ ∇μnν, and its trace is
computed with the two dimensional metric of the base
manifold σμν: K ¼ σμνKμν. The Hamiltonian mass is then
given by

M ¼ −
1

8π
lim
r→∞

Z
S
ðK −K0Þ

ffiffiffiffiffiffiffiffiffi
AðrÞ

p ffiffiffiffiffiffi
jσj

p
dθdϕ; ð5:3Þ

whereK0 is the trace of the extrinsic curvature ofS embedded
in the background reference space-time. As pionic back-
ground, for the two solutions, the metrics (4.1) and (4.3), with
the vanishing mass parameters m and μ, are chosen.
It is worth to point that the mass can also be computed

within the phase space formalism [54,55], giving the same
result. Recently these results have been also confirmed,
thanks to counterterms methods [44], for similar matter. For
the black hole solution, using the above prescriptions we
can compute the temperature, entropy and mass. In terms of
the event horizon rþ we have, respectively

TBH ¼ −
Λrþ
4π

−
b21κK
16πrþ

−
b41κKλ
128πr3þ

; ð5:4Þ

SBH ¼ b2π2r2þ
2b1

; ð5:5Þ

MBH ¼ b2πm
4b1

ð5:6Þ

¼ b2π
384b1rþ

ð−32Λr4þ−24b21κKr2þþ3b41κKλÞ; ð5:7Þ

while, for the black string with horizon radius Rþ, we
obtain

TBS ¼ −
4ΛR2þ þ b21κK

16πRþ
; ð5:8Þ

FIG. 2. Killing horizons of the black string, as function of the
mass parameter μ, are pictured for b1 ¼ 1 and b1 ¼ 3. In both
cases the event horizon rþ has a lower bound, for certain values of
b1 the extremal case is not physically accessible for positive
values of the mass parameter μ.
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SBS ¼
π2b2

ffiffiffiffiffiffi
κK

p
Rþ

4
ffiffiffiffiffiffiffi
−Λ

p ; ð5:9Þ

MBS ¼
b2πμ

ffiffiffiffiffiffi
κK

p

16
ffiffiffiffiffiffiffi
−Λ

p ¼ −
b2

ffiffiffiffiffiffi
κK

p
π

64
ffiffiffiffiffiffiffi
−Λ

p ð2R2þΛþ b21κK logRþÞ:

ð5:10Þ

In both cases these quantities satisfy the first law of black
hole thermodynamics

δM ¼ TδS: ð5:11Þ

B. Thermodynamical stability analysis

From the analysis of the heat capacity, defined as

C ≔ T

�∂S
∂T
�
; ð5:12Þ

we can infer the local thermodynamic stability of the two
solutions. Written it terms of the event horizon radius, rþ
and Rþ for the black hole and the black string respectively,
it reads

CBH ¼ b2π2r2þ
b1

�
32r4þΛþ b21κKð8r2þ þ b21λÞ
32r4þΛ − b21κKð8r2þ þ 3b21λÞ

�
; ð5:13Þ

and

CBS ¼
b2

ffiffiffiffiffiffi
κK

p
π2Rþ

4
ffiffiffiffiffiffiffi
−Λ

p
�
4R2þΛþ b21κK
4R2þΛ − b21κK

�
: ð5:14Þ

The stability under thermal fluctuation occurs when the
sign of the heat capacity is positive, which means for the
black hole and black string solutions

ðBHÞ rþ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21κK þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b41κKðκK − 2λΛÞ

p
−8Λ

s
; ð5:15Þ

ðBSÞ Rþ >
b1

ffiffiffiffiffiffi
κK

p

2
ffiffiffiffiffiffiffi
−Λ

p : ð5:16Þ

These two values coincides, when the Skyrme coupling
constant λ vanishes. Note that the above inequalities (5.15)
and (5.16) are automatically satisfied for both the black
hole and black string event horizons. One might wonder if
the black string might be affected by a Gregory-Laflamme
instability, where the string may collapse in a line of black
holes [56,57].
Unfortunately, due to the complexity of the field equa-

tions, for linear perturbations, the system cannot be
uncoupled to obtain a master equation for one of the
components of the perturbation; therefore it is not possible

to integrate numerically the system in the Gregory-
Laflamme form and study the unstable modes of the
solutions. However, it is possible to analyze the stability
and phase transitions from the thermodynamic point
of view.
A necessary condition for this phenomena to occur, as

proposed in [58], is the negativity of the quantity

∂M
∂S ¼ −

b21κK þ 4R2þΛ
16πRþ

;

but in the regions of thermodynamic local stability of the
string, such as the one described by (5.16), it can not
happen. In fact, from the inspection of the entropies of the
two solutions at equal mass, we further confirm the absence
of the Gregory-Laflamme instability in our setting. More
specifically, from Eqs. (5.7) and (5.10), we can impose the
equal mass constraint to express rþðRþÞ and plot both, the
black hole and black string entropy at equal mass as a
function of Rþ. As shown in Fig. 3, instability is not likely
to occur because the black hole entropy, at equal mass and
Skyrme parameters bi, is always bigger than the black
string one.
Some further indication of the thermodynamic stability

may come from the study of the free energies of the two
solutions. Thus, we consider the free energy F ¼ M − TS
of the black hole and of the black string, which in terms of
their event horizon are, respectively

FBH ¼ b2π
768b1rþ

ð9b41κKλ − 24b21κKr
2þ þ 32Λr4þÞ; ð5:17Þ

FIG. 3. Entropyof the blackhole (blue line) andof the black string
(yellow line) at equal mass in terms of the string horizon Rþ. The
black hole entropy is always above the string entropy, therefore,
the string is not expected to decay into the black hole configuration,
for the chosen parameter set. The picture is drawn for the fixed
parameters b1 ¼ 2, b2 ¼ 1, Λ ¼ −7, κ ¼ 1 and K ¼ 1, but do not
changequalitatively for others admissible parametric sets,where the
entropies are well defined functions of the horizons.
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FBS ¼
b2

ffiffiffiffiffiffi
κK

p
π

64
ffiffiffiffiffiffiffi
−Λ

p ½b21κK þ 2R2þΛ − b21κK logðRþÞ�: ð5:18Þ

To obtain the free energy in terms of the temperature is
sufficient to invert Eqs. (5.4) and (5.8), take the only
positive root to get rþðTÞ and RþðT) and substitute
respectively into (5.17) and (5.18). The resulting analytical
expression of the free energy as a function of the temper-
ature FðTÞ is a little cumbersome. Thus, is more significant
to draw some picture of the free energy for some fixed
values of the parameters to appreciate, in particular, the
dependence with respect to the parameter b1, as can be seen
in Figs. 4 and 5.
We recall that b1 ¼ 0 represent the vacuum solution

for the black hole case. Configurations with bigger values
of bi are thermodynamically favored (as embodied, for
instance, by b1 ¼ 1 and b2 ¼ 2 in Fig. 4) with respect to
the pure gravitational solution because the free energy is
lower. The situation can change for different values of the
bi for the black hole case. In particular, as can be seen in
the above graphs, there are critical values of the temper-
ature, depending on the values of the parameters, where
free energies of two different configurations intersect,
thus phase transition might be expected if discrete bi
variations are allowed. The same qualitative behavior can
be read from the graph of the black string, but one have
to remember that in this case the comparison with the
vacuum solution is not possible because proper black
string in pure general relativity without matter are
not known.

VI. SUMMARY AND PERSPECTIVES

In this paper we have constructed the first examples, to
the best of authors knowledge, of analytic hairy black holes
with a flat toroidal horizons in the (3þ 1)-dimensional
Einstein SUð2Þ-Skyrme system with negative cosmological
constant. The periodic boundary conditions satisfied by the
Skyrme configurations introduce a discrete hairy parameter
(as these black hole solutions possess neither topological
nor Noether charges). Such hairy parameter can be con-
sidered neither primary (since it does not vary continu-
ously) nor secondary (since it can vary in a discrete set).
The solution is asymptotically locally AdS. The thermo-
dynamics of the hairy black hole has been analyzed in
detail. The behavior one obtains is qualitatively similar to
the recent results found numerically in [59] in a different
context.
Using similar techniques, we have constructed a black

string in the (3þ 1)-dimensional Einstein non-linear sigma
model theory with negative cosmological constant. The
(2þ 1)-dimensional transversal sections of these black
strings correspond to a charged BTZ black hole. In this
case the role of the electromagnetic field is played by the
pionic coupling constant. These configurations can be
considered as a proper black string since there is no
warping factor.
The exact hairy black hole solutions with flat horizons

constructed here have potentially applications in the con-
text of the AdS=CFT correspondence (see [27] and
references therein). We hope to analyze in more details
these applications in a future publication.
Another very interesting topic is the dynamical stability

analysis of the present black holes and black strings
solutions. As it has been explained in the previous sections,
this point is very difficult even from the numerical point of
view. The main issue is related to the fact that, when the
Skyrme field equations are taken into account, the fully
coupled linearized Einstein-Skyrme system cannot be
reduced to a single master Schrodinger-like equation for

FIG. 4. Free energy FðTÞ as a function of the temperature T for
the black hole configuration, at some different values of the
parameters bi. The dashed line corresponds to the vacuum
solution which is not always favoured thermodynamically with
respect to the hairy one. In fact configurations with b1 ¼ 1 (the
red and yellow lines) have always a minor free energy with
respect to the vacuum case. Thermodynamic phase transitions can
be expected, at a certain critical temperatures located at the
intersection of the free-energy lines, for different values of the
integers hairy parameters.

FIG. 5. Free energy FðTÞ as a function of the temperature T for
the black string configuration, at some different values of the
parameters bi.

ASTORINO, CANFORA, LAGOS, and VERA PHYS. REV. D 97, 124032 (2018)

124032-10



the perturbations as the linearized field equations do not
decouple (unlike what happens in many situations without
matter fields). Thus, one has to solve (numerically) a
system of (at least) tree coupled differential equations.
We hope to come back on this issue in a future publication.
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APPENDIX MAIN EQUATIONS

1. Field Equations

The coupled nonlinear differential equations of the
Einstein-Skyrme system for AðrÞ, BðrÞ, CðrÞ and DðrÞ
are given by

8A0ðCDÞ0 þ A½Bðb22κKðb21λþ 4CÞ
þ 4Dðb21κK þ 8ΛCÞÞ þ 8C0D0� ¼ 0; ðA1Þ

− 8BCD2A02 − 8ACD½A0ðDB0 − BD0Þ − 2BDA00�
− A2½B2Dðb21κKðb22λþ 4DÞ − 4Cðb22κK þ 8ΛDÞÞ
þ 8CDB0D0 þ 8BCðD02 − 2DD00Þ� ¼ 0; ðA2Þ

− 8BC2DA02 − 8ACD½A0ðCB0 − BC0Þ − 2BCA00�
− A2½B2Cðb22κKðb21λþ 4CÞ − 4Dðb21κK þ 8ΛCÞÞ
þ 8CDB0C0 þ 8BDðC02 − 2CC00Þ� ¼ 0; ðA3Þ

B2CD½b21κKðb22λþ 4DÞ þ 4Cðb22κK þ 8ΛDÞ�
− 8CDB0ðCDÞ0 − 8B½C2D02 þD2ðC02 − 2CC00Þ
− CDðC0D0 þ 2CD00Þ� ¼ 0: ðA4Þ

2. Gravitating regular solution

If we choose CðrÞ ¼ 1 in the field equations and
integrate the system, the following relations

DðrÞ ¼ b22
b21

; Λ ¼ −
1

32
b21Kκð8þ b21λÞ; ðA5Þ

reduces the system to a single equation, that can be easily
solved to obtain

AðrÞ ¼ C1 þ C2rþ
1

16
b21Kκð4þ b21λÞr2; ðA6Þ

with C1, C2 integration constants. This metric have no
curvature singularity and represents a four-dimensional
space-time that is the product of two two-dimensional
space-times with constant curvature; namely ðAÞdS2 ×R2.
When the two integration constants C1 and C2 are

chosen appropriately, the metric in Eqs. (3.10), (A5),
and (A6) with CðrÞ ¼ 1 can be interpreted as the near
horizon geometry of the hairy black hole (analyzed in the
following section).
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