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In this paper, we study the weak gravitational lensing in the spacetime of rotating regular black hole
geometries such as Ayon-Beato-Garcia (ABG), Bardeen, and Hayward black holes. We calculate the
deflection angle of light using the Gauss-Bonnet theorem (GBT) and show that the deflection of light can
be viewed as a partially topological effect in which the deflection angle can be calculated by considering a
domain outside of the light ray applied to the black hole optical geometries. Then, we demonstrate also the
deflection angle via the geodesics formalism for these black holes to verify our results and explore the
differences with the Kerr solution. These black holes have, in addition to the total mass and rotation
parameter, different parameters of electric charge, magnetic charge, and deviation parameter. We find that
the deflection of light has correction terms coming from these parameters, which generalizes the Kerr

deflection angle.
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I. INTRODUCTION

Since Einstein discovered the general theory of relativity
in 1915 [1], Einstein’s theory has been subjected to
numerous experimental tests. It turns out that experimental
results are quite well in agreement with theoretical pre-
dictions of this theory, starting from astrophysics observa-
tions, and also a number of other precise confirmed
experiments [2-5]. Some of the predictions are exciting:
gravitational waves which were recently detected by LIGO
[3,4], and gravitational lensing and bending of light, black
holes, wormholes and others. The gravitational lensing has
been studied previously in the literature using different
types of spacetimes with strong lensing or weak lensing.

In this paper, we focus on the weak gravitational lensing
using the Gauss-Bonnet theorem (GBT), also known as the
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Gibbons-Werner method (GWM). Because black holes
cannot be observed directly, one way to ensure their
existence is to study the geodesic equations of light rays
in the curved spacetime geometry due to the presence of
black holes. In this way, one can extract valuable informa-
tion from black holes and detect their features. Weak
gravitational lensing is an interesting method; however,
in most of the cases, the strong lensing regime is needed;
strong lensing provides more information from an exper-
imental point of view to detect other exotic objects or ultra-
compact objects such as boson stars [6]. In the near future,
scientists expect to detect the horizon of a black hole using
the Event Horizon Telescope (EHT) [7]; so, this topic has
acquired a great interest, and many authors focus on it to
obtain correct results [8—39].

Recently, Gibbons and Werner [40] changed the standard
viewpoint related to the way we usually calculate the
deflection angle. They showed that one can calculate the
deflection angle in a very elegant way; namely, they have
used the GBT in the context of optical geometry. The
physical significance relies in the fact that one can view the
bending of a light ray as a global effect, which is different
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from the standard viewpoint where the bending of light is
usually associated within a region with a radius compared
to the impact parameter. In this method, one shall only
focus on a nonsingular domain outside of the light ray. For
asymptotically flat spacetimes the deflection angle can be
calculated by the following equation:

&——// Kdo,
Seo

where C is the Gaussian optical curvature and do is the
surface element of the optical geometry. Note that the
above expression for the deflection angle holds in the case
of asymptotically flat spacetimes, whereas in the case of a
nonasymptotically flat metric, only finite distance correc-
tions can be studied. Very recently, Werner has been able to
extend this method to cover Kerr black holes using the
Finsler-Randers-type metric. More specifically, he has
applied Nazim’s method to construct a Riemannian mani-
fold osculating the Randers manifold [41]. In addition, this
method has been extended to the wormhole geometries and
nonasymptotically flat spacetimes with topological defects
[42]. This method has been used in a number of papers
[43-53]; among others, we note that the GBT has been used
in interesting papers by Ishihara et al. [54-56], in which the
deflection angle for finite distances for static (including the
presence of the cosmological constant) and stationary
metrics is studied in a rather different setup.

Classical singularities in general relativity break down
the laws of physics. Singularities appear from the cosmo-
logical Big Bang theory to black holes where they are
hidden behind the event horizon of a black hole. It is widely
believed that quantum mechanics forbids the physics-
ending singularities, but until today the problem of singu-
larities remains an open problem in physics. To overcome
the problem of singularities in black holes, many physicists
have tried to construct regular black holes even in the
context of classical general relativity. In this line of research
we point out the Ayon-Beato-Garcia black hole (ABG)
[57,58], Bardeen regular black holes [59] and Hayward
regular black holes [60], which were obtained by finding a
new mass function, and we obtain the deflection angles
[61-66] in order to explore the difference with the Kerr
black hole solution in the weak gravitational lensing. In
doing so, we extend the GBT method to rotating black
holes with electric and magnetic charge for the first time.

This paper is organized as follows. In Sec. II we start by
reviewing some of the basic concepts related to Finsler
geometry. By introducing the ABG-Randers optical metric
and followed by the Gaussian optical curvature we

calculate the deflection angle. We study also the geodesic
equation to verify our results. In Sec. III, we evaluate the
deflection angle in the spacetime of a Bardeen black hole.
In Sec. IV, we perform the same analysis for the Hayward
regular black hole. Hence, we finalize our results in Sec. V.

II. DEFLECTION ANGLE OF ROTATING
REGULAR ABG BLACK HOLE

In this section, first we use the rotating Ayon-Beato-
Garcia spacetime, which is a nonsingular exact black hole
solution of Einstein field equations coupled to a nonlinear
electrodynamics, and satisfy the weak energy condition.
The metric of the ABG black hole is written in the form
[61,62]:

z
ds* = —f(r.0)d* + < dr? = 2asin’0(1 - f (r.0))didt

FEA6 + sin20[S — 2 (f(r,0) - 2)sin20ldg?,  (2.1)
with
B 2mr\/§ QZZ
[0 =1 -t o @Y
T = r? + a*cos®0), (2.3)
A =Xf(r,0) + a’sin0. (2.4)

The ABG black hole metric can be further simplified by
setting @ = 7/2; in that case the function f(r) takes the form

2 2 Q2 2
=10 +mQrz)3/2 e er)z, (2.5)
T = (2.6)
A =3Xf(r)+ da* (2.7)

We wish now to recast our ABG metric into the Finsler-
Randers type metric of the general form [41],

F(x,v) = /Ei(x)v'v) + p;(x)0',

provided (g8, < 1, in which {;; gives the Riemannian
metric to be calculated from the ABG metric, while fj;
represents a one-form. If we solve Eq. (2.1) for the null
geodesic case i.e., ds? = 0, and the problem is simplified to
study the deflection of light in the equatorial plane by
letting € = z/2. In that case, we find the following ABG-
Randers optical metric:

(2.8)

() F S

(2.9)
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The physical significance of the ABG-Randers optical
metric F relies in the remarkable feature of the Finsler
geometry, namely it provides a way to actually compute the
null geodesics. In other words, there is a link of finding null
geodesics in our physical metric (2.1) with the problem of
finding the null geodesics of a ABG-Randers optical metric
which can be seen by recalling Fermat’s principle. As
dr = F(x,dx), Fermat’s principle of least time in the
context of general relativity suggests that the null geodesics
can be found from the following condition:

5/dt:5/ F(x,x)dr = 0.
14 TF

Hence, it is clear that the Rander-Finsler metric F
naturally appears in the problem of finding null geodesics
and generalizes Fermat’s principle. The Randers-Finsler
metric is characterized by the Hessian,

(2.10)

1°F%(x,v)

gij(x, ’U) :EW’ (211)

where x € M, v € T,M. To this end we need to apply
Nazim’s method which allows us to construct a Riemannian
manifold (M, g) that osculates the ABG-Randers manifold
(M, F). For this purpose, we need to choose a vector field
? tangent to the geodesic y £, such that #(yr) = x. In that
case the Hessian reads
() = 5 (x, 5(x). (2.12)
It is obvious that the choice of the vector field is not
unique and affects the optical metric components, but the
crucial result which should be noted is that a geodesic of the
Randers manifold y is also a geodesic y; of (M, g) (see
[41] for details):
¥+ F;k(x, x) 3k = ¥+ I_“j.k(x))'cj)'c" =0, (2.13)
or yp = y5 One can choose the nonsingular region Sz C M
to be bounded by the light ray y » and a curve y in a radial
distance R from the coordinate origin. Furthermore, these
curves can be parameterized as follows [41]:
t€10,1],

vrxi(t) =n' (D). (2.14)

yrix\(t) =¢(r), te]0,0*]. (2.15)

In particular one can introduce 7 =t/ along the geo-
desic yr which belongs to the interval € (0,1) and
similarly 7% =1 -1/l with the interval € (0,1) along
the curve yg. This means that one can pair each point
n'(t) on yz with {'(z*) on yg if we set ¢ = 7*. In other
words, one can show that there exists a family of smooth
curves x'(o,7), such that for a pair of each point there is
precisely one curve which touches the boundary curve
(see Fig. 1).

¢(r)

O
black hole

FIG. 1. Integration domain Sg, namely the equatorial plane
(r, ), in which @ is the total deflection angle and b is the impact
parameter.

In addition we can say that x' (6, 7) touches the curve y ~
at the boundary when r'(z) = x'(0,7), where ¢ is a new
parameter. Then the following relation holds:

o

0= =500, @16

Likewise, we can say that x'(c, 7) touches the curve yg
when {i(7) = xi(1,7). This suggests that

_da
Cdr

.. dx?

' =—{(L,7). 2.17
Er) =) =2 (1.7) 2.17)
In general, one can construct a smooth and nonzero

tangent vector field,

. dx’
7' (x(0,7)) = % (0,7), (2.18)
with a family of smooth curves which satisfy the following
relation [41]:

x!(o.7) = 1'(7) + ()0 + A(r)o® + B(z)o’

+yi(6,7)(1 = 6)%c?, (2.19)

3¢(z) = 3 () = ') = 20 ()’ (=),
B(z) = 27/(2) = 20'() + {'(x) + 7 ().

That being said, and keeping in mind that our metric is
asymptotically flat, we can choose an equation for the light
rays as follows:

b
r(¢) = m
with b being the impact parameter. From the light ray
equation one can deduce the following components for the
vector field:

(2.20)
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dr dp sin’¢p
nr = — = — _¢ = — =
a cos ¢, v ar b

(2.21)

It is worth noting that the choice of the vector field is
dictated by the light ray equation r,. Note that our particular
equation of the light ray represents a straight line approxi-
mation, and this will be important in the final result for the
deflection angle. In other words, due to the straight line

approximation we expect our deflection angle to be correct
in leading order terms.

A. Gaussian optical curvature

We shall now continue to compute the metric compo-
nents. To this end, we need to combine Egs. (2.11) and
(2.21), yielding the following nonzero components:

2[=2(m + ) (sin*pr? + b*cos’¢)3? + amr?sin®)

Jrr =7 r(sin*gr® + b*cos’p)3/?

[18(m + §)(sin*¢pr? 4 b?cos?$)>/? —1(13(m + 55) r’sin*p + b>cos’p(m + 5)) r’sin’p| Q*

3 (sin*r? + b>cos’)>/? ’

2acos’>pm

b*aQ*cos’ p(17sin*pmr'® + sin*pr?® + 1177 cos?pb>m + cos*pb?r'?)

(2.22)

Grop = (sin4¢r2+b2cosz¢ 327
r(F—1)

r20(sin*¢r? + b*cos’p)>/? ’

(2.23)

2r[—2amr*sin¢ — 3ab*mcos® psin’p + (m + 5)(sin*gr? + b2cos?¢h)>/?]

o (sin*pr? + b>cos’¢)>/?

Q*[7(m + 5)(sin*¢r? + b*cos?$)>/? — 3asin®P=(r, a, m))

r(sin*gpr? + b*cos’ep)’/? '

where

2=6 <m + g) risin®¢ + 15cos?¢h <m

The determinant is given as

+ g) b*r*sin*¢ + Th*cosp <m + f) .

6r*ma sin®¢p + 6b*amr>cos*¢ sin’p + 33(— % mr? — L ) (sin*pr? + b>cos’p)3/?

(2.24)

- (2.25)

33

detg = —

r(sin*¢r? + b*cos’¢)>/?
Q*[=51r*(m + L) a sin®¢p — 45b%acos’Pp(m + %)sin’p + 33(m + L) (sin*¢r? + b>cos’¢)*/?]

r(sin*¢r? + b*cos’¢)3/?

(2.26)

The Gaussian optical curvature then can be found by noticing the relation I_?,¢,¢ = K detg. In other words, we can

compute X as follows:

¢

v/detg

grr
Our computation reveals the following result:

Q2

m
K:—2;+37+12 rS +

1 () - o

(Vi )] o

Q*m

15aG(r, ¢)

=

(2.28)

Note that the first term corresponds to the Schwarzschild black hole, whereas the second and third term give the charge
contribution, and finally the last term is a consequence of the rotation. Note that the function G(r, ¢) is rather complicated

expression which is found to be
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22 1102mr® 1 o) 1 1 )
- 0) =~ S+mb§ios2<,5)9/2 [( Qlomr 0 -5 10) (Sm(‘/’))m_irﬁb2<Q2m+§Q2r‘gmr2> (sin(¢)"*
+19b2(cos(¢p) )? <Q2m—|—lll—%2r+§mr2> (Sin(¢))12+42b3r5(cos(¢5))2(sin(¢))11 <Q2m+5f—22r_4y2nlr2)

4p? 100%*mr?

+22 cost)Gin() (-1

50%r 4mr?

—gQQr3 +4—1r4m> (cos(¢))*+ b? (sz +— er—imﬂ))

9 15

84r3b3(cos(¢))*(sin(¢))°
+ 5 <Q2m+ 42 21

_21785(cos(g)(sn())’ = 50°r

5 21

967*b*(cos(¢))*(sin(¢))® 1 Smr?
5 <Q2m+§Q2r_ 9 )

+ mr ) —272b*(cos(¢))* (—9Q2mr2(005(¢))2

4+ B2 (sz__Q2r+§mr2 >(s1n(¢))

7r2b%(cos())°(sin(@))* ( p _200%r
- 0 <Q m———+

7 7

+Q2b8<cos<¢>>8<m+r/5>—5r2b6<cos<¢>>8(g2

+%(14Q2 +4r2)rb7(cos(¢))8msin(¢)} .

Note that the Gaussian optical curvature depends on the
black hole parameters, a, m, and Q7. In the next section we
are going to evaluate the deflection angle with the help of
the above result.

B. Deflection angle

Theorem: Let (S;,g) be a non-singular and simply
connected domain over the osculating Riemannian mani-
fold (M, g) bounded by circular curve yx and the geodesic
v5- Let K be the Gaussian curvature of (M, g), and k the
geodesic curvature of dSg = y; U yg. Then, the GBT can
be stated as follows [40,41]:

/ Kdo + ]{ kdt + Y oy =2my(Sg).  (2.30)
Sk OSg k

As we have already noted that do gives the surface ele-
ment, a; represents the k" exterior angles, y(Sg) is known
as the Euler characteristic number. The geodesic curvature
basically determines the deviation from the geodesic. By
definition we have k(y;) = 0 because y; is a geodesic. Of
particular importance is the geodesic curvature of y in a
radial coordinate R from the coordinate origin. It can be
calculated via

k(rr) =

We can choose yy := (@) = R = const, and in that case
the radial part yields

IV, 7r |- (2.31)

18mr?

o1 +7mr

6_42r3b5<cos<¢>>ﬁ<sin<¢>>5 (sz 50%r >

5

>+§(7Q2+2r2)rb7<cos( ))°m(sin(¢))*

m —;Q2r+§mr2> (sin(¢))?

(2.29)

(V;'/RJ./R) =7k (a¢7/R) + F¢¢(7’R) . (2.32)

It is noted that the first term vanishes, and the second
term can be calculated by the unit speed condition i.e.,
g,,,,ﬁ;'/%;‘/j’; = 1. Because our optical geometry is asymptoti-
cally Euclidean we find that x(ygz) — R™' as R — oo. The
other point is the fact that as R — oo, the sum of jump
angles (ap), to the source S, and observer O, yields ay +
ag — 7 [40]. For constant R, the optical metric gives

2
limd = lim [\/ a
R—00 R—o0

_a(l=f()],,
7 oo - o

where we have used the fact that

lim £(R) = 1

(I-f()F , Z-a(f()-2)
72 /

(2.33)

(2.34)

Finally one can shows that

. dr

I;I_I;I;IOK(}/R) i - 1. (2.35)

Note that by construction, the source S and the observer
O are assumed to be in the asymptotically Euclidean
region, thus the last equation clearly reveals our assump-
tions that our optical metric is asymptotically Euclidean.
Having computed the geodesic curvature from GBT it
follows

124024-5
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n+a
/ /<d5+ja§ kdt Rz""/ ICch—/ dg = =,
Sr TR Seo 0

(2.36)

resulting with

(2.37)

— / Kdo.
Seo

After substituting the Gaussian optical curvature (2.28)
into the last equation we find

0? 2m  15aG(r,
me [ 2 aG s @, 15000)
o r r
x y/detgdrde. (2.38)
Solving the nonrotating part in the above integral we find

0>
// < 3+3 4Jr12 >\/det drde

sing

_4m 3nQ*  16Q%m (2.39)
b 4 3b3 '
The rotating part gives
1
/ / ( 5ag >\/det drde
4 2
_ 4 ma 9896maQ (2.40)
b? 15p*
The total deflection angle is found to be
. 4m 37rQ2 4ma
G=- =" :I:?—I—(’)(Qz,a, m), (2.41)

where the signs of positive and negative stand for retro-
grade and prograde light rays.

C. Geodesics

The equations of the geodesics can be derived from
the Lagrangian of a test particle [67]. For motion in the
equatorial plane, that is, 8 =z/2 and 6 =0, the
Lagrangian results to be

2

2L = —f(r)i2 +%i’2 —2a(1 = f(r)gi
+ [ = a2 (f(r) - 2)]¢",

where ¢ = dq/dr, and 7 is an affine parameter along the
geodesic. As the Lagrangian (2.42) is independent of the
cyclic coordinates (¢, ¢), then their conjugate momenta
(I, T1y) are conserved Then, the equations of motion are

=0 and yield

(2.42)

obtained from H

(2.43)

where I, = 0L/0q are the conjugate momenta to the
coordinate ¢ and are given by

I, =—f(r)i—a(l-f(r))¢p=—E.

,
II,=—7 and
r=yF an

M, =—a(l—f(r)i+ (P =a*(f(r)=2))p=L, (2.44)

where E and L are dimensionless integration constants
associated with each of them. So, the Hamiltonian is given
by

H =Tt + yp + ILi — L,

X 2
M = —Ei+L¢+rK'r2 = _i?.

(2.45)

(2.46)

Now, by normalization, we shall consider m? =0 for
photons. Therefore, we obtain

_ 2a’E—aL + Er* +a(L — aE)f(r)

T , (2.47)
b= aE —;zfirzgi(:)aE) ’ (2.48)
izza(ZaEz—ZEL)+Ez 2—f(r)(L—aE)2. (2.49)

I%

The distance of the closest approach r, for the metric
(2.1) can be obtained from i = 0, which yields

5 \/1_(5>2 (1__>2<(Q232r0)2_(Q242::§)3/2>’

(2.50)

where b = L/E is the impact parameter.
Now, following [29] the bending angle can be deter-
mined by the expression

co d¢
a =2 —|dr — 2.51
a XO = dr—n (2.51)
which yields
4m 370> 4ma
b= — — 2.52

where we use the change of variables u = r(/r; then, we
substitute the impact parameter given by Eq. (2.50), and
we expand in Taylor series around m, a, and Q. Finally, we
consider ry = b. In Fig. 2 we plot the deflection of light in
the background of a rotating regular ABG black hole by
solving numerically Egs. (2.48) and (2.49).

124024-6



DEFLECTION OF LIGHT BY ROTATING REGULAR BLACK ...

PHYS. REV. D 97, 124024 (2018)

FIG. 2. Deflection of light in the background of a rotating
regular ABG black hole with E=2, L =5, m=0.3, 0 =0.1
and a = 0.1. The circle corresponds to the closest approach
(ro = 2.158) to the black hole.

III. DEFLECTION ANGLE BY ROTATING
REGULAR BARDEEN BLACK HOLE

In this section, we study the deflection angle by rotating
Bardeen regular black hole. The spacetime metric of the
rotating Bardeen regular black hole reads [62]:

2 4 in20 >
ds? = —(1 —M”>dz2 —W+Smdtd¢+Xdr2

z
2a® in’6
4 A6 + <r2+a2+a/\/lgrsm>d¢2, (3.1)
where
¥ = r? + a’cos?0), (3.2)
A=7r=2M,r+a?, (3.3)
2 \3/2
M=) 3.4
’ m<r2 + g%) 54

in which g, is the magnetic charge due to the nonlinear
electromagnetic field. In this case, we find the following
expression for the optical metric:

dr d 4 dr\2 A [dp\2 2 2 3/24,
Flrgdr 9y | 7 (d0)F, mA (9N dmar [ \TEAS (3.5)
dr dr A(A —a*) \dt A —qg* \ dt A-a*\r?+¢ dt
_ 2[=2(m+)(sin*pr? + bZcos?)Y + amr?sin®P]  g2m[3ar’sin®p + 6(sinpr? + blcos?p)>/?]
Grr = r(sin*¢r? + b*cos’¢)3/? r3(sin*pr? + b2cos’ )3/ ’
_ 2ab3cos®pm 3ab’cos*pmg? (3.6)
Irp = r(sin*gr? + b*cos’¢)¥? P (sin*¢pr? + b’cos’p)3/?’ '
_ 2r[-2amr?sin®p — 3ab*mcos?sin’p + (m 4 5) (sin*pr* + b¥cos)*?]
G0 = (sin*pr? + b*cos’¢)>/?
3g2m[=2ar*sin®p — 3ab>cos’psin’¢ + (sin*pr? + b>cos’¢)/?] (3.7)
r(sin*¢r? + b*cos’¢)>/? ' '
With the determinant
doti 2 6rmlasin®p — /cos*pr? + (b2 —2r%)cos’p+ 1] 9gim[asin®p — \/cos*pr? + (b* —21?)cos’p + 7] (3.8)
g=r*— . .
Vcos*pr? + (b? —2r%)cos’p + r? ry/cos*gr? + (b* —2r*)cos’¢p + r?
Then the Gaussian optical curvature is
2m  18mg>  27amS(r, )
IC - —? }"5 + }"5 ) (39)

with

124024-7
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B sin?¢ 14g
S(r.¢) = - (sin*pr? 4 b*cos’¢p)"/? [( 9

clal z/9r8) (sin())12 — 1/6524(g2 — 2/37%)(sin())10

+ 31b2r4(cos(¢))2(sin(¢))8 <g% + 4_’2) + <2b3g%r3 _ 8b93r5> (cos(¢))2(sin(¢))7

9 31

+ 1/3(=5r%(cos(¢))? + 2b%)b*r*(cos(¢h))* (g%

1 3r5

- (41)393#

—2/3r%)(sin(¢))°

)(eos<¢>>4<sin<¢>>5 T 1/18(9762 = 182)b* 2 (cos ()" (sin(¢))’

+ 1/3b°r(cos(¢))* (g2 +2/3r%)(sin(¢))* + (cos(¢))°b°g

+5/3b*r*(cos(¢

Substituting these relations from GBT it follows the
integral

B // <2m 18n;g,,+27am;5;(r,¢)>

sin ¢

X y/detgdrde.

(3.11)

We can split this integral in two parts. The nonrotating
contribution yields

() i

sin g

dm 8¢ m
== 7 - b3 (312)
For the second integral we find
/ / < yp 11 )x/det drd¢
singp
4ma _ 24mag>

Finally the total deflection angle of rotating Bardeen
regular black hole is

4m 8g*m 4ma
> +— o +O(m,a,g).

A

a =

(3.14)

A. Geodesics equations
In this case, the Lagrangian associated with the motion
of particles in the equatorial plane (6 = z/2 and 6 = 0)
results to be

(g% —2/3r%)(sin(¢))? +2/3b5r(COS(¢))6(93+2/3r2)sin(¢)].

(3.10)
|
2
2L = _<1 _%)iz_%iqwr’_p
r r A
2 .
+ <r2 +a? +—2a :\Ab) ¢, (3.15)

where ¢ = dq/dr, and 7 is an affine parameter along the
geodesic. Because the Lagrangian (3.15) is independent of
the cyclic coordinates (t, ¢), then their conjugate momenta
(I1;, IT,) are conserved. Then the equations of motion can

be obtained from H = 0, and we obtain

I,=0, 1II,=0, (3.16)

where I, = 0L/0q are the conjugate momenta to the
coordinate ¢ and are given by

M\, 2aM, - 2
H,:—<1— M”)z— Mps_ g o=
r r A

2a M],)

2aM

and Il, =— p=1L,

(3.17)

”i+<r +a*+

where E and L are dimensionless integration constants
associated with each of them. Therefore, the Hamiltonian is
given by

H =ILi+ ¢ +IL,i - L, (3.18)

. 2
2H = —Ei + L +%'r2 =@ (3.19)

Now, by normalization, we consider m? = 0 for photons.
Thus, for photons we obtain

- L+ ErP+d*EQ2
;= a./\/l,, —2" r’+a (ZM;,—FI")’ (320)
r(r* =2Myr + a*)

. ZaMbE - ZMbL + rL
(PP =2Myr+a?)

(3.21)

124024-8
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The distance of the closest approach ry for the metric
(3.1) can be obtained from 7 = 0, which yields

2 2 2 3/2
oo i (G 2E o9 (L )T 3o
b b o b gs + 13

where b = L/E is the impact parameter.
Therefore, the bending angle Eq. (2.51) is given by

Am  8Fm 4
Tm— ‘(l});nj:%—i—(’)(a,m,g%), (3.24)

&:

where, similar to the previous case, we use the change of
variables u = ry/r, and next, we substitute the impact
parameter given by Eq. (3.23), then, we expand in Taylor
series around m, a, and g,, and finally, we consider ry = .
In Fig. 3 we plot the deflection of light in the background of

a rotating Bardeen black hole by solving numerically
FIG. 3. Deflection of light in the background of a rotating Eqgs. (3.21) and (3.22).
regular Bardeen black hole with E =2, L =5, m =0.3, g, =
0.1 and a = 0.1. The circle corresponds to the closest approach
(ro = 2.154) to the black hole. IV. DEFLECTION ANGLE BY ROTATING

REGULAR HAYWARD BLACK HOLE

In this section, we investigate the deflection angle

o 2(L — aE)*M,, + (a*E* = L*)r + E*r? (3.22) by rotating Hayward regular black hole. The spacetime

73 ) ) metric of the rotating Hayward regular black hole
reads [62]:

2a* M, rsin?0

g — (1 2M,,r g 4aM,,rsin*6
z z z

)
dtdg + Xdr2 + 2do* + <r2 +a® + >sin29d¢2, (4.1)

where
Y = 12 + a*cos?6,
A=r>=2M,r+a,
and in the equatorial plane the mass function is given by

3

Mh:

where g is the rotation parameter. We find the following expression for the optical metric:

dr d¢ r dr\2 A (dp\?2  2mar & d¢
e T i T e I A . 4 4.
f(r, /. dr’ dt> \/A(A —a?) (dt> * A —a? (dt A-a*\rP+g*/) dt’ (4:5)

with metric components,

2[-2(m + %) (sin*pr* + b2cos’)? + amr?sin®p]  2mg? (arsin®e — 2(sin*pr? + b2cos2¢p)?/?)

G = — r(sin“(]ﬁr2 + b2c052¢)3/2 r4(sin4(]§r2 T b2c052¢)3/2 )
__ 2macos’d 2macos’ g’ y
T ey e ey (4.6)

124024-9
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2r[—2amr?sin®) — 3ab*mcos®psin’p + (m + 5) (sin*pr? + b2cos’h)>/?]

Tbd = 4.7
oo (sin*pr? + b>cos’¢)>/? (47)
2mg?[—2ar’sin®ep — 3ab*cos’psin’p + (sin*¢r? + b>cos’¢p)>/?] (4.8)
2 (sin*¢r? + b>cos?¢)>/? ' '
The determinant is given by
doti— 2 6rmlasin’p—\/cos*pr? + (b> —2r*)cos’p+ 12| 6g3mlasin’p — +/cos*pr? + (b* —217)cos’p + 7] (4.9)
g =r- — . .
\/cos*pr? 4 (b* —2r%)cos’p + r* r2\/cos*pr? + (b> —2r*)cos’p + 12
Our computation reveals the following relation:
36 ,
k=22 +20ﬂ M, (4.10)
r
in which
.
H(r.¢) = ks (54970 = 1/6r°)(sin($))"> + (=1/12g%* + 1/12¢7)52(sin($))' + (cos(¢))*b°g’

(sin*¢r? + b*cos’ )7/
+10/3r'b% (cos(¢))*(g* + 1/107)(sin(¢))* + 7/67°(g* = 4/7r%)b*(cos(¢))* (sin(¢))
+1/3r°b0%(cos())*(g* + gr + 17)(=5/2r* (cos())* + b%)(g = r)(sin(¢))°

r3
+7/3r (g = 4/7r)b (cos(¢))* (sin($))’ + 13/37 (93 - 95—2) b*(cos(¢))*(sin(g))*
+ 1/3rb>(cos(¢))*(¢* + 1/2r°)(sin(¢h))* + (5/6g°1* — 5/61°)b* (cos(¢))° (sin(¢))?
+2/3rb(cos(¢))%(g* + 1/2r%) sin(¢)} . (4.11)

Going through the same procedure the deflection angle can be calculated by the following integral:

G — // <2 +zomg3 M)«/det drdg. (4.12)

sin¢h

After we evaluate the first integral we find

3 3
mg - dm  1S5Smrg

squ

// (36amH )\/Hdrdgs 4 dma (4.14)

singp

The second integral gives

Consequently the total deflection angle of rotating Hayward regular black hole results in

4m 15mrg®  4ma
b 8h* b

A

4= (4.15)

A. Geodesics equations

The Lagrangian associated with the motion of particles in the equatorial plane (6 = z/2 and 0=0)ofa rotating regular
Hayward black hole is given by

2£,_—<1—%> 4ai\/lht¢+ +<r + a2 +2“’f\4”>¢, (4.16)

124024-10
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where ¢ = dg/dr, and 7 is an affine parameter along the
geodesic. Similar to the previous analysis the Lagrangian
(4.16) is independent of the cyclic coordinates (z, ¢). So, their
conjugate momenta (Il,, II;) are conserved Then, the

equations of motion are obtained from H = Oandyield

I,=0, 1II,=0, (4.17)

where I, = 9L/0q are the conjugate momenta to the
coordinate ¢, which is given by

Ht——<1—2Mh>i—2aMh¢E—E,

r r

I, = X 7, and
ZaMh
r

m, = - p=L. (4.18)

< 2a Mh>
i+ r?+a*+

where E and L are dimensionless integration constants
associated with each of them. Thus, the Hamiltonian is
given by

H =TLi+yp + 7 — L, (4.19)

2

2H = —Ei+ Lé +%f2 =i (4.20)

Now, by normalization, we consider > = 0 for photons.
So, we obtain

. rE(r*4a*) —2a(L - aE)M,,
r= r(r? = 2rM;, + a?) ’ (4.21)
o 2aEMh +rL — ZLMh
¢= r(r*=2rM, +a*) (4.22)
202 2\ _ 12 — 4E)?
2 r(E*(a* 4+ r*) — L*) + 2M,,(L — aE) 423

3

In this case, the distance of the closest approach r, for
the metric (3.1) obtained from » = 0 yields

ro a\? 2m a\2( mr}
o = (4) 2 () (M) 404
OGO

where b = L/E is the impact parameter.
Therefore, the bending angle Eq. (2.51) yields

4_m 15mrg®  4ma
b 8b* b*

A

a = (4.25)
Here we use the change of variables u = rq/r; we sub-
stitute the impact parameter given by Eq. (4.24) and expand
in Taylor series around m, a, and g; finally, we consider

FIG. 4. Deflection of light in the background of a rotating
Hayward black hole with E=2, L =5, m = 0.3, g = 0.1 and
a =0.1. The circle corresponds to the closest approach
(ry = 2.153) to the black hole.

ro =~ b. In Fig. 4 we plot the deflection of light in the
background of a rotating Hayward black hole by solving
numerically Egs. (4.22) and (4.23).

V. CONCLUSION

In this paper, we have investigated the deflection angle of
light by rotating regular black holes such as Ayon-Beato-
Garcia, Bardeen and Hayward black hole. Starting from the
physical metrics we have found the corresponding Rander-
Finsler-type metric which basically provides a way to
compute the deflection angle in terms of GBT. We have
extended Werner’s geometric method by including the
electric charge (), magnetic charge ¢,, and deviation
parameter g which generalizes the expression for the
Gaussian optical curvature, optical metric components,
and finally the deflection angle.

In particular we have found that for the rotating regular
black holes the total deflection angles are

R 4m 370Q% 4ma
QARG :7—szi7+O(Q2,a,m)’ (5.1)
4m 8¢gZm  4ma
aB :7_ b3 7+O(as m,g%), (52)
4m 15 4
ay =— e mag + ma+0(a m,g*), (5.3)

b 8b* b?

for the ABG, Bardeen and Hayward regular black holes,
respectively. Thus, as these black holes have in addition to
the total mass and rotation parameter, different parameters

124024-11
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a
3.0

— ABG
—— Bardeen
25} — Hayward
— Kerr

0.0 ‘ ‘ : ‘ ‘ b
0.2 0.3 0.4 0.5 0.6 0.7 0.8
FIG. 5. Deflection of light by ABH, Bardeen, Hayward and

Kerr black holes for the values of m = Q =a=g¢g=g, =0.1.

such as electric charge, magnetic charge, and deviation
parameter, the deflection of light has correction terms
coming from these parameters which generalizes the
Kerr deflection angle,

R dm  4dma

It is worth noting that our results show that the deflection
angle is smaller than the Kerr deflection angle (see Fig. 5).
In other words the contribution coming from the black hole
parameters such as Q, g, and g, is different in magnitude;
however, in all three cases the light rays always bend

outward from the black holes which is indicated by the
minus sign. In Fig. 5, we show the behavior of the
deflection angle of the light for the regular black hole
geometries as a function of the impact parameter. We
observe that discrepancies could exist between predictions
for the value of the deflection angle of the light for regular
black holes for small values of the impact parameter, in
which the deflection angle is smaller than the Kerr
deflection angle. However, such discrepancy decreases
when the impact parameter increases. In addition, we have
checked our results of the deflection angle using the
geodesics formalism, and we have shown it to be exact
in leading order terms.

It is important to realize that the agreement between
these two methods breaks down for second order terms; for
example, in the case of a rotating Bardeen regular black
hole the geodesic approach gives ddg =F 12mag?/b*,
whereas with the Gauss-Bonnet theorem one finds
Sy =F 24mag> /b*. Such inconsistency is to be expected
considering the fact that one must choose a different
equation for the light ray r, which incorporates the black
hole parameters. We plan in the near future to extend our
analytical analysis in the Gauss-Bonnet theorem to the
second order terms to remove such an inconsistency.
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