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We find hairy black holes of Einstein-Maxwell theory with a complex scalar field that is confined inside
a box in a Minkowski background. These regular hairy black holes are asymptotically flat, and thus the
presence of the box or mirror allows us to evade well-known no-hair theorems. We also find the Israel
surface stress tensor that the confining box must have to obey the energy conditions. In the zero horizon
radius limit, these hairy black holes reduce to a regular asymptotically flat hairy soliton. We find our
solutions using perturbation theory. At leading order, a hairy black hole can be seen as a Reissner-
Nordstrom black hole placed on top of a hairy soliton with the same chemical potential (so that the system
is in thermodynamic equilibrium). The hairy black holes merge with the Reissner-Nordstrom black hole
family at the onset of the superradiant instability. When they coexist, for a given energy and electric charge,
hairy black holes have higher entropy than caged Reissner-Nordstrom black holes. Therefore, our hairy
black holes are the natural candidates for the end point of charged superradiance in the Reissner-Nordstrom
black hole mirror system.
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I. INTRODUCTION

In the 1970s, Press and Teukolsky introduced the
possibility of placing a Kerr black hole inside a mirror
with reflecting boundary conditions [1]. Bosonic fields
scattering the central horizon can be amplified due to
superradiance and then, at the mirror, reflected back to the
central core of the spacetime. The multiple amplification/
reflection process makes the system unstable. For this
reason, Press and Teukolsky coined this system the “black
hole bomb” [1].
If the system has electric charge, we can also have static

black hole bomb systems [2–19]. All we need is a charged
bosonic field, e.g., a charged complex scalar field, with
charge q scattering a Reissner-Nordström black hole with
chemical potential μ that is placed inside a box that reflects
the bosonic wave. Such a system is unstable to super-
radiance [2–6]. In addition, it is also unstable to the near-
horizon condensation instability [20]. In the case of scalar
waves, the frequency spectrum and instability timescales of
the Reissner-Nordström black hole bomb system have been
studied in detail in the literature [2–6,14,20]. The time
evolution of the instabilities was also analyzed in recent
studies [11–13]. These Cauchy evolutions indicate that the
original Reissner-Nordström-mirror system, when per-
turbed by a scalar field, evolves toward a charged hairy
black hole with a scalar field floating above the horizon.

In this paper, we will study the phase diagram of static
asymptotically flat (regular) solutions of the Einstein-
Maxwell theory with a complex scalar field confined inside
a box. In particular, this can be the phase diagram in the
microcanonical ensemble, in which we plot the entropy of
the solutions as a function of their mass and electric charge.
To be meaningful, we use dimensionless quantities mea-
sured in units of the box radius L. A familiar member of
this phase diagram is the Reissner-Nordström black hole
placed inside the cavity. The interior solution of this caged
Reissner-Nordström black hole has already been discussed
in the seminal works [21–23] and, more recently, in
Refs. [8,24]. This solution has vanishing scalar field but
is linearly unstable to a scalar field perturbation, as
discussed above. At the onset of the instability, the scalar
field perturbation is regular both at the past and future event
horizons of the black hole. Consequently, we might expect
that the backreaction of this linear scalar perturbation to
higher orders in perturbation theory results in a black hole
solution that is regular everywhere and asymptotes to
Minkowski spacetime. By continuity, this hairy black hole
solution should extend away from the onset curve. That is
to say, in the phase diagram, the instability onset curve of
caged Reissner-Nordström black holes should also signal a
bifurcation to a new branch of solutions of asymptotically
flat hairy black holes. This new family should exist for a
wide range of mass and electric charge. In particular, this
should lead to nonuniqueness of solutions since hairy and
caged Reissner-Nordström black holes should exist with
the same mass and charge.
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Given that the caged Reissner-Nordström black hole is
unstable to the scalar field, we should further expect that, in
the region of mass and charge where they coexist, hairy
black holes have higher (dimensionless) entropy than caged
Reissner-Nordström black holes. If this is the case, an
unstable caged Reissner-Nordström black hole would
naturally evolve in time into the hairy black hole with
the same mass and charge while preserving the second law
of thermodynamics. That is to say, these hairy black holes
should describe the end point of the time evolution
simulations done in Refs. [11–13].
Additionally, it seems also reasonable to expect that the

hairy black holes that we have been describing should have
a zero horizon radius limit where they reduce to a hairy
soliton solution. This would be a horizonless asymptoti-
cally flat solution with a scalar field confined inside the
Minkowski cavity. Again, gravitational collapse would be
balanced by the electric repulsion. Under a Uð1Þ gauge
transformation, this hairy soliton has a dual boson star
description whereby the scalar field with frequency ω has
time dependence eiωt. Such a solution is expected to exist
since it should be the backreaction of a normal mode that
fits inside a Minkowski cavity (however, the gravitoelectric
fields would have no time dependence since they are
sourced by the norm of a complex scalar field).
To confirm these expectations, we must solve the

equations of Einstein-Maxwell theory with a complex
scalar field that is forced to be confined inside the box.
It is the purpose of this paper to find the hairy black hole
and solitonic solutions of this theory. Reference [8] already
discussed some thermodynamic properties of these hairy
solutions in the grand-canonical ensemble. However,
Ref. [8] constructed these solutions numerically and
focused their attention on the description of the solutions
only in the interior of the box. We will complement and
extend their analysis in distinct directions. First, we find the
hairy solutions analytically within perturbation theory,
which will allow us to unveil physical aspects of the
solution. More importantly, we will extend the solutions
beyond the cavity and construct the full solution also in the
exterior region. This is fundamental to finding the energy
momentum of the box, i.e., the Lanczos-Darmois-Israel
surface stress tensor that the cavity must have to yield a
solution that obeys the Israel junction conditions and is thus
continuous across the surface layer [25–28]. To our best
knowledge, this is the first instance in which the Israel
surface tensor is discussed in black hole bomb systems.
We will find that the discussion of black hole bombs is

incomplete and even misleading without analyzing this
Israel surface stress tensor. We will find that for general
cavities the associated Israel tensor does not obey the
energy conditions, in particular, the weak energy condition.
In particular, to have a hairy black hole–mirror system
that obeys the energy conditions, we have to start with a
box in a Minkowski background that already has a specific

energy-momentum content even before we place a soliton
or horizon inside it. More concretely, the box needs to have
a nonvanishing energy density and pressure. These quan-
tities will be parametrized by a parameter η that must have a
nonvanishing value to yield a physical hairy black hole–
mirror system. In view of our findings, it will be interesting
to revisit the time evolutions of Refs. [11–13] to discuss
also the surface stress tensor of the system.
References [7,9,10] also discussed hairy black holes and

solitons in the context of black hole bomb setups. However,
their hairy solutions do not confine the scalar field inside the
box. Consequently, this scalar field can leak from the box and
extend to the asymptotic region where it sources logarithmic
divergences in the gravitoelectric fields (this is best discussed
in Appendix A of our companion manuscript [20]).
Consequently, they are not asymptotically flat. Our solutions
are fundamentally distinct since they are asymptotically flat
(and regular everywhere). That is to say, our solutions are
genuine asymptotically flat hairy solutions that evade the no-
hair theoremsofRefs. [29–32].Thepresenceof theboxand its
boundary conditions/surface stress tensor allow one to find
that the Reissner-Nordström solution is not the only family of
asymptotically flat, spherically symmetric, and static (regular)
black hole solutions of Einstein-Maxwell theory.
An interesting byproduct of our analysis is that we will

conclude that the thermodynamics and physics of black hole
bombsystemsaremost appropriately discussed in termsof the
Brown-York quasilocal thermodynamic quantities of the
system [33]. Recall that the Israel surface stress tensor can
be obtained integrating a Gauss-Codazzi equation along the
directionnormal to the surface layer [25–28,34].Equivalently,
it can be obtained taking the difference of the Brown-York
quasilocal energy-momentum tensor outside and inside the
surface layer [33]. These observations are the starting point to
conclude that black hole bombs (and other systemswith Israel
boundary shells)must obeyaquasilocal versionof the first law
of thermodynamics. This important property seems to have
been missed in previous discussions of systems with Israel
junction conditions. In particular,we propose that thesegauge
invariant quantities are relevant quantities to monitor in time
evolution studies of black hole bomb systems.
The plan of this paper is as follows. In Sec. II, we

describe our confining setup. Special attention is given to
the discussion of the Israel junction conditions and Brown-
York quasilocal charges. Hairy solitons are constructed
within perturbation theory in Sec. III. The properties of
Reissner-Nordström black holes confined in a box are
discussed in Sec. IV. Perturbation theory and a matched
asymptotic expansion are used to construct the hairy black
holes in Sec. V. The physical properties of the solutions are
then discussed in detail in Sec. VI. We describe the
thermodynamic properties of the solutions, the Israel sur-
face stress tensor of the system and analyze the necessary
conditions to obey the energy conditions. Conclusions and
final discussions are given in Sec. VII.
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II. EINSTEIN-MAXWELL GRAVITY WITH A
CONFINED SCALAR FIELD

A. Theory and setup

We consider the action for Einstein-Maxwell gravity in
four dimensions coupled to a charged scalar field,

S ¼ 1

16πGN

Z
d4x

ffiffiffi
g

p �
R −

1

2
FμνFμν

− 2DμϕðDμϕÞ† þ VðjϕjÞ
�
; ð2:1Þ

where R is the Ricci scalar, A is the Maxwell gauge
potential, F ¼ dA, and Dμ ¼ ∇μ − iqAμ is the gauge-
covariant derivative of the system. We consider the poten-
tial VðjϕjÞ ¼ m2ϕϕ† with m the mass of the scalar field. In
our construction of hairy solutions, for concreteness, we
will take m ¼ 0, but our analysis could be straightfor-
wardly extended to the massive case, m > 0. We fix
Newton’s constant GN ≡ 1.
We are interested on solitonic and black hole solutions of

(2.1) that are static, spherically symmetric, and asymptoti-
cally flat. We can use reparametrizations of the time and
radial coordinates, t → t̃ ¼ tþHðt; rÞ and r → r̃ðrÞ, to fix
the gauge to be such that the radius of a round S2 is r and
there is no cross term dtdr (this is known as the radial or
Schwarzschild gauge). A field ansatz with the desired
symmetries is

ds2 ¼ −fðrÞdt2 þ gðrÞdr2 þ r2dΩ2
2;

Aμdxμ ¼ AðrÞdt; ϕ ¼ ϕ† ¼ ϕðrÞ; ð2:2Þ
with dΩ2

2 being the metric for the unit 2-sphere (expressed
in terms of the polar and azimuthal angles x ¼ cos θ and φ).
We choose to work with the static ansatz (2.2) in which the

scalar field is real. Note, however, that, should we wish, we
could perform a Uð1Þ gauge transformation with gauge
parameter χ ¼ −ωt=q,

ϕ ¼ jϕjeiφ → jϕjeiðφþqχÞ; At → At þ∇t χ; ð2:3Þ

to rewrite the scalar field as ϕ ¼ jϕje−iωt, in which case we
would be in a frame in which the scalar field oscillates in
time with a frequency ω.1

As explained in the Introduction, we introduce a con-
fining box for the scalar field in order to trigger the
instabilities in the system. We place this box at radius L.
However, the system has the scaling symmetry

ft; r; x;φg → fλ1t; λ1r; x;φg;
ff; g; A;φg → ff; g; A;φg;

fq; L; rþ; mg →

�
q
λ1

; λ1L; λ1rþ;
m
λ1

�
; ð2:4Þ

which rescales the line element and the gauge field 1-form
as ds2 → λ21ds

2 and Adt → λ1Adt but leaves the equations
of motion invariant. We can use this scaling symmetry to
work with dimensionless coordinates and measure thermo-
dynamic quantities in units of L (effectively, this sets
L≡ 1),

T ¼ t
L
; R ¼ r

L
; Rþ ¼ rþ

L
;

e ¼ qL; mϕ ¼ mL: ð2:5Þ

The box is now at R ¼ 1.
The equations of motion obtained from extremizing the

action (2.1) with m ¼ 0 are

g0ðRÞ þ gðRÞ2
�
1

R
−
e2RAðRÞ2ϕðRÞ2

fðRÞ
�
þ gðRÞ

�
−
RA0ðRÞ2
2fðRÞ − Rϕ0ðRÞ2 − 1

R

�
¼ 0; ð2:6aÞ

f0ðRÞ − fðRÞðgðRÞ þ R2ϕ0ðRÞ2 − 1Þ
R

þ R
2
ðA0ðRÞ2 − 2e2AðRÞ2gðRÞϕðRÞ2Þ ¼ 0; ð2:6bÞ

A00ðRÞ þ A0ðRÞ
�
−
f0ðRÞ
2fðRÞ −

g0ðRÞ
2gðRÞ þ

2

R

�
− 2e2AðRÞgðRÞϕðRÞ2 ¼ 0; ð2:6cÞ

ϕ00ðRÞ þ ϕ0ðRÞ
2

�
f0ðRÞ
fðRÞ −

g0ðRÞ
gðRÞ þ

4

R

�
þ ϕðRÞ e

2AðRÞ2gðRÞ
fðRÞ ¼ 0; ð2:6dÞ

where 0 stands for derivatives with respect to R. Notice that from (2.6b) we can express gðRÞ in terms of the other fields as

gðRÞ ¼ RðRA0ðRÞ2 þ 2f0ðRÞÞ þ fðRÞð2 − 2R2ϕ0ðRÞ2Þ
2ðe2R2AðRÞ2ϕðRÞ2 þ fðRÞÞ : ð2:7Þ

1However, since the energy-momentum tensor of the scalar field only depends on ϕϕ† and ∂ϕð∂ϕÞ†, in the new gauge, the
gravitational and Maxwell fields would still be invariant under the action of the Killing vector field ∂t.
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We can substitute this expression into (2.6) to have a set of
three differential equations that we solve for the fields
fðRÞ, AðRÞ, and ϕðRÞ. We can then use (2.7) to obtain gðRÞ
straightforwardly.
To have a well-posed boundary-value problem, we must

specify the boundary conditions in the inner and asymptotic
boundaries of our spacetime. Additionally, we need to
impose junction conditions at the timelike hypersurface Σ
at R ¼ 1 where the box is located. We are interested in
asymptotically flat solutions with vanishing scalar field at
and outside this box, ϕðR ≥ 1Þ ¼ 0.
The inner boundary can be the origin R ¼ 0 of our

coordinate system (for horizonless solitonic solutions) or a
Killing horizon with radius R ¼ Rþ defined as the locus
fðRþÞ ¼ 0, when we have a black hole solution. The system
is described by three second-order ordinary differential
equations (ODEs), which means that there are six arbitrary
integration constants when we do a Taylor expansion around
the inner boundary. However, for a Dirichlet boundary
condition, we need to set three of these to zero in order to
eliminate terms that would diverge at this boundary [35]. We
are thus left with only three constants f0, A0, and ϕ0 (say)
such that the regular fields have the Taylor expansion

fð0Þ ¼ f0 þOðRÞ;
Að0Þ ¼ A0 þOðRÞ;
ϕð0Þ ¼ ϕ0 þOðRÞ; ð2:8Þ

at the origin of the soliton, or

fðRþÞ ¼ f0ðR − RþÞ þOððR − RþÞ2Þ;
AðRþÞ ¼ A0ðR − RþÞ þOððR − RþÞ2Þ;
ϕðRþÞ ¼ ϕ0 þOððR − RþÞ2Þ; ð2:9Þ

at the horizon radius of a black hole solution. Here,
we made the choice of working in the gauge in which
AðRþÞ ¼ 0.
Consider now the outer boundary of our spacetime

domain, namely, the asymptotic infinity. Outside the
box, ϕ ¼ 0, and the equations of motion are solved by

the solution foutðRÞ ¼ cf −
M0

R þ ρ2

2R2, AoutðRÞ ¼ cA þ ρ
R,

and goutðRÞ ¼ cf=foutðRÞ (onward, we use the superscript
“out” to represent fields outside the box). Here, cf,M0, cA,
and ρ are arbitrary integration constants. These are not
constrained; i.e., for any value of these constants, we have
an asymptotically flat solution. However, the theory has a
second scaling symmetry,

fT; R; x;φg → fλ2T; R; x;φg;
ff; g; A;φg → fλ−22 f; g; λ−12 A;φg;

fe; Rþg → fe; Rþg; ð2:10Þ

that we can use to set cf ¼ 1 so that g approaches 1=f at
large R. Outside the box, the solution to the equations of
motion is then

fðRÞjR≥1 ¼ 1 −
M0

R
þ ρ2

2R2
;

AðRÞjR≥1 ¼ cA þ ρ

R
;

ϕðRÞjR≥1 ¼ 0: ð2:11Þ
That is to say, outside the box, we require that the scalar field
vanishes. Birkhoff’s theorem for the Einstein-Maxwell
theory then states that the only static spherically symmetric
asymptotic flat solution is described by the Reissner-
Nordström solution (2.11). Note, however, that (2.11) leaves
three free integration constants,M0, cA, and ρ, which will be
determined once we have the solution inside the box.
Our solutions are asymptotically flat. Therefore, some of

the parameters in (2.11) are related to the Arnowitt-Misner-
Deser (ADM) conserved charges [36]. Namely, the adimen-
sional ADM mass and electric charge of the system are
given by (in units GN ≡ 1)

M=L ¼ lim
R→∞

R2f0ðRÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞgðRÞp ¼ M0

2
;

Q=L ¼ lim
R→∞

R2A0ðRÞ
2fðRÞgðRÞ ¼ −

ρ

2
: ð2:12Þ

These ADM conserved charges measured at the asymptotic
boundary include the contribution from the energy-
momentum content of the box that confines the scalar
hair. In the next subsection, we discuss the effect of this
box in more detail.

B. Junction conditions at the box surface layer
and associated Israel surface tensor

Our discussion of the boundary conditions at the inner and
outer boundaries of our integration domain is complete.
However, the requirement that the scalar field vanishes at the
box Σ located at R ¼ 1 (and outside it) comes with a cost.
We will construct our hairy solutions perturbatively in the
amplitude ε of the scalar field. In our perturbation scheme,
we define unambiguously the expansion parameter ε to be
such that ϕoutðR ≥ 1Þ ¼ 0 and, in the interior of the box, the
first derivative of the scalar field is ε at all orders of the
expansion,2

ϕinjR¼1 ¼ϕoutjR¼1 ¼ 0; ϕoutðRÞ¼ 0; ϕ0injR¼1≡ ε;

ð2:13Þ

2Another natural choice to fix the perturbation scheme would
have been to fix the expansion parameter to be the value of the
scalar field at the horizon (black hole case) or at the origin
(soliton case) at all orders. However, with this choice, it would
not be so straightforward to show that the zero horizon radius
limit of the hairy black hole is the hairy soliton.
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i.e., for R ≤ 1, the scalar field will be forced to have a Taylor
expansion of the form ϕjR¼1 ¼ εðR − 1Þ þOðεðR − 1Þ2Þþ
Oðε3ðR − 1Þ2Þ.We are forcing a jump in the derivative of the
scalar field normal to the cavity hypersurface. That is
to say, the surface layer Σ must have a scalar charge density
4πρϕ ¼ −∂RΦjR¼1 that sources this jump. The difference
between the scalar field charge contained on a sphere
just outside (where it vanishes) and just inside the surface
layer is then

½Qϕ�≡QϕjoutR¼1 −QϕjinR¼1 ¼ −ε; ð2:14Þ
which unambiguously defines ε.
Naturally, this forced condition on the scalar field has a

further cost: we need to impose junction conditions at the
timelike hypersurface Σ—defined by fðRÞ ¼ R − 1 ¼ 0
and with outward unit normal nμ¼∂μf=j∂fj (nμnμ¼1)—
on the other fields of the system. Ideally, we would like to
have a smooth crossing, i.e., that the gravitational and
gauge fields and their normal derivatives are continuous at
Σ. But we are not guaranteed that this can be done. To
discuss this issue further, it is good to set some notation.
From the perspective of an observer in the interior region,
the cavity surface Σ is parametrically described by R ¼ 1

and T ¼ T inðτÞ ¼ τ such that the induced line element and
induced gauge 1-form of the shell read

ds2jΣin ¼ hinabdξ
adξb ¼ −finjR¼1dτ

2 þ dΩ2
2;

AjΣin ¼ aina dξa ¼ AinjR¼1dτ; ð2:15Þ
where ξa describe coordinates in Σ, hinab is the induced
metric in Σ, and aina is the induced gauge potential in Σ. On
the other hand, as seen from outside the cavity shell, Σ is
parametrically described by R ¼ 1 and T ¼ ToutðτÞ ¼ Nτ
so that the induced line element and the induced gauge
1-form are

ds2jΣout ¼ houtab dξ
adξb ¼ −N2foutjR¼1dτ

2 þ dΩ2
2;

AjΣout ¼ aouta dξa ¼ NAoutjR¼1dτ: ð2:16Þ
The reparametrization freedom parameter N will be chosen
as follows. We use the scaling symmetry (2.10) in each
region to set

finjR¼1 ¼ 1; foutjR→∞ ¼ 1; ð2:17Þ
at all orders in ε; note that the second condition repeats the
statement just before (2.11). An appropriate choice of the
reparametrization freedom parameter N will allow (2.17) to
be obeyed.3

The junction conditions required to join smoothly two
spacetimes at a timelike hypersurface Σ were studied by
Israel [25–28], built on the previous work of Lanczos and
Darmois. Next, we review these conditions. A solution is
smooth at Σ if and only if 1) the induced metric hab and
induced gauge potential aa are continuous (i.e., ds2jΣin ¼
ds2jΣout and AjΣin ¼ AjΣout ) and 2) the extrinsic curvature
Kab (essentially the normal derivative of the induced
metric) and the normal derivative of the induced gauge
field, faR, are continuous. If we denote the solution inside
(outside) Σ by the superscript “in” (“out”), the Israel
junction conditions can be written as

aina jR¼1 ¼ aouta jR¼1; ð2:18aÞ

hinabjR¼1 ¼ houtab jR¼1; ð2:18bÞ

finaRjR¼1 ¼ foutaR jR¼1; ð2:18cÞ

Kin
abjR¼1 ¼ Kout

ab jR¼1; ð2:18dÞ

where hab ¼ gab − nanb is the induced metric at Σ and
Kab ¼ hac∇cnb is the extrinsic curvature.
If, as it is our case, the exterior curvature condition

(2.18d) is not satisfied, then the solution is singular at Σ.
This is interpreted as due to the presence of a Lanczos-
Darmois-Israel surface stress tensor Sab at the hypersurface
layer proportional to the difference of the extrinsic curva-
ture on both sides of the hypersurface. More concretely, the
Lanczos-Darmois-Israel surface stress tensor induced in Σ
is [25–28]

Sab ¼ −
1

8π
ð½Kab� − ½K�habÞ; ð2:19Þ

where K is the trace of the extrinsic curvature and
½Kab�≡ Kout

ab jR¼1 − Kin
abjR¼1. This surface tensor is the

pullback of the energy-momentum tensor integrated over
a small region around the hypersurface Σ; i.e., it is obtained
by integrating the appropriate Gauss-Codazzi equation
[25–28,34]. Essentially, Eq. (2.19) describes the energy-
momentum tensor of the cavity (the “internal structure” of
the mirror) that we have to build to confine the scalar field
inside. With our explicit construction of the hairy solutions
of the system, we will be able to compute this Lanczos-
Darmois-Israel stress tensor. To our best knowledge, this
gives the first explicit description of the box matter content
of a black hole bomb.
The Lanczos-Darmois-Israel surface stress tensor obeys

the conservation law [25–28],

DbSab ¼ −Tμνh
μ
anν; ð2:20Þ

where Da is the covariant derivative with respect to
the three-dimensional induced metric hab on Σ, hμa is the

3Note that, in an alternative but equivalent scheme, we could
choose to parametrize Σ by R ¼ 1 and T ¼ ToutðτÞ ¼ τ and then
transfer the reparametrization freedom encoded by N into fout0
and Aout

0 . In this case, one would have foutjR→∞ ≠ 1 instead of
(2.11), (3.3), or (5.4).
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four-dimensional tensor that projects quantities onto the
hypersurface Σ, and Tμν is the energy-momentum tensor of
(2.1).4 This follows from the definition (2.19) and from the
ADM Hamiltonian constraint (i.e., from the contracted
Gauss-Codazzi equation along the normal to Σ). On the
other hand, the ADM momentum constraint, i.e., the
normal-normal contracted Gauss-Codazzi equation, yields
the relation [25–28]

1

2
ðKout

ab þ Kin
abÞSab ¼ ½Tμνnμnν�; ð2:21Þ

where the square brackets again represent the difference
between the rhs quantity just outside and just inside Σ.
In our case, the Lanczos-Darmois-Israel surface stress

tensor (2.19) ensures that the scalar hair is confined to the
interior of the box with radius R ¼ 1. The outward normal
to Σ is n ¼ ffiffiffi

g
p

dr, the three-dimensional induced metric on
Σ is hab ¼ gab (for a; b ¼ ft; θ;ϕg), and the nonvanishing
extrinsic curvature components are

Kt
t ¼ −

f0ðRÞ
2fðRÞ ffiffiffiffiffiffiffiffiffiffi

gðRÞp ; Ki
j ¼

1

R
ffiffiffi
g

p δij; ð2:22Þ

with δij being the Kronecker symbol (i; j ¼ θ;ϕ). One of
the main results of our study will be that we cannot make
the extrinsic curvature (2.22) continuous across Σ if we
require that the scalar field vanishes at and outside the
box—see (2.13)—as is required for the black hole bomb
system.

C. Brown-York quasilocal formalism and the Israel
surface stress tensor

The Lanczos-Darmois-Israel surface stress tensor (2.19)
was originally derived by integrating the Gauss-Codazzi
equations along the direction orthogonal to the thin surface
layer [25,26,34]. However, it can be equivalently derived
using the quasilocal Brown-York formalism [33]. This
derivation further enlightens the physical interpretation of
the tensor [33]. Therefore, here,wewill highlight some of the
key properties of the Brown-York energy-momentum tensor
and its relation with the Lanczos-Darmois-Israel tensor.
The Brown-York surface energy-momentum stress

tensor of a R ¼ const timelike hypersurface Σ (with
unit normal n, induced metric hab, and extrinsic curvature
Kab)—e.g., our cavity wall—is given by [33]

T ab ¼ −
1

8π
ðKab − KhabÞ: ð2:23Þ

It follows from the Einstein equation, Gμν ¼ 8πTμν, that
the surface energy-momentum tensor T ab obeys the

conservation law DaT ab ¼ nμTμνhνb, which in our case
reduces simply to DaT ab ¼ 0 since nμTμνhνb ¼ 0.5

The Brown-York energy, momentum, and spatial stress
surface densities on Σ are computed introducing a T ¼
const spacelike hypersurface ΣT with unit normal u
(u2 ¼ −1; in our case, u ¼ ffiffiffi

f
p

dT) that intersects orthogo-
nally the timelike hypersurface Σ at a two-dimensional
surface B (in our case, a 2-sphere of radius R, B≡ S2). The
statement that ΣT is orthogonal to Σmeans that u · njΣ ¼ 0.
Then, the unit normal n in spacetime to the three-boundary
Σ is also the unit normal in ΣT to the two-boundary B. In
these conditions, let σab ¼ gab − nanb þ uaub be the
induced metric on B, σ be the associated determinant,
and i, j run over the coordinates of the 2-sphere such that σai
is the three-dimensional tensor that projects quantities onto
B. Then, the Brown-York surface energy density ρ̃, surface
momentum density j̃i, and spatial stress surface densities
p̃ij are

ρ̃≡ uaubT ab ¼ −T T
T; ð2:24aÞ

j̃i ≡ −σiaubT ab; ð2:24bÞ

p̃ij ≡ σiaσjbT ab: ð2:24cÞ

To these expressions, we must still apply the appropriate
reference background (denoted by the subscript 0) sub-
traction procedure detailed in Ref. [33]. For example, the
physical energy surface density is ρ ¼ ρ̃ − ρ̃0, and similarly
for the other quantities. In our case, the reference back-
ground for this subtraction procedure is, naturally, the
Minkowski spacetime. Once this is done, we find that, for
our system, the Brown-York surface charge densities on a
2-sphere with radius R are

ρL ¼ 1

4π

1

R

�
1 −

1ffiffiffi
g

p
�
; ð2:25aÞ

ji ¼ 0; ð2:25bÞ

pi
j=L ¼ R2

8π

�
f0

2f
ffiffiffi
g

p þ 1

R
ffiffiffi
g

p −
1

R

�
σij: ð2:25cÞ

The Brown-York quasilocal mass contained inside
a 2-sphere with radius R ¼ 1 is then (GN ≡ 1)

M=L ¼
Z
B
d2x

ffiffiffi
σ

p
ρ ¼ R

�
1 −

1ffiffiffi
g

p
�����

R¼1

: ð2:26Þ

Note that, as required for a good definition of quasilocal
mass, when we send the S2 radius to infinity, R → ∞, the

4For our hairy system, nμTμνhνb ¼ 0. As such, Eq. (2.21) boils
down to DbSab ¼ 0.

5The quantities Da and hνb were already defined below (2.21).
After (2.27), it will be clear that (2.19) follows from (2.23).
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Bown-York mass (2.26) reduces to the ADM mass (2.12).
This is explicitly checked using (2.7) and (2.11).
As highlighted in Ref. [33], by construction, the

Lanczos-Darmois-Israel surface energy tensor Sab (2.19)
of the thin shell Σ (with R ¼ 1 in our case) is given by the
difference between the Brown-York surface tensor just
outside and inside the surface layer

Sab ≡ ½T ab� ¼ T abjoutR¼1 − T abjinR¼1: ð2:27Þ
That is to say the Lanczos-Darmois-Israel surface stress
tensor gives the stress energy-momentum tensor of the
surface layer.
The Brown-York quasilocal charge inside a 2-sphere

with radius R ¼ 1 follows from Gauss’s law evaluated at
the spherical boundary,

Q=LjR→1 ¼
1

8π

Z
Σ
⋆F ¼

ffiffiffiffiffiffiffiffiffiffi
gðRÞ

p R2A0ðRÞ
2gðRÞfðRÞ

����
R¼1

: ð2:28Þ

To complete the thermodynamic description of our
solutions, we still need to define the chemical potential,
temperature, and entropy. The chemical potential is defined
as the difference between the gauge potential at the box and
at the horizon,

μ ¼ Að1Þ − AðRþÞ: ð2:29Þ
Finally, the temperature and the entropy are defined from

the surface gravity at the horizon and from the horizon area:

THL ¼ lim
R→Rþ

f0ðRÞ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞgðRÞp ; S=L2 ¼ πR2þ: ð2:30Þ

The quasilocal mass and electric charge must satisfy a
quasilocal form of the first law of thermodynamics:

dM ¼ THdSþ μdQ; for black holes; ð2:31Þ
dM ¼ μdQ; for solitons: ð2:32Þ

We will use these relations as a nontrivial check of our
solutions.

III. SMALL SOLITONS (BOSON STARS)
CONFINED IN A BOX

Consider a box Σ placed at r ¼ L (i.e., R ¼ 1) in a
Minkowski background with a constant gauge field
A ¼ A0dT. We can now consider adding a scalar field
ϕðRÞ to get an asymptotically flat hairy soliton that is
regular at the origin and vanishes at and outside the box,
ϕðR ≥ 1Þ ¼ 0. Here, we will construct this solution per-
turbatively in the amplitude ε of the scalar field. In our
perturbation scheme, we choose unambiguously our expan-
sion parameter to be ε≡ ϕ0ðR ¼ 1Þ at all expansion orders
in ε [i.e., there are no corrections to ϕ0ðR ¼ 1Þ at order ε2 or
higher]. Also, we find the energy-momentum content, i..e,
the Israel-Darmois surface stress tensor, that the thin shell Σ

must have to yield a physical setup that obeys the energy
conditions.
Not all perturbations fit inside the box. Those that do so,

i.e., the normal modes of the system, have their dimension-
less frequency Ωp ≡ ωpL quantized as

Ωl;p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
lþ1

2
;p
þm2

ϕ

q
− A0e ð3:1Þ

as described in Ref. [20]. Here, mϕ and e are the
dimensionless mass and charge of the scalar field, respec-
tively, and l and p are the angular and radial quantum
numbers that give the number of nodes of the normal mode
along the polar and radial directions, respectively. Finally,
jlþ1

2
;p is the location of the zeros of the Bessel function

JνðzÞ, for ν ¼ lþ 1
2
∈ R. We work in a gauge in which the

scalar field is static; i.e., its quantized frequency vanishes at
the expense of fixing an appropriate chemical potential A0

for the background field. In these conditions, the ground-
state solution (i.e., with lowest energy, p ¼ 1) for a
spherically symmetric (l ¼ 0) massless scalar field
(mϕ ¼ 0) is described by Ω0;1 ¼ j1

2
;1 − A0e ¼ π − A0e. In

the static gauge, the background gauge field is given by
A0 ¼ π

e. This is the case we will describe in detail. Solutions
with different parameters l, p, and mϕ can be constructed
in a similar way.
We can now ask whether we can backreact this normal

mode solution to higher orders in perturbation theory (i.e.,
to higher orders in the amplitude ε) and eventually at full
nonlinear order. This question has a positive answer if we
can keep the solution with the desired asymptotics regular
at the origin at all orders. If so, the theory admits a soliton
solution. Naturally, as the order of the expansion grows
beyond linear order, the nonlinearities of the field equations
imply that the scalar field sources corrections on the
gravitational and electric field. Therefore, not only ϕ but
also f and A have an expansion in the amplitude ε.
Furthermore, note that, although the scalar field vanishes
outside the box at all perturbation orders, the gravitational
and electric fields outside the box will nevertheless be
corrected at each order as a consequence of requiring the
induced fields to be continuous at the box. In addition,
these Israel junction conditions will determine the energy-
momentum tensor that the box at R ¼ 1 must have to be
able to accommodate such a solution. The purpose of this
section is to construct this soliton perturbatively.
In the conditions just described, the fields of the soliton

solution have the expansion

fðRÞðRÞ ¼
X
n≥0

ε2nfðRÞ
2n ðRÞ;

AðRÞðRÞ ¼
X
n≥0

ε2nAðRÞ
2n ðRÞ;

ϕðRÞðRÞ ¼
X
n≥0

ε2nþ1ϕðRÞ
2nþ1ðRÞ; ð3:2Þ

EVADING NO-HAIR THEOREMS: HAIRY BLACK HOLES … PHYS. REV. D 97, 124030 (2018)

124030-7



where the superscript ðRÞ indicates whether we are con-
sidering the region inside (ðRÞ¼in) or outside (ðRÞ¼out) the
box located at R ¼ 1. We use the scaling symmetry (2.10)
in each region to impose (2.17) at all orders in ε, i.e.,

finjR¼1 ¼ 1; foutjR→∞ ¼ 1: ð3:3Þ
In the interior region, as described in (2.15), the cavity

surface Σ is parametrically described by R ¼ 1 and T ¼
T inðτÞ ¼ τ such that the induced line element of the shell
reads ds2jΣin ¼ −finjðR¼1Þdτ2 þ dΩ2

2 and the induced gauge
1-form is AjΣin¼AinjðR¼1Þdτ. At leading order (n ¼ 0), we
have a scalar field perturbation around the Minkowski
background (fin0 ¼ 1) with a constant gauge potential
Ain
0 ¼a0. The most general solution of the associated Klein-

Gordon equation is ϕðRÞ¼R−1ðβ1e−iea0Rþβ2eiea0RÞ. To
avoid a divergence 1=R at the origin, we must choose
β2 ¼ −β1. At the box, the condition ϕðR ¼ 1Þ ¼ 0—see
(2.13)—requires Ain

0 ¼ a0 ¼ p π
e for p ¼ 1; 2; 3; � � �.

Essentially, p dictates the number of radial nodes of the
soliton we are interested in finding. For concreteness,
onward, we focus on the p ¼ 1 case. This will give the
ground-state soliton with lowest energy, i.e., the soliton that
corresponds to the backreaction of the spherically sym-
metric (l ¼ 0) normal mode of Minkowski in a box with
the lowest frequency. Finally, as discussed in (2.13), we
unambiguously define our expansion parameter ε to be
such that ϕðR ¼ 1Þ ¼ εðR − 1Þ (at all orders in perturba-
tion theory). This requires that β1 ¼ −i=ð2πÞ. In these
conditions, the regular fields inside the box read

fin0 ¼ 1; Ain
0 ¼ π

e
; ϕin

1 ðRÞ ¼ −
sinðπRÞ
πR

: ð3:4Þ

As discussed in (2.16), when seen from outside, the
cavity shell Σ is parametrically described by R ¼ 1 and
T ¼ ToutðτÞ ¼ Nτ so that the induced line element is
ds2jΣout ¼ −N2foutjðR¼1Þdτ2 þ dΩ2

2 and the induced gauge
1-form is AjΣout ¼ NAoutjðR¼1Þdτ. Solving the equations of
motion outside the box at leading order yields

fout0 ðRÞ ¼ Cf0
2 −

η

R
þ ðCA0

1 Þ2
2R2

;

Aout
0 ðRÞ ¼ CA0

1

R
þ CA0

2 : ð3:5Þ

The boundary conditions (2.11), i.e., Eq. (3.3), imply that
Cf0
2 ¼ 1. On the other hand, the junction conditions

(2.18a)–(2.18c) at the box,

fin0 ð1Þdτ2 ¼ N2fout0 ð1Þdτ2 ⇔ 1 ¼ N2

�
1 − ηþ ðCA0

1 Þ2
2

�
;

Ain
0 ð1Þdτ ¼ NAout

0 ð1Þdτ ⇔ π

e
¼ NðCA0

2 − CA0

1 Þ;
Ain 0
0 ð1ÞdτdR ¼ NAout0

0 ð1ÞdτdR ⇔ 0 ¼ CA0

1 N; ð3:6Þ

fix three other integration constants (including the repar-
ametrization factor):

CA0

1 ¼ 0; CA0

2 ¼ π

e
1

N
; N ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p : ð3:7Þ

The integration constant η is undetermined. It characterizes
the energy-momentum content of the box as discussed
below. Altogether, the solution at leading order (n ¼ 0) is

fin0 ðRÞ ¼ 1; Ain
0 ðRÞ ¼

π

e
; ϕin

1 ðRÞ ¼ −
sinðπRÞ
πR

;

fout0 ðRÞ ¼ 1−
η

R
; Aout

0 ðRÞ ¼ π

e

ffiffiffiffiffiffiffiffiffiffi
1− η

p
; ϕout

1 ðRÞ ¼ 0;

N ¼ 1ffiffiffiffiffiffiffiffiffiffi
1− η

p : ð3:8Þ

In these conditions, the leading order n ¼ 0 Lanczos-
Darmois-Israel surface stress tensor (2.19) has the non-
vanishing components

St
t ¼ −

1

4π
ð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Þ þOðε2Þ;

Si
i ¼

�
1 − 1

2
η

8π
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p − 1

�
þOðε2Þ; ð3:9Þ

where i ¼ 2, 3 runs over the S2 coordinates, and Oðε2Þ
reminds us that this tensor will receive corrections at order
n ¼ 1. The reader will observe that we have not imposed
the final Israel junction condition (2.18d). We could do it
and thus fix the leftover integration constant η to vanish to
have a continuous extrinsic curvature across Σ and thus a
vanishing Lanczos-Darmois-Israel tensor (3.9) at zeroth
order in the expansion. Had we chosen to do so, at leading
order, the surface layer Σ would have no energy density nor
pressure. Thus, it would just split the spacetime into interior
and exterior regions that are both described by the
Minkowski solution (with a constant gauge field) with
the interior region also containing a linear scalar field that,
at order n ¼ 0, has not yet backreacted on the gravito-
electric fields nor on the box surface stress tensor. However,
we will not fix η; i.e., we will not require the extrinsic
curvature to be continuous at leading order n ¼ 0. The
reason is that at order n ¼ 1 we will find that the Lanczos-
Darmois-Israel surface stress tensor gets negative contri-
butions proportional to ε2 that would violate all the energy
conditions. [Indeed, see the final result (3.20).] So, to have
a physical box that confines the scalar field inside it in the
conditions (2.13), we must choose a box that at leading
order n ¼ 0 has a nonvanishing Lanczos-Darmois-Israel
surface tensor (3.9). The associated positive energy density
and pressure will be able to accommodate the higher-
order negative contributions and allow the energy con-
ditions to be obeyed. In these conditions, if 0 < η ≤ 1, the
ADM mass is nonvanishing: the surface layer has an
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energy-momentum surface tensor described by (3.9)
(i.e., η), which has an associated mass that can be read
asymptotically. Therefore, the interior solution is
Minkowski spacetime with a linear scalar field, and the
exterior solution is described by the Schwarzschild geom-
etry with ADM mass proportional to η.6 The hairy solitons
are thus a two-parameter family of solutions described by
the expansion parameter ε and by the energy density of the
cavity (that also uniquely fixes its pressure). Note that we
are choosing the simplest physical box that can confine the
scalar field; it has no surface electric charge density. If we
wish, this cavity can also have an electric charge density, in
which case the exterior solution would be described by the
Reissner-Nordström geometry (i.e., the hairy solitons
would be a three-parameter family of solutions).
This completes the analysis up to Oðε1Þ. These fields

source the equations of motion at the next orders. The
following nontrivial equations for the fields are at order
Oðε2Þ for the gravitational and gauge fields and Oðε3Þ for
the scalar field, i.e., n ¼ 1.
At Oðε2Þ, in the box interior R ≤ 1, one has

fin2 ðRÞ ¼
Bf2
1

R
þ Bf2

2 þ 2½lnR − Cið2πRÞ� þ sinð2πRÞ
πR

;

Ain
2 ðRÞ ¼

BA2

1

R
þ BA2

2 þ e
π
½lnR − Cið2πRÞ� þ e

2π2
sinð2πRÞ

R
;

ð3:10Þ

where CiðxÞ ¼ −
R
∞
x

cos z
z dz is the cosine integral function

and Bf2
1;2, B

A2

1;2 are integration constants. Regularity at R ¼ 0

implies that Bf2
1 ¼ 0 and BA2

1 ¼ 0. On the other hand, the
first condition in (3.3) fixes Bf2

2 ¼ 2Cið2πÞ.
Moving to the exterior region, atOðε2Þ, the most general

solution is described by

fout2 ðRÞ ¼ Cf2
2 −

Cf2
1

R
; Aout

2 ðRÞ ¼ CA2

2 −
CA2

1

R
; ð3:11Þ

where Cf2
1;2 and CA2

1;2 are integration constants. The boun-

dary conditions (2.11) fix Cf2
2 ¼ 0.

To impose the junction conditions, we first do a Taylor
expansion of the fields at the box:

fin2 ð1Þ¼ 0;

N2fout2 ð1Þ¼−
Cf2
1ffiffiffiffiffiffiffiffiffiffi

1−η
p ;

Ain
2 ðRÞjR→1¼BA2

2 −
e
π
Cið2πÞþ e

π
ðR−1ÞþOððR−1Þ2Þ;

NAout
2 ðRÞjR→1¼BA2

2 −BA2

1 þBA2

1 ðR−1ÞþOððR−1Þ2Þ:
ð3:12Þ

The junction conditions (2.18a)–(2.18c) then fix the fol-
lowing three integration constants:

Cf2
1 ¼ 0; CA2

1 ¼ e
π

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
;

CA2

2 ¼ e
π

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p �
1 − Cið2πÞ þ π

e
BA2

2

�
: ð3:13Þ

Consider now the scalar field equation at order Oðε3Þ,
i.e., still at n ¼ 1. The result for ϕin

3 ðRÞ is a long expression
that is not very enlightening, and hence we do not show it
here. However, we give the Taylor expansions at the origin
and at the box in order to show how we apply the boundary
and junction conditions for the reader who wants to
reproduce the results.
A Taylor series at the origin of ϕin

3 ðRÞ gives

ϕin
3 ð0Þ ¼

1

R

�
α1 þ

1

12

�
8 −

3ðe2 − 2πα2Þ
π2

��
þOðR0Þ;

ð3:14Þ

where α1 and α2 are the integration constants of the
second-order ODE for ϕin. Regularity at the origin demands
that we fix

α2 ¼
e2

2π
−
2π

3
ð3α1 þ 2Þ: ð3:15Þ

We have two further conditions (2.13) at the box (vanishing
of the field and the definition of ε) that we use to fix the two
remaining integration constants. Indeed, recall that at the
box one must have ϕðR ¼ 1Þ ¼ 0. However, one has
ϕin
3 ðR ¼ 1Þ ≠ 0,

ϕin
3 ð1Þ ¼

e
π
BA2

2 þ 3

2
−
e2

π2
½Cið2πÞ þ 1�

−
8π2 − 3e2

6π3
½2Sið2πÞ − Sið4πÞ�

þOðR − 1Þ; ð3:16Þ

where the function SiðxÞ ¼ R
x
0

sin z
z dz is the sine integral

function. We can get ϕin
3 ðR ¼ 1Þ ¼ 0 as desired by appro-

priately choosing the integration constant BA2

2 that we had
not fixed at order Oðε2Þ. This is a common feature of this

6Actually, apart from the presence of scalar field that motivates
here the need for an Israel surface layer, this setup is the textbook
example of a Lanczos-Darmois-Israel static thin shell separating
Minkowski spacetime in the interior from the Schwarzschild
geometry in the exterior; see, e.g., Sec. 3.10 of Poisson’s textbook
(with rotation a ¼ 0) [37].
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perturbative expansion; an integration constant at order
Oðε2nÞ for the gauge field is fixed at order Oðε2nþ1Þ. After
this choice, the leading term of the Taylor expansion of the
scalar field ε3ϕin

3 about R ¼ 1 becomes7

ε3ϕin
3 ð1Þ¼ ε3ðR−1Þ

�
Cið2πÞ

�
11

6
−

e2

2π2

�

þ 1

12

�
8iπð3α1þ1Þþ3ð2− iπÞe2

π2
−6

�

þCið4πÞ
�

e2

2π2
−
4

3

�
þ8π2−3e2

12π3

× ½2Sið2πÞ−Sið4πÞ�
	
þOðε3ðR−1Þ2Þ: ð3:17Þ

However, recall from (2.13) that we have defined unambig-
uously our expansion parameter ε using the criterion that the
expansion of the scalar field at the box isϕ0ðR ¼ 1Þ ¼ ε at all
orders in ε. This condition requires that (3.17) vanishes,
which fixes the remaining integration constant α1.

At this point, we have completely fixed the soliton up to
order Oðε3Þ, i.e., n ¼ 1, and confirmed that this is a regular
asymptotically flat solution at this order. A similar procedure
can be used to extend the construction of the soliton to higher
orders (n > 1) in ε. In principle, we should be able to choose
the integration constants at eachorder such that the solution is
regular, i.e., such that it obeys the boundary conditions at the
origin (2.8) and asymptotically (2.11) as well as the Israel
junction conditions (2.18a)–(2.18c). To present the results
(3.18), below, we have completed this exercise and deter-
mined the fields f, A, and ϕ up to orderOðε5Þ, but we do not
present the auxiliary computations/expressions because they
are not further enlightening.
Once we have obtained the fields f, A, and ϕ up to order

Oðε5Þ, we can compute the (gauge-invariant) Brown-York
quasilocal thermodynamic quantities at Σin (defined in
Sec. II C) for the soliton up to Oðε6Þ.8 As the soliton
has no horizon, the entropy is zero, and the temperature is
undefined. On the other hand, the Brown-York quasilocal
mass (2.26), quasilocal charge (2.28), and chemical poten-
tial μ≡ AinjR¼1 are given by

M=L ¼ ε2
1

2
þ ε4

15π2 − 6e2 − 16π½2Sið2πÞ − Sið4πÞ�
24π2

þOðε6Þ;

Q=L ¼ ε2
e
2π

þ ε4
e
8π4

½−ð8π2 − e2Þ½2Sið2πÞ − Sið4πÞ� þ 4πðe2 − 2π2Þ� þOðε6Þ;

μ ¼ π

e
þ ε2

ð8π2 − 3e2Þ½2Sið2πÞ − Sið4πÞ� þ 3πð2e2 − 3π2Þ
6π2e

þOðε4Þ: ð3:18Þ

As a nontrivial check of our computations, these thermo-
dynamic quantities satisfy the quasilocal version of the first
law of thermodynamics (2.32), dM ¼ μdQ. At leading
order, μ ¼ π=e≡ Ω̃=e, which corresponds to the lowest
normal mode frequency Ω̃ ¼ ω̃L ¼ π that can fit inside the
spherical box Σ [20].

The ADM mass and the charge measured by an
asymptotic observer include the contribution associated
to the energy-momentum tensor of the box Σ. That is to say,
they depend on the constant η that characterizes the matter
content of the box; see the discussion associated to (3.9).
They are given by

M=L ¼ η

2
þ ε4

ð1 − ηÞe2
4π2

þOðε6Þ;

Q=L ¼ ε2
e

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
2π

þ ε4
e

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
8π4

ð10π3 − 4πe2 − ð8π2 − e2Þ½2Sið2πÞ − Sið4πÞ�Þ þOðε6Þ: ð3:19Þ

The Lanczos-Darmois-Israel surface energy-momentum tensor (2.19) at Σ has nonvanishing components given by

Stt ¼
1

8π

�
2ð−1þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Þ þ ε2 þ ε4

�
5

4
−

e2

2π2
−
4½2Sið2πÞ − Sið4πÞ�

3π

�
þOðε6Þ

	
;

Sxx ¼ Sϕϕ ¼ 1

8π

��
1 − 1

2
ηffiffiffiffiffiffiffiffiffiffiffi

1 − η
p − 1

�
−
ε2

2
þ ε4

8

�
1þ 2e2

π2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Þ
�
þOðε6Þ

	
: ð3:20Þ

7The properties of the special functions present in (3.17) guarantee that it is a real quantity.
8Note that f, A, and ϕ up to order Oðε6Þ determine the chemical potential up to order Oðε4Þ.
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When ε ¼ 0, this reduces to (3.9). In this case, the surface
layer Σ splits a Minkowski interior from a Schwarzschild
exterior with the ADM mass M=L ¼ η=2 measuring the
mass of the box. In Sec. VI A, we further discuss the
physical interpretation of this energy-momentum tensor.
Finally, note that under a gauge transformation (2.3) we

can move to a frame in which the scalar field is complex,
ϕ ¼ jϕje−iωt, i.e., where the scalar field oscillates in time
with a frequency ω. In this case, the solitonic solution is
often called a boson star.

IV. REISSNER-NORDSTRÖM BLACK HOLE
CONFINED IN A BOX

In Sec. V, we shall perturbatively construct an asymp-
totically flat hairy black hole solution of which the scalar
field is confined inside a cavity. In the absence of a horizon
radius and scalar field, this cavity has no charge density, but
it has an energy density and pressure described by the Israel
surface tensor (3.9), parametrized by the constant η. In the
limit at which the horizon radius vanishes, our hairy
solution reduces to the hairy soliton found in Sec. III.
On the other hand, when the scalar field is absent, the hairy
black hole of Sec. V reduces to a solution that describes a
Reissner-Nordström black hole with a horizon inside the
Israel cavity. In this section, we describe the gravitational
and electric field of this solution. The interior solution and
aspects of the thermodynamic properties of this solution
(mainly in the grand-canonical ensemble) were already
discussed in the seminal works [21–23] and, more recently,
in Refs. [8,24]. Here, for completeness, we also describe
the fields in the region exterior to the box. For small energy
and charge, the hairy black hole of Sec. V can be seen as the
solution that emerges from placing the small caged
Reissner-Nordström (RN) black hole of this section on
top of the caged hairy soliton of Sec. III.
Consider first the region R ≤ 1 inside the cavity located

at R ¼ 1. The general solution to the equations of motion
(2.6) with the scalar field set to zero is given by

finðRÞ¼Bf
2 −

Bf
1

R
þðBA

1 Þ2
2R2

; AinðRÞ¼BA
2 −

BA
1

R
: ð4:1Þ

Boundary conditions at the horizon (2.9) fix two integration
constants, BA

1 ¼ BA
2Rþ and Bf

1 ¼ Rþð12 ðBf
2Þ2 þ Bf

2Þ. At the
box location, we use the scaling symmetry (2.10) to require
finð1Þ ¼ 1. We also introduce the chemical potential (2.29)
as it appears in the quasilocal first law (2.31), i.e.,
μ ¼ Ainð1Þ − AinðRþÞ. These two conditions fix the two

remaining constants as BA
2 ¼ μ

1−Rþ
and Bf

2 ¼ 2−Rþð2−μ2Þ
2ð1−RþÞ2 .

Altogether, the fields of a RN black hole (BH) of which
the horizon is confined inside a box located at R ¼ 1 are

finðRÞ ¼ 2 − Rþð2 − μ2Þ
2ð1 − RþÞ2

−
Rþ½μ2ð1þ RþÞ þ 2ð1 − RþÞ�

2Rð1 − RþÞ2

þ μ2R2þ
2R2ð1 − RþÞ2

;

AinðRÞ ¼ μ

1 − Rþ

�
1 −

Rþ
R

�
;

ginðRÞ ¼ 2 − Rþð2 − μ2Þ
2ð1 − RþÞ2

1

finðRÞ : ð4:2Þ

Consider now the solution outside the box, R ≥ 1. The
most general solution reads

foutðRÞ¼Cf
2 −

Cf
1

R
þðCA

1 Þ2
2R2

; AoutðRÞ¼CA
2 −

CA
1

R
: ð4:3Þ

We use the scaling symmetry (2.10) to set foutjR→∞ ¼ 1,
which fixes Cf

2 ¼ 1. To fix the remaining integration
constants, we apply the Israel junction conditions
(2.18a)–(2.18c) across the timelike hypersurface Σ.
Moreover, we use the parametrizations (2.15)–(2.16) for
the surface layer Σ.
We want to confine the horizon radius of the RN BH

inside the “same cavity” that cages the hairy soliton of the
previous section. By this statement, we mean that the Israel
surface tensor of the caged RN (and of our hairy solutions)
reduces to the Israel surface tensor (3.9) when Rþ → 0
(and/or ε → 0). This requires that we use exactly the same
reparametrization factor N ¼ ð1 − ηÞ−1=2 that was found in
(3.8) and that describes the Israel surface tensor (3.9) of our

box. This fixes Cf
1 ¼ η½2ð1−RþÞ2−μ2R2

þ�þμ2R2
þ

2ð1−RþÞ2 , CA
1 ¼ μRþ

ffiffiffiffiffiffi
1−η

p
1−Rþ

,

and CA
2 ¼ μ

ffiffiffiffiffiffi
1−η

p
1−Rþ

. The final solution outside the surface

layer then reads

foutðRÞ ¼ 1 −
1

R
η½2ð1 − RþÞ2 − μ2R2þ� þ μ2R2þ

2ð1 − RþÞ2

þ 1

R2

ð1 − ηÞμ2R2þ
2ð1 − RþÞ2

;

AoutðRÞ ¼ μ
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
1 − Rþ

�
1 −

Rþ
R

�
;

goutðRÞ ¼ 1

foutðRÞ ; ð4:4Þ

where η is the parameter that describes the Israel surface
tensor (3.9) of our box (even before we place a scalar field
or horizon inside it). In particular, if we set Rþ ¼ 0,
Eqs. (4.2) and (4.4) reduce to (3.8) with ϕ ¼ 0. That is
to say the zero horizon radius limit of the caged RN BH
solution (4.2) and (4.4) describes the same solution as the
zero scalar field limit of the soliton (3.8). This common
solution simply describes a surface layer cavity, placed in
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Minkowski space, with Israel surface tensor (3.9).9 In these
conditions, the cavity is the same, and it will be consistent
to place the small caged RN black hole of this section at the
center of the caged hairy soliton of the previous section, as
we do in Sec. V.
With the interior solution (4.2), we can use the

quasilocal formalism presented in Sec. II C to compute
the quasilocal thermodynamic quantities of a caged RN
black hole as a function of the horizon radius and the
chemical potential:

THL ¼ 2 − μ2

4πRþ
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ð2 − μ2ÞRþ

p ;

S=L2 ¼ πR2þ:

M=L ¼ 1 −
ð1 − RþÞ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ð2 − μ2ÞRþ

p ;

Q=L ¼ μRþffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ð2 − μ2ÞRþ

p : ð4:5Þ

Notice that extremal black holes have chemical potential
μ ¼ ffiffiffi

2
p

; hence, RN BHs inside a box exist in the region of
parameters μ ∈ ½0; ffiffiffi

2
p � and Rþ ∈�0; 1½. These quasilocal

thermodynamic quantities obey the quasilocal first law
(2.31). We will further discuss the quasilocal thermody-
namic properties of the caged RN BH in Sec. VI B.
As a side note, observe that a small horizon radius

expansion of the RN quasilocal thermodynamics (4.5)
yields, at leading order,

THL¼ 1

8πRþ
ð2−μ2ÞþOðRþÞ; SH=L2¼ πR2þ;

M=L¼Rþð2þμ2Þ
4

þOðR2þÞ; Q=L¼ μRþ
2

þOðR2þÞ:
ð4:6Þ

These leading-order quantities coincide with the familiar
ADM thermodynamic quantities of a RN black hole in the
absence of a cavity. This is to be expected since taking the
limit Rþ ≡ rþ

L → 0 implies rþ ≪ L, which is the same as
taking the limit L → ∞ at which the box is transported to
the asymptotic region. In this limit, we should indeed
recover the ADM quantities of a RN black hole. Making
contact with our companion paper [20], note that the

noninteracting thermodynamic model of Sec. V of
Ref. [20] (which only captures the leading-order thermo-
dynamics of the system) makes use of this property.
For completeness, from (2.12) and the asymptotic

behavior of (4.4), we can also read the ADM mass and
charge of the caged RN black hole system,

M=L ¼ η

2
þ R2þ

μ2ð1 − ηÞ
4ð1 − RþÞ2

; Q=L ¼ μRþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞp

2ð1 − RþÞ
:

ð4:7Þ

V. SMALL HAIRY BLACK HOLES
CONFINED IN A BOX

In Sec. III, we found that our theory (2.1) has hairy
soliton solutions in addition to the caged Reissner-
Nordström black hole solutions of Sec. IV. In these
conditions, as argued in Sec. V of Ref. [20], the theory
should admit a third solution—a hairy black hole—that in
the small energy/charge limit can be thought of as placing
a small caged Reissner-Nordström black hole on top of a
hairy soliton. Following this intuition, the leading-order
thermodynamics of these hairy black holes was computed
(without solving the equations of motion) in Ref. [20]
using a simple thermodynamic model that assumes that
the hairy black hole is a noninteracting mixture of two
constituents: the soliton and the caged RN black hole. The
two solutions can indeed be “merged” to yield a hairy
black hole as long as the two components are in
thermodynamic equilibrium, i.e., they have the same
chemical potential [20].
On the other hand, there is yet another argument in

favor of the existence of hairy black hole solutions of
(2.1). It is well established that RN black holes are
unstable to the superradiant and near-horizon scalar
condensation instabilities [2–9,11–15,20]. It is then natural
to expect that if we take such an unstable RN black hole as
initial data the system should time evolve toward a new
solution that has scalar hair floating above the horizon,
with the electric repulsion balancing the gravitational
collapse. If so, this hairy black hole should have higher
entropy (for a given mass and charge) than the initial
system. These hairy black holes should then be the end
point of the superradiant instability of a RN black hole
in a box. A time evolution study done recently confirmed
that a Reissner-Nordström black hole perturbed with a
scalar field indeed evolves toward a hairy black hole
[2,4,11–13].
In this section, we solve the equations of motion of (2.1)

perturbatively to construct these static hairy black holes.
We will confirm that, at least for small mass and charge, the
intuition of the previous paragraphs is correct. Our hairy
black holes should therefore be the end point of the
superradiant instability of a RN black hole in a box.

9That is, when we set Rþ ¼ 0, one gets finðRÞ ¼ 1; Ain
t ðRÞ ¼

μ and foutðRÞ ¼ 1 − η=R; Aout
t ðRÞ ¼ μ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
. Note that the time

reparametrization factor N ¼ ð1 − ηÞ−1=2 guarantees that
foutjR→∞ ¼ 1. This setup (with μ ¼ 0) is the textbook example
of a Lanczos-Darmois-Israel static thin shell separating Minkow-
ski spacetime in the interior from the Schwarzschild geometry in
the exterior with η being proportional to the mass of the shell as
measured by an asymptotic observer; see, e.g., Sec. 3.10 of
Ref. [37] (with rotation a ¼ 0).
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A. Setting up the perturbation problem

Asymptotically flat hairy black holes of the Einstein-
Maxwell theory confined inside a box must solve the
equations of motion (2.6), subject to boundary conditions
(2.9) and (2.11) and Israel junction conditions (2.18a)–
(2.18c). We construct them perturbatively and find
analytical expressions for the fields. The hairy black
holes of our theory are a two-parameter family of
solutions that we can take to be the asymptotic scalar
amplitude ε defined as the derivative of the scalar field at
the R ¼ 1 box—see (2.13)—and the horizon radius Rþ.
Therefore, the perturbative construction requires a double
expansion of the fields in powers of ε and Rþ.

10 To be
able to solve the equations of motion (2.6) analytically,
we do a matched asymptotic expansion, similar to those
done in a similar context in anti-de Sitter (AdS) back-
grounds in Refs. [38–43]. However, here, we also need to
impose the junction conditions at the mirror located at
r ¼ L (R ¼ 1). As for the soliton case, the box location
divides the spacetime into the inside ( in; r ≤ L) and
outside (out, r ≥ L) regions, and we use the Israel
junction conditions to match the fields of these two
regions at the box hypersurface r ¼ L (R ¼ 1). But, this
time, we further divide the inside region (superscript
“in”; r ≤ L) into two subdomains, namely, the near
region rþ ≤ r ≪ L ( in-near) and the far region where rþ ≪
r < L ( in-far). Considering small black holes that have
rþ=L ≪ 1, the near and far regions inside the
box have an overlapping zone, rþ ≪ r ≪ L. In
this overlapping region, we can match the set of
independent parameters that are generated by solving
the perturbative equations of motion in each of the near
and far regions.
We can start our perturbative construction. First,

note that the chemical potential of the hairy black hole
should itself have a double expansion in powers of ε
and Rþ,

μ ¼
X
n≥0

ε2n
X
k≥0

Rkþμ2n;k: ð5:1Þ

Indeed, in Sec. III, we saw that the soliton is the backreaction
of a normal mode of the Minkowski box to higher orders.
At leading order, the chemical potential of the soliton is
related by a gauge transformation to a normal mode
frequency, but it is corrected at higher orders in the ε
expansion. We must allow similar corrections when the
horizon radius expansion parameter is present. We shall
construct the hairy black hole family ofwhich the zero-radius
limit is the ground-state soliton of Sec. III (so, with lowest

energy for a given charge).11 In our analysis, we take ε ≪ 1

andRþ ≪ 1, and we assume thatOðε2Þ ∼OðRþÞ. It follows
that terms with same (nþ k) contribute equally to the
perturbative expansion, e.g., Oðε0; R2þÞ ∼Oðε2; RþÞ∼
Oðε4; R0þÞ.
Outside the box, R ≥ 1, the black hole can be considered

to be a small perturbation in ε and Rþ of Minkowski
spacetime, and the scalar field is required to vanish. In
addition to (5.1), the fields in this region (we use the
superscript “out” to refer to this zone) have the double
expansion

foutðRÞ ¼
X
n≥0

ε2n
X
k≥0

Rkþfout2n;kðRÞ;

AoutðRÞ ¼
X
n≥0

ε2n
X
k≥0

RkþAout
2n;kðRÞ;

ϕoutðRÞ ¼ 0; ð5:2Þ

where we took into account that odd powers of ε do not
give corrections of the fields f and A.
In the far region inside the box, Rþ ≪ R < 1, the fields

of the hairy black hole still have a similar double expan-
sion, but this time the scalar field is also present (we use the
superscript “in-far” to refer to this domain):

fin-farðRÞ ¼
X
n≥0

ε2n
X
k≥0

Rkþfin-far2n;k ðRÞ;

Ain-farðRÞ ¼
X
n≥0

ε2n
X
k≥0

RkþAin-far
2n;k ðRÞ;

ϕin-farðRÞ ¼
X
n≥0

ε2nþ1
X
k≥0

Rkþϕin-far
2nþ1;kðRÞ: ð5:3Þ

By construction, our hairy black hole solution has a smooth
Rþ → 0 limit at which it reduces to the hairy soliton
constructed in the previous section. To make this limit
straightforward, we use the scaling symmetry (2.10) in each
region to require that

fin-farjR¼1 ¼ 1; foutjR→∞ ¼ 1; ð5:4Þ

which is equivalent to (3.3).
The outside fields (denoted collectively by Qout) must

obey the boundary conditions (2.11), and these outside
fields further have to be matched with the inside-far region
fields Qin-far at the timelike hypersurface Σ using the
parametrizations (2.15)–(2.16) and the Israel junction
conditions (2.18a)–(2.18c). In particular, we are construct-
ing our hairy black hole by placing the caged Reissner-
Nordström black hole of Sec. IV on top of the soliton of
Sec. III. Both of these constituents are confined inside the

10If one wants to go beyond the perturbative expansion, one
has to solve the set of equations (2.6) numerically. We return to
this issue in the Conclusion section.

11A similar construction can be done for the excited hairy
black holes.
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same cavity. This means that we use exactly the same
reparametrization factor N ¼ ð1 − ηÞ−1=2 that was found in
(3.8) and that describes the Israel surface tensor (3.9) of
our box.12

More concretely, we solve the equations at each order
fn; kg analytically (with the help ofMathematica) and find
the out (in-far) fields up to a total of four (six) integration
constants. The boundary conditions (2.11) for the metric fix
some constant(s). The Israel junction conditions at the box
(2.18a)–(2.18c) fix extra integration constants. We are left
with a few integration constants and a chemical potential
coefficient of (5.1), to be fixed by the matching with the
inside-near region, as described next.
We take the small radius R limit of the inside-far fields,

Qin-farðRÞjR≪1, in order to prepare these fields to be
matched with the inside-near region fields (collectively
denoted byQin-near) to be discussed below. The fieldsQin-far

turn out to be divergent when R → 0 as Rþ
R . This gives an

indication that the solutions do not hold for R ∼ Rþ, which
is reasonable as we can no longer consider the black hole to
be a small perturbation of the Minkowski spacetime at this
scale. This justifies why the far-region analysis inside the
box is valid only for R ≫ Rþ. Also, it follows that in the
far-region we can safely do a Taylor expansion in Rþ ≪ 1
and ε ≪ 1 since the large hierarchy of scales between the
solution parameters Rþ; ε and R guarantees that they do not
compete.
Consider finally the inside-near region, Rþ ≤ R ≪ 1.

Here, Taylor expansions in Rþ ≪ 1 and ε ≪ 1 should be
done with some caution since these small parameters
can now be of order similar to R. This is closely connected
with the fact that the inside-far region solution above breaks
down when R=Rþ ∼Oð1Þ. This suggests that to proceed
with the inside-near region analysis we should first intro-
duce new radial, y, and time, τ, coordinates as

y ¼ R
Rþ

; τ ¼ T
Rþ

: ð5:5Þ

In this new frame, the inside-near region corresponds to
1 ≤ y ≪ R−1þ . If we further require that Rþ ≪ 1 (as is
necessarily the case in our perturbative expansion), one
concludes that the inside-near region corresponds to Rþ ≪
1 ≤ y (and y ≫ ε). In particular, Taylor expansions in
Rþ ≪ 1 and ε ≪ 1 can now be safely done since the
radial coordinate y and the black hole parameters Rþ; ε

have a large hierarchy of scales.13 Further physical insight
is gained if we rewrite the caged RN solution (4.2) in the
new coordinate system (5.5):

ds2 ¼ R2þð−fðyÞdτ2 þ gðyÞdy2 þ y2dΩ2
2Þ;

fðyÞ ¼
�
1 −

1

y

�
2 − ð2 − μ2ÞRþ − μ2

y

2ð1 − RþÞ2
;

AτðyÞ ¼ RþATðyÞ ¼ Rþ
μ

1 − Rþ

�
1 −

1

y

�
: ð5:6Þ

The explicit factor of Rþ ≪ 1 in AτðyÞ shows that in the
inside-near region the electric field is weak. Thus, at leading
order, the gauge field is suppressed in the equations of
motion, and the system is to be seen as a small perturbation
around the neutral solution. The same holds when we add a
small scalar condensate to the system. The near fields of the
hairy black hole thus have the double expansion (we use the
superscript “in-near” to refer to this region):

fin-nearðyÞ ¼
X
n≥0

ε2n
X
k≥0

Rkþfin-near2n;k ðyÞ;

Ain-nearðyÞ ¼
X
n≥0

ε2n
X
k≥0

RkþAin-near
2n;k ðyÞ;

ϕin-nearðyÞ ¼
X
n≥0

ε2nþ1
X
k≥0

Rkþϕin-near
2nþ1;kðyÞ: ð5:7Þ

In these conditions, we can now solve the equations of
motion (2.6)–(2.7) for Qin-nearðyÞ analytically. One has to
consider these equationswith the change of variables (5.5) at
each order in fn; kg. As (2.6)–(2.7) effectively describe a
systemof threeODEs for f,A, andϕ at each order, we have a
total of six integration constants to be fixed. Three are
determined by the boundary conditions at the horizon (2.8)
(one for each field), and the other three constants are fixed by
the matching with the inside-far region solution in the
overlapping region Rþ ≪ R ≪ 1. For this matching, we
restore the coordinates fT; Rg and consider the large radius
expansion of the inside-near fields,Qin-nearðRÞjR≫1 (with the
expansion coefficients available at the given order). We find
that these diverge as a power ofR, which shows that the near-
region analysis breaks down atR ∼ 1. This explains why the
near-region analysis is valid only for R ≪ 1. We can then
match the two regions in powers of ε, Rþ, and R to fix the
three integrations constants that were not yet determined.
At the end of the day, after imposing boundary, junction,

and matching conditions at each order, we are left only with
a free parameter that characterizes the energy-momentum
content of the box.

12Recall that η essentially describes the energy-momentum
tensor of the box we choose to start with, i.e., even before it
receives corrections proportional to the scalar field amplitude ε
and horizon radius Rþ. We cannot set it to zero or else the
energy conditions are not obeyed, as discussed below (3.9) and
in (3.20). Our caged RN BHs and hairy solutions have an
Israel surface stress tensor that reduces to (3.9) when Rþ → 0
and/or ε → 0.

13A key step for the success of the matching expansion
procedure is that a factor of Rþ (one of the expansion parameters)
is absorbed in the new coordinates (5.5).
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The reader can find examples of the matching asymptotic
expansion procedure described in the literature [35,38–44].
To illustrate how to apply it in the case at hand, which has
the novelty with respect to the previous references
that we have to introduce Israel junction conditions, we
show how the computation procedure is applied to the
lower orders in the next subsection. The reader not
interested in these technical details can move straight to
Sec. V C, in which we present the final result for the
thermodynamic quantities that describe the hairy black hole
solutions of (2.6).

B. Construction of the solution using matching
expansion and junction conditions

In this subsection, we illustrate the general computa-
tional procedure of the last subsection. Namely, we
determine the expansion of the fields of the hairy black
hole. We insert the double expansion (5.2) (outside region),
(5.3) (inside-far region), or (5.7) (inside-near region) into
the equations of motion (2.6)–(2.7) and solve the resulting
perturbed equations order by order.

1. Matching asymptotic expansion at O(ε0;Rk
+)

At lowest order, Oðε0; RkþÞ, in the scalar amplitude
expansion, the scalar field is absent, and the solution
simply describes a Reissner-Nordström black hole placed
inside a cavity with the Israel surface stress tensor (3.9).
Consequently, the inside-far field coefficients

ffin-far0;k ðRÞ; Ain-far
0;k ðRÞg can be read directly from an

Rþ ≪ 1 expansion of the RN solution (4.2), once we
replace the chemical potential by its expansion (5.1).
For example, up to Oðε0; R2þÞ, this yields the solutions

fin-far0;0 ðRÞ ¼ 1;

fin-far0;1 ðRÞ ¼ −
ð1 − RÞð2þ μ20;0Þ

2R
;

fin-far0;2 ðRÞ ¼ ð1 − RÞ½μ20;0 − 2Rð1þ μ20;0 þ μ0;0μ0;1Þ�
2R2

;

Ain-far
0;0 ðRÞ ¼ μ0;0;

Ain-far
0;1 ðRÞ ¼ μ0;1 þ μ0;0

�
1 −

1

R

�
;

Ain-far
0;2 ðRÞ ¼ μ0;2 þ ðμ0;0 þ μ0;1Þ

�
1 −

1

R

�
; ð5:8Þ

which satisfy the condition (5.4), and the coefficients μ0;k
are to be determined by the matching conditions with the
inside-near fields.
A similar Taylor expansion of (5.6) yields the inside-near

field coefficients ffin-far0;k ðyÞ; Ain-near
0;k ðyÞg. Namely, up to

Oðε0; R2þÞ, these are

fin-near0;0 ðyÞ¼
�
1−

1

y

��
1−

μ20;0
2y

�
;

fin-near0;1 ðyÞ¼
�
1þμ20;0

2
−
μ20;0þμ0;0μ0;1

y

��
1−

1

y

�
;

fin-near0;2 ðyÞ¼
�
1þμ0;0ðμ0;0þμ0;1Þ

−
μ20;1þμ0;0ð3μ0;0þ4μ0;1þ2μ0;2Þ

2y

��
1−

1

y

�
;

Ain-far
0;0 ðyÞ¼ μ0;0

�
1−

1

y

�
;

Ain-near
0;1 ðRÞ¼ ðμ0;0þμ0;1Þ

�
1−

1

y

�
;

Ain-near
0;2 ðyÞ¼ ðμ0;0þμ0;1þμ0;2Þ

�
1−

1

y

�
; ð5:9Þ

and they obey the horizon boundary conditions (2.9). By
construction (since we have just expanded the exact caged
RN solution), the inside-far fields (5.8) and the inside-near
fields (5.9) trivially satisfy the matching conditions in the
overlapping region Rþ ≪ R ≪ 1.
Consider now the region outside the cavity, R ≥ 1. Up to

Oðε0; R2þÞ, the most general solution can be written as

fout0;0ðRÞ ¼ 1 −
η̃

R
; fout0;1ðRÞ ¼ −

Cf0;1
1

R
;

fout0;2ðRÞ ¼ −
Cf0;2
1

R
þ μ̃20;0
2R2

;

Aout
0;0ðRÞ ¼ μ̃0;0; Aout

0;1ðRÞ ¼ μ̃0;1 þ μ̃0;0

�
1 −

1

R

�
;

Aout
0;2ðRÞ ¼ μ̃0;2 þ ðμ̃0;0 þ μ̃0;1Þ

�
1 −

1

R

�
; ð5:10Þ

where η̃, μ̃0;k, and Cf0;k
1 are integrations constants.14 They

are determined by applying the Israel junction conditions
(2.18a)–(2.18c) across the timelike hypersurface Σ. We use
the parametrizations (2.15)–(2.16) for the surface layer Σ,
and for reasons explained below (5.4), we use the same
reparametrization factor N ¼ ð1 − ηÞ−1=2 that was found in
(3.8). This fixes

η̃¼ η; Cf0;1
1 ¼ 0; Cf0;2

1 ¼ μ̃20;1
2

; μ̃0;k ¼ μ0;k
ffiffiffiffiffiffiffiffiffiffi
1−η

p
;

ð5:11Þ

where η is the parameter that describes the Israel surface
tensor (3.9) of our box (even before we place the scalar field

14Notice that we have already imposed the asymptotic boun-
dary conditions (2.11) [see also (5.4)] to get (5.10).
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and the horizon inside it). Again, note that when Rþ ¼ 0
our system simply describes Minkowski spacetime with a
constant electric field confined inside a surface layer with
energy density described by η (and no electric charge
density). Consequently, in this case, the outside region is
described by the Schwarzschild solution with ADM mass
parameter η that accounts for the mass of the surface layer.

2. Matching asymptotic expansion at O(ε1;Rk
+)

Moving to the next order in ε, the Oðε1Þ correction
switches on the scalar field ϕ without backreacting it yet
in the gravitoelectric background; it describes a small
perturbation of the scalar field around the caged RN black
hole. That is to say the nontrivial equations of motion (2.6)
and (2.7) reduce to the Klein-Gordon equation without a
source.15

At leading order, Oðε1; R0þÞ, the horizon radius does not
contribute. It follows that the scalar field at this order is the
same as the soliton scalar field inside the box (3.4). This
means that

ϕin-far
1;0 ðRÞ ¼ −

sinðπRÞ
πR

; ϕin-near
1;0 ðyÞ ¼ −1: ð5:12Þ

The analysis at this order also fixes μ0;0 ¼ π
e.

Next, we consider Oðε1; R1þÞ; i.e., we determine ϕ1;1:
(i) Outside region, R ≥ 1:

The scalar field vanishes outside the box in our
setup at all orders, ϕout ¼ 0.

(ii) Inside-far region, Rþ ≪ R ≤ 1:
Nonlinear terms of the type ϕ1;0f0;1, ϕ1;0A0;1 and similar

derivative combinations source a nonhomogeneous con-
tribution to the Klein-Gordon equation for ϕin-far

1;1 ðRÞ. This
equation can be solved analytically, yielding

ϕin-far
1;1 ðRÞ ¼ β1e−iπR − β2eiπR

R
−
cosðπRÞ
4πe2R

½4μ0;1e3R − 2π3½Cið2πRÞ − lnðRÞ� − ðπ3 − 2πe2ÞR�

þ sinðπRÞ
8π2e2R2

½2π5R − π3ð2þ RÞ − 2πe2ð2 − RÞ þ 4μ0;1e3Rþ 4π4RSið2πRÞ�; ð5:13Þ

where CiðxÞ and SiðxÞ are (again) the cosine and sine integral functions and β1;2 are two integration constants.
At the box location, the scalar field ϕin-far ¼ εðϕin-far

0;0 þ ϕin-far
0;1 RþÞ has the Taylor expansion

ϕin-farjR¼1≃ ε

�
ðR−1ÞþRþ

�
−β1þβ2þ

e
π
μ0;1−

π2

4e2
½1þ2Cið2πÞ�

�

þðR−1ÞRþ

�
2e2−2π4þ3π2

8e2
þβ1−β2þ iπðβ1þβ2Þ−

eμ0;1
2π

þ π2

2e2
½Cið2πÞ−πSið2πÞ�

�
þOððR−1Þ2Þ

	
:

ð5:14Þ

The junction conditions (2.13) and associated choice
for the definition of ε require that ϕin-farjR¼1 ¼ εðR − 1Þþ
OððR − 1Þ2Þ. Therefore, the term proportional to Rþ in the
first line of (5.14) must vanish, and so does the second line.
These two conditions fix β1 and β2.

(i) Inside-near region, Rþ ≪ R ≪ 1:
Since at leadingorder the scalar field is a constant in

this region, ϕin-near
1;0 ðyÞ ¼ −1, and the source term at

order Oðε1; R1þÞ depends only on the derivative of
ϕin-near
1;0 ðyÞ, the particular solution vanishes, and

ϕin-near
1;1 ðyÞ is just the solution of the homogeneous

Klein-Gordon equation. Regularity at the horizon
requires thatwe set one of its two integration constants
to zero, σ2 ¼ 0, to avoid a divergence lnð1 − yÞ. We
are simply left with a constant solution

ϕin-near
1;1 ðRÞ ¼ σ1: ð5:15Þ

(ii) Matching in the overlapping region Rþ ≪ R ≪ 1
(inside the box):

To do the matching, we take the small R limit of
the inside-far region solution and the large R limit of
the inside-near solution. Note that at this order only
terms up to R0R1þ and R1R0þ are appropriately
accounted for (terms higher than this receive
corrections from the next order). The small R
expansion of the inside-far region solution ϕin-far ¼
εðϕin-far

0;0 þ ϕin-far
0;1 RþÞ is

ϕin-farjR≪1 ≃ ε

�
−1þ Rþ

�
π2½1 − 2πSið2πÞ�

4e2
þ 1

2

�

þ 1

2πe2R
½π3½γ − 1 − Cið2πÞ þ lnð2πÞ�

þ 2μ0;1e3� þOðR2; RþRÞ
	
; ð5:16Þ

while the inside-near region solution is simply
ϕin-near
1;1 ðRÞ ¼ σ1. Here, γ ∼ 0.577216 is Euler’s

15At higher orders, the equation of motion for ϕ still has the
form of a Klein-Gordon equation but with an inhomogeneous
term sourced by the lower-order fields and their derivatives.
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constant. So, the far region solution breaks down for
small radius (as expected from a previous discus-
sion), and we can fix μ0;1 to eliminate the divergent
term 1=R. Additionally, σ1 is determined by match-
ing the constant contributions. Altogether,

σ1 ¼
1

2
þ π2½1 − 2πSið2πÞ�

4e2
;

μ0;1 ¼
π3½1þ Cið2πÞ − γ − logð2πÞ�

2e3
: ð5:17Þ

We have fixed all the integration constants at
order Oðε1; R1þÞ.

Should we wish, we could proceed with a similar
procedure to orders Oðε; RkþÞ with k ≥ 2, but this is not
necessary for our physical purposes.

3. Matching asymptotic expansion at O(ε2;Rk
+)

At order Oðε2Þ, the OðεÞ scalar field backreacts on the
metric and gauge field. The Klein-Gordon equation is
trivially satisfied, and we solve the remaining equations of
motion for f2;k and A2;k.

(i) Outside region, R ≥ 1:
We solve the order Oðε2; R0þÞ in the outer region

for the fields fout2;0 and Aout
2;0 up to two integration

constants for each field. Boundary conditions
(2.11) fix one integration constant, and we are
left with three undetermined integration constants
fCf20

1 ; CA20

1 ; CA20

2 g that will be determined by the
Israel junction conditions at the box:

fout2;0ðRÞ¼−
Cf20
1

R
; Aout

2;0ðRÞ¼CA20

2 −
CA20

1

R
: ð5:18Þ

(ii) Inside-far region, Rþ ≪ R ≤ 1:
Also, at order Oðε2; R0þÞ, we solve the far region

equations for the fields fin-far2;0 and Ain-far
2;0 . Each of the

fields has a pair of integration constants, fBf20
1 ; Bf20

2 g
and fBA20

1 ; BA20

2 g. The fields in this region are

fin-far2;0 ðRÞ ¼ Bf20
1 −

Bf20
2

R
− 2Cið2πRÞ þ 2 lnR

þ sinð2πRÞ
πR

;

Ain-far
2;0 ðRÞ ¼ BA20

2 −
BA20

1

R
þ e
2π2R

½2πRðlnR
− Cið2πRÞÞ þ sinð2πRÞ�: ð5:19Þ

These fields at the box take the values

fin-far2;0 ð1Þ ¼ Bf20
1 − Bf20

2 − 2Cið2πÞ;

Ain-far
2;0 ð1Þ ¼ BA20

2 − BA20

1 −
eCið2πÞ

π
: ð5:20Þ

Conditions (5.4) and (2.29) allow us to fix two integration
constants, say, BA20

2 ¼ BA20

1 þ e
πCið2πÞ þ μ2;0 and Bf20

2 ¼
Bf20
1 − 2Cið2πÞ. The other two are determined below by the

matching conditions.
(i) Inside-near region, Rþ ≪ R ≪ 1:

We solve the near-region equations for the fields
fin-near2;0 and Ain-near

2;0 . Each of the fields has two inte-

gration constants, fKf20
1 ; Kf20

2 g and fKA20

1 ; KA20

2 g. We
fix two of them, Kf20

2 and KA20

2 , by imposing the
boundary conditions at the horizon (2.9). We obtain

fin-near2;0 ðyÞ ¼ Kf20
1 −

πKA20

1

ey

�
1 −

1

y

�
;

Ain-near
2;0 ðyÞ ¼ KA20

1

�
1 −

1

y

�
; ð5:21Þ

and Kf20
1 and KA20

1 are determined by the matching
conditions that follow.

(ii) Matching in overlapping region Rþ ≪ R ≪ 1 (in-
side the box):

To match the inside-far and inside-near regions,
we take the large (small) R expansion of the inside-
near (inside-far) fields:

fin-near2;0 ðyÞjR≫1 ≃ Kf20
1 þOðR1þÞ;

Ain-near
2;0 ðyÞjR≫1 ≃ KA20

1 þOðR1þÞ;

fin-far2;0 ðRÞjR≪1 ≃
2Cið2πÞ − Bf20

1

R
þ ½Bf20

1 − 2γ þ 2 − 2 lnð2πÞ� þOðRÞ;

Ain-far
2;0 ðRÞjR≪1 ≃ −

BA20

1

R
þ πBA20

1 − e½γ − 1 − Cið2πÞ þ lnð2πÞ� þ πμ2;0
π

þOðRÞ: ð5:22Þ

Note that we only keep terms that are not corrected by higher orders. We fix four integration constants with the
matching conditions,

Bf20
1 ¼ 2Cið2πÞ; Kf20

1 ¼ 2Cið2πÞ − 2γ þ 2 − 2 lnð2πÞ; ð5:23Þ

BA20

1 ¼ 0; KA20

1 ¼ πμ2;0 − e½γ − 1 − Cið2πÞ þ lnð2πÞ�
π

: ð5:24Þ
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(iii) Israel junction conditions at the box, R ¼ 1:
The remaining constants are determined from the

Israel junction conditions (2.18a)–(2.18c) across the
timelike hypersurface Σ. Recall that in these con-
ditions we use the time reparametrization introduced
in (2.16), and hence we take N ¼ ð1 − ηÞ−1=2 found
in (3.8):

fin-far2;0 ð1Þ¼ 0;

Ain-far
2;0 ðRÞjR→1¼

ð8π2−3e2Þ½2Sið2πÞ−Sið4πÞ�
6π2e

þ e
π
−
3π

2e
þ e
π
ðR−1ÞþOððR−1Þ2Þ;

N2fout2;0ð1Þ¼−
Cf20
1

1−η
;

NAout
2;0ðRÞjR→1¼

CA20

2 −CA20

1ffiffiffiffiffiffiffiffiffiffi
1−η

p þ CA20

1ffiffiffiffiffiffiffiffiffiffi
1−η

p ðR−1Þ

þOððR−1Þ2Þ: ð5:25Þ

Continuity of the fields fixes the following integra-
tion constants:

Cf20
1 ¼ 0;

CA20

1 ¼
ffiffiffiffiffiffiffiffiffiffi
1−η

p e
π
;

CA20

2 ¼
ffiffiffiffiffiffiffiffiffiffi
1−η

p �ð8π2−3e2Þ½2Sið2πÞ−Sið4πÞ�
6π2e

þ2e
π
−
3π

2e

�
: ð5:26Þ

At this stage, we have fixed all the integration constants
at order Oðε2; R0þÞ. We still need to fix the chemical

potential μ2;0, which is fixed at order Oðε3; R0þÞ when
the scalar field is found. In general, in this perturbative
scheme, the chemical potential μn;k is fixed at order
Oðεnþ1; RkþÞ.

4. Matching asymptotic expansion at higher orders

To arrive to the relevant physical results, we also
need to compute the correction to the scalar field at order
Oðε3Þ and to the gravitational and gauge field at order
Oðε2RþÞ and Oðε4Þ. The computation of the former cor-
rection parallels that of Sec. V B 2, while the determi-
nation of the latter parallels the discussion of Sec. V B 3.
We therefore omit the details that are not further
enlightening.

C. Thermodynamic quantities

With the perturbation expansion presented in the
previous subsection, we have found the scalar, gauge,
and gravitational fields perturbatively. We can now insert
these fields into the expressions for the quasilocal
thermodynamics of Sec. II C to compute the thermody-
namic quantities of the hairy BH. In the perturbation
expansion, we have assumed that Oðε2Þ ∼OðRþÞ. This
assumption implies that terms with the same (nþ k)
contribute equally to the perturbative expansion, e.g.,
Oðε0; R2þÞ ∼Oðε2; RþÞ ∼Oðε4; R0þÞ. We did this consis-
tent perturbative expansion up to the order necessary to
get the thermodynamic quantities that verify the first law
of thermodynamics up to order ðnþ kÞ ¼ 2. This is
enough to get our main result best summarized in
later Fig. 1.
Using (2.12), the dimensionless quasilocal energy M,

quasilocal charge Q, chemical potential μ, temperature T,
and entropy of the small hairy black holes are given by

M=L¼
�
Rþ
4

�
π2

e2
þ2

�
þ R2þ
32e4

ðπ4ð8½Cið2πÞ− γ− lnð2πÞ�þ5Þþ4ðe2þπ2Þe2ÞþOðR3þÞ
	

þ ε2
�
1

2
þ Rþ
12πe2

ð9π3½γ−Cið2πÞ−2þ lnð2πÞ�þð8π2−3e2Þ½2Sið2πÞ−Sið4πÞ�
�
þOðR2þÞ

	

þ ε4
�
15π2−6e2þ16π½Sið4πÞ−2Sið2πÞ�

24π2
þOðRþÞ

	
þOðε6Þ

Q=L¼
�
πRþ
2e

þ R2þ
8e3

ðπ3ð2½Cið2πÞ− γ− lnð2πÞ�þ1Þþ2πe2ÞþOðR3þÞ
	

þ ε2
�
e
2π

þ Rþ
12π2e

�
12π3

�
γ−Cið2πÞþ lnð2πÞ−7

4

�
þð8π2−3e2Þ½2Sið2πÞ−Sið4πÞ�

�
þOðR2þÞ

	

−
�
ε4
eðð8π2−e2Þð2Sið2πÞ−Sið4πÞÞþ4πe2−8π3Þ

8π4
þOðRþÞ

	
þOðε6Þ
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μ¼
�
π

e
−Rþ

π3

2e3
ðγ−Cið2πÞ− 1þ lnð2πÞÞþOðR2þÞ

	
þ ε2

�
8π2− 3e2

6π2e
ð2Sið2πÞ−Sið4πÞÞþ e

π
−
3π

2e
þOðRþÞ

	
þOðε4Þ;

TL¼ 1

4πRþ

��
1−

π2

2e2
þ Rþ
8e4

�
4π4

�
γ−Cið2πÞþ lnð2πÞ− 3

4

�
þ 4ðe2− π2Þe2

�
þOðR2þÞ

	

þ ε2
�
3e2 − 8π2

6πe2
ð2Sið2πÞ−Sið4πÞÞ− π2

2e2
ðγ−Cið2πÞ− 4þ lnð2πÞÞ− 1þOðRþÞ

	
þOðε4Þ

�
;

S=L2 ¼ πR2þ: ð5:27Þ

Recall that CiðxÞ ¼ −
R
∞
x

cos z
z dz and SiðxÞ ¼ R

x
0

sin z
z dz are

the cosine and sine integral functions, respectively, and γ ∼
0.577216 is Euler’s constant.
As an important check of the computations, notice that

these thermodynamic quantities satisfy the quasilocal form
of the first law of thermodynamics (2.31). Moreover, when
Rþ ¼ 0, (5.27) reduces to the soliton thermodynamics
(3.18) and when ε ¼ 0, Eq. (5.27) yields the caged RN
black hole thermodynamics (4.5) [once we insert μ in (5.27)
into (4.5) and take a series expansion up to OðR2þÞ].
From these thermodynamic quantities (5.27), we can

confirm that the simple noninteracting thermodynamic
model presented in Sec. V of Ref. [20]—which does not
use the equations of motion—captures the correct leading-
order thermodynamics, i.e., the leading terms of (5.27). First
note that, at leading order, it follows from (5.27) that μ ¼ π

e.
Assuming, as justified above, that Oðε2Þ ∼OðRþÞ, the
leading-order contributions of the expansion (5.27) allow
one to express Rþ and ε analytically in terms of M and Q,

Rþ¼4eðeM−πQÞ
2e2−π2

þOðM2;Q2;MQÞ;

ε2¼2πð2e2Q−2πeMþπ2QÞ
2e3−π2e

þOðM2;Q2;MQÞ;
ð5:28Þ

which we insert in the expressions for the other thermody-
namic quantities to find that at leading order in M and Q
one has

μ ¼ π

e
þOðM;QÞ;

S=L2 ¼ 16πe2ðeM − πQÞ2
ðπ2 − 2e2Þ2 þOðM2;Q2;MQÞ;

TL ¼ ðπ2 − 2e2Þ2
32πe3ðeM − πQÞ þOðM2;Q2;MQÞ: ð5:29Þ

These quantities (5.29) match the result of the non-
interacting model presented in Eq. (5.4) of Sec. V of
Ref. [20]. Thus, the noninteracting thermodynamic model
does indeed capture the leading-order properties of this
hairy black hole system at very low cost. This explicit
confirmation adds to confirmations of the noninteracting
thermodynamic model done in similar hairy black hole
systems in Refs. [38–42,44–46] and realizes in simple
terms the idea that we can place a small black hole,
without hair, of the theory at the core of its hairy soliton
to get the hairy black hole of the theory.
For completeness, note that an asymptotic observer

measures the ADM mass and ADM charge of the hairy
black hole to be16

M=L ¼
�
η

2
þ R2þ

π2ð1 − ηÞ
4e2

þOðR3þÞ
	
þ ε2

�
Rþ

1 − η

2
þOðR2þÞ

�
þ ε4

�
e2ð1 − ηÞ

4π2
þOðRþÞ

�
þOðε6Þ;

Q=L ¼
�
Rþ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p π

2e
þ R2þ

π
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
4e3

ð2e2 þ π2½1 − γ þ Cið2πÞ − lnð2πÞ�Þ þOðR3þÞ
	

þ ε2
�
e

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
2π

þ Rþ

� ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
24π2e

ð6πe2 þ 3π3½8γ − 10Cið2πÞ − 11þ 8 lnð2πÞ�

þ ð16π2 − 6e2Þ½2Sið2πÞ − Sið4πÞ�Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
e

C1

�
þOðR2þÞ

	

þ ε4
�
e

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
8π4

ððe2 − 8π2Þ½2Sið2πÞ − Sið4πÞ� − 4πe2 þ 10π3Þ þOðRþÞ
	
þOðε6Þ: ð5:30Þ

16The constant C1 in the expression for Q is given by C1¼1
8
π

�
2iπ

�
G3;1

2;3



−2iπ

��� −1;1
−1;0;0

�
−G3;1

2;3



2iπ

��� −1;1
−1;0;0

��
−G3;1

2;3



−2iπ

��� 0;2
0;0;1

�
−G3;1

2;3



2iπ

��� 0;2
0;0;1

�	
≃−0.0177191, where Gmn

pq



x
��� a1;…; ap
b1;…; bq

�
is the MeijerG function. These ADM quantities should obey a first law

of thermodynamics that includes a term that accounts for the thermodynamic contribution of the Israel surface layer.
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Finally, the Lanczos-Darmois-Israel surface energy-momentum tensor (2.19) at the surface layer Σ has nonvanishing
components given by

Stt ¼
1

8π

��
−2ð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Þ þ Rþ

�
1þ π2

2e2

�
þ R2þ

�
e2 þ π2

4e2
þ π4

16e4
ð5 − 8½γ − Cið2πÞ þ lnð2πÞ�Þ

�
þOðR3þÞ

	

þ ε2
�
1þ Rþ

�
8π2 − 3e2

6πe2
½2Sið2πÞ − Sið4πÞ� þ 3π2

2e2
ðγ − Cið2πÞ þ lnð2πÞ − 2Þ

�
þOðR2þÞ

	

þ ε4
�
5

4
−

e2

2π2
−
4½2Sið2πÞ − Sið4πÞ�

3π

	
þOðε6Þ

�
;

Sxx ¼ Sϕϕ ¼ 1

8π

��
2ð1 − ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p Þ − η

2
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p − R2þ

�ðπ2 − 2e2Þ2
32e4

þ π2

8e2
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p �
þOðR3þÞ

	

þ ε2

2
½−1þ Rþð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Þ þOðR2þÞ� þ

ε4

8

�
1þ 2e2

π2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Þ
	
þOðε6Þ

�
: ð5:31Þ

When Rþ ¼ 0, this reduces to (3.20), as it should.

VI. DISCUSSION OF PHYSICAL PROPERTIES

A. Israel surface stress tensor and energy conditions

Scalar fields confined inside a box have already been
studied in the literature: 1) at the linear level [2–6,14–19],
2) as a nonlinear elliptic problem (although without having
flat asymptotics [7,9,10] or without discussing the exterior
solution [8]), and 3) as an initial-value problem [11–13].
However, to the best of our knowledge, the properties of the
internal structure of the cavity or surface layer that is
necessary to confine the scalar field have never been
analyzed. That is to say it has never been discussed whether
the energy-momentum content of the mirror necessary to
confine the scalar field is physically acceptable and, if so,
what its properties are. Now that we have the regular and
asymptotically flat hairy solitons and hairy black holes of
the theory, we can analyze the Lanczos-Darmois-Israel
surface stress tensor (2.19) and address these questions. At
the front line, we have to ask whether it obeys or does not
obey the energy conditions.
As pointed out before, in our construction, we have

imposed the Israel junction conditions on the gravito-
electric fields on the surface layer Σ. We decided to
impose that the component of the electric field orthogonal
to Σ is continuous across σ. This amounts to having no
surface electric charge density, which motivated our
choice. With these conditions on Σ, the system is still
left with a free parameter. Essentially, we have a one-
parameter family of solutions, which is labeled by the
parameter η, that differ on the energy-momentum content
of the surface layer Σ or, equivalently, on the total mass of
the solution. That is to say, η determines the mass of the
shell and thus of the hairy solution [as can be checked
inspecting the mass formulas in (3.19) and (5.30)].
Different choices of η dictate a distinct extrinsic curvature
jump at Σ, i.e., a different Lanczos-Darmois-Israel surface
stress tensor.

In (3.20) and (5.31), we have computed the three
nonvanishing components of the tensor Sab for the soliton
and hairy black hole, respectively. As a consequence of the
conservation law for the Brown-York stress tensor (see
Sec. II C), the Lanczos-Darmois-Israel surface tensor is
also conserved, DaSab ¼ 0, as we can explicitly check.
Further, note that the zero horizon radius limit of the hairy
black hole is the soliton and thus that (5.31) reduces to
(3.20) when we set Rþ → 0.
The Lanczos-Darmois-Israel surface tensor can bewritten

in the perfect fluid form, SðaÞðbÞ ¼ EuðaÞuðbÞ þ PðhðaÞðbÞþ
uðaÞuðbÞÞ, with u ¼ f−1=2∂t and local energy density E ¼ ½ρ�
and pressure P ¼ ½p� given by17

E ¼ −Stt; P ¼ Sxx ¼ Sϕϕ; ð6:1Þ

with Stt, Sxx, and Sϕϕ defined in (3.20) and (5.31) for the
soliton and hairy black hole, respectively.
Physical surface layers must have a stress tensor (i.e., an

energy density and pressure) that obeys the energy con-
ditions. Different versions of these energy conditions read
(i ¼ 1, 2) [47]

17These densities can also be computed following a different,
but equivalent, route (see, e.g., Ref. [47]). Introduce the orthogo-
nal tetrad on Σ, eð0Þ ¼ f−1=2∂t, eðkÞ ¼ r−1êðkÞ, (k ¼ 1; 2), such
that huveðaÞueðbÞv ¼ ηðaÞðbÞ with ηðaÞðbÞ ¼ diagf−1; 1; 1g being
the three-dimensional Minkowski metric and êðkÞiêðkÞj ¼ σij. The
components of the Lanczos-Darmois-Israel energy-momentum
tensor (2.19) (at Σ) in the tetrad frame are then SðaÞðbÞ ¼
eðaÞueðbÞvSuv, and one has SðaÞðbÞeðbÞ ¼ λeðaÞ, which is an
eigenvalue equation. That is, λ ¼ f−E;Pig are the eigenvalues
(with E the energy density and Pi the two principal pressures),
and eðaÞ are the associated unit eigenvectors (principal direc-
tions). In particular, eð0Þ is the 3-velocity of a box observer in her
local rest frame.
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weak energy condition∶ E ≥ 0 ∧ E þ Pi ≥ 0; ð6:2Þ

strong energy condition∶ EþPi ≥ 0∧ Eþ
X2
i¼1

Pi ≥ 0;

ð6:3Þ

null energy condition∶ E þ Pi ≥ 0; ð6:4Þ

dominant energy condition∶ E þ jPij ≥ 0: ð6:5Þ

Set Rþ ¼ 0 and ε ¼ 0 in (5.31) and (6.1). A physical
surface layer with 0 < η ≤ 1 has an energy density and
pressure and associated jump in the extrinsic curvature.
Solutions with these parameters split the spacetime into an
interior region that is Minkowski spacetime and an exterior
region that is described by the Schwarzschild geometry
with ADM mass proportional to η, M ¼ ηL=2. If we
choose η ¼ 0, the surface layer is absent.
Now, consider the hairy solitons of which the surface

layer Σ has stress tensor (3.20); i.e., let ε ≠ 0 but Rþ ¼ 0

in (5.31) and (6.1). An inspection of these quantities
quickly concludes that for η ¼ 0 none of the energy
conditions (6.2) is obeyed. As discussed already below
Eq. (3.9), we must have η ≠ 0 to guarantee that they (or a
relevant subset of them) are obeyed. Actually, we can find
the minimum shell parameter η, as a power expansion in ε,
above which (with η < 1) the energy conditions (or a
select subset of them) are obeyed. Consider now the hairy
black hole with ε ≠ 0 and Rþ ≠ 0 in (5.31) and (6.1).
There is still a minimum shell parameter η, which we can
express as a double power expansion in ε and Rþ, above
which (with η < 1) the energy conditions (or a select
subset of them) are obeyed. To conclude this discussion on
the energy conditions, as an important byproduct of our
study, we have found the energy-momentum content that a
mirror must have to confine a hairy soliton or hairy black
hole inside of it.

B. Phase diagram of asymptotically
flat solutions in a box

Einstein-Maxwell theory with a complex scalar field
(with a given scalar field mass and electric charge) is
described by the action (2.1). The only asymptotically flat
solutions of this theory are Minkowski spacetime and the
RN black hole family of solutions, which have a vanishing
scalar field. However, if we introduce a reflecting box or
mirror that confines the scalar field, we have found that
the theory admits several regular asymptotically flat
solutions. These are the caged RN BH (Sec. IV), the
ground-state soliton (Sec. III), the ground-state hairy black
hole (Sec. V), and an infinite tower of excited solitons

and hairy black holes.18 For a given scalar field electric
charge, the latter excited solutions always have larger
energy than the ground-state solutions, so we do not
discuss them further.
It is natural to expect that the thermal phases of the

theory compete with each other. It is thus important to
display the several solutions of the theory in a phase
diagram of (regular) asymptotically flat boxed solutions.
For example, it is important to display the region of
existence of each of these solutions in a mass-charge phase
diagram as well as to present a microcanonical phase
diagram whereby we plot the entropy of the solutions as a
function of their mass and electric charge.19

For this end, we find it appropriate to work with the
Brown-York quasilocal massM and chargeQ. Essentially,
this is because these quasilocal quantities are independent
of the parameter η that describes the energy-momentum
content of the shell that confines the scalar field.20 The
quasilocal thermodynamics of the (ground state) soliton,
caged RN black hole, and hairy black hole are given in
(3.18), (4.5), and (5.27), respectively (for vanishing scalar
field mass m ¼ 0).
The left panel of Fig. 1 shows the region of existence of

caged RN black holes, (ground-state) solitons, and
(ground-state) hairy BHs for a scalar field charge
e≡ qL ¼ 3.521 The diagram is qualitatively similar for
other values of e that are above the superradiant bound, i..e,
e > πffiffi

2
p . The horizontal axis scans the dimensionless qua-

silocal charge Q=L, while the vertical axis plots the
difference ΔM≡M −Mext between the dimensionless
quasilocal mass M=L of a given solution and the mass
Mext of the extremal caged RN BH that has the same
electric charge. So, the extremal caged RN BH family is

18Recall that the ground-state solutions have their perturbative
root in the lowest normal mode frequency of Minkowski
spacetime, and the excited states emerge from the remaining
infinite tower of normal mode frequencies.

19RN black holes caged inside a box were discussed in the
grand-canonical ensemble in Ref. [23]. Moreover, Ref. [8]
numerically constructed the hairy solutions of the system and
discussed them in the grand-canonical ensemble. At least for
small charges for which our perturbative analysis is valid, hairy
black holes can be the dominant thermal phase only in the
microcanonical ensemble, so we restrict our discussion to this
ensemble.

20Essentially, these different solutions differ from each other in
the interior region, and the energy-momentum content of this
region is best captured by the quasilocal thermodynamics.
Further, recall that these quasilocal quantities obey the quasilocal
first law of thermodynamics (2.31) and (2.32), which we used to
check our final results.

21In the companion paper [20], we have also picked the value
qL ¼ 3.5 to display the quasinormal modes of RN in a box and
characterize the regions of instability. For consistency, we have
kept the same value in this discussion. However, the qualitative
behavior should be the same for any e > πffiffi

2
p ∼ 2.22; see, in

particular, Fig. 2 of Ref. [20].
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represented by the horizontal blue line with ΔM ¼ 0.
RN BHs exist above the blue line, in regions I and II. In
region II, RN BHs are unstable, with the magenta line
separating regions I and II describing the onset of super-
radiance. The black line (with negative slope) describes the
hairy soliton branch. Hairy black holes exist in regions II
and III. That is, they merge with the RN BH family at the
onset of superradiance—described by (5.27) with ε ¼ 0—
and extend all the way down to the soliton line—described
by (5.27) with Rþ ¼ 0. In region II, we have nonunique-
ness of solutions for a given quasilocal mass and charge.
In the right panel of Fig. 1, we plot the dimensionless

entropy S=L2 as a function of the quasilocal mass M=L
for a fixed quasilocal charge Q=L ¼ 0.005, again for
qL ¼ 3.5. This phase diagram is qualitatively similar for
other (small values) Q=L and qL. The caged RN BH
branch (blue curve) exists for large mass and charge and
extends all the way down to point A. This point A represents
the extremal RN configuration with T ¼ 0 but finite
entropy (it corresponds to the point with Q=L ¼ 0.005
in the blue horizontal line of the left panel). Point B signals
the onset of superradiance: caged RN BHs between points
B and A are unstable. The onset of superradiance (point B)
signals a second-order phase transition to the branch of
hairy black holes (which is stable to superradiance) and
extends from point B toward point C (that has vanishing
entropy). The latter is the limit Rþ → 0 of the hairy BH
family and describes the hairy soliton with Q=L ¼ 0.005.

The former (point B) describes the hairy BH branch in the
limit ε → 0, at which it merges with the RN family.
In the microcanonical ensemble, the energy M and the

charge Q are held fixed, and the relevant thermodynamic
potential is the entropy S. The thermal phase that has the
highest entropy for a given mass and charge is the dominant
phase in this ensemble (recall that the soliton and
Minkowski spacetime in a box have vanishing entropy
as they do not have a horizon). Therefore, from the right
panel of Fig. 1, we conclude that hairy BHs are the favored
thermal phase in the microcanonical ensemble. In particu-
lar, this is true in the region of phase space where they
coexist with caged RN black holes. This dominance
extends to all other values of the electric charge Q=L
(where our perturbative analysis holds) and e ¼ qL. Thus,
hairy black holes are the dominant phase in the micro-
canonical ensemble in their region of existence (regions II
and III in the left panel of Fig. 1). These hairy black holes
are stable to superradiance, and we do not have any
arguments suggesting they are unstable to any other
mechanism within the theory described by the action (2.1).
The regime of validity of our perturbative computations

can be inferred from the right panel plot of Fig. 1. Indeed,
recall that the (quasilocal) first law of thermodynamics
requires that at a second-order phase transition the slope
dS=dM is the same for the two branches of solutions that
merge (since T is the same at the bifurcation point and
dQ ¼ 0 in the right panel of Fig. 1). This is clearly the case

FIG. 1. Left panel: Region of existence of solutions. We plot the quasilocal mass difference ΔM ¼ M −Mext (between a given
solution and the extremal caged RN BH with the same chargeQ) as a function of the quasilocal electricQ for e ¼ qL ¼ 3.5. Caged RN
black holes exist in regions I and II. The magenta line with positive slope splitting these two regions describes the onset curve of the
superradiant instability (RN BHs are unstable in region II). The black line with negative slope describes the soliton family. Hairy black
holes exist in between these two lines, i.e., in regions II and III (red shaded area). Right panel: Phase diagram in the microcanonical
ensemble, i.e., adimensional entropy S=L2 as a function of the adimensional quasilocal mass M=L at constant value of the quasilocal
charge Q=L ¼ 0.005 and e ¼ 3.5. The blue line starting at A (extremality) is the RN black hole, and the red line BC is the hairy back
hole branch that ends at the soliton C. The merger point B (superradiant instability onset) signals a second-order phase transition.
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in our plot. However, if we start departing from the regime
of validity of our perturbative analysis, we increasingly find
that the merger is not perfect and the slopes of the two
branches no longer match. We find that this is the best
criteria to identify the regime of validity of our thermo-
dynamic results (5.27). With this criteria, we can quantize
the regime of validity. Typically, by construction, our
perturbative results are valid for ε ≪ 1 and Rþ ≪ 1.
Moreover, the scalar field charge cannot be too large to
avoid large backreactions. Altogether, we restrict ourselves
to ε≲ 0.1, Rþ ≲ 0.1, and πffiffi

2
p ≤ e≲ 4, where πffiffi

2
p is the

superradiant bound [20]. With these bounds in consider-
ation, we find that for a scalar field charge e ¼ 3.5 the
mass and the charge must be below ≲0.07 and ≲0.05,
respectively.
Our findings allow for a solid expectation about the end

point of the superradiant instability of RN BHs caged in a
box in asymptotically flat backgrounds. Consider the time
evolution of a caged RN BH in the segment AB, which is
perturbed by a charged scalar field. As caged RN BHs in
this region are unstable to superradiance, they should
evolve to another black hole solution that is stable to this
mechanism. The second law of thermodynamics implies
that the entropy can only increase. Then, we should expect
the unstable RN BH to evolve to the hairy black hole
solution we have constructed.

VII. CONCLUSION AND FINAL DISCUSSIONS

Reissner-Nordström black holes placed inside a cavity
are unstable in a band about extremality if they are
perturbed by a charged scalar field with charge above an
onset charge q identified in Ref. [20]. We have considered
the case in which the scalar field is completely confined
inside the box, i.e., when it vanishes at and outside the
mirror, following the original spirit of the black hole bomb
setup proposal. In a phase diagram of asymptotically flat
solutions, we have shown that the onset of the instability
signals a bifurcation to a new family of solutions that
describes hairy black holes. These are asymptotically flat
and regular everywhere in the outer domain of communi-
cations, and they are stable to the mechanism that drives the
original Reissner-Nordström unstable. Therefore, the box
and its confinement boundary conditions for the scalar field
allow one to evade the original no-hair theorems for the
Einstein-Maxwell-scalar theory [29–32]. That is to say
Reissner-Nordström black holes are not the only asymp-
totically flat, spherically symmetric, and static (regular)
black hole solutions of Einstein-Maxwell theory. The zero
horizon radius limit of our hairy black holes is a regular
asymptotically flat horizonless solution, i.e., a hairy soliton
[also known as a boson star after a Uð1Þ gauge

transformation]. To be physically relevant, these hairy
solutions must obey the energy conditions. This constrains
the energy-momentum tensor of the box that we use to
confine the hair. We found the Israel stress surface tensor of
this box and the conditions it must satisfy to obey the
energy conditions. As a byproduct of our study, we found
that these hairy black holes must obey a Brown-York
quasilocal version of the first law of thermodynamics.
We found the hairy black holes of the theory for small

mass and electric charge. It would be interesting to find
these hairy solutions for larger values of mass and electric
charge (this necessarily requires a numerical construction).
The reason is that, above a critical mass and charge, it might
well be the case that the zero horizon radius limit of the
hairy black hole solutions is singular and no longer a
soliton (this scenario occurs in the AdS hairy black holes of
Ref. [42]). In addition, in the perturbative regime in which
we have worked, the effect of the box on the thermody-
namic quantities cannot be qualitatively distinguished from
an equivalent analysis in AdS. This can be seen by
comparing our Fig. 1 with Fig. 1 of Ref. [44], in which
the same type of construction is analyzed for black holes in
AdS4. As we increase the values of M and Q, we should
eventually start to find qualitative discrepancies between
the two cases (note, however, that the box and its Israel
properties are by themselves important features not present
in the simplest AdS case).
In the region of phase space where Reissner-Nordström

black holes are unstable, there is a hairy black hole (with
the same energy and charge) that always has higher
entropy. Therefore, in agreement with the second law of
thermodynamics, it is natural to expect that our hairy black
holes are the end point of the superradiant instability of
Reissner-Nordström black holes confined in a box. Thus, in
the future, it would be important to compare late-time
solutions of Cauchy simulations like those of Refs. [11–13]
with our results. Such time evolution studies might also
find it useful to monitor the Brown-York quasilocal
quantities and first law. Finally, in these time simulations,
it would be important to study carefully the Israel surface
stress tensor of the box that confines the scalar field and the
conditions in which the energy conditions are obeyed.
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