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We study exact, analytic, static, spherically symmetric, four-dimensional solutions of minimally coupled
Einstein-scalar gravity, sourced by a scalar field whose profile has the form of the sine-Gordon soliton. We
present a horizonless, everywhere regular and positive-mass solution—a solitonic star—and a black hole.
The scalar potential behaves as a constant near the origin and vanishes at infinity. In particular, the solitonic
scalar star interpolates between an anti-de Sitter and an asympototically flat spacetime. The black-hole
spacetime is unstable against linear perturbations, while due to numerical issues, we were not able to
determine with confidence whether or not the starlike background solution is stable.
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I. INTRODUCTION

To date, it is well known that visible baryonic matter
accounts for only a small part of the totalmass of the universe.
Themost reliable and conservative approach to darkmatter is
the ΛCDM model [1], but several alternatives have been
introduced to take into account some problems present in the
model—from modifications of general relativity [2], to
particle dark matter [3] and emergent gravity approaches
[4–6]. However, as dark matter is most likely nonbaryonic, it
is interesting to consider asymptotically flat self-gravitating
objects made up of massive fundamental (pseudo) scalar
fields and to study their astrophysical consequences [7].
Boson stars [8,9] are the most famous example: they are

nontopological solitonic configurations of massive complex
scalar fields nonlinearly coupled to themselves through a
self-interacting scalar potential and to gravity. Stable and
compact configurations have also been proposed as alter-
natives to astrophysical and primordial black holes [10,11].
In fact, gravitational collapse could stop before the object
reaches its Schwarzschild radius to produce a horizonless
object that mimics some observational features of black
holes [12–14], but that may still be distinguished from
signatures in the gravitational-wave waveform [15–19].
In boson stars, the constituent complex scalar fields are

globally invariant under U(1) symmetry and, as a conse-
quence, there exists a conserved Noether current. For real
massive scalar fields there is no such a current and the
situation is very different: there are no static solutions.
However there exist oscillatons [20], for which both the
metric and the scalar field are periodically oscillating in time.
The key observation is that boson stars and oscillatons are

found by fixing the scalar potential. Then, the metric

functions and the scalar profile are determined by solving
the Einstein-Klein-Gordon equations. Here, on the contrary,
we fix the scalar profile, we determine the scalar potential
dynamically and we show that static regular self-gravitating
solutions made up of real scalar fields are allowed.
Black-hole solutions sourced by scalar fields in asymp-

totically flat spacetimes are generically forbidden by no-
hair theorems which relate the existence of hairy black
holes to the non-convexity of the potential [21–23] and to
the violation of the positive energy theorem [24,25] with
some notable exceptions [26,27]. In some cases, the zero-
event-horizon limit describes an everywhere regular, par-
ticle-like object known as scalaron [28].
In this work we study exact, analytic, static, spherically

symmetric, four-dimensional solutions of minimally coupled
Einstein-scalar gravity—for some examples, see e.g.,
Ref. [29]. We derive both a horizonless, everywhere regular,
positive-mass solution and a black hole. These solutions are
sourced by a scalar field whose profile is identical to that of
the sine-Gordon soliton [30]. These solitons have a wide
range of applications in several areas of non-linear physics,
e.g., nonlinear molecular and DNA dynamics, the Josephson
effect, ferromagnetic waves, nonlinear optics, superconduc-
tivity and many others [31–33]. In two-dimensional gravity,
there exists a relationship between the sine-Gordon dynamics
and the black-holemetric degrees of freedom [34,35], while a
sine-Gordon star is known inBrans-Dicke gravity [36]. Thus,
it is remarkable that a sine-Gordon soliton may also act as a
gravitational scalar source in general relativity.
The energy density of the horizonless solution is negative

close to the origin but it is balanced by a positive energy
density in the asymptotic region to produce a positive total
gravitational mass. Plus, this self-gravitating configuration
sourced by a sine-Gordon scalar profile has compactness of
Oð0.1Þ. For these reasons, we call it a sine-Gordon solitonic
scalar star.

*Corresponding author.
edgardo.franzin@ca.infn.it

PHYSICAL REVIEW D 97, 124018 (2018)

2470-0010=2018=97(12)=124018(7) 124018-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.124018&domain=pdf&date_stamp=2018-06-11
https://doi.org/10.1103/PhysRevD.97.124018
https://doi.org/10.1103/PhysRevD.97.124018
https://doi.org/10.1103/PhysRevD.97.124018
https://doi.org/10.1103/PhysRevD.97.124018


To derive these solutions we utilise a slightly different
version of the solution-generating method proposed in
Ref. [37] which has been successfully used to obtain a
large number of exact, static, asymptotically flat or anti-de
Sitter (AdS) black-hole and black-brane solutions [38–42].
We do not give details about this new version of the method
here, but the essential result is that—under certain assump-
tions on the reality of the scalar field and the asymptotic
behavior of the spacetime—the solution is completely
parametrized by a single function. An equivalent method
has been presented in Refs. [43,44].
Throughout this work we adopt c ¼ 16πG ¼ 1 units.

II. SOLITONIC SOLUTIONS

We consider four-dimensional Einstein gravity mini-
mally coupled to a self-interacting real scalar field ϕ,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�
; ð1Þ

and we look for asymptotically flat, static, spherically
symmetric solutions ds2 ¼ −UðrÞdt2 þUðrÞ−1dr2 þ
R2ðrÞdΩ2

2 sourced by a scalar which inherits the spacetime
symmetries [45,46] and whose stress-energy tensor is

Tμν ¼ ∂μϕ∂νϕ − gμν

�
1

2
∂μϕ∂μϕþ VðϕÞ

�
: ð2Þ

Introducing an auxiliary dimensionless coordinate
x≡ r0=r, with r0 arbitrary length scale—which we will
see proportional to the gravitational mass of the solution
and inverse proportional to the square root of the amplitude
of the scalar potential—the solution of the field equations
can be entirely parametrized by a single function PðxÞ and
can be recast in the form,

RðxÞ ¼ r0P
x

; ϕðxÞ ¼ 2

Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
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UP2
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where c1 and c2 are integration constants, whose value can
be determined by the boundary conditions of the spacetime.

The r-asymptotic region corresponds to x ¼ 0, while the
r-origin corresponds either to x ¼ ∞whenPðxÞ has no zeros
at finite values, or to x ¼ x0 when Pðx0Þ ¼ 0. Because of its
relation with the radius R of the 2-sphere, PðxÞ must be a
positive, analytic and monotonically decreasing function.
Moreover, the condition of asymptotic flatness requires
Pð0Þ ¼ 1 and reality of the scalar field implies
d2P=dx2 ≤ 0. When PðxÞ has a zero at a finite value x0,
Uðx0Þ becomes singular and in view of its integral form (4),
quite generically the spacetime will develop a curvature
singularity. The only way to avoid such a curvature singu-
larity, but still have nontrivial solutions, is to impose an
asymptotically constant scalar field profile and an exponential
decreasing of d2P=dx2. In fact, from the field equations it
turns out that the scalar curvature is given by

R ¼ 2V −
x4U
r20P

d2P
dx2

;

hence, the exponential behavior of d2P=dx2 is needed to kill
the power-law divergences in R.
The simplest choice for a function P satisfying all the

conditions above is

PðxÞ ¼ 2 − e−x: ð6Þ
For the rest of the work we switch back to the radial

coordinate r. From Eq. (3), the metric function R is

RðrÞ ¼ rð2 − e−r0=rÞ; ð7Þ
and surprisingly enough, the scalar field profile turns out to
be identical to that of the solitons (kinks) of the sine-
Gordon theory [30],

ϕðrÞ ¼ π − 4 arcsin
e−r0=2rffiffiffi

2
p : ð8Þ

The scalar field stays always finite, goes to zero asymp-
totically as ϕ ∼ r0=r, whereas it behaves exponentially near
the origin, i.e., ðϕ − πÞ ∼ e−r0=2r as r → 0.
Fixing the value of c2 to have an asymptotically flat

solution, i.e.,UðrÞ → 1 as r → ∞, themetric functionU can
be written as the sum of a regular and a divergent term in the
origin,

UðrÞ ¼ r2P2

48r20

�
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; ð9Þ
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where a and b are numerical constants, a2¼16þ22log2þ
π2−6log22 and b2¼2þ21ζð3Þ=4−log22ð11−2log2Þ=2þ
π2ð11−6log2Þ=12.
Depending on the value and the sign of c1=r0, the metric

function in Eq. (9) describes either a black hole (discussed
in Sec. II A), a naked singularity, or a regular starlike
solution (discussed in Sec. II B).
The expression for the potential (5) can be computed

analytically but is cumbersome. We give in Fig. 1 repre-
sentative plots as functions of r and ϕ, both in the black-
hole and the starlike branch. The scalar potential goes to
zero asymptotically (r → ∞, i.e., ϕ → 0) as

Vðϕ ≈ 0Þ ¼ c1 þ r0
120r30

ϕ5 þOðϕ6Þ;

while near the origin (r → 0 i.e., ϕ → π), it approaches a
constant

Vðϕ ≈ πÞ ¼ −
a2

4r20
−
c1
r0

1 − b2 − 6 log 2
2r20

þOðϕ − πÞ:

A. Black-hole branch

For nonzero values of the integration constant c1, the
metric function U in Eq. (9) has a curvature singularity in
r ¼ 0, in fact, while the curvature and Riemann scalars are
finite at r ¼ 0, the Kretschmann scalar diverges. It
describes either a black hole (c1=r0 < 0) or a naked
singularity (c1=r0 > 0). For the rest of the work we focus
on the black-hole case.
The gravitational mass M of the solution can be easily

inferred from the 1=r term in the asymptotic expansion of
the metric function UðrÞ; it is positive and given by
M ¼ 8πð2r0 − c1Þ=3. The black hole event horizon rH is
defined implicitly by UðrHÞ ¼ 0 and is always within the
corresponding Schwarzschild radius. We notice that the
c1 → 0 limit is singular: in fact, the black hole horizon goes
to zero while the black hole mass tends to the finite
value 16πr0=3.

The scalar potential for the black-hole branch is plotted in
the left panel of Fig. 1 for representative values of c1=r0. It
always possesses a flat region near r ¼ 0 followed by a
minimum. Then the potential vanishes asymptotically; in
particular, for c1=r0 < −1, it goes to zero frombelow.Notice
that for c1=r0 ¼ Λ0 ≡ −a2=ð2b2 − 2þ 12 log 2Þ the scalar
potential is zero at the origin, while for c1=r0 greater (less)
than Λ0, the value of the constant becomes negative
(positive).
We stress that the scalar potential depends on the value of

c1=r0 and, as a consequence, the formulation of a con-
sistent black-hole thermodynamics is very difficult. In
principle, one could get rid of this unpleasant feature using
an appropriate rescaling of the parameters appearing in the
potential, along the lines described in Ref. [41] for black
holes sourced by massless scalars. In the case under
consideration, this is a rather involved issue because of
the complicate form of the potential both as a function of
the coordinate r and of the scalar field ϕ. On the other
hand, the main focus of this work is not on the black-hole
branch but rather on the starlike branch and its stability.
We use therefore the black-hole case as a proxy to discuss
the stability of the starlike branch in the c1=r0 → 0 limit.

B. Starlike branch

When c1 ¼ 0, the metric function U describes a hori-
zonless and perfectly regular solution with no curvature
singularities,

UðrÞ ¼ r2P2

48r20
uregðrÞ: ð12Þ

We stress that the starlike branch cannot be considered as
the c1 → 0 limit of the black-hole branch as such a limit is
singular. Near the origin, after the coordinate rescaling
r → r=2, the metric functions behave as RðrÞ ¼ r and
UðrÞ ¼ r2=L2 þ 1, i.e., it describes an AdS spacetime with
AdS length L2 ¼ 6r20=a

2.

FIG. 1. Plots of the scalar potential as a function of r and ϕ. Left panel: The potential in the black-hole branch. Λ� are such that the
potential goes to �4=r20 in the origin, i.e., Λ� ≡ ða2 � 16Þ=ð2 − 2b2 − 12 log 2Þ. Inset: Zoom on the asymptotic region. Right panel:
The potential for the starlike solution, c1 ¼ 0. Inset: Zoom on the maximum.
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In this case, the gravitational mass of the solution is
again positive and its value is M ¼ 16πr0=3. As the scalar
field is spread all over the radial direction, this solution
does not have a hard surface. Yet we could define an
effective radius reff within which 99% of the mass is
contained. It turns out to be, roughly, reff=r0 ≈ 98, almost
three times larger than its Schwarzschild radius. This also
means that the compactness of this solution is about 0.17, a
value compatible with other boson and fluid stars but not
black holes—see e.g., Fig. 4 of Ref. [47].
This solution represents an extremely nontrivial gravi-

tational configuration, which we call a sine-Gordon soli-
tonic scalar star. The solution itself has a solitonic nature
because it has a positive mass, it is completely free of
spacetime singularities and it interpolates between two
maximally symmetric spacetimes—an asymptotically flat
spacetime at r ¼ ∞ and an AdS spacetime at r ¼ 0.
The scalar potential is plotted in the right panel of Fig. 1

both as a function of r and ϕ. Near the origin, it approaches
a negative constant V ¼ −3=2L2 ¼ −a2=4r20 consistently
with its AdS behavior. It is interesting to notice that the
potential is positive for large values of r (see the inset in
Fig. 1), reaches a maximum at around r=r0 ≈ 5.01 then
crosses the axis for r=r0 ≈ 4.08 and goes down to negative
values to approach exponentially the constant negative
AdS value.
Despite the fact that in general a scalar field does not

obey an equation of state [48], the stress-energy tensor of
the scalar field (2) can also be interpreted as produced by a
nonperfect, anisotropic fluid with both radial and
perpendicular pressure,

−T0
0 ¼ ρ ¼ 1

2
Uϕ02 þ V ¼ T þ V; ð13Þ

T1
1 ¼ prad ¼

1

2
Uϕ02 − V; T2

2 ¼ ptan ¼ −ρ: ð14Þ

In Fig. 2 on the left we plot the energy density ρ, its kinetic
contribution T , and the radial pressure prad as functions of
r, while on the right we plot the position-dependent
equation of state prad ¼ pradðρÞ.

Although the energy density is negative for small values
of r, the gravitational mass is positive. The existence of this
positive mass solution results from the peculiar highly
nonlinear interaction of the scalar field producing a
negative energy density in the inner region balanced by
the positive energy density in the asymptotic region. In
order to see if this balance may produce a stable configu-
ration, we have to investigate the stability of our solution.
Although the energy density is negative for small values

of r, the gravitational mass is positive. The existence of this
positive mass solution results from the peculiar highly
nonlinear interaction of the scalar field producing a
negative energy density in the inner region balanced by
the positive energy density in the asymptotic region. In
order to see if this balance may produce a stable configu-
ration, we have to investigate the stability of our solution.

III. STABILITY ANALYSIS

To discuss the stability of our solutions we consider
s-wave radial perturbations (they are generically expected
to be the least stable) about the background, i.e.,
UðrÞ þ δUðt; rÞ, RðrÞ þ δRðt; rÞ and ϕðrÞ þ δϕðt; rÞ.
By expanding the field equations up to linear order in the

perturbation fields and by making use of the background
equations, the perturbation equations reduce to two con-
straints and a dynamic equation for δϕ [49].
Furthermore, assuming harmonic time dependence for

the scalar perturbation

δϕðt; rÞ≡ e−iωtRðrÞψðrÞ;

the master equation for radial perturbations reads

d2ψ
dr2�

þ ðω2 − VeffÞψ ¼ 0; ð15Þ

where r� is a “tortoise” coordinate
1 dr�=dr ¼ 1=UðrÞ and

Veff

U
¼ 1−UR02

R2
þðVR2−2Þϕ02

4R02 þVϕRϕ0

R0 −
V
2
þVϕϕ; ð16Þ

where Vϕ ¼ dV=dϕ and Vϕϕ ¼ d2V=dϕ2.
The effective potential Veff can be given in a complicated

yet analytical form that we do not report here, but its plot is
shown in Fig. 3, for both the black-hole and the star-like
branch.

A. Black-hole branch

In the black-hole branch, the effective potential is
bounded, vanishes at the horizon and at infinity as 1=r3.

FIG. 2. Left panel: The energy density ρ, its kinetic contribution
T and the radial pressure prad as functions of the radial coordinate
r. Right panel: Equation of state.

1r� is an actual tortoise coordinate in the black-hole branch
where r → rH is mapped into r� → −∞ and r → ∞ into r� → ∞.
In the star-like branch, r → 0 corresponds to a finite value
r� → r0�.
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The typical behavior is shown in the left panel of Fig. 3.
For c1=r0 ≤ −2, it is always negative while for c1=r0 > −2,
it develops a principal potential barrier near the horizon
and a secondary smaller barrier for larger r (see the inset of
the figure). As c1=r0 gets closer to zero, the principal
potential barrier becomes higher and narrower while the
horizon and the position of the maximum coincide and
shrink to zero.
Before integrating numerically Eq. (15), a first hint

on the (in)stability of this black-hole spacetime comes
from the Simon’s criterion [50]: a necessary but not
sufficient condition for the absence of bound states with
ω2 < 0 is that

S≡
Z þ∞

−∞
Veffdr� > 0: ð17Þ

It turns out that this quantity is positive for c1=r0 > ΛS, with
ΛS ≈ −0.4788, and therefore we limit our stability analysis
within this region.
To show that the black-hole background solution is

linearly stable, we need to show that there are no solutions
to Eq. (15) with ω2 < 0 satisfying appropriate boundary
conditions. Because of the behavior of the potential at the
horizon and at infinity, the solution behaves as a purely
outgoing (ingoing) free-wave at infinity (horizon), i.e.,
ψ ∼ e�iωr� . For values of ΛS < c1=r0 < 0, we integrate
numerically Eq. (15) with ω2 negative but smaller than the
depth of the well, and we shoot for the value of ψ and its
derivative on the peak of the effective potential in order to
have exponentially decreasing solutions on the horizon. For
c1=r0 ≳ −0.05 the numerical integration becomes particu-
larly challenging. If each mode blows up at infinity,
independently on the value of ω2, the perturbation equation
does not have bound states. In our analysis we always find a
bound state, then we conclude that the black-hole branch is
unstable against linear perturbations. One remark is, how-
ever, in order: this instability is somehow marginal as there
is only a finite number of unstable modes.

B. Starlike branch

In the starlike branch, the asymptotic behavior of the
effective potential is Veff ∼ 2r0=r3 as r → ∞ while near the
origin it diverges as Veff ∼ r20=64r

4 as r → 0. For 0.14≲
r=r0 ≲ 5.87 it is negative while for r≳ 5.87 it is positive
and has a local maximum for r=r0 ≈ 8.11. Its plot is shown
in the right panel of Fig. 3.
Again, to show that the background solution is linearly

stable,we need to show that there are no solutions to Eq. (15)
with ω2 < 0 satisfying appropriate boundary conditions. At
spatial infinity we can use purely outgoing, free-wave,
boundary conditions, i.e., ψ∞ ∼ eiωr� . Boundary conditions
near the origin are more complicated, due to the behavior of
Veff near r ¼ 0. More technically, r ¼ 0 is a non-Fuchsian
point and as a consequence, the solutionψ0 near the origin is
not a polynomial. Equation (15) cannot be solved in terms of
simple functions in this limit for any ω2, nevertheless, for
marginally stable solutions (ω2 ¼ 0) the solution behaves as
ψ0ðω2 ¼ 0Þ ∼ e−r0=r=r. For this reason we expect that ψ0

must also be exponentially suppressed for ω2 ≠ 0.
Because of the very steep barrier at the origin, neither the

Simon’s criterion nor an S-deformation method [51] are
applicable.
In addition, both the barrier at the origin and the lack of

more precise boundary conditions near the origin make the
numerical integration of Eq. (15) very challenging. For some
values of the parameters it is possible to find solutions to
Eq. (15) for negative and positive values of ω2, but such
results are highly dependent on the initial parameters. More
importantly, we had difficulty in keeping control on the
numerical errorwhich (generically) grows of several orders of
magnitude at r ≈ rmin. For these reasons, we cannot state
whether or not the background solution is stable against linear
perturbations. However, although the limit c1=r0 → 0 of the
black-hole branch is singular, the instability of the black-hole
background solution suggests instability also for the star-like
branch.Yet, the instability time scale could be extremely large
(even larger than the Hubble time) and the sine-Gordon
solitonic scalar star may still have astrophysical interest.

FIG. 3. Plots of the effective potential as a function of r. Left panel: The effective potential in the black-hole branch for two
representative values of c1=r0. rH1 and rH2 are the two corresponding event horizons, rH1=r0 ≈ 0.219 and rH2=r0 ≈ 0.547. Inset: Zoom
on the secondary potential barrier. Right panel: The effective potential for the starlike solution. Zeros for r=r0 ≈ 0.14 and r=r0 ≈ 5.87.
Extrema for rmin=r0 ≈ 0.20 and rmax=r0 ≈ 8.11. Inset: Zoom on the local maximum.
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IV. DISCUSSION

In this work we have introduced an exact, analytic, static,
spherically symmetric, four-dimensional solution of min-
imally coupled Einstein-scalar gravity sourced by a sine-
Gordon scalar soliton. Depending on the value of the
parameter c1=r0, it describes either a black hole or a starlike
solution that we called sine-Gordon solitonic scalar star.
The scalar potential is not given a priori but it is determined
by the field equations.
The black hole is characterised by a positive mass and

the corresponding scalar potential is bounded, although it
always exhibits a negative region. We have shown that this
spacetime is unstable against linear perturbations and we
have used it as an effective description to investigate the
stability of the star-like solution in the c1=r0 → 0 limit.
The sine-Gordon solitonic scalar star is a horizonless,

everywhere regular, asymptotically flat spacetime with
positive mass and compactness of Oð0.1Þ. The scalar
potential behaves as a negative constant near the origin
and goes to zero as ϕ5 at spatial infinity. Likewise, the
energy density of the solution is negative and finite near the
origin, becomes positive at a certain radius and vanishes in
the asymptotic region. In that sense, this solution inter-
polates from the AdS spacetime near the origin and the
Schwarzschild spacetime at spatial infinity.
This peculiar behavior resembles that of gravastars [52].

These exotic compact objects have been proposed as alter-
natives to black holes [53] and they are objectswhose interior
is described by a patch of de Sitter space (characterised by
negative pressure) smoothly connected to the Schwarzschild
exterior through an intermediate region filled with some
(exotic) matter. In analogy with the gravastar picture, our
solution can be regarded as an anti-gravastar or the string-
inspired AdS bubbles [54]. The advantage with respect to
these models is that our solution does not require junction
conditions with the drawback of a very complicated scalar

potential.Notice, however, that our solution is not as compact
as a typical gravastar.
The solution-generating method introduced and the result

discussed in this work bode well for a possible analytical
interpolating solution between de Sitter and Schwarzschild
spacetimes, but its search is left for future work.
Unfortunately, we were not able to determine with

confidence whether or not the background solution is stable
against linear perturbations. Because of the form of the
effective potential, the study of linear perturbations is indeed
very complicated both analytically and numerically. This
kind of solutions are often plagued by instabilities [55,56]
and probably a full numerical simulation is required. Similar
solitonic solutions sourced by negative energy densities
obtained numerically with a Higgs-like scalar potential were
shown to be linearly unstable [57]. In addition, results on the
black-hole branch may suggest linear instability also in the
star-like branch. However, the number of unstable modes in
the black-hole branch is finite and the instability time scale
could be sufficiently large to let the sine-Gordon solitonic
scalar star still have some astrophysical interest.
Another interesting point that we have not investigated

here is the formationmechanismof such a solution.While the
solitonic nature of the scalar profile is comprehensible, the
origin of the scalar potential ismoremysterious.Again, a full
numerical study of gravitational collapse of scalar matter
should be necessary to completely answer this question.
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