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Einstein’s celebrated theory of gravitation can be presented in three forms: general relativity, teleparallel
gravity, and the rarely considered before symmetric teleparallel gravity. Extending the latter, we introduce a
new class of theories where a scalar field is coupled nonminimally to nonmetricity Q, which here encodes
the gravitational effects like curvature R in general relativity or torsion T in teleparallel gravity. We point
out the similarities and differences with analogous scalar-curvature and scalar-torsion theories by
discussing the field equations, role of connection, conformal transformations, relation to fðQÞ theory,
and cosmology. The equations for a spatially flat universe coincide with those of teleparallel dark energy,
thus allowing us to explain accelerating expansion.
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I. INTRODUCTION

General relativity (GR) assumes Levi-Civita connection
and, hence, implies zero torsion and nonmetricity. GR has a
well-researched alternative formulation known as telepar-
allel equivalent of general relativity (TEGR) [1] which
instead utilizes Weitzenböck connection and elicits vanish-
ing curvature and nonmetricity. However, there exists also a
third possibility, to adopt a connection with vanishing
curvature and torsion, which provides a basis for yet
another equivalent formulation of GR, the so-called sym-
metric teleparallel equivalent of general relativity (STEGR)
[2], hardly ever studied in the literature [3–5]. Instead of
curvature R, or torsion T, it relies on the nonmetricity Q to
describe the effects of gravity.
Although TEGR is considered to be completely equiv-

alent to GR, some features make it appealing to study, e.g.,
the gauge theory structure, possibility to separate inertial
and gravitational effects, etc. [1]. However, interest in this
formulation only surged some years ago when it was
realized that extensions of TEGR, like fðTÞ and scalar-
torsion gravity, differ from their fðRÞ and scalar-curvature
counterparts which extend general relativity [6,7].
Suddenly a completely unexplored new alley opened up
for researchers to address the puzzles of dark energy,
inflation, etc., resulting in a lot of activity (see Ref. [8]).
A confusion concerning the local Lorentz invariance has
just been recently overcome by stressing the covariant

formulation [9] and deriving the appropriate equation for
the connection [10–13].
While STEGR also promises a set of nice features [2,14],

its extensions potentially offer yet another totally uncharted
territory to map and study. The first pioneering works have
just appeared looking at fðQÞ theories [15] and higher
derivative generalizations [16]. In this paper we propose an
extension of STEGR by introducing a scalar field that is
nonminimally coupled to the nonmetricity scalar Q.
Our setup resembles the generic forms of scalar-curvature
[17–19] and scalar-torsion [20,21] theories, where the
scalar field is coupled to the curvature and torsion scalar,
respectively. Nonminimal couplings arise naturally when
quantum effects for a minimal scalar are considered in
GR [22], and are utilized in, e.g., the Higgs inflation [23].
Let us clarify from the outset that STEGR differs from

typical metric-affine theories of gravity [24,25] where GR
is extended by allowing a connection to possess torsion and
nonmetricity in addition to curvature, and one usually
needs specific types or properties of matter to excite and
probe such additional geometric structures [26–32]. By
imposing vanishing curvature and torsion, in STEGR the
GR gravitational action is rewritten in terms of nonme-
tricity, and all gravitational effects that are attributed to
curvature in GR, now equivalently stem from nonmetricity.
Therefore, in STEGR the matter content can remain
unaltered, for in analogy to the Einstein’s equations it is
the usual matter energy-momentum that is the source of
nonmetricity. In our construction novel features appear
when a scalar field is nonminimally coupled.
We begin in Sec. II with a basic introduction to the key

geometric notions and establish the equivalence of general
relativity to teleparallel and symmetric teleparallel theories.
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Next, in Sec. III, we postulate the action, derive the field
equations, and comment on their main features. Then, in
Sec. IV, we probe the conformal transformations and also
show how fðQÞ theories fit into the picture. Finally, Sec. V
briefly looks at the cosmological equations for spatially flat
spacetime, and Sec. VI concludes the paper.

II. CONNECTIONS, GEOMETRIES, AND
GRAVITATIONAL THEORIES

A. Decomposition of affine connection

On metric-affine spacetimes the metric gμν encodes dis-
tances and angles, while the connection Γλ

σρ independently
defines parallel transport and covariant derivatives, e.g.,

∇μT λ
ν ¼ ∂μT λ

ν þ Γλ
μαT α

ν − Γα
μνT λ

α: ð1Þ

As known from differential geometry (see, e.g., [25,33]),
generic affine connection can be decomposed into three
parts,

Γλ
μν ¼ fλμνg þ Kλ

μν þ Lλ
μν; ð2Þ

viz., the Levi-Civita connection of the metric gμν,

fλμνg≡ 1

2
gλβð∂μgβν þ ∂νgβμ − ∂βgμνÞ; ð3Þ

contortion,

Kλ
μν ≡ 1

2
gλβðTμβν þ Tνβμ þ TβμνÞ ¼ −Kνμ

λ; ð4Þ

and disformation,

Lλ
μν ≡ 1

2
gλβð−Qμβν −Qνβμ þQβμνÞ ¼ Lλ

νμ: ð5Þ

The last two quantities are defined via torsion,

Tλ
μν ≡ Γλ

μν − Γλ
νμ; ð6Þ

and nonmetricity,

Qρμν ≡∇ρgμν ¼ ∂ρgμν − Γβ
ρμgβν − Γβ

ρνgμβ: ð7Þ

Note that torsion, nonmetricity, and curvature,

Rσ
ρμν ≡ ∂μΓσ

νρ − ∂νΓσ
μρ þ Γα

νρΓσ
μα − Γα

μρΓσ
να; ð8Þ

are strictly speaking all properties of the connection. By
making assumptions about the connection, we restrict the
generic metric-affine geometry; see Fig. 1. Taking non-
metricity to vanish gives Riemann-Cartan geometry, taking
curvature to vanish gives teleparallel geometry (since the
parallel transport of vectors becomes independent of the

path), while taking torsion to vanish is just known as
torsion free geometry. We can also impose double con-
ditions on the connection. Vanishing torsion and non-
metricity leaves us with Levi-Civita (LC) connection and
Riemann geometry. Assuming nonmetricity and curvature
to be zero is the premise of Weitzenböck (W) connection.
Keeping torsion and curvature to zero means symmetric
teleparallel (STP) connection and geometry. Finally, setting
all three to zero yields Minkowski space. To denote a
situation where a particular property is imposed on the
connection, and consequently on the covariant derivative,

curvature, etc., we use overset labels, e.g., Γ
STP

λ
μν,∇

W

μ, R
LC

σ
ρμν.

B. Three equivalent formulations
of Einstein’s gravity

In order to define a theory of gravity, we need to fix the
underlying geometry as well as the quantity standing in the
action. In laying the grounds for GR Einstein chose Levi-
Civita connection, and since nonmetricity and torsion
vanish, it remains the task of curvature to encode gravi-
tational dynamics. A suitably constructed invariant quantity
of curvature, the curvature scalar,

R≡ gνρRμ
ρμν; ð9Þ

together with the Levi-Civita provision establishes the
Lagrangian for the theory. Both ingredients are important,
since giving the action with the curvature scalar, but
making only the assumption of vanishing nonmetricity
(allowing both nontrivial curvature and torsion) gives a
different theory with extra features, Einstein-Cartan-
Sciama-Kibble gravity [34,35].

FIG. 1. Subclasses of metric-affine geometry, depending on the
properties of connection.
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It is remarkable that an alternative set of assumptions can
yield a theory equivalent to GR. To witness it, let us first
rewrite the generic curvature tensor (8) as (cf. [1,36])

Rσ
ρμν ¼ R

LC
σ
ρμν þ∇LCμMσ

νρ −∇LCνMσ
μρ

þMα
νρMσ

μα −Mα
μρMσ

να; ð10Þ

where we used the decomposition (2) to separate the Levi-
Civita terms from the contortion and disformation contri-
butions, collectively denoted as

Mλ
μν ¼ Kλ

μν þ Lλ
μν: ð11Þ

Now contracting the curvature tensor (10) to form the
curvature scalar (9) yields

R ¼ R
LC þMα

νρMμ
μαgνρ −Mα

μρMμ
ναgνρ

þ∇LCμðMμ
νρgνρ −Mν

νρgμρÞ: ð12Þ

It is obvious that if we restrict the geometry to have
vanishing torsion and nonmetricity, the curvature scalar
(12) is simply

R ¼ R
LC

: ð13Þ

This is the case of general relativity.
If we instead choose to work in the setting of

Weitzenböck connection whereby the curvature and the
nonmetricity are zero, then Eq. (12) yields

R
LC ¼ −T

W

− 2∇LCαT
W
α: ð14Þ

Here we introduced the torsion scalar, defined in principle
for arbitrary connection as

T ≡ 1

4
TαβγTαβγ þ 1

2
TαβγTγβα − TαTα; ð15Þ

and the one independent contraction of the torsion tensor,

Tμ ≡ Tα
μα ¼ −Tα

αμ: ð16Þ

The Weitzenböck torsion scalar in Eq. (14) differs from the
GR curvature scalar by a total divergence term. Therefore, a
theory where the action is set by the torsion scalar (15),
restricted to Weitzenböck connection, should give equiv-
alent field equations to GR. This is indeed the case, known
as teleparallel equivalent of general relativity [1].
A third possibility, hardly explored before, is to impose

vanishing curvature and torsion, which is the case of

symmetric teleparallel connection. Plugging R
STP

σ
ρμν ¼ 0

and Mλ
μν ¼ L

STP
λ
μν into (12) now yields

R
LC ¼ Q

STP − ∇LCαðQ
STP

α − Q̃
STP

αÞ: ð17Þ

Here the nonmetricity scalar is defined for arbitrary con-
nection as

Q¼−
1

4
QαβγQαβγþ1

2
QαβγQγβαþ1

4
QαQα−

1

2
QαQ̃

α; ð18Þ

while the nonmetricity tensor is endowed with two inde-
pendent contractions,

Qμ ≡Qμ
α
α; Q̃μ ≡Qα

αμ: ð19Þ

As the action constructed with the nonmetricity scalar (18),
restricted to symmetric teleparallel connection, would
differ from the GR action only by a total divergence term,
and the latter does not contribute to the equations of
motion, we get another formulation of Einstein’s gravity,
symmetric teleparallel equivalent of general relativity
[2–5,14,15]. All three equivalent formulations are summa-
rized by Fig. 2.

III. SCALAR-NONMETRICITY THEORY

A. Action

Let us take the metric gμν, the connection Γλ
σρ, and the

scalar field Φ as independent variables and consider the
action functional,

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðLg þ LlÞ þ Sm; ð20Þ

with gravitational Lagrangian,

Lg ¼ AðΦÞQ − BðΦÞgαβ∂αΦ∂βΦ − 2VðΦÞ; ð21Þ

and Lagrange multipliers terms

Ll ¼ 2λμ
βαγRμ

βαγ þ 2λμ
αβTμ

αβ; ð22Þ

FIG. 2. Triple equivalence of gravitational theories: general
relativity (GR) based on Levi-Civita connection with vanishing
nonmetricity and torsion, teleparallel equivalent of general
relativity (TEGR) based on Weitzenböck connection with van-
ishing nonmetricity and curvature, and symmetric teleparallel
equivalent of general relativity (STEGR) based on connection
with vanishing curvature and torsion.
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while Sm ¼ Sm½gμν; χ� denotes the action of matter fields χ
which are not directly coupled to the scalar field Φ.
In analogy with the scalar-curvature [18,19] and scalar-

torsion [13,21] theories, AðΦÞ, BðΦÞ and VðΦÞ are
functions. The nonmetricity scalar Q is given by (18). In
the case when A ¼ 1 and B ¼ V ¼ 0 the theory reduces to
plain STEGR. The Lagrange multipliers, assumed to
respect the antisymmetries of the associated geometrical
objects, i.e., λμβαγ ¼ λμ

β½αγ� and λμ
αβ ¼ λμ

½αβ�, impose van-
ishing curvature Rμ

βαγ¼0 and torsion Tμ
αβ¼0, as expected

in the symmetric teleparallel framework.

B. Field equations for metric and scalar field

Varying the action (20) with respect to the metric, and
keeping in mind that the connection is flat and torsion-free,
yields

T μν ¼
2ffiffiffiffiffiffi−gp ∇STPα

� ffiffiffiffiffiffi
−g

p
AP

STP
α
μν

�
−
1

2
gμνAQ

STP

þA
�
P
STP

μαβQ
STP

ν
αβ − 2Q

STP

αβμ P
STP

αβ
ν

�

þ 1

2
gμνðBgαβ∂αΦ∂βΦþ 2VÞ − B∂μΦ∂νΦ; ð23Þ

where we introduced the nonmetricity conjugate (or super-
potential) [15]

P
STP

α
μν ≡ −

1

2
L
STP

α
μν þ

1

4

�
Q
STP

α − Q̃
STP

α
�
gμν

−
1

8

�
δαμQ

STP

ν þ δανQ
STP

μ

�
; ð24Þ

which satisfies Q
STP ¼ Q

STP
μν

α P
STP

α
μν. The usual matter energy-

momentum tensor,

T μν ≡ −
2ffiffiffiffiffiffi−gp δSm½gσρ; χ�

δgμν
; ð25Þ

acts as a source to gravity which is described by non-
metricity. Note that for minimal coupling, A ¼ 1, the two
first lines of (23) are in fact Einstein’s equations of GR,
since we can write

R
LC

μν −
1

2
gμνR

LC ¼ 2ffiffiffiffiffiffi−gp ∇STPα
� ffiffiffiffiffiffi

−g
p

P
STP

α
μν

�
−
1

2
gμνQ

STP

þ P
STP

μαβQ
STP

ν
αβ − 2Q

STP

αβμ P
STP

αβ
ν ð26Þ

from Eq. (10).
Variation with respect to the scalar field yields

2B∇LCα∇
LC

αΦþ B0gαβ∂αΦ∂βΦþA0Q
STP

− 2V 0 ¼ 0; ð27Þ

where the primes mean derivative with respect to the scalar
field. Like in the scalar-curvature and scalar-torsion case,
the scalar field equation obtains a term with the geometric
invariant to which the scalar is nonminimally coupled to,

here the nonmetricity scalar Q
STP

. In the scalar-curvature case

the curvature scalar R
LC

contains second derivatives of the
metric and it is natural to seek to “debraid” [37] the
equations by substituting in the trace of the metric field

equations, thereby removing R
LC

but introducing the trace of
matter energy-momentum in the scalar field equation [38].
In the nonmetricity case the Eqs. (23) and (27) are already
debraided. Apparently, the role of matter as a source for the
scalar field in scalar-nonmetricity gravity, like in scalar-
torsion gravity [13], is more indirect than in scalar-
curvature gravity [18,19].

C. Variation with respect to the connection

Variation of the action (20) with respect to connection
yields an equation containing Lagrange multipliers,

∇STPγð ffiffiffiffiffiffi
−g

p
λμ

βαγÞ þ ffiffiffiffiffiffi
−g

p
λμ

αβ ¼ ffiffiffiffiffiffi
−g

p
AP

STP
αβ

μ: ð28Þ
Due to the vanishing curvature and torsion the covariant
derivatives commute; hence, one can eliminate the
Lagrange multipliers, which are antisymmetric with respect

to their last indices, from (28) by acting on it with ∇STPβ∇
STP

α.
This yields the following equations

∇STPβ∇
STP

α

� ffiffiffiffiffiffi
−g

p
AP

STP
αβ

μ

�
¼ 0; ð29Þ

which can be simplified further by using the equivalent of

Bianchi identity, ∇STPβ∇
STP

αð ffiffiffiffiffiffi−gp
P
STP

αβ
μÞ ¼ 0, to give

∇STPβ
n
∂αA

h
∇STPμð ffiffiffiffiffiffi

−g
p

gαβÞ − δαμ∇
STP

γð
ffiffiffiffiffiffi
−g

p
gγβÞ

io
¼ 0: ð30Þ

Thus, variation with respect to the connection gave us
four equations. These can be understood as follows. If one
demands curvature and torsion to vanish, then there exists a
particular coordinate system where all symmetric tele-
parallel connection coefficients vanish [39, 40], a configu-
ration called coincident gauge [15]. Therefore, generic
symmetric teleparallel connection in an arbitrary coordinate
system can be obtained by a coordinate transformation
from the coincident gauge and represented as

Γ
STP

λ
μν ¼

∂xλ
∂ξα

� ∂
∂xμ

∂ξα
∂xν

�
; ð31Þ

where ξα are some functions. The connection equation (29)
fix the four freedoms encoded by ξα, and guarantee that the
connection coefficients are consistent with the chosen
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metric. In fact, if we had assumed from the beginning that
the connection is of the form (31), then the variation of the
action (20) with respect to ξα would have given the same
equation (29). These equations are first order differential
equations for the connection, and second order for the
Jacobian matrix ∂ξα

∂xν.
This state of affairs can be compared to the scalar-torsion

gravities with Weitzenböck connection. There demanding
vanishing nonmetricity and curvature is not able to set the
connection coefficients to zero in some coordinate basis,
but it is nevertheless possible in a noncoordinate basis, i.e.,
in some frame. Generic Weitzenböck connection is thus
generated not by coordinate transformations but by local
Lorentz transformations from this frame [9]. Lorentz
transformations have six independent parameters, resulting
in six freedoms in the connection, which are then fixed by
the six equations coming from the variation of the action
with respect to flat and nonmetricity free connection
[10–13]. These equations are first order for the connection,
and second order for the Lorentz matrix.
Finally, let us note that in the pure STEGR case with

A ¼ 1 the Eq. (29) reduces to the Bianchi identity and the
symmetric teleparallel connection is not present in the
equations for the metric and (in this case) minimally
coupled scalar field. This is again like in the TEGR case
[1], whereby one may still entertain other types of argu-
ments to restrict the connection [41,42].

D. Conservation of matter energy-momentum

Taking the Levi-Civita covariant divergence of the field
equations (23), and using the scalar field equation (27) as
well as the connection equation (29), one can derive the
continuity equation for matter fields,

∇LCαT α
μ ¼ 0: ð32Þ

This equation also follows from the diffeomorphism
invariance of the matter action [43].
We conclude that there are three independent equations

out of (23), (27), (29), (32), quite in analogy with the scalar-
torsion case [13]. If one makes an ansatz for the metric,
connection, and the scalar field, one has to check that the
ansatz is consistent with this set of equations, including the
connection equation.

IV. FURTHER REMARKS

A. Conformal transformations

Contrary to the scalar-curvature case [18,19] the action
(20) does not preserve its form under the local conformal
rescaling of the metric. The nonmetricity scalar transforms
under the conformal transformation ḡμν ¼ eΩðΦÞgμν as
follows:

Q̄ ¼ e−Ω
�
Qþ 3

2
gαβ∂αΩ∂βΩþ ðQα − Q̃αÞ∂αΩ

�
: ð33Þ

The additional piece proportional to gαβ∂αΩ∂βΩ can be
absorbed into the redefinition of the kinetic term of the scalar
field, however the piece ðQα − Q̃αÞ∂αΩ does not appear in
the original action. The latter causes the action (20) not to
preserve its structure under conformal transformations.
However, if we add a term ðQα − Q̃αÞ∂αAðΦÞ to the

original Lagrangian (21), we obtain the equivalent to the
familiar scalar-curvature theory, which is covariant under
the conformal transformations and scalar field redefini-
tions. Introducing this term, multiplied by a function,
would give a theory which interpolates between scalar-
curvature and scalar-nonmetricity theories. This is similar
to the case of scalar-torsion theories and their generaliza-
tions [44–47], where one has to include the boundary term
relating the Ricci and torsion scalars in order to obtain a
conformally invariant action.

B. Scalar-nonmetricity equivalent of f ðQÞ theory
It is easy to show that fðQÞ theories [15] where

Lg;fðQÞ ¼ fðQÞ ð34Þ

form a particular subclass of scalar-nonmetricity theories.
Following the standard procedure used in scalar-curvature
[48–50] and scalar-torsion [51] cases, let us introduce an
auxiliary field Φ to write

Lg;aux ¼ f0ðΦÞQ − ðf0ðΦÞΦ − fðΦÞÞ: ð35Þ

By varying the action (35) with respect to Φ yields
f00ðΦÞðΦ −QÞ ¼ 0. Provided f00ðΦÞ ≠ 0 this equation
implies Φ ¼ Q and restores the original Lagrangian (34).
With identifications AðΦÞ ¼ f0ðΦÞ, 2VðΦÞ ¼ f0ðΦÞΦ −
fðΦÞ this is identical to the scalar-nonmetricity Lagra-
ngian (21), where BðΦÞ ¼ 0. Note that contrary to the
fðRÞ case, which in the scalar-curvature representation
enjoys a dynamical scalar field, the fðQÞ as well as fðTÞ
theory are mapped to a version with nondynamical scalar.

V. EXAMPLE: FRIEDMANN COSMOLOGY

Let us consider the spatially flat line element:

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj: ð36Þ

We can try that the zero connection coefficients Γ
STP

λ
μν ¼ 0

satisfy the connection equation (30), and are thus consistent

with the metric (36). A direct calculation yields Q
STP¼−6H2,

where H ¼ _a
a is the Hubble parameter and the dot denotes

the time derivative. The field equations for perfect fluid
matter read:
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H2 ¼ 1

3A

�
ρþ 1

2
B _Φ2 þ V

�
; ð37Þ

2 _H þ 3H2 ¼ 1

A

�
−2A0H _Φ −

1

2
B _Φ2 þ V − p

�
: ð38Þ

Here ρ is the energy density and p is the pressure of the
fluid. Using the scalar field equation,

BΦ̈þ
�
3BH þ 1

2
_B
�
_Φþ V 0 þ 3A0H2 ¼ 0; ð39Þ

one can verify that the continuity equation,

_ρ ¼ −3Hðρþ pÞ; ð40Þ

is sustained.
It is interesting that these cosmological equations

match the corresponding equations in the scalar-torsion

counterpart, or teleparallel dark energy, where Q
STP

is

replaced by −T
W

in the action (20) [20,21]. Therefore, like
scalar-curvature and scalar-torsion gravities, the scalar-
nonmetricity theory can be also used to explain the early
and late time accelerated expansion of the universe.
Moreover, following the result of the previous section,
we can further infer, that spatially flat cosmologies in fðQÞ
and fðTÞ theories are the same. To understand the detailed
mapping between the theories definitely calls for further
studies.

VI. CONCLUSION

It is remarkable that Einstein’s centennial theory of
gravity accepts three formulations: general relativity based
on curvature, teleparallel gravity based on torsion, and
symmetric teleparallel gravity based on nonmetricity. Very

little is known about the latter in particular. This work
endeavors to explore the ground by considering a generic
setting where a scalar field is nonminimally coupled to the
nonmetricity scalar in the symmetric teleparallel frame-
work. We derived the field equations, and discussed
conformal transformation, relation to fðQÞ theories, as
well as cosmology, comparing those with the correspond-
ing results in scalar-curvature and scalar-torsion theories.
Just as in the latter two cases, the scalar-nonmetricity theory
manages to explain both early and late time accelerated
expansion of the universe.
A lot of research waits ahead, most obviously con-

structing solutions and clarifying their features, but also
understanding the relations between the theories estab-
lished in different geometric settings. It might be inter-
esting to consider more general extensions of symmetric
teleparallel gravity (in analogy to the recent works in
teleparallel gravity [12,47,52–54]), in order to survey
the landscape of consistent and observationally viable
theories. A broader picture where alternative formulations
are taken into account may well offer novel perspectives
and insights into the issues that complicate general
relativity.
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