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In a flat spacetime with one spatial dimension compactified, inertial reference frames are not all
equivalent, but there are the preferred ones. This paper investigates the nonequivalence of inertial frames
and also that of uniformly accelerated frames in connection with the response of the Unruh-DeWitt detector
coupled to a massless scalar field. The detector’s transition rates of both excitation and deexcitation are
studied in depth for three different cases: (i) the detector moving at an arbitrary constant velocity,
(ii) moving with a constant acceleration in the compact direction, and (iii) moving with a constant
acceleration in noncompact directions. The instantaneous transition rate in relation to the switching
function is also taken into account.
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I. MOTIVATIONS AND OVERVIEW

The twin paradox is a well-known puzzle in the theory of
relativity: one of the two identical twins travels on a high-
speed spacecraft away from Earth and then turns around
and comes back, while the other stays on Earth. The puzzle
arises because each twin apparently sees the other as
moving, and therefore time dilation seems to suggest that,
paradoxically, the twins should find each other less aged by
the time when they meet. As the paradox is resolved within
the standard theory of relativity, it turns out the traveling
twin is less aged than the earthbound sibling, not the other
way around.
There have been various explanations of the twin para-

dox, all recognizing the crucial fact that the symmetry
between the two twins is in fact illusory. The earthbound
twin is in the same inertial (rest) frame all the time, while
the traveling twin undergoes two different (outbound and
inbound) initial frames throughout the journey. The frame
switch upon the traveling twin is essentially the reason for
the aging difference. The switch of initial frames implies
that the traveling twin must experience acceleration during
the period of turnaround, which can also be used to account
for his slowed aging in terms of gravitational time dilation
(although it is often argued that acceleration per se plays
no direct role). For more discussions on the twin paradox,
see [1] and references therein.
The puzzle strikes back again when we consider the twin

paradox in a flat spacetime with one spatial dimension
compactified. If the traveling twin moves at a constant
velocity in the compact direction, his frame remains inertial

for the entire journey, yet the topology allows him to meet
the earthbound twin after he circumnavigates the compact
dimension. As the traveling twin undergoes no frame
switch at all, the standard explanation of the aging differ-
ence no longer works. The resolution to the puzzle lies in
the fact that compactifying a spatial dimension breaks the
global Lorentz invariance. As a consequence, there is now a
class of preferred inertial reference frames, namely, those at
rest in the compact direction [2–6].
As inertial frames are not all equivalent now, an observer,

in principle, can experimentally determine the frame’s
moving velocity in the compact direction with respect to
the preferred frame. This can be done by performing a
“global” experiment: sending two light beams in opposite
directions along the compact dimension and measuring
the arrival time of both signals when they come back. The
frame’s moving velocity relative to the preferred frame can
be inferred from the time delay between the two arriving
signals [2,3]. On the other hand, a “local” experiment (as
performed within the comoving frame) is also possible. For
instance, as one spatial dimension is compactified, the form
of the electrostatic field of a point charge is deviated from
1=r2. Measuring the deviation can also determine the
frame’s moving velocity relative to the preferred frame [7].
It is instructive to look for other kinds of local experi-

ments, as they will teach us to what extent the initial
reference frames are inequivalent. Particularly, as the
velocity relative to the preferred frame bears an absolute
meaning now (and in a sense analogous to acceleration in
the Minkowski spacetime), it is suggestive that the Unruh-
DeWitt detector moving at a constant velocity might
register signals revealing its velocity. Recently, it was
shown that, in the Minkowski spacetime, coupled to a*dwchiou@gmail.com
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massless scalar field in the polymer quantization (which
implements some features of the microscopic discreteness
in loop quantum gravity) [8], even the Unruh-DeWitt
detector moving at constant velocity detects nontrivial
radiation [9]. This is essentially because the Lorentz
invariance is violated in the UV scale by the microscopic
discreteness. In our case of flat spacetime with a compact
dimension, as the Lorentz invariance is violated in the IR
scale by the large length of the compact dimension, it is
curious to know whether the Unruh-DeWitt detector mov-
ing at a constant velocity also detect nontrivial signals.
This paper investigates the response of the Unruh-

DeWitt detector coupled to a massless scalar field in a
flat spacetime with one spatial dimension compactified. It
turns out, when the Unruh-DeWitt detector moves at a
constant velocity, the detector’s equilibrium transition rate
of deexcitation depends on the moving velocity in the
compact direction as well as the size of the compact
dimension, implying that the nonequivalence of inertial
frames is discernable by the response of the Unruh-DeWitt
detector. The equilibrium transition rate of excitation, on
the other hand, remains zero as in the ordinary (uncom-
pactified) Minkowski spacetime. If one is able to switch the
detector on and off at will and measure the instantaneous
(nonequilibrium) transition rate accordingly, then the rates
of both excitation and deexcitation are nonzero and can be
used to infer the velocity in the compact direction and the
size of compact dimension.
Furthermore, we also study the response of the Unruh-

DeWitt detector moving with a constant acceleration both
in the compact direction and in noncompact directions.
When the detector accelerates in the compact direction, the
detector’s response never equilibrates and thus one can only
make sense of the instantaneous transition rates, which, of
both excitation and deexcitation, depend ont only on the
detector’s acceleration and the size of the compact dimen-
sion but also on the time when the observation is performed
and the instantaneous velocity in the compact direction at
the moment when the detector is turned on. On the other
hand, when the detector accelerates in noncompact direc-
tion, the response is in equilibrium with the field. While
the equilibrium transition rate of excitation remains to be
the same celebrated form of thermal radiation as that in the
ordinary Minkowski spacetime, the equilibrium transition
rate of deexcitation exhibits an extra correction dependent
on the size of the compact dimension.
This paper is organized as follows. It begins in Sec. II

with a brief review on the Unruh-DeWitt detector, mainly
based on [10]. The Wightman function is then derived in
Sec. III for the flat spacetime with a compact dimension.
In Secs. IV and V, the effects of a switching function and
the sharp switching limit are carefully studied by following
the treatments in [11,12] (also see [13]) with special care
for the modifications arising from the spatial compactifi-
cation. With the mathematical tools at hand, the response of

the Unruh-DeWitt detector is investigated in depth for three
different settings: Sec. VI for the detector moving at a
constant velocity, Sec. VII for moving with a constant
acceleration in the compact direction, and Sec. VIII for
moving with a constant acceleration in noncompact direc-
tions. Finally, the results and their implications are sum-
marized and discussed in Sec. IX. Throughout this paper,
we use the metric signature ð−;þ;þ;þÞ and the natural
units with both ℏ and the speed of light set to be 1. (The
symbol c is used to denote the coupling constant for the
detector’s interaction with the scalar field.)

II. THE UNRUH-DEWITT DETECTOR

In the generally covariant description of quantum field
theory, the notion of “particles” of the quantum field is
rather ambiguous in the sense that the particle content is
observer dependent [14]. It is therefore natural to seek out
an operational definition of particles in terms of the
response of a well-defined “particle detector.” The model
of photon detectors has been considered in the context of
quantum optics by Glauber in 1963 [15]. However, it was
not until Unruh introduced a particle detector model in
1976 that the problem of a detector’s response in relation to
its trajectory was undertaken [16]. Unruh’s model is given
by a particle in a small box coupled to the quantum field
and a particle of the quantum filed is said to be detected if
the particle in the box is excited from its initial ground state
to some excited state. (A similar model was also developed
by Sánchez in 1981 [17].) In 1979, DeWitt [18] further
improved Unruh’s idea by introducing a two-level point
monopole detector, which is now generally referred to as
the Unruh-DeWitt detector in the literature.
In the following, we briefly review the Unruh-DeWitt

detector, particularly following the lines of Sec. 3.3 in [10]
and using the same notations as closely as possible. Unlike
[10], we consider the transition rates of both excitation
(ΔE > 0) and deexcitation (ΔE < 0). We also take into
account the switching function in the form as introduced in
[11–13]. More details about the Unruh effect and the
Unruh-DeWitt detector can be found in [10,19,20] and
especially [21].
The Unruh-DeWitt detector is an idealized point-particle

detector with two energy levels jE0i and jEi, coupled to a
scalar field ϕ via a monopole interaction. If the detector
moves along a world line xμðτÞ, where τ is the detector’s
proper time, the Lagrangian for the monopole interaction is
given by

c χðτÞμðτÞϕðxμðτÞÞ; ð2:1Þ

where c is a small coupling constant, μðτÞ is the operator of
the detector’s monopole moment, and χðτÞ is a switching
function with a compact support (i.e., positive for a finite
period of time and zero before and after the interaction),
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accounting for the switch-on and switch-off of the
interaction.
For a generic trajectory xμðτÞ, the detector in general

does not remain in its initial state jE0i but can be excited
(ifΔE ≔ E − E0 > 0) or deexcited (ifΔE < 0) to the other
state jEi, while at the same time the field ϕ makes a
transition from the vacuum state j0i to an excited state jΨi.1
By the first-order perturbation theory, the amplitude for the
transition j0; E0i → jΨ; Ei is given by

ichΨ; Ej
Z

∞

−∞
χðτÞμðτÞϕðxμðτÞÞdτj0; E0i; ð2:2Þ

which leads to the factorized form:

ichEjμð0ÞjE0i
Z

∞

−∞
eiðE−E0Þτ χðτÞhΨjϕðxμðτÞÞj0idτ ð2:3Þ

by the equation of evolution for μðτÞ:

μðτÞ ¼ eiH0τμð0Þe−iH0τ: ð2:4Þ

Summing the squared norm of the amplitude given in (2.3)
over all possible jΨi,2 we obtain the transition probability
of jE0i → jEi as

c2jhEjμð0ÞjE0ij2FðE − E0Þ; ð2:5Þ

where

FðΔEÞ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ0e−iΔEðτ−τ0Þ χðτÞχðτ0ÞGþðxðτÞ;xðτ0ÞÞ

ð2:6Þ

is the response function, which depends on the trajectory
but not the internal properties of the detector. The remain-
ing factor c2jhEjμð0ÞjE0ij2 represents the selectivity, which
depends only on the detector’s internal properties.3 The
Wightman functions G� are defined as

Gþðx; x0Þ ≔ h0jϕðxÞϕðx0Þj0i; ð2:7aÞ

G−ðx; x0Þ ≔ h0jϕðx0ÞϕðxÞj0i: ð2:7bÞ
The detector is said to be in equilibrium with the field ϕ

along a given trajectory, if

Gþðτ; τ0Þ≡GþðxðτÞ; xðτ0ÞÞ ¼ GþðΔτÞ; Δτ ≔ τ − τ0;

ð2:8Þ

depends only on Δτ. In this case, imposition of the
switching function χðτÞ can be viewed as a prescription
of regularization. Correspondingly, by trivially prescribing
χðτÞ ¼ 1, the (infinite) total transition probability divided
by the (infinite) total proper time gives rise to the (finite)
equilibrium transition rate (i.e., probability per unit proper
time) given by

R ¼ c2jhEjmð0ÞjE0ij2 _FðΔEÞ; ð2:9Þ

where

_FðΔEÞ ≔
Z

∞

−∞
dðΔτÞe−iΔEΔτGþðΔτÞ: ð2:10Þ

On the other hand, if the detector is not in equilibrium
with ϕ [i.e.,Gþðτ; τ0Þ depends on both τ and τ0 for the given
trajectory], we are unable to make sense of the notion of
equilibrium transition rate but can only refer to the total
transition probability, which now depends on the exact form
of χðτÞ. Provided that χðτÞ is smoothly switched on for a
finite duration of time and then smoothly switched off and
that the coupling constant c is small enough in comparison to
the switch-on duration (so that the first-order perturbation is
viable), (2.5) with (2.6) is well defined and yields a finite
total transition probability. By taking the time derivative
of the total transition probability, we can still define the
instantaneous transition rate observed at a particular
instant, the notion of which will be elaborated in Sec. V.
Also see Appendix A for the remarks on how the

transition rate can be measured in principle and what the
condition of equilibrium is and is not.

III. THE WIGHTMAN FUNCTION

Consider a real scalar field ϕðxÞ≡ ϕðt;xÞ in a
d-dimensional spacetime, where events are coordinated
as xμ ¼ ðx0;xÞ ¼ ðt; x1;…; xd−1Þ. The mode expansion of
ϕðxÞ is given by

ϕðt;xÞ ¼
X
k

ðakukðt;xÞ þ a†ku
�
kðt;xÞÞ: ð3:1Þ

If the spacetime is flat but the (d − 1)th spatial direction is
compactified with a finite length L, the Fourier modes uk
are given by

ukðt;xÞ ¼
1

ð2ωkð2πÞd−2LÞ1=2
eik·x−iωkt; ð3:2Þ

where the frequency associated with k ¼ ðk1;…; kd−1Þ is

ωk ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; ð3:3Þ

and the (d − 1)th component of k takes only discrete
values:

1See Appendix A for the confusion arising from the
different usages of the words excitation and deexcitation.

2Here, we use the completeness relation
P

jΨijΨihΨj ¼ 1, but
note that, at the level of the first-order perturbation, only the one-
particle states of jΨi contribute.

3In the rest of the paper, we will focus on the response function
FðΔEÞ and ignore the factor of selectivity.
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kd−1 ¼ 2πn
L

; n ∈ Z: ð3:4Þ

Let j0Li be the vacuum state in accordance with the
above mode expansion, i.e.,

akj0Li ¼ 0; for∀ k: ð3:5Þ

The Wightman function Gþ
L ðx; x0Þ then takes the form

Gþ
L ðx;x0Þ≔ h0LjϕðxÞϕðx0Þj0Li

¼
�
1

L

X
kd−1∈2π

LZ

�Z
dd−2k
ð2πÞd−2

1

2ωk
eik·ðx−x0Þ−iωkðt−t0Þ

¼
X∞
n¼−∞

Z
dd−1k
ð2πÞd−1

1

2ωk
eik·ðx−x0Þ−iωkðt−t0Þe−inLkd−1 ;

ð3:6Þ

where we have used the Poisson summation formula.4

The Wightman function depends only on the difference
of x and x0, i.e., Gþ

L ðx; x0Þ ¼ Gþ
L ðx − x0Þ; furthermore,

as can be seen from (3.6), it is periodic in the xd−1

direction, i.e.,

Gþ
L ðt0− t0;x1−x1

0
;…;xd−1−xd−1

0 þnLÞ
¼Gþ

L ðt0− t0;x1−x1
0
;…;xd−1−xd−1

0 Þ; n∈Z: ð3:7Þ

Equation (3.6) can be cast as

Gþ
L ðx;x0Þ ¼

X∞
n¼−∞

Gþðt− t0;x1−x1
0
;…;xd−1−xd−1

0 −nLÞ;

ð3:8Þ

where Gþðx; x0Þ≡Gþ
L→∞ðx; x0Þ is the ordinary Wightman

function in the Minkowski spacetime. Equation (3.8) is a
known result and can also be obtained by the method of
images (e.g., see [22]).
The Green functions (Wightman function included) are

generally very complicated. In the case of a massless
(m ¼ 0) scalar field in four-dimensional spacetime,
Gþðx; x0Þ can be explicitly calculated as (see [10,19–21])

Gþðx; x0Þ ¼ −
1

4π2
1

ðt − t0 − iϵÞ2 − jx − x0j2 ; ð3:9Þ

where we adopt the standard iϵ regularization by introduc-
ing a small (infinitesimal) imaginary number iϵ, ϵ > 0, to

provide a frequency cutoff. The rest of this paper will focus
on this four-dimensional case with xμ ¼ ðt; x; y; zÞ.
Once the detector’s trajectory is given, the Wightman

function is known and we are ready to compute the
transition rate for the equilibrium case by (2.10) with
GþðΔτÞ replaced by Gþ

L ðΔτÞ. For the nonequilibrium case,
however, we have to take more care with the switching
function in order to make sense of the instantaneous
transition rate.

IV. TRANSITION PROBABILITY WITH A
SWITCHING FUNCTION

The response function given by (2.6) involves the
regularization iϵ, which is prescribed in the Wightman
function Gþðx; x0Þ as shown in (3.8) and (3.9). Provided
that the trajectory xðτÞ is smooth enough,5 (2.6) can be
recast in a form free of regularization, which can then be
computed explicitly (at least numerically). This can be done
by following the same steps in [11,12] (also see [13])
except that we should take special care of the modifications
arising from the spatial compactification.
The detailed derivation is given in Appendix B. The

regularization-free expression of (2.6) turns out to be

FðΔEÞ ¼ −
ΔE
4π

Z
∞

−∞
du χðuÞ2

þ 1

2π2

Z
∞

−∞
du χðuÞ

Z
∞

0

ds χðu − sÞ

×

�
cosðΔEsÞ

X∞
n¼−∞

1

Δx2n
þ 1

s2

�

þ 1

2π2

Z
∞

0

ds
s2

Z
∞

−∞
du χðuÞð χðuÞ − χðu − sÞÞ;

ð4:1Þ

where we define

Δt ≔ tðuÞ − tðu − sÞ ð4:2aÞ

Δx2
n ≔ ðxðuÞ − xðu − sÞÞ2 þ ðyðuÞ − yðu − sÞÞ2

þ ðzðuÞ − zðu − sÞ − nLÞ2: ð4:2bÞ

and

Δx2n ≔−ðΔtÞ2þΔx2
n ¼ðΔxÞ2−2nLΔzþðnLÞ2; ð4:3aÞ

ðΔxÞ2≔ΔxμΔxμ≡ ðxμðuÞ−xμðu− sÞÞðxμðuÞ−xμðu− sÞÞ
≡−ðΔtÞ2þðΔxÞ2þðΔyÞ2þðΔzÞ2: ð4:3bÞ

4The Poisson summation formula is

X∞
n¼−∞

fðnÞ ¼
X∞
k¼−∞

Z
∞

x¼−∞
dxfðxÞe−2πikx:

5See Footnote 8 for the precise requirement.
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The factor

X∞
n¼−∞

1

Δx2nðu; sÞ
≡ X∞

n¼−∞

1

ðΔxÞ2 − 2nLΔzþ ðnLÞ2
≡ 4π2Gþ

L ðu; u − sÞjϵ¼0 ð4:4Þ

appearing in (4.1) can be cast in a closed form via the
identity6

fða;bÞ≔
X∞
n¼−∞

1

n2þanþb

¼ π cot ½π
2
ða−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−4b

p
Þ�−π cot ½π

2
ðaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−4b

p
Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2−4b
p :

ð4:5Þ
It should be emphasized that (4.1) is valid only if the factor
(4.4) has no singular points other than s ¼ 0 along the
detector’s trajectory. On the other hand, if the factor (4.4) has
singular points other than s ¼ 0 along the given trajectory,
the derivation inAppendixB breaks down and (4.1) is viable
only if the switching function χðu − sÞ is turned off before
(4.4) hits a singularity other than s ¼ 0.7

Note that the improper integrals over ð0;∞Þ and
ð−∞;∞Þ appearing in (4.1) are in fact only over finite
intervals, since χðuÞ is of compact support. Furthermore,
since Δx2n¼0 ≡ ðΔxÞ2 ¼ −s2 þOðs4Þ (see Appendix B),
the divergent behavior of 1=s2 inside the parenthesis in
(4.1) as s → 0 is cancelled out by the same divergent
behavior of the term cosðΔEsÞ=Δx2n¼0. Therefore, if the
factor (4.4) has no singular points other than s ¼ 0 along
the detector’s trajectory, the expression (4.1) is not only free
of regularization but yields a finite result. As long as the
detector’s trajectory xμðτÞ and the switching function χðuÞ
are both explicitly given and smooth enough,8,9 and
furthermore the factor (4.4) is free of singularities other
than s ¼ 0 along the trajectory, (4.1) gives an unambiguous
finite result for the total transition probability.
In the limit L → ∞, all the summands in (4.4) vanish

except for the n ¼ 0 term. Consequently,
P∞

n¼−∞ 1=Δx2n →
1=ðΔxÞ2 and (4.1) reduces to the ordinary result of the

Minkowski spacetime as given in (3.8) of [12]. Also note
that in this case, the factor (4.4) is always free of singular
points except for s ¼ 0 regardless of the detector’s
trajectory.

V. THE SHARP SWITCHING LIMIT

The switching function χðuÞ can be modeled as a smooth
enough function as shown in Fig. 1. That is, χðuÞ is 0 for
u < τ0 − δ, it is smoothly turned on from 0 to 1 during
u ∈ ðτ0 − δ; τ0Þ, it remains to be 1 for u ∈ ðτ0; τÞ, it is then
smoothly turned off from 1 to 0 during u ∈ ðτ; τ þ δÞ, and
finally it remains to be 0 for u > τ þ δ. The interval Δ ≔
τ − τ0 is understood as the switch-on duration and δ indicates
how fast the switch-on and -off are performed. To neglect the
detailed dependence on the switching function, it is conven-
ient to take the artificial prescription of the sharp switching
limit given by δ=Δ → 0.10We follow the same steps in [12] to
obtain the sharp switching limit of (4.1).
In the sharp switching limit δ=Δ → 0, χðuÞ becomes

Θðu − τ0ÞΘðu − τÞ with ΘðxÞ being the Heaviside step
function. The first term in (4.1) reduces to

−
ΔE
4π

Z
∞

−∞
du χðuÞ2 ¼ −

ΔE
4π

ΔþO
�
δ

Δ

�
: ð5:1Þ

The second term reduces to

1

2π2

Z
∞

−∞
du χðuÞ

Z
∞

0

ds χðu − sÞ

×
�
cosðΔEsÞ

X∞
n¼−∞

1

Δx2n
þ 1

s2

�

¼ 1

2π2

Z
τ

τ0

du
Z

u−τ0

0

ds

�
cosðΔEsÞ

X∞
n¼−∞

1

Δx2n
þ 1

s2

�

þO

�
δ

Δ

�
: ð5:2Þ

The third term however yields

FIG. 1. A typical switching function χðuÞ.

6The right-hand side of (4.5) always yields a real number even
if a2 − 4b < 0, as in this case it is easy to show that both the
numerator and denominator are purely imaginary.

7In any case, one can always compute the transition prob-
ability by (B1), but (B1) will not reduce to the same simple
regularization-free form of (4.1) unless χðu − sÞ is turned off
before (4.4) hits any nonzero singularities.

8According to [12], in order to obtain (B17) from (B16),
the trajectory has to be of C9 for smoothness.

9A function is said to be smooth enough, if it is of class Cn to a
certain degree n > 0. One can choose χðuÞ to be smooth (i.e., of
C∞) by modeling it as a bump function. However, χðuÞ cannot be
analytic, since a nonzero analytic function cannot be compactly
supported.

10In the sharp switching limit, however, χðuÞ is no longer
smooth enough, which gives rise to an artifact of logarithmic
divergence in the transition probability as we will see shortly.
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1

2π2

Z
∞

0

ds
s2

Z
∞

−∞
du χðuÞð χðuÞ − χðu − sÞÞ

¼ 1

2π2

Z
Δ

0

ds
x
þO

�
δ

Δ

�
; ð5:3Þ

which is logarithmically divergent. The logarithmic diver-
gence is in fact an artifact due to the infinite sharpness of the
switching. By the detailed calculation in Sec. 4 of [12], the
logarithmic divergence can be rendered more explicitly and
in the end the response function takes the form

FðΔEÞ¼−
ΔE
4π

ðτ− τ0Þþ
1

2π2

Z
τ

τ0

du
Z

u−τ0

0

ds
�
cosðΔEsÞ

X∞
n¼−∞

1

Δx2nðu;sÞ
þ 1

s2

�
þ 1

2π2
ln
Δ
δ
þCþO

�
δ

Δ

�
; ð5:4Þ

where C is a constant independent of ΔE, Δ, and δ. Taking the derivative with respect to τ upon (5.4) yields

_FτðΔEÞ ≔
d
dτ

FðΔEÞ ¼ −
ΔE
4π

þ 1

2π2

Z
Δ

0

ds

�
cosðΔEsÞ

X∞
n¼−∞

1

Δx2nðτ; sÞ
þ 1

s2

�
þ 1

2π2Δ
þO

�
δ

Δ2

�
; ð5:5Þ

where
P∞

n¼−∞ 1=Δx2nðτ; sÞ is given by (4.4) with u re-
placed by τ. Equation (5.5) (together with the factor of
selectivity) can be understood as the instantaneous tran-
sition rate as observed at the instant τ for the detector being
sharply turned on at the instant τ0. Even though the total
transition probability given by FðΔEÞ is divergent and thus
ill defined in the sharp switching limit, the instantaneous
transition rate in the limit δ → 0 remains well behaved
everywhere except for τ ¼ τ0 (see Footnote 12).
In the case that (4.4) has singularities other than s ¼ 0,

(5.5) remains viable as long as the switch-on duration
Δ ¼ τ − τ0 is short enough such that s ∈ ð0;ΔÞ encounters
no nonzero singularities [that is, the switching function
χðu − sÞ is turned off before s hits any nonzero singularities
as discussed in Sec. IV]. When Δ keeps increasing, the
instantaneous transition rate _FτðΔEÞ might become diver-
gent at a certain critical point at which s hits a nonzero
singularity. (Wewill see this case in more detail in Sec. VII.)
Finally, when Δ is larger than the critical value, (5.5)
becomes invalid.11

The formula (5.5) is explicitly causal in the sense that the
instantaneous transition rate observed at time τ depends
only on the detector’s trajectory before τ and independent
of the trajectory after τ. (See [11,23] for more discussions
on the causality.) Although we have to assume a switch-off
to obtain (5.5), the causality implies that the same formula
of (5.5) gives the instantaneous transition rate observed at τ
regardless of whether the detector is turned off or remains
turned on after the observation is made. If the detector
follows a trajectory in equilibrium with the field ϕ and (4.4)
is free of singularities other than s ¼ 0, we expect that, in

the Δ → ∞ limit (i.e., the detector has been turned on for
a long time), _FτðΔEÞ given in (5.5) will asymptote to a
τ-independent value, which should be identical to _FðΔEÞ
given in (2.10). That is, the instantaneous transition rate
becomes the equilibrium transition rate if the detector is
turned on long enough. If (4.4) suffers from singularities
other than s ¼ 0, it should be caveated that (5.5) is valid
only for short Δ and the Δ → ∞ limit of (5.5) does not
make sense; the equilibrium transition rate should be
calculated directly by (2.10).
On the other hand, if the detector’s trajectory is not in

equilibriumwithϕ, the instantaneous transition rate _FτðΔEÞ
does not converge to an asymptotic value as Δ → ∞ [even
if we can derive the valid counterpart of (5.5) for large Δ].
In this case, instead of the equilibrium transition rate, we can
only make sense of the instantaneous transition rate, which
depends on the observation time τ and how long the detector
has been turned on. The instantaneous transition rate for
short Δ is given by (5.5).
It should be noted that the instantaneous transition rate

might be negative for some values of τ. This is not a
pathological trait, because what is required to be positive is
the total transition probability, not its time derivative, i.e.,
the instantaneous transition rate. The fact that the instanta-
neous transition rate becomes negative around some instant
τ simply means that the total transition probability becomes
smaller if one chooses not to measure the signal at the
instant τ but to wait and keep the detector turned on for a bit
longer until the measurement is made at the later instant
τ þ dτ. It is the quantum interference over time that is
responsible for the possibility that the total transition
probability might not be monotonic against the switch-
on duration. However, if the detector’s trajectory is in
equilibrium with ϕ, we can make sense of the equilibrium
transition rate as the Δ → ∞ limit of the instantaneous
transition rate, which must be positive.
Similarly, it is also not pathological if the instantaneous

transition rate is divergent at some critical points of τ in the

11This does not mean we can no longer make sense of the
instantaneous transition rate, but just means (4.1) is not viable
and thus neither is (5.5). To derive the valid counterparts of
(4.1) and (5.5), we have to redo the analysis in Appendix B by
taking the small s expansion of (4.4) around the nonzero
singularities, which is much more involved and depends on
the explicit form of (4.4).
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case that (4.4) suffers from singularities other than s ¼ 0.
Since the total transition probability is always finite (and
positive), the instantaneous transition rate as a function of τ
might be divergent at some points but must remain
integrable over τ.12

Finally, in the δ → 0 limit, (5.5) reveals an interesting
relation between the excitation and deexcitation rates:

_Fτð−jΔEjÞ − _FτðjΔEjÞ ¼
jΔEj
2π

: ð5:6Þ

If (4.4) is free of nonzero singularities, (5.6) is always held
and even the equilibrium transition rate satisfies this
relation, which is not obvious at all from (2.10). On the
other hand, if (4.4) suffers from nonzero singularities, (5.6)
is held only for short Δ and is broken down when Δ is
larger than a certain critical value. Particularly, the equi-
librium transition rate might violate this relation.

As we have obtained the formulas for both the equilib-
rium and instantaneous transition rates, we are ready to
study the Unruh-DeWitt detector’s response in various
situation in the following three sections.

VI. CONSTANT VELOCITY

Consider that the detector moves in the compact (z)
direction at a constant velocity v ¼ vzẑ. The trajectory is
given by the world line:

t ¼ u0τ; x ¼ y ¼ const; z ¼ uzτ; ð6:1Þ

where the four-velocity uμ is given by13

uμ ¼ ðu0; ux; uy; uzÞ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p ; 0; 0;
vzffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p �
: ð6:2Þ

Equation (3.8) with (3.9) now reads as

Gþ
L ðτ; τ0Þ≡Gþ

L ðΔτÞ ¼ −
1

4π2
X∞
n¼−∞

1

ðu0Δτ − iϵÞ2 − ðuzΔτ − nLÞ2

¼ −
1

4π2
X∞
n¼−∞

1

ððu0 þ uzÞΔτ − iϵ − nLÞððu0 − uzÞΔτ − iϵþ nLÞ : ð6:3Þ

If Δτ is considered to be a complex number, each of the
n ≠ 0 summands has two poles of order 1 at

Δτ ¼ nLþ iϵ
u0 þ uz

;
−nLþ iϵ
u0 − uz

; ð6:4Þ

and for the n ¼ 0 summand the two simple poles merge
into one pole of order 2 at

Δτ ¼ iϵ: ð6:5Þ

For ΔE > 0, the equilibrium transition rate (2.10) can be
calculated by a contour integral along an infinite semicircle
on the lower-half Δτ plane. However, as all poles in (6.3)
are on the upper-half plane, the contour integral turns out to
be zero.
For ΔE < 0, the equilibrium transition rate (2.10) can be

calculated by a contour integral along an infinite semicircle
on the upper-half Δτ plane. The residue theorem gives

_FðΔEÞ ¼ −
ΔE
2π

−
i

4πLu0
X

n∈Z−f0g

1

n

�
e−iΔE

nL
u0þuz − eiΔE

nL
u0−uz

�
;

ð6:6Þ
where the first term arises form the residue of the second-
order pole in (6.5) and the remaining terms arise from the
residues of the simple poles in (6.4). By the identity

X∞
n¼1

ean

n
¼ − lnð1 − eaÞ; ð6:7Þ

(6.6) can be cast in a closed form.
In summary, we have14

_FðΔEÞ ¼ 0; for ΔE > 0; ð6:8aÞ

¼−
ΔE
2π

−
i

4πLu0
ln

�
1−ei

ΔEL
u0þuz

1−e−i
ΔEL
u0þuz

1−ei
ΔEL
u0−uz

1−e−i
ΔEL
u0−uz

�
; for ΔE< 0:

ð6:8bÞ
In the limit L ≫ 1=ΔE, as expected, (6.8) reduces to the
ordinary result of the Minkowski spacetime:

12The instantaneous transition rate given by (5.5) does exhibit
one pathological trait: it is divergent at the switch-on instant τ ¼
τ0 (i.e., Δ ¼ 0). This divergence is nonintegrable and gives rise to
the logarithmic divergence in (5.4), which is an artifact due to the
infinite sharpness of the switching as discussed earlier.

13Note that u0 > uz and ðu0Þ2 − ðuzÞ2 ¼ 1.
14Note that (6.8b) is real, as the numerators and denominators

inside the parenthesis are complex conjugate to each other and
thus the logarithmic function yields a purely imaginary number.
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_FðΔEÞ !
L→∞

−
ΔE
2π

Θð−ΔEÞ: ð6:9Þ
Note that this satisfies the relation (5.6). For a generic value of
L, the transition rate of excitation (ΔE > 0) remains zero,
while the transition rate of deexcitation (ΔE < 0) exhibits an
extra correction, which depends on bothL and uz, in addition
to the ordinary result. Obviously, ifwe flipuz to−uz in (6.8b),
the transition rate remains the same, as it depends only on the
magnitude of uz, not the sign. It should also be noted that,
even when uz ¼ 0 (and u0 ¼ 1 correspondingly), the cor-
rection term in (6.8b) is nonzero. Also note that, for a generic
value ofL, (6.8) violates the relation (5.6), essentially because
(4.4) with (6.3) has singularities other than s ¼ 0.
Furthermore, although j0Li is not invariant under the

boost in the z direction, it remains invariant under boosts in
x and y directions. Therefore, the response of the detector
should be the same if we boost it in x and y directions. That
is, the response is still given by (6.8) with u0 and uz still
given by (6.2), even if the detector’s velocity is v ¼ vxx̂þ
vyŷþ vzẑ with vx, vy ≠ 0 in general.15 The fact that the
equilibrium transition rate of deexcitation depends on both
L and uz suggests that one can infer the z component of the
frame’s moving velocity as well as the size of the compact
direction by measuring _FðΔEÞ of an Unruh-DeWitt
detector for various values of ΔE < 0. That is, the
nonequivalence of inertial frames is discernable by the
response of an inertial Unruh-DeWitt detector.

If we are able to switch the detector on and off at will and
measure the instantaneous transition rate accordingly, then
both the excitation and deexcitation rates are nonzero and
dependent on L and uz (before the former asymptotes to
zero). Thus, the instantaneous transition rates of both
excitation and deexcitation can be used to deduce the z
component of the frame’s velocity. This can be seen from
the fact that the instantaneous transition rate of deexcitation
must depend on L and uz (otherwise its asymptotic value
would not) plus the fact that the relation (5.6) is still held
for a short period of time. We can use (5.5) to numerically
compute the instantaneous transition rates of both kinds for
a shot period of time, but the equilibrium transition rates as
given in (6.8) cannot be obtained from (5.5).
In the next two sections, we will study the response of an

accelerating detector.

VII. CONSTANT ACCELERATION IN THE
COMPACT DIRECTION

Consider that the detector moves in the z direction with a
constant acceleration 1=α. The trajectory is given by the
world line:

t¼ αsinh
τ

α
; x¼ y¼ const; z¼ αcosh

τ

α
: ð7:1Þ

Equation (3.8) with (3.9) now reads as

Gþ
L ðτ; τ0Þ ¼ −

1

4π2
X∞
n¼−∞

1

ðα sinh τ
α − α sinh τ0

α − iϵÞ2 − ðα cosh τ
α − α cosh τ0

α − nLÞ2 : ð7:2Þ

Consequently (see Appendix C), we have

Gþ
L ðτ; τ0Þ ¼ −

1

16π2α2
X∞
n¼−∞

1

sinh2ðΔτ
2α −

iϵ
2αÞ þ nðLαÞ sinh τþτ0

2α sinh Δτ
2α −

n2
4
ðLαÞ2

: ð7:3Þ

When L ≫ α, only the summand with n ¼ 0 survives
and (7.3) reduces to the ordinary result of the Minkowski
spacetime:

Gþðτ; τ0Þ ¼ −
1

16π2α2
1

sinh2ðΔτ
2α −

iϵ
2αÞ

¼ −
1

4π2
X∞
k¼−∞

1

ðΔτ − iϵþ 2πiαkÞ2 ; ð7:4Þ

where we have used the identity

csc2 πx ¼ 1

π2
X∞
k¼−∞

1

ðx − kÞ2 : ð7:5Þ

Taking (7.4) into (2.10) and performing the contour
integral, we obtain the transition rate given by

_FðΔEÞ ¼ ΔE
2π

1

e2πΔEα − 1
ð7:6Þ

for both ΔE > 0 and ΔE < 0. The celebrated Planck
factor ðe2πΔEα − 1Þ−1 indicates that the accelerated detector
registers particles of ϕ as if it was immersed in a bath of
thermal radiation at the temperature16

T ¼ 1

2πkBα
≡ jaccelerationj

2πkB
: ð7:7Þ

Also note that (7.6) satisfies the relation (5.6).
15The result of (6.8) for the case uz ¼ 0 is the same as that of

(4.2) in [22] (with the replacements: L → 2L for the different
convention of L and α → 0 for the periodic boundary) computed
by a different method.

16However, see [21], especially Sec. III A 4 therein, for more
discussions about what the form of thermal radiation means and
what it does not.
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For generic cases that L =≫α, (7.3) can be cast in a closed
form by the identity (4.5). The closed form shows that
Gþ

L ðτ; τ0Þ depends not only onΔτ≡ τ − τ0 but on both τ and
τ0, indicating that the detectormoving in the z directionwith a
constant acceleration is not in equilibrium with the field ϕ.17

As a consequence, instead of the equilibrium transition rate
given by (2.10), we can onlymake sense of the instantaneous
transition rate, which is given by (5.5) if the switch-on
duration Δ is short enough that (4.4) encounters no singu-
larities other than s ¼ 0. Taking (7.1) into (4.4), we haveX∞
n¼−∞

1

Δx2nðτ; sÞ
¼ 4π2Gþ

L ðτ; τ − sÞ
���
ϵ¼0

¼ 1

L2
fða; bÞ;

with a ¼ −4
�
α

L

�
sinh

�
2τ − s
2α

�
sinh

�
s
2α

�
;

b ¼ −4
�
α

L

�
2

sinh2
�

s
2α

�
; ð7:8Þ

where Gþ
L ðτ; τ0Þ is given by (7.3) and fða; bÞ is defined in

(4.5).With (7.8),wenowhave a closed form for the integrand
in (5.5). We do not have an analytic form for the whole
expression (5.5), but it can be computed numerically by
numerical integration. The numerical results of _FτðΔEÞ
(with δ → 0) as functions of Δ≡ τ − τ0 are depicted in
Fig. 2 for various given values of L and τ0 (the instant of
switch-on).18 As expected, we can see the tendency from the
figure that, asL increases, _FτðΔEÞ becomes closer and closer
to the ordinary result of the Minkowski spacetime (i.e., the
result of L → ∞). The ordinary result asymptotes to the

equilibrium transition rate given by (7.6) asΔ → ∞. We also
see that _FτðΔEÞ, as a function of Δ≡ τ − τ0, depends on
both L and τ0. Furthermore, _FτðΔEÞ can be negative (with
ΔE > 0Þ even for the ordinary (L → ∞) result, but the
asymptotic value of the ordinary result must be positive.
It calls our attention that the integrand in (5.5) given with

(7.8) blows up whenever cot½� � �� in (4.5) blows up. This
happens when

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 4b

p
¼ 2n; n ∈ Z: ð7:9Þ

In other words, the factor (4.4) has more singularities other
than s ¼ 0, except for the case of L → ∞. As a conse-
quence, when Δ≡ τ − τ0 becomes large enough, the
integrand in (5.5) will hit a singularity other than s ¼ 0
and the instantaneous transition rate will become divergent
as discussed in Sec. V. We can see this divergent behavior
in Fig. 2 when τ − τ0 approaches a certain critical point,
beyond which the formula of (5.5) is no longer valid. The
exact value of the critical point agrees with the condition
(7.9) with τ ¼ τ0 þ Δ, s ¼ Δ.
Because j0Li is invariant under arbitrary spacetime

translations as well as Lorentz boosts in x, y directions,
the fact that _FτðΔEÞ depends on τ0 can be better understood
as that it depends on the z component of the instantaneous
four-velocity uzðτ0Þ ≔ dzðτÞ=dτjτ¼τ0

¼ sinhðτ0=αÞ at the
instant when the detector is turned on. That is, within an
initial reference frame moving at a constat velocity, if one
instantaneously turns on and accelerates the Unruh-DeWitt
detector in the z direction, the detector’s response depends
not only on the magnitude of acceleration but also on the z
component of the frame’s moving velocity.

VIII. CONSTANT ACCELERATION IN
NONCOMPACT DIRECTIONS

Consider that the detector moves with a constant accel-
eration 1=α in noncompact directions (say, x direction). The
trajectory is given by the world line:

0 1 2 3 4 5
–0.02

–0.01

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5
–0.02

–0.01

0.00

0.01

0.02

0.03

0.04

FIG. 2. The instantaneous transition rate _FτðΔEÞ as a function ofΔ for the trajectory (7.1) with α ¼ 1.0=ΔE,ΔE > 0. Left: Curves for
L ¼ 5=ΔE with various values of τ0. Right: Curves for L ¼ 10=ΔE, L ¼ 30=ΔE, and L ¼ ∞ (uncompactified spacetime) with the
same τ0 ¼ 0. While the case of L ¼ ∞ asymptotes to an equilibrium value, the other cases become divergent at critical points.

17It is crucial to know whether the dependence on τ0 in (7.3) is
erased away under the summation over n. By the identity (4.5), it is
rigorously ascertained thatGþ

L ðτ; τ0Þ is dependent on both τ and τ0.18Figure 2 only shows the instantaneous transition rate of
excitation (ΔE > 0). The figure for the rate of de-excitation
(ΔE < 0) is given as the same curves in Fig. 2 but displaced
upwards by jΔEj=2π according to (5.6). However, if we can
manage to compute the instantaneous transition rate beyond the
critical point, (5.5) and consequently (5.6) might break down as
discussed previously.
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t ¼ α sinh
τ

α
; y ¼ z ¼ const; x ¼ α cosh

τ

α
: ð8:1Þ

Equation (3.8) with (3.9) now reads as

Gþ
L ðτ; τ0Þ ¼ −

1

4π2
X∞
n¼−∞

1

ðα sinh τ
α − α sinh τ0

α − iϵÞ2 − ðα cosh τ
α − α cosh τ0

αÞ2 − n2L2

¼ −
1

16π2α2
X∞
n¼−∞

1

sinh2ðΔτ
2α −

iϵ
2αÞ − n2

4
ðLαÞ2

; ð8:2Þ

where the similar trick as shown in Appendix C has been repeated. Using the identity

X∞
n¼−∞

1

n2 − a2
¼ −

π cotðπaÞ
a

ð8:3Þ

as a special case of (4.5), we can rewrite (8.2) as

Gþ
L ðΔτÞ ¼ −

1

8παL

cot ð2παL sinh ðΔτ
2α −

iϵ
2αÞÞ

sinh ðΔτ
2α −

iϵ
2αÞ

: ð8:4Þ

Note that (8.4) reduces to (7.4) when L ≫ α.
To calculate the transition rate (2.10) by the contour integral, we first rewrite (8.2) as

Gþ
L ðτ; τ0Þ ¼ −

1

16π2α2
1

sinh2ðΔτ
2α −

iϵ
2αÞ

−
1

8π2α2
X∞
n¼1

1

ðsinh ðΔτ
2α −

iϵ
2αÞ − nL

2αÞðsinh ðΔτ2α − iϵ
2αÞ þ nL

2αÞ
: ð8:5Þ

The first part of (8.5) is exactly the same as (7.4) and gives
the same contribution as in (7.6). For the second part, each
of the summands has two singularities at

Δτ ¼ τn;� ≔ iϵ� 2αsinh−1
nL
2α

: ð8:6Þ

For ΔE > 0, the transition rate (2.10) can be calculated
by a contour integral along an infinite semicircle on the
lower-half Δτ plane. As the singularities in (8.6) are all on
the upper-half plane, only the first part of (8.5) gives rise to
a nonzero contour integral and consequently the transition
rate is given by (7.6).
For ΔE < 0, the transition rate (2.10) is calculated by a

contour integral along an infinite semicircle on the upper-
half Δτ plane, and all the residues associated with the
singularities in (8.6) contribute. Let

fðΔτÞ ≔ e−iΔEΔτ

ðsinh ðΔτ
2α −

iϵ
2αÞ − nL

2αÞðsinh ðΔτ2α − iϵ
2αÞ þ nL

2αÞ

≕
gðΔτÞ
hðΔτÞ : ð8:7Þ

Both g and h are holomorphic functions in a neighborhood
of τn;�. We have hðτn;�Þ ¼ 0 and

h0ðΔτÞ ¼ 1

α
cosh

�
Δτ
2α

−
iϵ
2α

�
sinh

�
Δτ
2α

−
iϵ
2α

�
; ð8:8Þ

which follows

h0ðτn;�Þ¼� nL
2α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
nL
2α

�
2

s
≠ 0; n¼ 1;2;…; ð8:9Þ

where we have used the identity cosh ðsinh−1 zÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
. As hðτn;�Þ ¼ 0 and h0ðτn;�Þ ≠ 0, the residue of

f associated with τn;� can be computed as

Resðf;τn;�Þ¼ lim
Δτ→τn;�

ðΔτ− τn;�ÞfðΔτÞ¼
gðτn;�Þ
h0ðτn;�Þ

¼�2α2 expð∓2αiΔEsinh−1 nL
2αÞ

nL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðnL

2αÞ2
q ; ð8:10Þ

where we have taken the ϵ → 0 limit. It then follows from
the residue theorem that (2.10) calculated by the semicircle
contour integral leads to

_FðΔEÞ ¼ ΔE
2π

1

e2πΔEα − 1
−
Θð−ΔEÞ
8π2α2

X∞
n¼1

2πiðResðf; τn;þÞ

þ Resðf; τn;−ÞÞ

¼ ΔE
2π

1

e2πΔEα − 1

− Θð−ΔEÞ
X∞
n¼1

sinð2αΔEsinh−1 nL
2αÞ

nπL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðnL

2αÞ2
q

¼ ∶
ΔE
2π

1

e2πΔEα − 1
− Θð−ΔEÞFðΔE; α; LÞ;

ð8:11Þ
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where we have inserted the step function to include
both cases of ΔE > 0 and ΔE < 0.19,20

It is crucial to know whether the dependence on L in
(8.11) goes away under the summation. By checking the
limiting values of FðΔE; α; LÞ:

FðΔE; α; LÞ !
L→∞

0; ð8:12aÞ

!
L→0

X∞
n¼1

ΔE
π

¼ −∞; ð8:12bÞ

it is ascertained that the transition rate indeed depends on L
and therefore one can, in principle, infer the length L by
measuring the transition rate in relation to ΔE and 1=α. On
the other hand, the fact that Gþ

L ðτ; τ0Þ depends only on
Δτ ≔ τ − τ0, but not τ0, means that the response of the
detector cannot know about the frame’s moving velocity in
x, y directions.
Finally, as a consistency check, the zero-accelerating

limit (α → ∞) of (8.11) gives

_FðΔEÞ !
α→∞

Θð−ΔEÞ
�
−
ΔE
2π

−
X∞
n¼1

sinðnLΔEÞ
nπL

�
; ð8:13Þ

which is identical to (6.8) with uz ¼ 0 and u0 ¼ 1 as can be
seen from (6.6). Also note that, for the same reason as
discussed for the case moving at a constant velocity, if we
are able to switch the detector on and off at will and
measure the instantaneous transition rate, both the excita-
tion and deexcitation rates will exhibit dependence on L.

IX. SUMMARY AND DISCUSSION

If the Unruh-DeWitt detector moves at a constant
velocity, the equilibrium transition rate of excitation
(ΔE > 0) remains zero as the ordinary result in the
Minkowski spacetime, but the equilibrium transition rate
of deexcitation (ΔE < 0) receives an extra correction,
which depends on the moving velocity in the compact
(z) direction uz as well as the size of the compact dimension
L, in addition to the ordinary result (the extra correction is

nonzero even when uz ¼ 0). If one can turn the detector on
and off at will and measure the instantaneous transition
rate, the rates of both excitation and deexcitation are
nonzero (before the rate of excitation asymptotes to zero)
and dependent on uz and L. The response of the Unruh-
DeWitt detector can be used to infer uz and L and therefore
to discriminate between inertial frames with different
velocities in the compact direction.
If the detector moves with a constant acceleration in the

compact (z) direction, the response is not in equilibriumwith
the field ϕ and we can only make sense of the instantaneous
transition rate. The instantaneous transition rates of both
excitation and deexcitation depend not only on the accel-
eration 1=α and the size L but also on the time τ when the
observation is made and the detector’s instantaneous veloc-
ity uzðτ0Þ at the moment τ0 when the detector is turned on.
The detailed analysis also reveals that when Δ ¼ τ − τ0 is
large enough and approaches a critical point, the instanta-
neous transition rate becomes divergent, essentially due to
the fact that the Wightman function has singularities other
than zero in contrast to that of the ordinary Minkowski
spacetime.
If the detector moves with an constant acceleration in

noncompact (x, y) directions, the equilibrium transition rate
of excitation remains to be the celebrated form of thermal
radiation as in the ordinary Minkowski spacetime, while
the equilibrium transition rate of deexcitation exhibits an
extra correction dependent on L in addition to the thermal
form. Meanwhile, the frame’s moving velocity in x, y
directions remains unknown. If we are able to measure the
instantaneous transition rate, both the excitation and
deexcitation rates will depend on L.
Comparing the results of the three different cases raises

an issue concerning the condition of equilibrium. In the
ordinary Minkowski spacetime, the condition for a detector
to be in equilibrium with the background field is that its
trajectory has to be stationary. A trajectory is said to be
stationary if the derivative with respect to its proper time is
a Killing vector. For example, if (7.1) is viewed as the ξ ¼ 0
curve in the coordinates ðτ; x; y; ξÞ, which are related to
ðt; x; y; zÞ via

t ¼ αeξ=α sinh
τ

α
; z ¼ αeξ=α cosh

τ

α
; ð9:1Þ

then the vector field ∂=∂τ≡ α−1ðt∂=∂zþ z∂=∂tÞ is a
Killing vector, which renders the metric invariant as we
have

ds2 ¼ −ðdt2 − dz2Þ þ dx2 þ dy2

¼ −e2ξ=αðdτ2 − dξ2Þ þ dx2 þ dy2: ð9:2Þ

The coordinates ðτ; x; y; ξÞ, however, do not cover the
whole Minkowski spacetime but only the left and right
Rindler wedges, i.e., the regions with z2 > t2. The particle

19We do not have a closed-form expression for the infinite
series, but the comparison test tells that the series converges
absolutely since

X∞
n¼1

���� sin ð2αΔEsinh−1 nL
2αÞ

nπL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðnL

2αÞ2
q ���� ≤ 2α

πL2

X∞
n¼1

1

n2
¼ πα

3L2
;

and we denote the converged value as FðΔE; α; LÞ.
20The result of (8.11) is the same as that of (4.4) in [22] (with

the replacements: a → 1=α for the acceleration, L → 2L for the
different convention of L, and α → 0 for the periodic boundary)
computed by a different method, except that the factor −Θð−ΔEÞ
is wrongly assumed to be a thermal factor ðe2πΔEα − 1Þ−1 in [22].
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field can be expanded in terms of either the Minkowski
modes or of the Rindler modes. Finding the Bogoliubov
coefficients between these two expansions, one can deduce
the fact that theMinkowski vacuum state is a thermal state of
the Rindler modes at the temperature (7.7) from the view-
point of the left or right Rindler wedge.21 Therefore, the
transition rate of the Unruh-DeWitt detector obtained from
the formula (2.10) as being accompanied by the emission of
aMinkowski-mode particle into theMinkowski vacuum can
be reproduced from the Rindler observer perspective as
being accompanied by the absorption of a Rindler-mode
particle from the thermal bath (see Sec. III A 2 of [21] for
more details). More examples for other kinds of stationary
trajectories and their corresponding Unruh-DeWitt transi-
tion rates can be found in Sec. V 2 of [11].
Rigorously speaking, however, the notion of “stationarity”

is not a local concept. It makes no sense to call a single
trajectory stationary unless we are actually referring to a
continuous family of trajectories around the single one,
because a Killing vector is in fact a vector field, which cannot
be associated with an isolated trajectory. If we view (9.1) as a
family of trajectories (parametrized by different values of ξ),
under the spatial compactification, these trajectories serve as
stationary coordinates only for a local spacetime region, but
they fail to do so when the timescale is large enough because
any given trajectory will eventually intersect with some other
trajectories in the family due to z≡ zþ nL, n ∈ Z. Put
differently, we cannot find a proper subspacetime akin to the
Rindler wedges from the global perspective and conse-
quently we do not have the corresponding Bogoliubov
coefficients. It seems to be the breakdown of the global
stationarity that causes the detector moving with a constant
acceleration in the compact direction not to be in equilibrium
with ϕ. On the other hand, the case of a constant velocity and
the case of a constant acceleration in noncompact directions
do not suffer from the breakdown of the global stationarity,
and both cases are in equilibrium with ϕ.
Furthermore, we have two curious observations on the

peculiar difference between the transition rates of excitation
and deexcitation. First, the transition rates of excitation and
deexcitation satisfy a simple relation given by (5.6), which is
broken down only when theWightman function suffers from
singularities other than zero and the switch-on duration Δ is
long enough. Second, in both (6.8) and (8.11), the correction
arising from the spatial compactification is perceptible only in
the deexcitation rate but completely absent in the excitation
rate. Somehow, the equilibrium transition rate of excitation is
insensitive to the large-scale structure of spacetime, in
contrast to the equilibrium rate of deexcitation and the
instantaneous (nonequilibrium) rates of both kinds. It is

unclear whether these two observations and the aforemen-
tioned relation between equilibrium and stationarity remain
true for generic settings; there seem to be some intriguing
features about the Unruh effect not fully understood yet.
It should be remarked that whether we can definitely

assert that inertial frames are discriminable by local experi-
ments is a matter of interpretation. After all, the vacuum
state j0Li is a global concept and an Unruh-DeWitt detector
knows about j0Li only if the walls of the moving inertial
reference frame are transparent to the field ϕ.22 Finally, it
should be noted that measurement of the response of the
Unruh-DeWitt detector is completely out of reach of
current technology, let alone able to distinguish the differ-
ence. Nevertheless, it is conceptually important to under-
stand the (non)equivalence of inertial frames and that of
uniformly accelerated frames in light of the response of the
Unruh-DeWitt detector.
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APPENDIX A: REMARKS ON EQUILIBRIUM

The process of the detector’s registering a signal of
excitation or deexcitation can be represented as

excitation∶ j0; E0i → jΨ; E > E0i; ðA1aÞ

deexcitation∶ j0; E0i → jΨ; E < E0i; ðA1bÞ

where jΨi is some one-particle state of ϕ and j0i is the
vacuum state. To measure the transition probability or
transition rate corresponding to either of (A1), we have to
prepare a large ensemble of identical detectors (with the
same coupling constant and the same switching function).

21More precisely, tracing out the left (right) Rindler modes
upon the Minkowski vacuum state gives rise to a density matrix
for the many-particle system of the right (left) Rindler modes
corresponding to the temperature (7.7). See [21], especially
Eq. (2.78) therein, for more details.

22In the same regard, the experiment by measuring the
deviation of the electrostatic field of a point charge (as studied
in [7]) is not to be viewed as completely local either, since the
deviation relies on the fact that the electric field stretches out to
the entire Universe and the local electric field is deformed
anyway if the charge source is screened by the frame walls.
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To begin with, all the detectors are set to be in the state jE0i.
Furthermore, because we are not interested in the reverse
process of (A1), i.e.,

jΨ; E > E0i → j0; E0i; ðA2aÞ
jΨ; E < E0i → j0; E0i; ðA2bÞ

we should devise a “halting”mechanism so that whenever a
detector registers a signal, it is turned off immediately and
at the same time the one-particle state jΨi is reverted back
to j0i by removing the extra particle emitted by the detector.
If the above prescription can be achieved, then we can
measure NðτÞ as how many detectors are halted at a given
time τ and compute the ratio

PðτÞ ¼ NðτÞ
N0

; ðA3Þ

where N0 is the total number of the ensemble. If the
switching function χðτÞ is of compact support, Pðτ → ∞Þ
will yield the transition probability that is to be compared
with (2.6) (times the selectivity). On the other hand, if each
detector remains turned on until it registers a signal [i.e.,
χðτÞ ¼ 1 for τ > τ0], all detectors will register signals
sooner or later and be halted eventually. At the time when
the number of unhalted detectors is still large enough, we
can deduce the time derivative _PðτÞ≡ _NðτÞ=N0, which is
reckoned to be the instantaneous transition rate. When the
number of unhalted detectors becomes small, however,
_PðτÞ is no longer a faithful measure of the transition rate.
One can choose to maintain a large number of unhalted

detectors, if a “reviving”mechanism is also devised. That is,
among the halted detectors, we can choose to revive some of
them by turning on the detectors again and resetting them to
the initial state jE0i. The reviving rate is said to be _QðτÞ if
during the period from τ to τ þ dτ, the probability of halted
detectors being revived is given by _QðτÞdτ. By adjusting the
reviving rate, we can keep both the numbers of halted and
unhalted detectors large enough. The instantaneous tran-
sition rate is then given by _NðτÞ=N0 þ _QðτÞ, which is to be
compared with (5.5) (times the selectivity). In the case that
the trajectory xμðτÞ is in equilibrium with the background
field, i.e., (2.8) is satisfied, the reviving rate can be fine-tuned
to match the equilibrium transition rate, which is manifested
as the halting rate, such that NðτÞ=N0 remains almost
constant (up to small probabilistic fluctuations). In the sense
that the reviving rate and the halting rate can be balanced
and become independent of time, the trajectory is said to be
in equilibrium with ϕ.
The aforementioned notion of equilibrium should not be

confused with the detailed balance, which is the balance
between the process (A1) and its reverse process (A2).
More precisely, if the transition rates of (A1) and (A2) are
given by _P and _Pr, respectively, the principle of detailed
balance dictates that both are independent of τ and satisfy

_P
_Pr

¼ e−βΔE; ðA4Þ

where 1=β≡ kBT is to be interpreted as the corresponding
temperature. If the detailed balance is reachable, without
employing the halting and reviving mechanisms, the ratio
of _P to _Pr is measured simply by the ratio of the number of
registered detectors to the number of unregistered ones, i.e.,

_P
_Pr

¼ N
N0 − N

; ðA5Þ

where N is the number of registered detectors (averaged
over probabilistic fluctuations in time). Because _P and _Pr
are independent of τ, the detailed balance entails the
condition that the trajectory is in equilibrium with the
background field. Conversely, however, it is not clear
whether the condition of equilibrium must imply the
detailed balance, although it does in many known examples
(but see Footnote 24). In the celebrated example of a
uniformly accelerated detector in the Minkowski space-
time, the detailed balance relation can be shown to be
satisfied from the Rindler observer perspective (see
Secs. III A 2 and III A 4 of [21] for more details). This
relies on the fact that the Minkowski vacuum is a thermal
state of the right (left) Rindler modes if the left (right)
Rindler modes are ignored (see Footnote 21). That is, from
the Rindler observer perspective, we have

_P
_Pr

¼ jAj2nðΔEÞ
jArj2ð1þ nðΔEÞÞ ¼

nðΔEÞ
1þ nðΔEÞ ¼ e−βΔE; ðA6Þ

where A and Ar are the amplitudes measured by the
Rindler observer for the process (A1) and its reverse
process (A2), respectively, which are complex conjugate
to each other because of unitarity, and

nðωÞ ¼ 1

eβω − 1
ðA7Þ

is the Rindler particle number density for the thermal state
with the Unruh temperature given by (7.7). The factor
nðΔEÞ in the numerator in (A6) is associated with the
induced absorption of a Rindler particle from the thermal
bath, and the factor 1þ nðΔEÞ in the denominator is
associated with the spontaneous and induced emissions
of a Rindler particle to the thermal bath.23

For the detector with a constant acceleration in non-
compact directions (Sec. VIII), the comoving observer can
still be viewed as a Rindler observer and thus the same
argument for (A6) can be carried over in the obvious way.

23See the discussion after (9.2) for the fact that emission
(absorption) of a Minkowski particle is equivalent to absorption
(emission) of a Rindler particle.
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Therefore, the detailed balance is satisfied with the same
temperature given by (7.7). On the other hand, for the
detector with a constant acceleration in the compact
directions (Sec. VII), the condition of equilibrium is not
satisfied and one cannot make sense of the detailed balance.
Finally, for the detector with a constant velocity (Sec. VI),
the ratio of _P to _Pr can be easily computed from the
perspective of a nonmoving observer. That is,

_P
_Pr

¼ jAj2ð1þ nðΔEÞÞ
jArj2nðΔEÞ

; ðA8Þ

where A and Ar are the amplitudes measured by the
nonmoving observer, which are complex conjugate to each
other, and

nðωkÞ ≔ h0Lja†kakj0Li ¼ 0 ðA9Þ

is the particle number density for the vacuum state j0Li.
The factor 1þ nðΔEÞ is associated with the spontaneous
and induced emissions of a particle to j0Li, and the factor
nðΔEÞ is associated with the induced absorption of a
particle from j0Li. For ΔE < 0, we have jAj2 ¼
jArj2 ≠ 0 by (6.8b), and consequently (A8) yields
_P= _Pr ¼ ∞. Therefore, the detailed balance is satisfied
in the trivial way corresponding to the zero temperature
T ¼ 0 (i.e., β ¼ ∞Þ. For ΔE > 0, we have jAj2 ¼
jArj2 ¼ 0 by (6.8a), and the ratio (A8) is ill defined.24

Furthermore, the detailed balance should not be con-
fused with the equilibrium between the transition rates
of excitation and deexcitation. In fact, (A1a) and (A1b)
are two independent processes and their transition rates
are measured independently by two different devices.
Therefore, one cannot make sense of the equilibrium
between them even when they share the same jΔEj.
This confusion arises partly because the words excitation
and deexcitation are used in the literature to refer to the two
different dichotomies. On the one hand, they refer to the
dichotomy between (A1a) and (A1b) (as, e.g., in [11–13] as
well as in this paper), but on the other hand, they refer to the
dichotomy between (A1) and (A2) (as, e.g., in [21]). In the
latter terminological usage, (A1a) and (A1b) are both
described as excitation despite the fact that the detector
is deexcited from jE0i to jEi in (A1b). Perhaps register-
ization (of a signal) and deregisterization are the better
words for the dichotomy between (A1) and (A2).

APPENDIX B: DETAILS FOR SEC. IV

Here, we present the detailed derivation from (2.6) to
(4.1), following the same strategies in [11,12] (also see [13]
for the related techniques).

By the change of variables: u ¼ τ, s ¼ τ − τ0 for τ0 < τ
and u ¼ τ0, s ¼ τ0 − τ for τ0 > τ, the response function
(2.6) can be recast as

FðΔEÞ¼2Re
Z

∞

∞
duχðuÞ

Z
∞

0

dsχðu−sÞeiΔEsGþ
L ðu;u−sÞ:

ðB1Þ
By (3.8) and (3.9), we have

Gþ
L ðu; u − sÞ ¼ −

1

4π2
X∞
n¼−∞

1

ðΔt − iϵÞ2 − Δx2
n
; ðB2Þ

where Δt and Δx2
n are defined in (4.2). Equation (B1) then

leads to

FðΔEÞ¼
X∞
n¼−∞

lim
ϵ→0

1

2π2

Z
∞

∞
duχðuÞ

Z
∞

0

dsχðu−sÞ

×

�
cosðΔEsÞðΔx2nþϵ2Þ−2sinðΔEsÞϵΔt

ðΔx2nþϵ2Þ2þ4ϵ2Δt2

	
; ðB3Þ

where Δx2n and Δx2n¼0 ≡ ðΔxÞ2 are defined in (4.3).
We separate the integral over s for a given n in (B3) into

four parts: Ieven> , Iodd> , Ieven< , and Iodd< , where > and < denote
the integrals over the intervals ½ ffiffiffi

ϵ
p

;∞Þ and ½0; ffiffiffi
ϵ

p �,
respectively, while “even” and “odd” denote the terms
even and odd in ΔE. The part Ieven> can be recast as

Ieven> ≔
Z

∞ffiffi
ϵ

p ds χðu − sÞ cosðΔEsÞðΔx2n þ ϵ2Þ
ðΔx2n þ ϵ2Þ2 þ 4ϵ2Δt2

¼
Z

∞ffiffi
ϵ

p ds χðu − sÞ cosðΔEsÞ
Δx2n

×

�
1 −

ϵ2

Δx2n

1þ 4 Δt2
Δx2n

þ ϵ2

Δx2n

ð1þ ϵ2

Δx2n
Þ2 þ 4ϵ2 Δt2

ðΔx2nÞ2

	
: ðB4Þ

To proceed, we need to know the small s expansions for
various variables. They can be obtained quite straightfor-
wardly. Take the least trivial case of ðΔxÞ2 as an example. It
follows from (4.3b) that

ðΔxÞ2 ¼ ðxμðuÞ − xμðu − sÞÞðxμðuÞ − xμðu − sÞÞ; ðB5aÞ
d
ds

ðΔxÞ2 ¼ 2ðxμðuÞ − xμðu − sÞÞ_xμðu − sÞ; ðB5bÞ
d2

ds2
ðΔxÞ2 ¼ 2_xμðu − sÞ_xμðu − sÞ

− 2ðxμðuÞ − xμðu − sÞÞẍμðu − sÞ
¼ −2 − 2ðxμðuÞ − xμðu − sÞÞẍμðu − sÞ; ðB5cÞ

d3

ds3
ðΔxÞ2 ¼ −2_xμðu − sÞẍμðu − sÞ

þ 2ðxμðuÞ − xμðu − sÞÞ⃛xμðu − sÞ
¼ 2ðxμðuÞ − xμðu − sÞÞ ⃛xμðu − sÞ; ðB5dÞ

24This can be viewed as a trivial counterexample against the
proposition that the condition of equilibrium always implies the
detailed balance.
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d4

ds4
ðΔxÞ2 ¼ 2_xμðu − sÞ ⃛xμðu − sÞ

− 2ðxμðuÞ − xμðu − sÞÞ x::::μðu − sÞ
¼ −2ẍμðu − sÞẍμðu − sÞ
− 2ðxμðuÞ − xμðu − sÞÞ x::::μðu − sÞ; ðB5eÞ

where we have used _xμ _xμ¼−1, ẍμ _xμ¼0, and ⃛xμ _xμ ¼
−ẍμẍμ and the overdot denotes the derivative with respect
to u. Consequently, the Taylor series in terms of small s
gives

ðΔxÞ2¼
X∞
n¼0

1

n!
dðnÞðΔxÞ2

dsn

����
s¼0

sn ¼−s2−
1

12
ẍ2s4þOðs5Þ:

ðB6Þ
To sum up, we have Δxμ ¼ _xμsþOðs2Þ, which follows
Δt ¼ OðsÞ, Δz ¼ OðsÞ, ðΔxÞ2 ¼ Oðs2Þ, and Δx2n ¼
ðnLÞ2 þ nL ·OðsÞ þOðs2Þ. Here, we assume an addi-
tional condition that Δx2n is everywhere nonvanishing
except s ¼ 0 (we will come back to this additional
condition shortly). Provided with this additional condition,
the quantities jΔt2=Δx2nj and jϵ=Δx2nj are both bounded by
some constants independent of ϵ over the intersection of the
compact support of χðu − sÞ and the interval ½ ffiffiffi

ϵ
p

;∞Þ.25
Consequently, the absolute value of the second part of (B4)
in the ϵ → 0 limit yields

�����
Z

∞ffiffi
ϵ

p ds χðu− sÞ cosðΔEsÞ ϵ2

ðΔx2nÞ2
1þ 4 Δt2

Δx2n
þ ϵ ϵ

Δx2n

ð1þ ϵ ϵ
Δx2n

Þ2 þ 4ϵ ϵ
Δx2n

Δt2
Δx2n

�����
!
ϵ→0

����
Z

∞ffiffi
ϵ

p ds χðu− sÞ cosðΔEsÞ ϵ2

ðΔx2nÞ2
�
1þ 4

Δt2

Δx2n

�����
≤
Z

Bffiffi
ϵ

p ds

���� ϵ2

ðΔx2nÞ2
����ð1þ 4C1Þ ¼ C2

Z
Bffiffi
ϵ

p ds

���� ϵ2

ðΔx2nÞ2
����;
ðB7Þ

where C1 is some constant such that jΔt2=Δx2nj ≤ C1,
C2 ≔ 1þ 4C1, andB is the upper boundary of the compact
support of χðu − sÞ. As discussed in Footnote 25, if the
lower bound of jΔx2nj does not occur at s ¼

ffiffiffi
ϵ

p
, we have

jΔx2nj ≥ C3 for some constant C3 ≠ 0, which is indepen-
dent of ϵ. Consequently, (B7) leads to

C2

Z
Bffiffi
ϵ

p ds

���� ϵ2

ðΔx2nÞ2
����≤C2ϵ

2

C2
3

Z
Bffiffi
ϵ

p ds≤
C2ϵ

2ðB−
ffiffiffi
ϵ

p Þ
C2
3

¼Oðϵ2Þ:

ðB8Þ

On the other hand, if the lower bound of jΔx2nj occurs at
s ¼ ffiffiffi

ϵ
p

, letM ∈ ð ffiffiffi
ϵ

p
; BÞ be the turning point of jΔx2nj if the

turning point exists and let M ¼ B if it does not. That is,
jΔx2nj is monotonically increasing from s ¼ ffiffiffi

ϵ
p

until
s ¼ M. The turning point, if it exists, is located at the
point where the derivative ofΔx2n with respect to s vanishes
and thusM is independent of ϵ.Within the compact interval
½M;B�, we have jΔx2nj ≥ C4 for some lower bound constant
C4 ≠ 0, which is independent of ϵ. Consequently, (B7)
leads to

C2

Z
Bffiffi
ϵ

p ds

���� ϵ2

ðΔx2nÞ2
���� ≤ C2

Z
Mffiffi
ϵ

p ds
ϵ2

ðas2Þ2 þ C2

Z
B

M
ds

ϵ2

C2
4

¼ −
C2ϵ

2

3a2s3

����M
s¼ ffiffi

ϵ
p þ C2ϵ

2

C2
4

ðB −MÞ ¼ Oð ffiffiffi
ϵ

p Þ þOðϵ2Þ;

ðB9Þ

where the small s expansion Δx2n ¼ ðnLÞ2 þ nL ·OðsÞ þ
Oðs2Þ allows us to apply the inequality jΔx2nj ≥ as2 with
some constant a in the interval ½ ffiffiffi

ϵ
p

;M�, since jΔx2nj is
monotonically increasing within ½ ffiffiffi

ϵ
p

;M�. It follows from
(B8) and (B9) that the second part of (B4) is of orderOð ffiffiffi

ϵ
p Þ

at worst in the ϵ → 0 limit. Therefore, we have

Ieven> ¼
Z

∞ffiffi
ϵ

p ds χðu − sÞ cosðΔEsÞ
Δx2n

þOð ffiffiffi
ϵ

p Þ: ðB10Þ

Similarly, The part Iodd> can be recast as

Iodd> ≔
Z

∞ffiffi
ϵ

p ds χðu − sÞ −2 sinðΔEsÞϵΔt
ðΔx2n þ ϵ2Þ2 þ 4ϵ2Δt2

¼
Z

∞ffiffi
ϵ

p ds χðu − sÞ sinðΔEsÞðΔx2nÞ2
−2ϵΔt

ð1þ ϵ2

Δx2n
Þ2 þ 4ϵ2 Δt2

ðΔx2nÞ2
:

ðB11Þ

Following the same argument for the second part of Ieven> ,
we have

25Let s ∈ ½A; B� denote the compact support of χðu − sÞ. The
intersection ½A; B� ∩ ½ ffiffiffi

ϵ
p

;∞Þ (if not empty) is either ½A; B�, or
½ ffiffiffi

ϵ
p

; B�. In the former case, because ½A; B� is compact, the upper
bound of jΔt2=Δx2nj and the lower bound of jΔx2nj occur at s ¼ A,
s ¼ B, or some point in between where the corresponding
derivative vanishes. In all three situations, the bounds are
independent of ϵ. Furthermore, the lower bound of jΔx2nj is
nonzero, since we have assumed Δx2n ≠ 0 except s ¼ 0. Con-
sequently, jt2=Δx2nj and jϵ=Δx2nj < jA=Δx2nj are both bounded by
some constants independent of ϵ. In the latter case, the upper
bound of jΔt=Δx2nj and the lower bound of jΔx2nj might occur at
s ¼ ffiffiffi

ϵ
p

and thus depend on ϵ. Nevertheless, the s →
ffiffiffi
ϵ

p
behaviors given by the small s expansions yield jΔt2=Δx2nj ¼
Oðs2Þ=ððnLÞ2þnL ·OðsÞþOðs2ÞÞ≤Oðs2Þ=Oðs2Þ¼Oðs0Þ and
jϵ=Δx2nj ≤ ϵ=Oðs2Þ → Oðϵ0Þ. Therefore, in both cases,
jΔt2=Δx2nj and jϵ=Δx2nj are bounded by some constants inde-
pendent of ϵ.
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jIodd> j ≤ 2

Z
∞ffiffi
ϵ

p ds χðu − sÞ ϵjsinðΔEsÞjjΔx2nj3=2

ffiffiffiffiffiffiffiffiffiffiffiffi���� Δt2Δx2n

����
s

1

ð1þ ϵ ϵ
Δx2n

Þ2 þ 4ϵ ϵ
Δx2n

Δt2
Δx2n

!
ϵ→0

2

Z
∞ffiffi
ϵ

p ds χðu − sÞ ϵjsinðΔEsÞjjΔx2nj3=2

ffiffiffiffiffiffiffiffiffiffiffiffi���� Δt2Δx2n

����
s

≤ 2C1

Z
Bffiffi
ϵ

p ds
ϵjsinðΔEsÞj
jΔx2nj3=2

: ðB12Þ

If the lower bound of jΔx2nj does not occur at s ¼
ffiffiffi
ϵ

p
, we

have

jIodd> j≤ 2C1

Z
Bffiffi
ϵ

p ds
ϵ

C3=2
3

¼ 2C1ϵðB−
ffiffiffi
ϵ

p Þ
C3=2
3

¼OðϵÞ: ðB13Þ

If the lower bound of jΔx2nj occurs at s ¼
ffiffiffi
ϵ

p
, we have

jIodd> j ≤ 2C1

Z
Mffiffi
ϵ

p ds
ϵjΔEjs
ðas2Þ3=2 þ 2C1

Z
B

M
ds

ϵ

C3=2
3

¼ −
2C1ϵjΔEj
a3=2s

����M
s¼ ffiffi

ϵ
p þ 2C1ϵðB −

ffiffiffi
ϵ

p Þ
C3=2
3

¼ Oð ffiffiffi
ϵ

p Þ þOðϵÞ; ðB14Þ

where we have used sin x ≤ x for x ≥ 0. Therefore, we have

Iodd> ¼ Oð ffiffiffi
ϵ

p Þ: ðB15Þ

The aforementioned additional condition is satisfied in
the case of the ordinary Minkowski spacetime (where only
the n ¼ 0 term of Δx2n survives), but it can be violated in
general as in some examples in this paper. In other words,
1=Δx2n might become singular at some points other than
s ¼ 0. Nevertheless, (B10) and (B15) can still be taken as
valid, if the switching function χðu − sÞ is turned off before
the integrating variable s encounters any singularities
of 1=Δx2n.
Next, let us study the remaining half part Ieven< and Iodd< :

Ieven< þ Iodd< ≔
Z ffiffi

ϵ
p

0

ds χðu − sÞ

×

�
cosðΔEsÞðΔx2n þ ϵ2Þ − 2 sinðΔEsÞϵΔt

ðΔx2n þ ϵ2Þ2 þ 4ϵ2Δt2

	
:

ðB16Þ

For n ≠ 0, we have Δx2n ¼ ðnLÞ2 þOðsÞ and Δt ¼ OðsÞ
as s → 0. It follows that the absolute value of the integrand
of Ieven< is of order Oðs0=ðnLÞ2Þ and that of Iodd< is of order
Oðϵs2=ðnLÞ4Þ, rendering Ieven< to be of order Oð ffiffiffi

ϵ
p Þ and

Iodd< of order Oðϵ5=2Þ. For n ¼ 0, as we have Δx2n¼0 ≡
ðΔxÞ2 ¼ Oðs2Þ and the integrand in (B16) grows to infinity
as s → 0, the result is expected to be nonzero in the limit
ϵ → 0. It is quite involved to compute the result of the

n ¼ 0 part, but it is exactly the same as that calculated in
[12] and we simply cite the result26:

Ieven< þ Iodd< ¼ χffiffiffi
ϵ

p − _χ ln
ffiffiffi
ϵ

p
−
πΔE χ

2

þ _χ _t

ð_t2 − 1Þ1=2 lnð_t − ð_t2 − 1Þ1=2Þ

−
_χ ̈t

2ð_t2 − 1Þ3=2 ½_tð_t
2 − 1Þ1=2

þ lnð_t − ð_t2 − 1Þ1=2Þ� þOð ffiffiffi
ϵ

p Þ: ðB17Þ
The term − _χ ln

ffiffiffi
ϵ

p
in the above vanishes via integration by

parts when plugged into (B3), since χðuÞ is smooth and
becomes zero before and after the interaction. Furthermore,
because

d
du

�
_t

ð_t2−1Þ1=2 lnð_t−ð_t2−1Þ1=2Þ
	

¼−
ẗ

2ð_t2−1Þ3=2 ½_tð_t
2−1Þ1=2þ lnð_t−ð_t2−1Þ1=2Þ�; ðB18Þ

the last two terms in (B17) cancel out via integration by
parts in (B3). To sum up, we have

Ieven< þ Iodd< ¼ χffiffiffi
ϵ

p −
πΔEχ

2
þOð ffiffiffi

ϵ
p Þ; for n¼ 0; ðB19aÞ

¼ Oð ffiffiffi
ϵ

p Þ; for n ≠ 0: ðB19bÞ
Provided that the aforementioned additional condition is

satisfied or that the switching function χðu − sÞ is turned
off before s hits any nonzero singularities of 1=Δx2n, putting
(B10), (B15), and (B19) altogether into (B3) then gives

26The derivation can be found in Sec. 3 of [12] and some
related details are given in [11], especially Appendix A therein.
The first step is to make the change of variable s ¼ ϵx and recast
Ieven< and Iodd< as

Ieven< ¼ 1

ϵ

Z
1=

ffiffi
ϵ

p

0

dx
ð χ − _χϵxÞð1 − x2Þ

1þ x4 þ 2x2ð2_t2 − 1Þ

×

�
1þ 4_t ̈t ϵx3

1þ x4 þ 2x2ð2_t2 − 1Þ
	
þOð ffiffiffi

ϵ
p Þ;

Iodd< ¼ −
Z

1=
ffiffi
ϵ

p

0

dx
2 χΔE_tx2

1þ x4 þ 2x2ð2_t2 − 1Þ þOð ffiffiffi
ϵ

p Þ:

Not that the corresponding formula (3.4) in [12] has a typo.
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FðΔEÞ ¼ lim
ϵ→0

1

2π2

Z
∞

−∞
du χðuÞ

�
−
πΔE χðuÞ

2
þ
Z

∞ffiffi
ϵ

p ds

�
χðu − sÞ cosðΔEsÞ

X∞
n¼−∞

1

Δx2n
þ χðuÞ

s2

�	
; ðB20Þ

where χðuÞ= ffiffiffi
ϵ

p
has been replaced by

R∞ffiffi
ϵ

p ds χðuÞ
s2 . Removing the regularization by taking the ϵ → 0 limit then yields (4.1),

where we have added and subtracted a term χðu − sÞ=s2 for the reason to facilitate the analysis of the sharp switching limit
studied in Sec. V.

APPENDIX C: DETAILS FOR (7.3) AND (8.2)

Here we present the detailed derivation from (7.2) to (7.3). The similar trick is also applied in (8.2).
The denominator of each summand in (7.2) can be recast as�
α sinh

τ

α
− α sinh

τ0

α
− iϵ

�
2

−
�
α cosh

τ

α
− α cosh

τ0

α
− nL

�
2

¼ −α2
�
cosh2

τ

α
− sinh2

τ

α
þ cosh2

τ0

α
− sinh2

τ0

α

�
þ 2α2

�
cosh

τ

α
cosh

τ0

α
− sinh

τ

α
sinh

τ0

α

�
− 2iϵα

�
sinh

τ

α
− sinh

τ

α
0
�

þ 2nLα

�
cosh

τ

α
− cosh

τ

α
0
�
− n2L2 þOðϵ2Þ

¼ −2α2 þ 2α2 cosh
τ − τ0

α
− 4iϵα cosh

τ þ τ0

2α
sinh

τ − τ0

2α
þ 4nLα sinh

τ þ τ0

2α
sinh

τ − τ0

2α
− n2L2 þOðϵ2Þ ðC1aÞ

¼ 4α2sinh2
τ − τ0

2α
− 4iϵα sinh

τ − τ0

2α

�
cosh

τ − τ0

2α
cosh

τ0

α
− sinh

τ − τ0

2α
sinh

τ0

α

�
þ 4nLα sinh

τ þ τ0

2α
sinh

τ − τ0

2α

− n2L2 þOðϵ2Þ ðC1bÞ

¼ 4α2 sinh2
Δτ
2α

ð1þOðϵÞÞ − 4iϵα sinh
Δτ
2α

cosh
Δτ
2α

þ 4nLα sinh
τ þ τ0

2α
sinh

Δτ
2α

− n2L2 þOðϵ2Þ ðC1cÞ

≈4α2 sinh2
�
Δτ
2α

−
iϵ
2α

�
þ 4nLα sinh

τ þ τ0

2α
sinh

Δτ
2α

− n2L2; ðC1dÞ

where from (C1a) to (C1b) we have absorbed the positive factor coshðτ0=αÞ into ϵ and from (C1b) to (C1c) we have used

sinh

�
Δτ
2α

−
iϵ
2α

�
¼ sinh

Δτ
2α

cosh
iϵ
2α

− cosh
Δτ
2α

sinh
iϵ
2α

¼ sinh
Δτ
2α

−
iϵ
2α

cosh
Δτ
2α

þOðϵ2Þ: ðC2Þ
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