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A universal geometric inequality for bodies relating energy, size, angular momentum, and charge is
naturally implied by Bekenstein’s entropy bounds. We establish versions of this inequality for
axisymmetric bodies satisfying appropriate energy conditions, thus lending credence to the most general
form of Bekenstein’s bound. Similar techniques are then used to prove a Penrose-like inequality in which
the ADM energy is bounded from below in terms of horizon area, angular momentum, and charge. Lastly,
new criteria for the formation of black holes is presented involving concentration of angular momentum,
charge, and nonelectromagnetic matter energy.
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I. INTRODUCTION

In [1], Bekenstein utilized heuristic arguments involving
black holes to derive an upper bound for the entropy of
macroscopic bodies, in terms of the total energy and radius
of the smallest sphere that encloses the object. This inequal-
ity was later generalized [2–5] to include contributions from
the angular momentum J and charge Q of the body,
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where Boltzmann’s constant is denoted by kb, S is entropy, E
is total energy,R is the radius described above, aℏ and c are
the reduced Planck’s constant and speed of light. Although
the original inequality [1] without angular momentum and
charge has received much attention [6–8], the enhanced
relation (1.1) has not been properly investigated. An
important initial step in that direction was taken by Dain
[9] who studied the inequality
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which is implied by (1.1) since entropy is always non-
negative. He was able to establish (1.2) within the context of
electromagnetism, and also in general relativity for bodies
with zero angular momentum contained in asymptotically
flat, maximal initial datawhich are void of black holes. In this
result, E is given by the ADM energy. The idea is that a proof
of (1.2) lends indirect evidence for the full Bekenstein bound
(1.1). Later on, Dain’s result was extended to include a
contribution from angular momentum [10], again in the

setting of asymptotically flat, maximal initial data. The
inequality produced in [10] is not quite in the form of
(1.2), and it is not clear if one implies the other. Both results
[9,10] are based onmonotonicity of the Hawkingmass along
inverse mean curvature flow (IMCF), which is valid in the
maximal case assuming thedominant energy condition holds.
The purpose of the present article is threefold. The first

goal is to establish Bekenstein-like inequalities closely
related to (1.2) without the hypothesis of maximality for the
initial data, and thereby generalize the works [9,10]. Our
approach relies on a coupling of the IMCF with an
embellished version of the Jang equation [11,12], which
is inspired by the proof of the positive mass theorem [13].
Secondly, our techniques naturally lend themselves to
establish a version of the Penrose inequality [14] with
angular momentum and charge, for general axisymmetric
initial data without the maximal assumption. A similar
result in the maximal case was recently given in [15].
Recall that Penrose [16] proposed a sharp inequality
bounding the total energy of a black hole spacetime from
below in terms of the horizon area. It serves a necessary
condition for the cosmic censorship conjecture. Thus, a
counterexample would disprove cosmic censorship while
verification of the Penrose inequality only lends credence
to the conjecture’s validity. In [17,18], the Penrose inequal-
ity has been proven in the maximal case. Moreover,
generalizations including angular momentum and charge
have been proposed [14] motivated by Penrose’s original
heuristic arguments. The full Penrose inequality may then
be stated as follows,
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where A is the minimum area required to enclose the
outermost apparent horizon in an axisymmetric initial data
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set satisfying the relevant energy condition, and G is the
gravitational constant. This comes with a rigidity statement
asserting that equality holds if and only if the initial data
arise from an embedding into the Kerr spacetime. We also
note that the Bekenstein bound (1.1), when applied to black
holes, implies the Penrose inequality (1.3). To see this,
simply recall that for a black hole with event horizon area
Ae the radius and entropy are given by

R ¼
ffiffiffiffiffiffi
Ae

4π

r
; S ¼ kbAe

4l2p
; ð1:4Þ

where lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
is the Planck length. Inequality (1.3)

has been established in the maximal case without the
angular momentum term in a series of papers [19–22].
However, there has been very little to no progress on
including angular momentum. The only result known to the
author in this direction is [15]. Here we will establish a
version of (1.3) valid in the general nonmaximal setting,
assuming the existence of solutions to a canonical coupling
of the Jang equation to IMCF; such solutions are known to
exist in spherical symmetry.
Lastly, the methods used to study the Penrose inequality

above lead to new criteria for black hole formation, as well
as inequalities for bodies involving size, angular momen-
tum, and charge. Recall that Thorne’s hoop conjecture [23]
roughly states that if enough matter/energy is condensed in
an appropriately small region, then gravitational collapse
will ensue. Mathematically this assertion may be translated
into a heuristic inequality,

MassðΩÞ > C · SizeðΩÞ; ð1:5Þ

which if satisfied for a body Ω, then implies that Ω must be
contained within an apparent horizon; here C is a universal
constant. One of the primary difficulties in establishing
such a result is finding a proper notion of quasi-local mass
to use in the left-hand side of (1.5). As it turns out, mass/
energy is not the only quantity that is appropriate to place
on the left-hand side of the inequality. We will show below
that angular momentum and charge also naturally arise on
the left-hand side, and thus provide extra means to satisfy
(1.5). This will be rigorously proven in spherical symmetry,
and motivation will be given to indicate why the result
should hold in generality. Related results concerning black
hole existence due to concentration of angular momentum
or charge have been given in [24–26], using different
methods. See also [27,28].

II. BEKENSTEIN BOUNDS

Consider a spacelike slice M of an asymptotically flat
four-dimensional spacetime. The induced positive definite
metric g and extrinsic curvature k together yield an initial
data set ðM; g; kÞ. If Tab denotes the stress energy tensor

and na is the unit timelike normal to M, then μ ¼ Tabnanb

and c−1Ji ¼ c−1Taina are the matter energy and momen-
tum density of the slice. These must satisfy the constraint
equations

16πG
c4

μ ¼ Rþ ðTrgkÞ2 − jkj2;
8πG
c4

J ¼ divðk − ðTrgkÞgÞ; ð2:1Þ

where R is the scalar curvature of g. We will also be
interested in the electromagnetic field, and let E and B
denote the electric and magnetic fields induced on M,
respectively. Assuming that all measured energy densities
are non-negative implies μ ≥ jJj, which is referred to
as the dominant energy condition. It is also useful to single
out the nonelectromagnetic matter fields for which the
energy and momentum densities are obtained from μEM ¼
μ − 1

8π ðjEj2 þ jBj2Þ and JEM ¼ J þ 1
4πE × B. The charged

dominant energy condition is then μEM ≥ jJEMj.
A body Ω will be described as a connected open subset

of M having compact closure and smooth boundary ∂Ω.
The total charge within the body is then given by
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and it will always be presumed that there is no charged
matter outside Ω. In order to characterize the angular
momentum of the body, the initial data will be assumed
to be axisymmetric. That is, there is a Uð1Þ subgroup
within the group of isometries of the Riemannian manifold
ðM; gÞ, and all relevant quantities are invariant under the
Uð1Þ action. Without axisymmetry it is problematic to
define quasi-local angular momentum [29]. Moreover, with
this hypothesis all angular momentum is contained within
the matter fields, as gravitational waves carry no angular
momentum. Let η be the generator of the Uð1Þ symmetry,
then the angular momentum of the body is

J ¼ 1

c

Z
Ω
Jiηidxg: ð2:3Þ

The basic strategy to obtain Bekenstein type bounds
(1.2) is to use monotonicity of the Hawking mass along
inverse mean curvature flow. This worked well in [9,10,15]
because of the maximal assumption Trgk ¼ 0. More
precisely, monotonicity of the Hawking mass relies on
non-negativity of the scalar curvature, and this is achieved
with the dominant energy condition if the data are maximal.
Here we do not assume that the data are maximal, and thus
this method breaks down. However, we may follow an
approach similar to that in the proof of the positive mass
theorem [13], where the initial data are deformed by
ðM; g; kÞ → ðM; ḡÞ with ḡij ¼ gij þ u2fifj for some
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functions u > 0 and f. In [13], the function u ¼ 1 and f is
chosen to solve the so called Jang equation, which is
designed to impart positivity properties to the scalar
curvature R̄ of ḡ. In the present setting, it is more
appropriate to utilize an embellished version of the Jang
equation

�
gij−

u2fifj

1þu2j∇fj2
��

u∇ijfþuifjþujfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2j∇fj2p −kij

�
¼ 0;

ð2:4Þ

where∇ij are second covariant derivatives with respect to g
and fi ¼ gijfj. This equation also yields desirable features
for the scalar curvature which now takes the form

R̄¼ 16πG
c4

ðμ−JðwÞÞþ jh−kj2ḡþ2jqj2ḡ −2u−1divḡðuqÞ;
ð2:5Þ

where

hij ¼
u∇ijf þ uifj þ ujfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2j∇fj2
p ; wi ¼

ufiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2j∇fj2

p ;

qi ¼
ufjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2j∇fj2
p ðhij − kijÞ: ð2:6Þ

These formulas along with their geometric interpretations
are explained in [11,12]. Observe that the first term on the
right-hand side of (2.5) is non-negative if the dominant
energy condition is satisfied, since jwj ≤ 1. Furthermore,
all other terms are manifestly non-negative except possibly
the divergence term. The deformed scalar curvature may
then be described as “weakly” non-negative, since inte-
grating it against u produces a non-negative quantity
modulo boundary terms.
In order to optimize the positivity of R̄ with regards to

IMCF, we choose u as follows. Let fS̄tg∞t¼t0 be an IMCF in
the deformed data ðM; ḡÞ, where t0 ¼ 0 or −∞ depending
on whether the flow starts at a surface or a point. A weak
version of the flow always exists [18] in the asymptotically
flat setting, although for the purposes of exposition we may
assume that the flow is smooth. Then set u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jS̄tj=16π

p
H̄

to be the product of the square root of area and mean
curvature for the flow surfaces. Consider now the Hawking
energy of the flow surfaces within the deformed data:

EHðS̄tÞ ¼
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G
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Awell-known computation [18] asserts that if t2 > t1, then

EHðS̄t2Þ − EHðS̄t1Þ ≥
c4

16πG
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16π
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The first two terms on the right-hand side in the expression
(2.5) will provide lower bounds for (2.8) involving the
charge and angular momentum, while the divergence
expression will contribute to the Hawking energies.
Consider now the case when the flow starts from a point

x0 within the body Ω on the axis of rotation, so that the
starting time is t0 ¼ −∞. Observe that in (2.8) with t1 ¼
−∞ and t2 ¼ ∞ several simplifications occur. Namely,
since the Hawking energy of a point is zero and the limit of
Hawking energies as t → ∞ is no larger than the ADM
(total) energy, the left-hand side of (2.8) may be replaced
with the ADM energy E. Note that this total energy is
a priori with respect to the deformed metric ḡ. However, by
placing the natural boundary conditions at infinity for
solutions of the Jang equation, namely f → 0 in the
asymptotic end, the total energy of g and ḡ are equivalent
[13]. Furthermore if the charged dominant energy condition
holds then μ − JðwÞ ≥ 1

8π ðjEj2 þ jBj2Þ, as it may be
assumed without loss of generality in axisymmetry that
the electric and magnetic fields have no component in the
Killing direction so that E × BðwÞ ¼ 0. In [19], a deforma-
tion of the electromagnetic field ðE;BÞ → ðĒ; B̄Þ, tailored to
the Jang metric ḡ, was given which preserves total charge as
well as zero charge density and has less energy density than
the original field jEj ≥ jĒj, jBj ≥ jB̄j. From this, a lower
bound for the right-hand side of (2.8) is obtained in terms of
the energy density of ðĒ; B̄Þ, and since the surface integrals
are computed with respect to ḡ a relation with total charge is
produced as in [19]. In particular,

Z
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where R̄t� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jS̄t� j=4π

q
is the area radius of S̄t� . The time t�

may be chosen arbitrarily; however, in order to obtain the
optimal inequality for the body, t� will denote the first
(smallest) time such that the flow surface S̄t� completely
enclosesΩ. Moreover, since the flowwill change depending
on the choice of its starting point x0, optimization requires
that we choose the x0 for which the area radius at t� is
smallest. Such a starting point exists within the body sinceΩ
is compact. The radius R̄ ofΩwill then be defined as in [9] to
be this optimal area radius, and in (2.9) the radius R̄t� maybe
replaced with R̄.
Within the scalar curvature formula (2.5) the second term

on the right-hand side encodes a contribution from angular
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momentum. In order to extract this contribution, we first
make some observations. The metric ḡ arises as the induced
metric on the graph of the function f [12], and the surfaces
S̄t may be interpreted as a flow within the graph. There is
then a natural projection of S̄t into ðM; gÞ which will be
denoted St. Since the flow starts from a point on the
symmetry axis, each of the surfaces S̄t, St is axisymmetric.
As is shown in the Appendix under mild hypotheses, it then
follows that hðη; νÞ ¼ 0 on St, where ν is the unit normal to
St. Therefore, assuming that angular momentum density
vanishes outside the body and using Hölder’s inequality
produces

�
8πG
c3

�
2

J 2¼
�Z

St

kðη;νÞ
�

2

¼
�Z

St

½kðη;νÞ−hðη;νÞ�
�

2

≤
�Z

St

jk−hjgjηj
�

2

≤
Z
S̄t

jk−hj2ḡ
Z
S̄t

jηj2;

ð2:10Þ

where we have also used the fact that ḡmeasures areas to be
at least as large as does g. This estimate is suited to give a
lower bound for the ADM energy which may be expressed
properly with the ‘circumference’ radius

R̄−2
c ¼

ffiffiffiffiffiffiffiffi
jS̄t� j

q Z
∞

t�

ffiffiffiffiffiffiffi
jS̄tj

pR
S̄t
jηj2 : ð2:11Þ

The radius R̄c was used and studied in [10,15], where
it was shown that if the flow has reasonably nice
properties then this radius may be related to more tradi-
tional measures of size for the body. In particular, if the
flow remains convex outside of Ω, as it is known to be for
large times jtj ≫ 0 or in spherical symmetry, then R̄c ≤ffiffiffiffiffiffiffiffi
5=2

p
maxSt� jηj which is proportional to the circumference

of the largest orbit within St� . Because it provides and upper
bound for R̄c, when the flow is convex the circumference
may be used in place of the this radius in

c4

16πG
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16π
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jh − kj2ḡ ≥
G
2c2

J 2

R̄R̄2
c
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It is now possible to combine (2.8), (2.9), and (2.12) to
obtain a Bekenstein-type bound. Note that the proof above
relies on the existence of a solution to the Jang equation
coupled to IMCF through the choice of the function u. Due
to the fact that solutions to the Jang equation tend to blow-
up at apparent horizons [30], it will be assumed that the
initial data are devoid of these surfaces. Under this
hypothesis, the desired solutions to the Jang/IMCF system
have been shown to always exist in spherical symmetry
[11], and it is reasonable to expect that existence continues
to hold at least in a weak sense in axisymmetry.

Theorem 1: Let ðM; g; k; E; BÞ be a complete, axisym-
metric, asymptotically flat initial data set for the Einstein-
Maxwell equations, satisfying the charged dominant
energy condition μEM ≥ jJEMj and without apparent hori-
zons. Suppose that Ω ⊂ M is a body outside of which there
is no charge density or momentum density in the direction
of axisymmetry. If the Jang/IMCF system of equations
admits a solution, then

E ≥
Q2

2R̄
þ G
2c2

J 2

R̄R̄2
c
: ð2:13Þ

This theorem generalizes the results of [9,10] to the
nonmaximal setting. Although it is in the spirit of the
Bekenstein bound (1.2), these two inequalities are distinct
in that one does not directly imply the other. Nevertheless,
as will be shown in the next section inequality (2.13) does
indirectly imply a lower bound for E2 which has the same
structure as (1.2).

III. PENROSE INEQUALITIES

In this section, we will adapt the techniques discussed
above to establish a version of the Penrose inequality with
angular momentum and charge (1.3). This will then yield
an alternate version of the Bekenstein bound (2.13). Recall
that an apparent horizon is a surface S ⊂ M which has zero
null expansion, that is, a shell of light emitted from the
surface is (infinitesimally) neither growing nor shrinking in
area as it leaves the surface. These surfaces indicate the
presence of a strong gravitational field, and may be inter-
preted as quasi-local versions of black hole event horizons
from the initial data point of view. Mathematically they are
expressed by one of the two equations θ� ≔ H � TrSk ¼ 0,
where the signs þ=− indicate a future/past horizon. An
apparent horizon is called outermost within an initial data set
if it is not enclosed by any other apparent horizon.
In contrast to the previous section, here we will work

with an IMCF starting at a closed axisymmetric surface S
so that t0 ¼ 0 is the starting time of the flow, and S will
either be an outermost apparent horizon or the boundary of
a body ∂Ω. First consider the case in which S ¼ ∂Ω, and
assume that the boundary of the body is completely
untrapped H > jTrSkj. This allows for the prescription
of a Neumann type boundary condition for solutions of the
Jang equation (2.4)

u∂νfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2j∇fj2

p ¼ H−1TrSk: ð3:1Þ

It was shown in [11,31], in the context of spherical
symmetry, that solutions of the Jang/IMCF system exist
satisfying this boundary condition. Moreover, it was also
shown that with (3.1) the boundary integrals arising from
the divergence expression associated with R̄ in (2.8),
combine with the Hawking energy on the left-hand side
of (2.8), to yield
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E−ESHðSÞ≥
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16π
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16πG
jh−kj2ḡ
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where the spacetime Hawking energy is given by

ESHðSÞ ¼
c4

G

ffiffiffiffiffiffiffiffi
jSj
16π

r �
1 −

1

16π

Z
S
θþθ−

�
: ð3:3Þ

It should be pointed out that (3.2) depends on appropriate
behavior of the IMCF. For instance in the weak formulation
of Huisken/Ilmanen [18], the flow may instantaneously
jump from the desired starting surface S to another surface
S̃ enclosing it with less area. If this occurs, then in
inequality (3.2) the role of S should be replaced by S̃.
Such ‘jumping’ behavior can be prevented by requiring that
S be outer area minimizing in ðM; ḡÞ, in that any surface
which encloses S should have greater area. In order to
achieve this property with respect to the deformed data
metric ḡ, further geometric hypotheses on S with respect to
the original initial data may be required. For the purposes of
the present article, which does not seek to fully examine the
analytical problem of solving the Jang/IMCF system in
generality, we will simply refer to solutions with these
suitable properties as proper solutions. As pointed out, it is
known that proper solutions always exist under the hypoth-
esis of spherical symmetry and small perturbations thereof.
As in the previous section, the two terms on the right-

hand side of (3.2) yield contributions of angular momentum
and charge. More precisely, applying (2.9) and (2.12)
produces

E ≥ ESHðSÞ þ
Q2

2R̄0

þ G
2c2

J 2

R̄0R̄2
c
; ð3:4Þ

where R̄0 is the area radius of S0 ¼ S, and J ,Q denote the
angular momentum and charge contained within S. This
inequality will lead to a Bekenstein bound for bodies in the
presence of a sufficiently strong gravitation field, as well as
a version of the Penrose inequality.
The arguments above seem to rely on the assumption that

S is untrapped, as otherwise the boundary condition (3.1)
would imply that u∂νf ¼ �∞. However, for the Jang
equation, blow-up solutions are natural as first observed in
the proof of the positive mass theorem [13]. Blow-up
occurs at apparent horizons, and can be prescribed at
outermost apparent horizons as well [30]. Therefore, in
place of the boundary condition (3.1), at an outermost
apparent horizon S we will prescribe blow-up as the
boundary condition. In this situation, the graph of the
solution to Jang’s equation asymptotes to a cylinder over S,
and the area of this surface in the deformed metric and
the original coincide jS̄j ¼ jSj. Moreover, at an apparent

horizon θþθ− ¼ 0 so that ESHðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijSj=16πp

. With this a
version of the Penrose inequality follows.
Theorem 2: Let ðM; g; k; E; BÞ be an axisymmetric,

asymptotically flat initial data set for the Einstein-Maxwell
equations, satisfying the charged dominant energy con-
dition μEM ≥ jJEMj and with outermost apparent horizon
boundary having one component. Suppose further that
there is no charge density or momentum density in the
direction of axisymmetry. If the Jang/IMCF system of
equations admits a proper solution then

E2 ≥
�
c4

G

ffiffiffiffiffiffiffiffiffiffi
j∂Mj
16π

r
þ

ffiffiffiffiffiffiffiffiffiffi
π

j∂Mj
r

Q2

�2

þ c2J 2

4R̄2
c
: ð3:5Þ

This result is similar to the conjectured Penrose inequal-
ity (1.3) with the primary difference arising in the angular
momentum term. Instead of area, this term involves the
squared radius defined in the previous section. The proof of
this theorem requires one more observation in order that it
follow from (3.4). Namely, upon multiplying (3.4) by the
first two terms on the right-hand side, we find

E2 ≥
�
ESHðSÞ þ

Q2

2R̄0

�
E ≥

�
ESHðSÞ þ

Q2

2R̄0

�
2

þ ESHðSÞ
G
2c2

J 2

R̄0R̄2
c
: ð3:6Þ

From this the desired inequality in Theorem2 arises from the
arguments above. Furthermore, (3.6) may be used to yield a
Bekenstein bound. Suppose that S ¼ ∂Ω is the boundary of
a body immersed in a strong gravitational field. By this we
mean that λ ≔ 1 − ðjSj=16πÞsupSθþθ− > 0, or rather that
θþθ− has sufficiently small positive part. In particular,
surfaces S which are close to being an apparent horizon
satisfy this property, as do trapped surfaces. For surfaces S
which satisfy this property, the spacetimeHawking energy is
bounded below by the product of λ and the area radius up to a
universal constant. Let λ0 > 0 be fixed and consider the
class of bodieswith boundaries experiencing a appropriately
strong gravitational field so that λ ≥ λ0. Then for bodies of
this type aBekenstein bound follows immediately from (3.6)

E2 ≥
Q4

4R̄2
0

þ λ0
c2J 2

4R̄2
c
: ð3:7Þ

This inequality has the same structure as the Bekenstein
inequality (1.2), although the radius associated with the
angular momentum term is more complicated than the area
radius.

IV. BLACK HOLE FORMATION

It is a basic folklore belief that if enough matter/energy is
concentrated in a sufficiently small region, then gravita-
tional collapse must ensue. This is typically referred to as
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the hoop conjecture or trapped surface conjecture [23,32],
and is quite difficult to formulate precisely, see the
references in [26]. One of the most general results in this
direction is due to Schoen and Yau [33], who exploited the
techniques developed in their proof of the positive mass
theorem [13] to prove the existence of apparent horizons
whenever matter density is highly concentrated. Their
strategy is to show that the concentration hypothesis forces
solutions of the Jang equation to blow-up, and since blow-
up can only occur at an apparent horizon the existence of
such a surface in the initial data is established. Here we will
combine this strategy with the techniques used in the
previous two sections to obtain a black hole existence
result due to concentration of nonelectromagnetic matter
energy, charge, or angular momentum. In addition, the
measure of size used in our result will differ considerably
from the complicated measure in [13].
Consider two concentric bodiesΩ1 ⊂ Ω2, each having the

topology of a three-dimensional ball, inside an axisymmet-
ric asymptotically flat initial data set ðM; g; k; E; BÞ. The
model astronomical body in this context is a typical star,
where there is a highly dense core and interior (represented
by Ω1) compared to the outermost layer or corona (repre-
sented by Ω2nΩ1) with very little matter density. For
simplicity of the model we will assume that the charge
density and momentum density in the Killing direction
vanish in the annular region Ω2nΩ1, so that
divE ¼ divB ¼ JðηÞ ¼ 0. If there are no apparent horizons
in the initial data then, as discussed in Sec. II, we may take a
solution of the Jang/IMCF system of equationswith the flow
emanating from a point x0 ∈ Ω1 on the axis of rotation. Let
t1 and t2 be the first times for which the flow completely
encloses the boundaries ∂Ω1 and ∂Ω2, respectively. From
the arguments used to obtain (3.2), togetherwith the fact that
the Hawking energy of a point is zero, we find that

ESHðSt2Þ≥
Z

t2

−∞

ffiffiffiffiffiffiffiffi
jS̄tj
16π

s Z
S̄t

�
ðμ−JðwÞÞþ c4

16πG
jh−kj2ḡ

�

ð4:1Þ

if the Jang solution f is prescribed to be zero (or more
generally constant) on St2 . Note that this boundary condition
differs from (3.1) which is used to obtain (3.2). This is due to
the fact that the boundary integrals that arise from the
divergence term in R̄ have different signs on the inner and
outer boundaries [31]. In fact, the boundary terms at the
outer boundary have an advantageous sign, and it is likely
that this Dirichlet boundary condition used for (4.1) is not
needed.
Proceeding as in Sec. II, lower bounds for the right-hand

side of (4.1) may be extracted in terms of the total charge
and angular momentum of Ω1. In addition, a contribution
from the nonelectromagnetic matter fields will also occur.
To see this, observe that as in (2.9)

Z
t2

−∞

ffiffiffiffiffiffiffiffi
jS̄tj
16π

s Z
S̄t

ðμ − JðwÞÞ

≥
Z

t1

−∞

ffiffiffiffiffiffiffiffi
jS̄tj
16π

s Z
S̄t

ðμEM − JEMðwÞÞ

þ 1

8π

Z
t2

t1

ffiffiffiffiffiffiffiffi
jS̄tj
16π

s Z
S̄t

ðjĒj2 þ jB̄j2Þ

≥
4π

3
R̄3

1min
Ω̃1

ðμEM − jJEMjÞ þ
Q2

2R̄1

�
1 −

ffiffiffiffiffiffi
R̄1

R̄2

s �
; ð4:2Þ

where Ω̃1 is the domain enclosed by S̄t1 and R̄1, R̄2 are the
area radii of S̄t1 , S̄t2 . Notice that if the charged dominant
energy condition is valid then the first term on the right in
(4.2) is non-negative, and the second term also has this
property since areas are nondecreasing in an IMCF.
Similarly, applying the arguments of (2.12) to the current
setting produces

c4

16πG

Z
t2

−∞

ffiffiffiffiffiffiffiffi
jS̄tj
16π

s Z
S̄t

jh − kj2ḡ ≥
G
2c2

J 2

R̄1R̄2
ac
; ð4:3Þ

where the circumference radius is with respect to the
annular domain

R̄−2
ac ¼

ffiffiffiffiffiffiffiffi
jS̄t1 j

q Z
t2

t1

ffiffiffiffiffiffiffi
jS̄tj

pR
S̄t
jηj2 : ð4:4Þ

Furthermore assuming that the outer surface St2 is
untrapped, so that H > jTrSt2kj, implies that the Hawking
energy may be estimated above by the area radius
ESHðSt2Þ ≤ c4

2G R̄2. Therefore, combining (4.1)–(4.3), yields

c4

2G
R̄2 ≥

4π

3
R̄3

1min
Ω̃1

ðμEM − jJEMjÞ

þ Q2

2R̄1

�
1 −

ffiffiffiffiffiffi
R̄1

R̄2

s �
þ G
2c2

J 2

R̄1R̄2
ac
: ð4:5Þ

The geometric inequality (4.5) relates the size of the
body Ω2 ⊃ Ω1 to its core nonelectromagnetic matter con-
tent, total charge, and total angular momentum. It may be
interpreted as stating that a material body of fixed size can
only contain a certain fixed amount of matter energy,
charge, and angular momentum. The primary hypotheses
which were used to derive this inequality consist of the
assumption that the outer region is untrapped, the annular
region Ω2nΩ1 has no charge and momentum density in the
Killing direction, and most importantly that the initial data
are void of apparent horizons. This latter assumption is
used to obtain regular solutions of the Jang equation, and
following [33] we may turn this around to obtain a black
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hole existence result. More precisely, if a body with the
hypotheses above, minus any assumption on apparent
horizons, satisfies

c4

2G
R̄2 <

4π

3
R̄3

1min
Ω̃1

ðμEM − jJEMjÞ

þ Q2

2R̄1

�
1 −

ffiffiffiffiffiffi
R̄1

R̄2

s �
þ G
2c2

J 2

R̄1R̄2
ac
; ð4:6Þ

then an apparent horizon must be present within the initial
data. The reasoning is that if there were no apparent
horizons, then we may apply the arguments above to
conclude that (4.5) holds, a contradiction. This relies on
the analysis of the Jang/IMCF system of equations, which
has been established rigorously in the case of spherical
symmetry [11]. This conclusion concerning the existence of
an apparent horizon implies that the spacetime arising from
the initial data contains a singularity, or more accurately is
null geodesically incomplete by the Hawking-Penrose
singularity theorems [34], and assuming cosmic censorship
it must, therefore, possess a black hole. This result may be
interpreted as stating that if a body of fixed size contains
sufficient amounts of nonelectromagnetic matter energy,
charge, or angular momentum, then it must collapse to form
a black hole.
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APPENDIX: VANISHING EXTRINSIC
CURVATURE

Consider an axisymmetric closed surface S within an
axisymmetric Riemannian 3-manifold ðM; gÞ. If η is the
generator for the axisymmetry and ν is the unit normal to S,
then under mild hypotheses hðη; νÞ ¼ 0 along S, where h is

the tensor associated with the solution f of Jang’s equation
and is given in (2.6). Geometrically the tensor h represents
the extrinsic curvature of the graph of f in a static spacetime
constructed from the metric ḡ and function u [12]. The
vanishing of this particular component of h is used
throughout the main body of the paper in order to allow
for angular momentum contributions to the various inequal-
ities. Here we will confirm this property of h.
In [35], it was shown that if M is asymptotically flat and

simply connected then a global cylindrical coordinate
system exists, denoted by ðρ; z;ϕÞ and referred to as Brill
coordinates, such that the metric takes the following form

g ¼ e−2Uþ2αðdρ2 þ dz2Þ þ ρ2e−2Uðdϕþ Adρþ BdzÞ2
ðA1Þ

for some functions U, α, A, and B all depending only on
ðρ; zÞ. The Killing field is given by η ¼ ∂ϕ, and if U ¼ α ¼
A ¼ B ¼ 0 then g reduces to the typical expressionof the flat
metric on Euclidean 3-space in cylindrical coordinates. For
simplicity it will be assumed that A ¼ B ¼ 0 so that η is
perpendicular to the orbit space or ρz-half plane. Observe
that since u and f are axisymmetric, that is ∂ϕf ¼ ∂ϕu ¼ 0,
it follows that

hðη; νÞ ¼ u∇ϕνfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2j∇fj2

p ¼ −
uðΓρ

ϕν∂ρf þ Γz
ϕν∂zfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2j∇fj2p ; ðA2Þ

where the Γl
ij are Christoffel symbols. Since the surface is

axisymmetric, ∂ϕ is tangent to S, and thus gðη; νÞ ¼ 0. A
straightforward calculation then yields

Γρ
ϕν ¼

1

2
gρi∂νgϕi ¼ 0; Γz

ϕν ¼
1

2
gzi∂νgϕi ¼ 0; ðA3Þ

and the desired conclusion follows.
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