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Deviations from the predictions of general relativity due to energy-momentum squared gravity (EMSG)
are expected to become pronounced in the high density cores of neutron stars. We derive the hydrostatic
equilibrium equations in EMSG and solve them numerically to obtain the neutron star mass-radius relations
for four different realistic equations of state. We use the existing observational measurements of the masses
and radii of neutron stars to constrain the free parameter, α, that characterizes the coupling between matter
and spacetime in EMSG. We show that −10−38 cm3=erg < α < þ10−37 cm3=erg. Under this constraint,
we discuss what contributions EMSG can provide to the physics of neutron stars, in particular, their
relevance to the so called hyperon puzzle in neutron stars. We also discuss how EMSG alters the dynamics
of the early universe from the predictions of the standard cosmological model. We show that EMSG leaves
the standard cosmology safely unaltered back to t ∼ 10−4 seconds at which the energy density of the
universe is ∼1034 erg cm−3.
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I. INTRODUCTION

Einstein’s general theory of relativity (GR) agrees with
all tests in the solar system to a precision of 10−5 [1]. The
discovery of the late-time acceleration of the universe (see
[2] for a review) led to a reintroduction of the cosmological
constant (Λ), a possible energy density of the quantum
vacuum energy density in the universe. The huge discrep-
ancy between its value calculated from quantum field
theory and that required to explain the accelerating cosmic
expansion, however, led to an extensive search for alter-
native explanations for the accelerating expansion. A broad
avenue followed by many cosmological studies is to
introduce modifications to GR (see [3–6] for a review)
which can lead to accelerating cosmological solutions
[7,8]. These should reduce to GR in the weak gravity field
limit in order to be consistent with the classical solar system
tests. Yet, there are models of gravity which make similar
predictions in the weak field limit, but deviate from GR in
the strong field regime [9–11].
Almost all of these modifications to GR focus on

generalizing the gravitational Lagrangian away from the
linear function of scalar curvature, R, responsible for the

Einstein tensor in Einstein’s equations. On the other hand, it
is possible to consider generalizing the form of the matter
Lagrangian in a nonlinear way, for instance, to some
analytic function of the scalar T2 ¼ TμνTμν formed from
the energy-momentum tensor (EMT), Tμν, of the matter
stresses, as first discussed in [12]. Such a generalization of
GR includes new type of contributions of the material stress
to the right-hand side of the Einstein equations without
invoking some new forms of fluid stress, such as bulk
viscosity or scalar fields. A particular example of this type
of generalizations in the form FðR; T2Þ ¼ Rþ αT2,
dubbed as energy-momentum squared gravity (EMSG),
was proposed in [13], and very recently a more general one,
in the form FðR; T2Þ ¼ Rþ αðT2Þn, dubbed as energy-
momentum powered gravity (EMPG), was proposed in
[14,15]. In EMPG model, the case n > 1=2 (EMSG corre-
sponds to n ¼ 1) may be effective at high energy densities,
e.g., relevant to early universe and dense compact astro-
physical objects, while the case n < 1=2may be effective at
low energy densities, e.g., relevant to dynamics of the late
universe. Namely, for n > 1=2, it can replace the initial
singularity with an initial bounce and avoid spatial
anisotropy from dominating the universe about the initial
singularity [15], and, for n < 1=2, it can lead toΛCDM type
cosmologywithout invokingΛwhenn ¼ 0, andwCDM like
cosmologies without invoking a dark energy source when
n ≃ 0 [14]. The reader is referred to Ref. [15] (and the
references therein) for a detailed discussion motivating the
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type of generalization of GR including higher-order con-
tributions to the right-hand side of the Einstein equations,
where the material stresses appear.
In this paper, we focus on EMSG, which leads to

quadratic contributions to gravity from matter terms, which
then can be effective at high energy densities and pressures.
The loop quantum gravity and braneworld scenarios
contribute such new quadratic terms by replacing ρ by
ρð1�Oðρ2ÞÞ in Einstein’s equations, where the negative
contribution is from loop quantum gravity [16] and the
positive is from braneworld scenarios [17]. EMSG can
affect the cosmological dynamics significantly at energy
densities higher than a certain energy density depending on
the value of its free parameter α. Hence, to probe the energy
densities where EMSG would lead to significant deviations
from GR and have consequences for the initial singularity,
inflation, big bang nucleosynthesis, or detailed structure of
the microwave background power spectrum, it is necessary
to constrain α observationally. EMSG is equivalent to GR
in vacuum and hence its effects could be apparent only
inside matter sources. Indeed, as we will discuss below, the
strongest constraints on α can be obtained from neutron
stars (NSs) and then the cosmological implications of
EMSG under these constraints can also be investigated.
Investigation of EMSG could also be interesting for the

possibility of addressing some problems in the physics of
NSs such as the so called hyperon puzzle.1 The hypero-
nization of matter leads to the softening of the equation of
state (EoS) which then reduces the maximum mass of the
NS to ∼1.4M⊙. Although the appearance of hyperons
seems unavoidable [19], the predicted maximum mass is at
odds with the measured masses of ≃2M⊙ [20,21]. A
recently proposed way to alleviate the hyperon puzzle is
to modify gravity at strong gravity field [22]. Consideration
of compact stars in braneworld scenarios, leading to
Einstein’s equations reminiscent of EMSG for α > 0, is
not new [23], and very recently, it was claimed that hyperon
puzzle can be addressed, on account of non-linear con-
tributions of matter stress to the right-hand side of the
Einstein’s equations, in the Randall-Sundrum type-II brane-
world in [24] and in the braneworld within the Eddington-
inspired Born-Infeld gravity in [25]. In EMSG, the effective
stiffening in the right-hand side of the Einstein equations,
due to the new contributions of matter stresses under some
conditions, may compensate the softening of the matter
EoS due to the hyperonization and so enhance the maxi-
mum masses of NSs with hyperons. The investigation of
this possibility, however, is not straightforward and it is
necessary to employ the numerical solutions of structure of

NSs and their mass-radius relations for various realistic
EoS parametrizations.
It is noteworthy that, because the EoS of NSs has not

been constrained by terrestrial experiments, there are
several EoS parametrizations and hence one may expect
degeneracy between a modified gravity and different EoS
parametrizations, yet as it was shown in [26,27], it is
possible to use NSs to constrain the order of magnitude of
the free parameter/s of a modified theory, yet the constraint
would still be much tighter than what could be obtained
from solar system tests.
There are two measures of the strength of gravity:

compactness (η≡ 2GM=Rc2) and spacetime curvature
(ξ≡ 4

ffiffiffi
3

p
GM=R3c2) where M is the mass scale and R

the length scale of a system with energy density ρ [9].
Cosmological studies probe gravity at large compactness
η ¼ 8πGρR2=3c2 ∼ 1 while the curvature is very weak
(ξ ≪ 1) because of the large length scales involved.
The black holes are the most compact objects, but the

vacuum solutions around black holes in most modified
theories of gravity are similar to GR [28–32] except in
Chern-Simons gravity, making any discrimination between
these models hard to observe by probing black holes
despite η ¼ 1. This leaves NSs as the best sources to
constrain modified theories of gravity. Indeed, the compact-
ness and curvature of a typical NS of massM ¼ 1.4M⊙ and
radius R ¼ 10 km, respectively, are 105 and 1014 times
larger than the values probed in solar system tests [33] but
they still are in an unexplored regime in the bulk of the
NS [27]. There is considerable effort [22,26,34–46] to
study the mass-radius relation of NSs in modified theories
of gravity. In this paper we seek to determine the form of
the mass-radius relations for NSs in the EMSG theory in
order to determine whether this theory can survive con-
frontation with observations of NS environments for a
selection of four realistic equations of state. The EMSG
theory we investigate is characterized by a single coupling
constant, whose numerical value turns out to be severely
constrained by the structure of NSs. In the next section we
introduce the structure of the EMSG theory we are
investigating before deriving the equations of hydrostatic
equilibrium for NSs in Sec. III. In Sec. IV, we briefly
describe the numerical method employed to determine the
mass-radius relations for the NSs in Sec. V. This leads to a
tight constraint upon the defining coupling constant in the
EMSG theory considered here and in Sec. VI we use that
constraint to discuss the implications for cosmological
consequences of the same EMSG theory. We draw final
conclusions from our results in Sec. VII.

II. ENERGY-MOMENTUM SQUARED GRAVITY

The EMSG model is constructed by adding a self-
contraction of the EMT, TμνTμν, to the Einstein-Hilbert
action with a cosmological constant as follows:

1Hyperons are baryons containing at least one strange quark.
These particles are not stable on Earth, decaying to nucleons
through weak interactions, but are stabilized at the degenerate
cores of NS [18].
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S ¼
Z �

1

2κ
ðR − 2ΛÞ þ αTμνTμν þ Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where R is the scalar curvature, κ ¼ 8πG is the usual
gravitational coupling with G being Newton’s constant, Λ
is a cosmological constant, andLm is the matter Lagrangian
density. The term TμνTμν is the EMSG modification with a
real constant α that determines the gravitational coupling
strength of the modification under consideration.
As usual, we define the EMT as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

¼ gμνLm − 2
∂Lm

∂gμν ; ð2Þ

which depends only on the metric tensor components, and
not on its derivatives. We consider the perfect fluid form of
the EMT given by

Tμν ¼ ðρþ PÞuμuν þ Pgμν; ð3Þ

where ρ is the energy density, P is the thermodynamic
pressure and uμ is the four-velocity satisfying the con-
ditions uμuμ ¼ −1, ∇νuμuμ ¼ 0. Unless stated otherwise,
we choose units with ℏ ¼ c ¼ 1 throughout the paper.
Varying the action given in Eq. (1) with respect to the
inverse metric, we obtain the modified Einstein’s field
equations:

Gμν þ Λgμν ¼ κTμν þ καðgμνTσϵTσϵ − 2θμνÞ; ð4Þ

where Gμν ¼ Rμν − 1
2
gμνR is the Einstein tensor. All

contributions from the variation of each new EMT term
are collected in the new tensor θμν as

θμν ¼ Tσϵ δTσϵ

δgμν
þ Tσϵ

δTσϵ

δgμν

¼ −2Lm

�
Tμν −

1

2
gμνT

�
− TTμν

þ 2Tγ
μTνγ − 4Tσϵ ∂2Lm

∂gμν∂gσϵ : ð5Þ

Here T is the trace of the EMT. We note that the EMT
given in Eq. (2) does not include the second variation of
Lm, hence the last term of Eq. (5) is null. As it is known
that the definition of matter Lagrangian giving the perfect
fluid EMT is not unique; one could choose either Lm ¼
P or Lm ¼ −ρ, which provide the same EMT (see
[47,48] for a detailed discussion). In the present study,
we consider Lm ¼ P. The covariant divergence of Eq. (4)
reads

∇μTμν ¼ −αgμν∇μðTσϵTσϵÞ þ 2α∇μθμν; ð6Þ

where we see that local covariant energy-momentum con-
servation is not satisfied in general, but, is for instance, in the
case α ¼ 0, as it should be (see [13–15] for a further
reading).
Substituting Eq. (3) in Eq. (5), and then using the

resultant equation in Eq. (4), we reach the following more
illuminating equation

Gμν þ Λgμν ¼ κρ

��
1þ P

ρ

�
uμuν þ

P
ρ
gμν

�

þ ακρ2
�
2

�
1þ 4P

ρ
þ 3P2

ρ2

�
uμuν

þ
�
1þ 3P2

ρ2

�
gμν

�
: ð7Þ

We note that the expressions in square brackets on the
right-hand side of Eq. (7) are of order unity even for a wide
range of realistic sources, namely, e.g., radiation/relativistic
matter (P ¼ ρ=3) and dust (P ¼ 0) in between two
extremes, Zeldovich (stiff) fluid (P ¼ ρ), which is the
most rigid EoS compatible with the requirements of
relativity theory [49] and conventional vacuum energy
(P ¼ −ρ). This implies that the effect of the new terms
due to EMSG modification (∝ ακρ2) increases almost
linearly with respect to the usual terms (∝ κρ) and almost
quadratically with respect to Λ as values of the energy
density ρ increase. This in turn implies that the distinct
differences between EMSG and GR would be best
observed and thereby constrained, at the highest
energy densities. The energy density corresponding to Λ
is well constrained from cosmological observations as
ρΛ ¼ Λ=κ ∼ 10−9 erg cm−3 and is comparable with the
energy density scale of the present-day universe ρcosmic ∼
10−9 erg cm−3 [50], but is completely negligible,
for instance, in comparison with energy density scales of
the big bang nucleosynthesis (BBN) ρbbn ∼ 1025 erg cm−3

[51] or NSs ρns ∼ 1037 erg cm−3 [52]. The remaining two
terms in brackets in Eq. (7), on the other hand, are
comparable if ρ ∼ αρ2, which implies jαj ∼ ρ−1. Hence,
the corrections due to the EMSG modification would be
observable in the dynamics of the present-day universe if
jαj ∼ 109 erg−1 cm3, affect BBN in the early universe if
jαj ∼ 10−25 erg−1 cm3, and affect compact astrophysical
objects like NSs if jαj ∼ 10−37 erg−1 cm3. Hence, the most
stringent constraints on α can be obtained from compact
astrophysical objects such as NSs. Black holes, on the other
hand, are much denser than NSs, but are not useful for
obtaining constraints on EMSG as we mentioned in the
Introduction, in Sec. I. Thus, in what follows we study
constraints on the free parameter α of the EMSG model
from NSs and then discuss the implications of the results on
the physics of NSs as well as any cosmology based
on EMSG.
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III. HYDROSTATIC EQUILIBRIUM IN EMSG

We seek spherically symmetric solutions of the EMSG
field equations inside a nonrotating NS, and so consider a
spherically symmetric and static metric in the form

ds2 ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2dθ2 þ r2sin2θdϕ2 ð8Þ

with two independent functions νðrÞ and λðrÞ. Using the
metric given in Eq. (8) in Eq. (7), we reach the following set
of field equations, Eqs. (9)–(10),

1

r2
−
e−2λ

r2

�
1−2r

dλ
dr

�
¼ κρþ καρ2

�
1þ8

P
ρ
þ3

P2

ρ2

�
; ð9Þ

−
1

r2
þ e−2λ

r2

�
1þ 2r

dν
dr

�
¼ κPþ καρ2

�
1þ 3

P2

ρ2

�
; ð10Þ

where ρ and P are the mass density and pressure at the
distance r from the centre of NS.
To recast these equations into a more familiar form of

the so-called Tolman-Oppenheimer-Volkoff (TOV) equa-
tions: first, we define the mass parameter, mðrÞ, within
radius r by

e−2λðrÞ ¼ 1 −
2GmðrÞ

r
; ð11Þ

where mðrÞ is the total mass inside the sphere of radius r.
The other metric function, νðrÞ, is related to the pressure via
the radial component of the divergence of the field,

dν
dr

¼ −
�
ρ

�
1þ P

ρ

��
1þ 2αρ

�
1þ 3

P
ρ

���
−1

×

�
ð1þ 6αPÞ dP

dr
þ 2αρ

dρ
dr

�
; ð12Þ

with ∇μGμν ¼ 0. Using Eqs. (11)–(12), we find that the
modified TOV equations, describing the hydrostatic equi-
librium of relativistic stars, now read

dm
dr

¼ 4πr2ρ

�
1þ αρ

�
1þ 8

P
ρ
þ 3

P2

ρ2

��
; ð13Þ

and

dP
dr

¼ −G
mρ

r2

�
1þ P

ρ

��
1 −

2Gm
r

�
−1

×

�
1þ 4πr3P

m
þ α

4πr3ρ2

m

�
1þ 3

P2

ρ2

��

×

�
1þ 2αρ

�
1þ 3

P
ρ

���
1þ 2αρ

�
c−2s þ 3

P
ρ

��
−1
;

ð14Þ

where c2s ≡ dP=dρ is the sound speed. This set of equa-
tions, Eqs. (13)–(14), is closed by an EoS, PðρÞ, which
prescribes the relation between the pressure PðrÞ and the
density ρðrÞ.

IV. METHOD

We solve the hydrostatic equilibrium equations
(13)–(14) numerically for a specific EoS, P ¼ PðρÞ, by
using a 4th-order Runge-Kutta method [53] with radial
step-size adapted to the pressure and mass scale-height
[54]. For each EoS, we start with a central density ρc, and a
corresponding central pressure Pc, and then integrate
towards the surface where the pressure vanishes. This point
is defined as the radius of the star, R, andM ¼ mðr ¼ RÞ is
the total mass of the star. Then, we change the central
density and find the mass and radius of the star again. We
repeat the process to determine the mass-radius relation of
the star. We then repeat the whole process for different
values of α to isolate its effect on the mass-radius relation.
We performed all these processes for 4 different represen-
tative choices of EoS.2 These choices reflect the uncer-
tainties that exist in the EoS of NSs. The physical basis of
these EoS models, except for SkOp, are discussed
in Ref. [63].

V. RESULTS

A. Preliminary investigations

Before presenting the results of numerical simulations, it
is useful to have an estimate of the EMSG modification to
GR for typical parameters and possible effects it can play
on the structure of NSs. To do so, we define dimensionless
modification to GR in Eq. (13) as

α0 ¼ αρ

�
1þ 8

P
ρ
þ 3

P2

ρ2

�
: ð15Þ

We investigate the contribution of this term to the terms in
brackets in Eq. (13) for a typical NS of mass M ¼ 1.5M⊙
and radius R ¼ 106 cm whose central density is
∼1016 g cm−3 (ρ ∼ 1037 erg cm−3). The maximum value
of P=ρ, attained at the center of a typical NS, is about 0.2
[64] so that the value of the term in parenthesis in Eq. (15)
is about 2.7. We see from this analysis that the absolute
value of α should be less than 10−37 erg−1 cm3, otherwise
α0 is of order unity and creates strong deviations from the

2Our choice of the EoS set is representative in the sense that we
have employed one sample from each of the large families of
EoS: Skyrme models [SkOp; 55–57], relativistic mean field
models [MS2; 58], microscopic calculations [APR; 54,59,60]
and relativistic mean field models with hyperons [GM1 Y4;
60–62] reflecting the classification of cold NS EoS in CompStar
Online Supernovæ Equations of State (https://compose.obspm.fr/
eos/48/).
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predictions of GR. We would expect perturbative modifi-
cations to the structure of the star for values of α0 one or two
orders of magnitude less than this nominal value. For
values of α0 even less than this value, the structure of NS
within the theory is not expected to differ significantly from
what one obtains within GR.
The cumulative mass mðrÞ should increase monotoni-

cally with r as spherical shells of matter are added in the
integration process. This is guaranteed in Newtonian
gravity and GR, where dm=dr ¼ 4πr2ρ i.e., the right-hand
side is positive definite. This would not be satisfied in the
EMSG model of gravity if α0 < −1 (see Eq. (13) and
Eq. (15) together). We note that because we expect the
value of the EoS parameter, P=ρ, to reach its highest value
at the centre of the star and both the EoS parameter and
density decrease as we move away from the centre to the
surface of the star, once this condition is satisfied at the
center of the star then it is guaranteed that it would not be
violated anywhere else within the star. Hence, one should
impose the following condition to alleviate the “negative
mass shell” problem

α > −
1

ρcð1þ 8 Pc
ρc
þ 3 P2

c
ρ2c
Þ

for dm=dr > 0: ð16Þ

This implies, given Pc=ρc ∼ 0.2 and ρc ∼ 1037 erg cm−3 at
the centre of a typical NS, that α≳−0.38×10−37 erg−1cm3;
otherwise the model would contradict with the existence of
relativistic stars.

In addition, in order that the star is stable, the pressure
should decrease monotonically outwards (dP=dr < 0)
with the radial coordinate r. This kind of stability is
again guaranteed in Newtonian gravity where dP=dr ¼
−Gmρ=r2, and also in GR—where all relativistic correction
terms are positive (see Eq. (14) with α ¼ 0). The presence of
α terms in Eq. (14) risks the stable stratification of the star,
particularly, when it is allowed to take negative values. Thus,
to avoid such an issue in EMSG, noticing in Eq. (14) that the
last termwith square brackets reaches negative values before
the other multipliers as α is given larger negative values, we
expect

α > −
1

6Pþ 2ρc−2s
for dP=dr < 0; ð17Þ

which leads to α ≳ −10−38 erg−1 cm3 when we consider
central values of the parameters for a typical NS as done
above. We note here that these values are estimates using
some typical values for NSs, the precise results will be
obtained numerically below.
Modifications to the hydrostatic equilibrium due to

EMSG can reveal some features of the influence of
EMSG on the NSs configurations by considering them
together with the usual terms that appear in GR. We see
from Eqs. (9)–(10) that the additional energy density
and pressure terms, ρEMSG ¼ αðρ2 þ 8ρPþ 3P2Þ and
PEMSG ¼ αðρ2 þ 3P2Þ, respectively, arising from EMSG
yield an EoS parameter,

(a) (b)

FIG. 1. (a) The stiffening/softening of the effective equation of state (EoS), ðPþ PEMSGÞ=ðρþ ρEMSGÞ, due to EMSG with respect to a
given EoS. The arrows are added to indicate that PEMSG=ρEMSG > P=ρ for P=ρ < 1=3 and PEMSG=ρEMSG < P=ρ for P=ρ > 1=3. The
effective stiffness is the same with that of the matter stress at P=ρ ¼ 1=3 ¼ PEMSG=ρEMSG. (b) The effective EoS versus the energy
density of the matter stress. The case α ¼ 0 (GR) gives the EoS of the matter stress itself.
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PEMSG

ρEMSG
¼ 1 −

�
1

8

ρ

P
þ 1þ 3

8

P
ρ

�
−1
; ð18Þ

with a range of PEMSG=ρEMSG ¼ ½1; 1=3� for P=ρ ¼
½0; 1=3� and gives PEMSG=ρEMSG≲1=3 for P=ρ¼ ½1=3;1�.
Therefore, PEMSG=ρEMSG > P=ρ for P=ρ < 1=3, PEMSG=
ρEMSG ¼ P=ρ for P=ρ ¼ 1=3 (viz., a critical point),
and PEMSG=ρEMSG < P=ρ for P=ρ > 1=3. This implies
that, within a NS, these new terms stiffen the effective
EoS parameter Peff=ρeff [where Peff ¼ Pþ PEMSG and
ρeff ¼ ρþ ρEMSG] when P=ρ < 1=3, and soften it when
P=ρ < 1=3 if α > 0, and conversely soften the effective
EoS when P=ρ < 1=3 and stiffen it when P=ρ > 1=3 if
α < 0. We show in Fig. 1(a), and indicate using arrows, the
effective stiffening/softening due to EMSG for the range
P=ρ ¼ ½0; 1� depending on the sign of α. Note that P=ρ ¼
1=3 is the critical point where the effective EoS is the same
as the EoS of the matter stress. It is conceivable that the
effective stiffening may compensate the softening of the
matter stress due to the hyperonization and so may enhance
the maximum mass of NSs with hyperons. The situation in
general, however, is more complicated for an EoS para-
metrization that can reach values higher than 1=3. Given
that the matter stresses tend to become stiffer with depth in
a NS, EMSG for α > 0 would lead to effective stiffening
down to a certain depth (before which P=ρ < 1=3) and
thereafter (P=ρ > 1=3) to effective softening at further
depths (and vice versa for α < 0). Thus, how EMSG would
modify NS configurations overall, and whether it can
address the hyperon puzzle or not, should be investigated
by full numerical solutions of NSs in EMSG for various
realistic EoS parametrizations, which will also allow us to
constrain the free parameter α of EMSG.

B. The mass-radius relations

The compactness and curvature parameters within a NS
are orders of magnitude larger than their values in the solar
system [27]. This allows us to constrain free parameters of
some modified models of gravity by using mass-radius
measurements of NSs (see e.g., [26,37]). Yet one cannot put
precise limits on the free parameters of modified gravity
models—not only because the simultaneous mass and
radius measurements are not yet precise—because the
EoS prevailing at the core of NSs is not well constrained
by nuclear collision experiments. The central density is an
order of magnitude larger than that probed in heavy-ion
collision experiments and the EoS is very sensitive to the
nuclear symmetry energy and its slope at the saturation
density [65]. The two observables, mass and radius, of NSs
are determined by both the model of gravity and EoS
leading to the so called “degeneracy” issue hindering high
precision constraints on models of gravity.
We follow the procedure presented in Sec. IV to obtain

the mass-central density (M-ρc) (see Fig. 2) and

mass-radius (M-R) relations (see Fig. 3) of NSs within
the framework of the EMSG gravity model.
In order to be viable, a mass-radius relation has to pass

through the elliptical curve corresponding to the combined
constraints (at 68% confidence level) obtained by mass-
radius measurements of NSs in low-mass X-ray binaries
(see Fig. 4 in [66] and references therein) as well as attain a
maximummass exceeding two solar-masses since NSs with
such masses are observed to exist [20,21].
Given that the EoS of the NS is not strongly constrained

by terrestrial experiments, we employ four different
representative choices of EoS—APR [54,59,60], SkOp
[55–57], GM1 Y4 [60–62] and MS2 [58]—to isolate the
implications of the gravity model. The results are summa-
rized as follows:

(i) APR: APR is an EoS derived by variational tech-
niques and it assumes the presence of only hadronic
matter (no hyperons). The stiffness of this EoS can
pass above 1=3 when the density exceeds a certain
value, that allows this parametrization to give
2.18 M⊙ for the maximum mass of a NS within
GR. The effective stiffening/softening throughout
the NS due to EMSG, which would change depend-
ing on the matter stress EoS varying as its energy
density changes with the depth within the NS (see
Fig. 1), consequently leads the maximum mass of
the NSs to increase/decrease for negative/positive
values of α. When α ≲ −0.3 × 10−37 erg−1 cm3, no
NS solution can be obtained with APR as explained
in Sec. VA. The maximum mass has a minimum,
1.99 M⊙, at α ≃ 0.8 × 10−37 erg−1 cm3. Greater val-
ues of α increase the maximum mass, but the

FIG. 2. Mass-central density (M-ρc) relations for various EoS’
for a range of α values. The solid lines correspond to stable, the
dashed lines to unstable solutions that do not satisfy the stability
criteria given in Eq. (20).
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solutions then cannot satisfy the M-R constraint
taken from Ref. [66] for α ≳ 1.3 × 10−37 erg−1 cm3.

(ii) SkOp: SkOp is an EoS taking into account the
Skyrme interactions in the presence of only hadronic
matter (no hyperons). The stiffness of this EoS can
pass slightly above 1=3 when the density exceeds a
certain value, that leads this parametrization to give
1.96 M⊙ for the maximum mass of a NS within GR.
The effective stiffening/softening throughout the NS
due to EMSG, which would change depending on
the matter stress’ EoS varying as its energy
density changes with the depth within the NS (see
Fig. 1), consequently leads the maximum mass
of the NSs to increase/decrease for negative/positive
values of α, and leads it to exceed 2 M⊙ when
α≲ −0.06 × 10−37 erg−1 cm3. When α≲ −0.2×
10−37 erg−1 cm3, no NS solution can be obtained
with SkOp, as explained in Sec. VA. The maximum
mass has a minimum, 1.92 M⊙, at α ≃ 0.3×
10−37 erg−1 cm3. The solutions cannot satisfy the
M-R constraint taken from Ref. [66] for
α≳ 1 × 10−37 erg−1 cm3.

(iii) GM1 Y4: GM1 Y4 is an EoS obtained in the
framework of relativistic mean field theory. It allows
for the appearance of hyperons along with the

presence of hadronic matter. The stiffness of this
EoS can never pass above 1=3, that leads this
parametrization to give only 1.79 M⊙ for the maxi-
mum mass of a NS within GR leading to the so
called hyperon puzzle. In contrast to the case with
the other three EoS parametrizations of matter stress
(because in this case the matter stress EoS is always
less than 1=3 throughout the NS) EMSG leads either
only to effective stiffening (in case α > 0) or only to
effective softening (in case α < 0) throughout the
NS (see Fig. 1). Consequently, EMSG leads to the
maximum mass of NSs monotonically increasing
with increasing α values. The maximum mass
exceeds 2 M⊙ at α ≃ 0.68 × 10−37 erg−1 cm3, so
providing a possible resolution to the hyperon puzzle
at the expense of very large NS radii. As such, these
solutions cannot satisfy the M-R constraint given in
Ref. [66] for α ≳ 3 × 10−37 erg−1 cm3. No NS sol-
ution can be obtained with GM1 Y4 for α≲ −0.35×
10−37 erg−1 cm3, as explained in Sec. VA.

(iv) MS2: MS2 is an EoS derived through relativistic
mean-field theory considering the presence of only
hadronic matter (no hyperons). The stiffness of this
EoS can pass above 1=3 when the density exceeds a
certain value, that leads this parametrization to give

FIG. 3. Mass-radius (M-R) relations for various EoS’. Here, α37 equals to α=ð10−37 cm3=ergÞ. The elliptical curve corresponds to the
combined constraints (68%) obtained by mass radius measurements of NSs in low-mass x-ray binaries (see Fig. 4 in [66] and references
therein). The thick solid black line is the highest precisely measured mass, M ≃ 2 M⊙ of a NS [20,21].

CONSTRAINT ON ENERGY-MOMENTUM SQUARED GRAVITY … PHYS. REV. D 97, 124017 (2018)

124017-7



2.78 M⊙ for the maximum mass of a NS within GR.
The effective stiffening/softening throughout the NS
due to EMSG, which would change depending on
the matter stress EoS varying as its energy density
changes with the depth within the NS (see Fig. 1),
consequently leads the maximum mass of the NSs to
increase/decrease for negative/positive values of α.
The maximum mass does not have a minimum for
α≲ 1.3 × 10−37 erg−1 cm3 and decreases with in-
creasing α. Because of the quite large radii it
predicts, this EoS within GR can only marginally
satisfy theM-R constraint given in Ref. [66]. On the
other hand, EMSG, for the negative values of α,
leads to NSs with smaller radii resulting with better
match to theM-R constraints given in Ref. [66]. For
α≲ −0.35 × 10−37 erg−1 cm3, no NS solution can
be obtained with MS2 as explained in Sec. VA.

In summary, our results show that for some values of α,
compatibility of SkOp and MS2 with theM-R observations
gets better compared to GR. APR, within GR, is already
consistent with observations and a constraint on α from the
mass-radius observations and maximum observed mass is

−10−38 cm3=erg≲ α≲ 10−37 cm3=erg ð19Þ

as shown in Fig. 4. The hyperonic EoS GM1 Y4 is
discussed in the following separately.

1. Stability of the solutions

Apart from the local stability of the hydrostatic equilib-
rium of a mass distribution, given by the conditions
dm=dr > 0 and dP=dr < 0, which is required to be
satisfied at every point of a star, we also consider the so
called static stability criterion [67]

dM
dρc

> 0; ð20Þ

to be satisfied by all stellar configurations. This is a
necessary but not sufficient condition for stability. Yet a
solution satisfying this criterion is unstable only if the

solution passes from a critical point (an extremum) on the
MðRÞ curve. The solution branch we consider in this work
coincides with the GR solution at low densities at which the
differences between EMSG and GR vanish. These solu-
tions are then stable up to the point where the above
condition, equivalent to dM=dR < 0, is no longer satisfied.
We present a detailed analysis for the stability of stellar

configurations within this model of gravity in Appendix A.
Our results imply that in order to use the stability criteria we
mentioned in the previous paragraph within the framework
of EMSG the following conditions should be satisfied:

Pþ PEMSG > 0 ⇔ αρ > −
P=ρ

1þ 3P2=ρ2
; ð21Þ

ρþ ρEMSG > 0 ⇔ αρ > −
1

1þ 8P=ρþ 3P2=ρ2
: ð22Þ

We note that these conditions are trivially satisfied for the
case α > 0. The case α < 0 on the other hand should be
investigated carefully: The second condition ρþρEMSG> 0
(which is ensured by dm=dr > 0) guarantees that Pþ
PEMSG > 0 for P=ρ > 1=3 as shown in Fig. 5. Yet, for
P=ρ < 1=3 the stability of the configurations is not
guaranteed. So, we employed the condition PþPEMSG>0
in our code and found that it is satisfied in all of our solutions,
as shown in Fig. 1(b). Also, Pþ PEMSG > 0 is satisfied for
smaller densities at which EMSG reduces to GR [such low
densities are not presented in Fig. 1(b)]. The solid lines in
Figs. 2 and 3 correspond to stable configurations for which
the stability criteria including Eq. (20) are satisfied while the
dashed lines correspond to the unstable solutions.

FIG. 4. The range of α consistent with the observations for each
EoS studied.

FIG. 5. Parameter space allowing for employing the stability
criteria including Eq. (20). The shaded region shows the para-
meter space satisfying the criteria given inEqs. (21) and (22).Here,
the green and the blue lines are boundaries where ρeff ¼ ρþ
ρEMSG and Peff ¼ Pþ PEMSG change sign, respectively.
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C. Maximum mass and the hyperon puzzle

In GR, pressure not only balances the self-gravity of the
star but also acts as a source of gravity. The consequence of
this is the existence of a maximum mass for NSs beyond
which further increase in pressure destabilizes the star
rather than balancing gravity as demonstrated in Fig. 2.
Similar to the situation in GR, NSs in the EMSG gravity
model under consideration attain a maximum mass,
depending on the value of α, beyond which the solutions
are unstable with respect to the criterion given in Eq. (20).
We have studied the dependence of the maximum mass

of NSs on the value of α, as shown in Fig. 6(a). The star
attains its minimum radius at this critical mass. We show
the dependence of the minimum radius on the value of α in
Fig. 6(b). The compactness of the star, η≡ 2GM=R, at
the maximum mass/minimum radius is shown in Fig. 6(c).
We note that the lower bounds of α in Fig. 6 arise from
the condition given in Eq. (16) which guarantees that
dm=dr > 0 within the star.
These results show that GR (α ¼ 0) is not special among

the family of stellar solutions parametrized by α in this
gravity model. We have seen in Fig. 6 that the influence of
EMSG on the maximum mass, the minimum radius and the
maximum compactness is not trivial. This is the case in
particular for APR, SkOp and MS2 parametrizations for
which the EoS parameter can pass above the critical value
1=3 at a certain depth of the NS and therefore the maximum
mass (and the minimum radius) would be determined by
the interplay of the effective stiffening and softening due to

EMSG at different radial coordinate r. However, overall we
see that the NSs achieve higher masses for negative α
values for these EoS’. On the other hand, in case of the
hyperonic EoS GM1 Y4 parametrization, we see that
maximum mass increases simply monotonically with
increasing α values, since this EoS always remains below
the critical EoS parameter value 1=3 and hence EMSG
renders the EoS effectively stiffer/softer for positive/
negative α values all the way down from the surface to
the centre.
We see that the maximum mass within SkOp can exceed

2 M⊙ limit for some negative values of α. In this case the
maximum masses are not extremal values and we note that
there is no analogue of this solution branch in GR. We have
seen that, in case of GM1 Y4 allowing the appearance of
hyperons, the maximum mass increases, with respect to its
value in GR, for the positive values of α and can exceed
2 M⊙ at sufficiently large positive values of α. The
question, thus, naturally arises whether it is possible to
resolve the hyperon puzzlewithin the framework of EMSG.
Our results, however, show that the increase in mass with
increasing α values does not allow for a satisfactory
resolution of the hyperon puzzle as it predicts very large
radii which are incompatible with the observed radii
in Ref. [66].

VI. COSMOLOGICAL IMPLICATIONS

In this section, we outline the cosmological implications
of the EMSG under the constraints Eq. (19) we obtained for

(a) (b) (c)

FIG. 6. (a) Maximum mass of the star at which dM=dρc ¼ 0 versus α. (b) The radius of the maximum mass stellar configuration
versus α. (c) Compactness of the maximum mass stellar configuration versus α. The lower bound of α arises from the condition given in
Eq. (16) demanding that dm=dr > 0 within the star. Dots correspond to values of α beyond which the maximum mass of the NS is no
longer an extremum condition.
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the free parameter of the model α from NSs. We discussed
above that the EMSG modification becomes more influ-
ential with the increasing energy density values so that it is
conceivable that we would see the effect of the EMSG
modification in the early stages of the universe. In the early
universe we can assume that radiation (photons, gravitons,
relativistic massive particles) is dominant, and the spatial
curvature and cosmological constant are negligible.
Hence, from Eq. (7), we obtain the cosmological field
equations for the EoS P ¼ ρ=3 andΛ ¼ 0within the metric
framework of the homogeneous and isotropic spacetime
with Euclidean spacelike sections, ds2 ¼ −dt2 þ aðtÞ2dx⃗2,
where aðtÞ is the cosmic scale factor, as follows:

3H2 ¼ κρr þ 4ακρ2r ¼ κρrð1þ 4αρrÞ;

−2 _H − 3H2 ¼ κ
ρr
3
þ 4

3
ακρ2r ¼ κ

ρr
3
ð1þ 4αρrÞ; ð23Þ

where H ¼ _a=a is the Hubble parameter. A realistic3

solution of this system of equations Eq. (23) reads:

a ¼ a1t
1
2 and ρr ¼

1

8α

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α

κt2

r
− 1

�
; ð24Þ

where a1 is the length of the cosmic scale factor when the
age of the universe is t ¼ 1 s. We showed in Appendix B
that this solution is stable against linear perturbations.
We note that it is the time evolution of the energy density

that is modified with respect to the standard radiation
dominated universe based on GR giving ρr ¼ 3

4κt2. One may
check that, in the limit α → 0 in our solution ρr →

3
4κt2 and

ρr →
3a4

1

4κ a
−4, we recover the standard radiation dominated

universe. And, for non-zero values of α we have the
following two cases: (a) If α > 0, then a → þ∞ and ρr →
0 as t → þ∞ with a → 0 and ρr → þ∞ as t → 0 (“big
bang”). (b) If α < 0, then, similar to the previous case,
a → þ∞ and ρr → 0 as t → þ∞, but, in the early universe,
there is a finite maximum value that energy density can
reach with ρ ¼ ρr;max ¼ − 1

8α when the length of the cosmic

scale factor reaches its minimum as amin ¼ a1ð− 12α
κ Þ

1
4,

and the Hubble parameter reaches its maximum as

Hmax ¼ 1
4

ffiffiffiffiffiffiffiffi
− κ

3α

p
at t ¼ tmin ¼

ffiffiffiffiffiffiffiffi
−12α
κ

q
. We note that

_ρr ¼ − 3
2κ ð1þ 12α

κt2 Þ−
1
2t−3 is always negative in both cases,

implying that the energy density decreases monotonically
as t increases, which in turn guarantees that the modified
field equations Eq. (23) will be indistinguishable from the
standard Friedmann equations of a radiation dominated
universe for sufficiently large t values. Hence, we would
expect the deviation from the standard radiation dominated
universe to be (in)significant (after)before a certain time in
the history of the universe depending on the value of the
parameter α. However, we note that the time evolution of
the Hubble parameter and the value of the deceleration
parameter are the same as that of the standard radiation
dominated universe in GR, namely, HðtÞ ¼ HstdðtÞ ¼ 1

2t

and q ¼ qstd ¼ 1, where q ¼ −1 − _H
H2. On the other hand,

we see from Eq. (23) that the value of the Hubble parameter
H for a given value of the energy density differs from the
one in the standard radiation dominated universe,
Hstd ¼

ffiffiffiffiffiffiffi
κ
3
ρr

p
, as follows:

HðρrÞ
HstdðρrÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αρr

p
: ð25Þ

In addition, the value of the energy density ρr of the
radiation for a given cosmic time t differs from the one in
the standard radiation dominated universe, ρr;std ¼ 3

4κt2, as
follows:

ρr
ρr;std

¼ κ

6α

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α

κt2

r
− 1

�
t2: ð26Þ

We note that the dynamics of the very early universe is
significantly modified; for α > 0, we have HðρrÞ ∼
2

ffiffiffiffiffiffiffi
αρr

p
HstdðρrÞ when 4αρr ≫ 1 and ρr

ρr;std
→ 0 as t → 0, and

forα < 0, we haveHðρrÞ ∼ HstdðρrÞffiffi
2

p whenρr ∼ ρmax and
ρr

ρr;std
→

2 as t → tmin. On the other hand, as expected, we have ρr ∼
ρr;std and HðρrÞ ∼HstdðρrÞ for j4αρrj ≪ 1, i.e., for suffi-
ciently large values of cosmic time t for both cases.
We depict, considering the limits on α given in Eq. (19)

from NSs, in Fig. 7(a) Hubble parameterH versus ρr and in
Fig. 7(b) ρr versus cosmic time t. We immediately see from
both Figs. 7(a)–7(b) that the modification in the dynamics
of the early universe in the EMSG model with respect to
the standard cosmology becomes apparent for the times
t≲ 10−4 s and the energy density values ρr ≳
1034 erg cm−3 (T ≳ 1012 K). In the positive α limit, i.e.,
α ∼ 10−37 cm3=erg, in contrast to the GR, we have H ∼

4καρr and ρr ∼
ffiffiffiffiffiffiffi
3

16κα

q
1
t. For the negative α limit, i.e.,

α ∼ −10−38 cm3=erg, the universe reaches the nonsingular
minimum of the expansion scale factor, amin, before
significant deviations in the values of HðρrÞ and ρrðtÞ
develop with respect to the GR values. Thus, the values of
these parameters in GR and EMSG are of the same order of

3One may see Ref. [15] for a comprehensive analysis of
realistic cosmological solutions in the EMSG. However, for
the completeness of our discussion here, we should mention
the other solution of the system Eq. (23) as a ¼ a1t

1
2 and ρr ¼

− 1
8αð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α

κt2

q
Þ. We note however that, in this case, ρr > 0

only if α > 0 and more importantly limα→0þρr ¼ ∞ rather than
approaching 3

4κt2 that would occur in GR. This implies that from
this solution we are not able to recover GR completely.
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magnitude at t ¼ tmin, although in GR this time is not an
expansion minimum and the universe heads towards a big
bang singularity as t keeps on decreasing to t ¼ 0 from
t ¼ tmin. Considering the lower limit of the constraints
given in Eq. (19), i.e., α ¼ −10−38 cm3 erg−1, there is a
change to the evolution of the very early universe quali-
tatively—namely, there is no initial singularity—because α

can be negative. Hence, with this constraint we find that
ρr;max ≳ 1.25 × 1037 erg cm−3, the time of the beginning
is tmin ≲ 8.02 × 10−6s, and the minimum size of the
universe is amin ≲ 10−4a1. To present a clearer comparison
between the dynamics of the early universe in EMSG
and GR, we also depict in Fig. 7(c) the evolution of ρr

ρr;std

in cosmic time t for the limits on α given in Eq. (19)
from NSs.
We presented, in Table I, the corresponding energy

density- and time scales of some key events in the standard
cosmology and a rough comparison of the relevant time
scales in standard cosmology and cosmology in EMSG4

considering the limits on α given in Eq. (19) from NSs. We
see that time scales of the relevant energy density-scales do
not differ from that of the standard cosmology up to the
energy density-scales relevant to quark-hadron phase tran-
sition. At higher energy density-scales, on the other hand,
we see a considerable deviation in the time scales, namely,
for the positive boundary α ¼ 10−37 cm3=erg given in
Eq. (19), energy density-scales relevant to the electroweak
phase transition is reached when t ∼ 10−16 s while it is t ∼
10−10 s in standard cosmology, and for the negative
boundary α ¼ −10−38 cm3=erg given in Eq. (19) these
energy density-scales would never be reached. We also
showed in the last column that if jαj≲ 10−48 cm3=erg then
there would be no significant deviation from the standard
cosmology up to the energy density scales relevant to the
electroweak phase transition 1046 erg cm−3.
We would like to end this section by a brief remark on

the primordial nucleosynthesis in EMSG under the con-
straints given in Eq. (19) obtained from NSs. The standard
BBN and the well known phases of the universe that

(a)

(b)

(c)

FIG. 7. (a) Hubble parameter H versus radiation energy density
ρr. (b) Radiation energy density ρr versus cosmic time t. (c) The
ratio of the modified radiation energy density with respect to the
radiation energy density in standard GR. For the limit α ¼
−10−38 cm3=erg there is a non-singular beginning at t ∼ 10−4 s.

4For the times after the matter-radiation equality, radiation is
negligible and then cosmological field equations read 3H2 ¼
κρm þ καρ2m þ Λ and −2 _H − 3H2 ¼ καρ2m − Λ, where ρm ¼
ρm;0a−3 since the conservation equation holds for wm ¼ 0 in
EMSG [14,15]. It is noteworthy that these are in the form that
appear in braneworld cosmology [17] for α > 0 and loop
quantum cosmology [16] for α < 0 and that the corresponding
energy density and pressure for the new terms arise from EMSG
for matter source can effectively be written as ps ¼ ρs ¼ αρ2m in
GR, namely, they contribute to the Einstein’s field equations like
a stiff fluid [49] that changes as ρs ¼ ρs;0a−6 due to its EoS
parameter ws ¼ 1. However, here there is a specific relation
ρs;0 ¼ αρ2m;0, which implies that ρs > 0 for α > 0 and ρs < 0 for
α < 0. One may see Ref. [68] for a comprehensive investigation
of the inclusion of a stiff fluid (for either ρs > 0 or ρs < 0) into
ΛCDM model and the exact explicit solutions, which can be
straightforwardly adapted to our model by keeping in mind that
ρs;0 ¼ αρ2m;0. Accordingly, using ρs;0 ¼ αρ2m;0 with ρm;0 ∼
10−9 erg cm−3 for the present universe, and the constraints on
α given in Eq. (19), we find that −10−47 ≲ ρs;0=ρm;0 ¼
αρm;0 ≲ 10−46. Hence, our model for the times after matter-
radiation equality would obviously be indistinguishable from
ΛCDM model and for this reason we do not elaborate on the late
universe for the sake of brevity.
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precede BBN such as γ, ν, e, ē, n andp thermal equilibrium;
ν decoupling; eē annihilation; primordial nucleosynthesis
take place in the period of time from ∼10−2s to ∼102 s and
during which the universe is radiation dominated and
energy density scale drops from ρr ∼ 1022 erg cm−3 to
ρr ∼ 1029 erg cm−3. Accordingly, during that period the
modification term in the Hubble parameter, Eq. (23),
due to EMSG changes as from −10−15 ≲ 4αρr ≲ 10−14 to
−10−8≲4αρr≲10−7. These imply almost no deviation from
the standard cosmology Hubble expansion rate at the time-
and energy density-scales relevant to primordial nucleosyn-
thesis, namely, we have −10−15≲H2ðρrÞ=H2

stdðρrÞ−1≲
10−14 and −10−8 ≲H2ðρrÞ=H2

stdðρrÞ−1≲10−7, respec-
tively. Hence, under the constraints given in Eq. (19),
because energy density, time-energy density relation and
Hubble expansion rate remain unaltered in EMSG, it is
conceivable that BBN processes would remain the same as
in the standard BBN. However, our conclusion here is
subject to the thorough analysis of primordial nucleosyn-
thesis in EMSG and will be presented elsewhere.

VII. CONCLUDING REMARKS

In this study, we have tested energy-momentum squared
gravity (EMSG) model in the strong gravity field regime
using neutron stars (NSs). We have discussed further
features of the EMSG model on theoretical and observa-
tional grounds, identifying the energy density scales at
which EMSG differs significantly from standard GR. We
also showed that the modifications to GR in EMSG are
effective at relatively high energy densities and would lead
to new effects in the early universe or in compact
astrophysical objects. Therefore black holes (BH’s) and
NSs in EMSG can in principal have features that make
them observationally distinguishable from their standard
GR counterparts. As stated above, considering the param-
eter space for quantifying the strength of a gravitational
field, the strongest gravitational fields around astrophysical
systems can be found near NSs and BHs in x-ray binaries.
In Ref. [13], the authors examined charged BH (Kerr-
Newman) solutions within the framework of EMSG since it

is obvious that if the matter energy density is zero, i.e., in
the vacuum, EMSG is equivalent to GR hence the forms of
Kerr, Schwarzschild and de Sitter solutions in the frame-
work of EMSG will be exactly the same as in GR.
Therefore, since observed astronomical objects do not
possess an appreciable net electric charge, astrophysical
BH’s are neutral, NSs remain the prime site for testing
the deviations of EMSG from GR in the strong field
regime. New ways of using data on NS properties to test
modified gravity theories have recently been proposed
(see e.g., Ref. [46] for a recent review) that exploit
correlations between different observables identified across
NS populations.
We obtained the hydrostatic equilibrium equations in

spherical symmetry from the field equations within the
framework of EMSG. We discussed the local stability of
the hydrostatic equilibrium of a mass distribution as well as
the stability of stellar configurations with respect to small
perturbations and place on α, the free parameter that
determines the coupling strength of the EMSG modifica-
tion, some preliminary theoretical estimations and con-
straints, which then we employed for sorting out the stable
solutions in our numerical calculations. We solved the
hydrostatic equilibrium equations numerically for four
realistic equations of state (EoSs) that describe the dense
matter inside NSs and obtained the mass-radius relations
for each of them depending on the value of α. We have also
constrained the value of α by comparing the computed
mass-radius relations with the recent observational mea-
surements of those for actual NSs. We have determined the
maximum mass of NS for each EoS depending on the value
of α. We have discussed the nontrivial influence of EMSG
on NS configurations due to its effective stiffening and
softening of the EoS within the NS, depending on α. We
have shown the presence of a critical value of the EoS
parameter, P=ρ ¼ 1=3, around which an EoS is effectively
stiffened and softened. Any EoS experiencing this critical
value would lead to the presence of domains within a NS
where the EoS is effectively stiffened and softened. We
presented some insights into how the interplay of these
domains would lead to the complicated behaviour of the
maximum mass depending on the value of α.

TABLE I. The time scales of some important energy-scales are calculated. We consider the corresponding energy- and time-scales of
some key events in the standard cosmology and compare with our calculated values.

Event
Standard

Energy-scale
Standard

En.density-scale
Standard
Time scale

α ¼ 10−37

cm3=erg
α ¼ −10−38
cm3=erg

jαj ≲ 10−48

cm3=erg

Matter-radiation equality 104 K 103 erg cm−3 104 yr 104 yr 104 yr 104 yr
Primordial nucleosynthesis 109 K 1022 erg cm−3 102 s 102 s 102 s 102 s
ν decoupling, eē annihilation 1010 K 1026 erg cm−3 1 s 1 s 1 s 1 s
γ, ν, e, ē, n and p thermal
equilibrium

1011 K 1030 erg cm−3 10−2 s 10−2 s 10−2 s 10−2 s

Quark-hadron phase transition 1012 K 1034 erg cm−3 10−4 s 10−4 s 10−4 s 10−4 s
Electroweak phase transition 1015 K 1046 erg cm−3 10−10 s 10−16 s N=A 10−10 s
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We have seen that the hyperonic EoS named GM1 Y4,
which is ruled out withinGR since it predictsMmax < 2 M⊙,
can lead to maximum masses increasing with α, finally
exceeding 2 M⊙ for α ≃ 0.68 × 10−37 cm3 erg−1. Yet we
concluded that this is not a satisfactory resolution of this so
called “hyperon puzzle” as for such values of α the model
predicts very large radii ∼15 km—somewhat greater than
the observational bounds. On the other hand, we have seen
that for some values of α, compatibility of SkOp and MS2
with the mass-radius observations were improved compared
toGR.Wehave concluded that theAPR,SkOp, andMS2EoS
parametrizations, which are already compatible with obser-
vations within GR, would still be compatible with observa-
tions for the range −10−38 cm3=erg≲ α ≲ 10−37 cm3=erg
thus placing an order-of-magnitude constraint on the value of
α.5 The degeneracies between the EoS and gravity do not
allow for a precise constraint, yet this is still much tighter than
any solar system test could provide. Finally, in the cosmo-
logical context, we also showed that, under these constraints,
there would be no significant deviation from the standard
cosmology up to the energy density and time scales,
∼1034 erg cm−3 and t ≃ 10−4 s, led us to conclude that
EMSG leaves the most important features of standard
cosmology such as the standard big bang nucleosynthesis
unaltered, but yet it may still have far reaching consequences
for the dynamics of the very early universe relevant to issues
like inflation, early domination by spatial anisotropy, cos-
mological bounce, and the initial singularity.
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APPENDIX A: STABILITY OF RELATIVISTIC
FLUID CONFIGURATIONS IN EMSG

Wepresent an analysis of the stability of relativistic stars in
equilibrium inEMSGwith respect to small perturbations.We
follow the procedure given in [69,70] for the stability of

spherical fluid configurations in GR. Accordingly, we apply
timedependent radial perturbations to the static solutions and
examine the frequency of the perturbations.
In the case of the radial perturbations, the metric is

written as

ds2 ¼ −e2νðrÞð1þ hðr; tÞÞdt2 þ e2λðrÞð1þ fðr; tÞÞdr2
þ r2dθ2 þ r2sin2θdϕ2 ðA1Þ

and the components of four velocity are given as

u0 ¼ −eνðrÞ
�
1þ 1

2
hðr; tÞ

�
;

u1 ¼ e2λðrÞ−νðrÞvðr; tÞ and u3 ¼ u4 ¼ 0; ðA2Þ

where v, f and h are perturbations. The density and the
pressure are replaced by

ϱðr; tÞ ¼ ρðrÞ þ δρðr; tÞ; ðA3Þ

Pðr; tÞ ¼ PðrÞ þ δPðr; tÞ; ðA4Þ

where ρ and P denote solutions of the hydrostatic equations
given in Eqs. (13)–(14), δρ and δP denote perturbations of
solutions of the hydrostatic equations. Accordingly, the
field equations Eq. (7) read

e−2λ

r2

�
−1þ e2λ þ 2r

dλ
dr

�
¼ κρeff ; ðA5Þ

1

r2
∂
∂r ðrfe

−2λÞ ¼ κδρeff ; ðA6Þ

e−2λ

r2

�
1 − e2λ þ 2r

dν
dr

�
¼ κPeff ; ðA7Þ

e−2λ

r
∂h
∂r − f

e−2λ

r2

�
1þ 2r

dν
dr

�
¼ κδPeff ; ðA8Þ

where only linear terms of perturbations are kept and the
effective density and pressure are defined as

ρeffðrÞ ¼ ρðrÞ þ α½ρðrÞ2 þ 8ρðrÞPðrÞ þ 3PðrÞ2�; ðA9Þ

δρeffðr; tÞ ¼ δρðr; tÞ þ α½2ρðrÞδρðr; tÞ
þ 8δρðr; tÞPðrÞ þ 8ρðrÞδPðr; tÞ
þ 6PðrÞδPðr; tÞ�; ðA10Þ

PeffðrÞ ¼ PðrÞ þ αρðrÞ2 þ 3αPðrÞ2; ðA11Þ

5We have allowed the free parameter α of EMSG to take both
positive and negative values. However, in a work under progress
it is found that the rate of change of the entropy per baryon with
respect to time is negative for α < 0 in EMSG, which suggests a
thermodynamic problem for that sign. Similarly, the effective
EoS stiffer than Zeldovich fluid (P=ρ ¼ 1) that can be achieved
when α is negative in the present paper might be signalling some
stability issues for α < 0. If it turns out in future works that α < 0
indeed leads to some unrealistic physical results, then the range of
values allowed for α we obtain in this work would be further
restricted as 0 ≤ α ≲ 10−37 cm3=erg.
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δPeffðr; tÞ ¼ δPðr; tÞ þ 2αρðrÞδρðr; tÞ þ 6αPðrÞδPðr; tÞ:
ðA12Þ

The “t-r” component of the field equations reads

∂f
∂t ¼ −κre2λðρeff þ PeffÞv; ðA13Þ

and ∇μGμ1 ¼ 0 implies

0 ¼ ðρeff þ PeffÞ
dν
dr

þ dPeff

dr
; ðA14Þ

0 ¼ ðδρeff þ δPeffÞ
dν
dr

þ 1

2
ðρeff þ PeffÞ

∂h
∂r þ

∂δPeff

∂r
þ e2λ−2νðρeff þ PeffÞ

∂v
∂t : ðA15Þ

Using the Lagrangian displacement ξ introduced as

v ¼ ∂ξ
∂t ; ðA16Þ

in the integration of Eq. (A13) we obtain

f ¼ −κre2λðρeff þ PeffÞξ: ðA17Þ

Using this in Eq. (A6) and Eq. (A8) we reach

δρeff ¼ −
1

r2
∂
∂r ½r

2ðρeff þ PeffÞξ�; ðA18Þ

e−2λ

r
∂h
∂r ¼ −κðρeff þ PeffÞ

�
1

r
þ 2

dν
dr

�
ξþ κδPeff ; ðA19Þ

respectively. Addition of the leading terms of the “t-t”
[Eq. (A5)] and “r-r” [Eq. (A7)] components of the field
equations side by side gives

2
e−2λ

r
d
dr

ðλþ νÞ ¼ κðρeff þ PeffÞ: ðA20Þ

Using this, Eq. (A19) can be written as

1

2
ðρeff þ PeffÞ

∂h
∂r

¼
�
δPeff − ðρeff þ PeffÞ

�
1

r
þ 2

dν
dr

�
ξ

�
d
dr

ðλþ νÞ:

ðA21Þ

Introducing the time dependence of all perturbations as
exp ðiσtÞ and using the relations obtained above, Eq. (A15)
can now be written as

0 ¼ −
1

r2
d
dr

½r2ðρeff þ PeffÞξ�
dν
dr

þ δPeff
d
dr

ðλþ 2νÞ

− ðρeff þ PeffÞ
�
1

r
þ 2

dν
dr

�
ξ
d
dr

ðλþ νÞ þ dδPeff

dr

− σ2e2λ−2νðρeff þ PeffÞξ: ðA22Þ

Next, because baryon number is N ≡N ðϱeff ;PeffÞ, the
conservation of baryon number, ∇kðN ukÞ ¼ 0, using
N ¼ NðrÞ þ δNðr; tÞ, leads to

δPeff ¼ −ξ
dPeff

dr
− γeffPeff

eν

r2
∂
∂r ðr

2ξe−νÞ; ðA23Þ

where

γeff ¼
1

Peff∂N =∂Peff

�
N − ðϱeff þ PeffÞ

∂N
∂ϱeff

�
ðA24Þ

is the effective ratio of the specific heats.
Finally, using Eq. (A23) in Eq. (A22) and employing

Eqs. (A14), (A5) and (A7), we reach the following Sturm-
Liouville equation [71], the eigenvalue equation governing
radial oscillations of a spherical star in our model,

−σ2ωðrÞr2e−νξ ¼ qðrÞr2e−νξþ d
dr

�
kðrÞ d

dr
ðr2e−νξÞ

�
;

ðA25Þ

where

ωðrÞ ¼ 1

r2
e3λþνðρeff þ PeffÞ; kðrÞ ¼ eλþ3ν γeffPeff

r2

ðA26Þ

and

qðrÞ ¼ −
eλþ3ν

r2

�
4

r
dPeff

dr
þ κe2λPeffðPeff þ ρeffÞ

−
1

Peff þ ρeff

�
dPeff

dr

�
2
�
: ðA27Þ

We note that the Sturm-Liouville equation in EMSG is
exactly the same with the one in GR, except that the
quantities ρ and P in GR are replaced by the effective
quantities ρeff ¼ ρeffðαÞ and Peff ¼ PeffðαÞ with ρ ¼
ρeffðα ¼ 0Þ and P ¼ Peffðα ¼ 0Þ. Provided that k > 0
and ω > 0, the eigenvalues of the Sturm-Liouville equation
are all real and eigenvalues form an infinite discrete
sequence σ20 < σ21 < σ22 < … (subscripts denote node num-
bers). The conditions k > 0 and ω > 0 are guaranteed to be
satisfied in GR (the case α ¼ 0 in EMSG) since ρ > 0 and
P > 0 within stars by definition. In EMSG, on the other
hand, we see from Eq. (A26) that k > 0 and ω > 0 require
γeffPeff > 0 and ρeff þ Peff > 0, respectively, and hence are
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subject to the free parameter α (for instance, sufficiently
large negative values of αmay lead to negative Peff values).
We note that the condition dm=dr > 0 we employ in this
work/numerical solutions already ensures ρeff > 0 from
Eq. (13). We demand Peff > 0, which in turn together with
ρeff > 0 constrain γeff as P > 0 and ρ > 0 constrain γ in
GR. Thus, demanding Peff > 0 in our work/numerical
solutions in addition to the condition dm=dr > 0 ensuring
ρeff > 0 we can look for stable neutron star solutions by
considering static stability criterion given in Eq. (20)
(which is necessary but not sufficient) as well as the
sufficient criterion which enables one to determine
the precise number of unstable normal radial modes
using the MðRÞ curve as it is done in GR case ([see
Sec. 6. 5 of Ref. [72], for further discussion]. Accordingly,
as further discussed in Sec. V B 1, we demand our
numerical solutions to satisfy ρeff¼ρþρEMSG>0 and
Peff¼PþPEMSG>0, thereby we are able to decide whether
the solutions of NSs in equilibrium presented in this paper
are stable or not with respect to any small perturbations.
Note that the stability of a nonrotating star, as it is the case
in our work, with respect to small radial perturbations
implies the stability with respect to any small perturbations
of the star (see Ref. [72] for details).

APPENDIX B: STABILITY OF THE SOLUTION
FOR THE RADIATION-DOMINATED UNIVERSE

The cosmological field equations for the radiation-
dominated universe given in Eq. (23) satisfy the continuity
equation

_ρr þ 4H
1þ 4αρr
1þ 8αρr

ρr ¼ 0; ðB1Þ

and the following background solution given in Eq. (24)

HðtÞ ¼ 1

2t
and ρrðtÞ ¼

1

8α

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α

κt2

r
− 1

�
; ðB2Þ

where a1 is the length of the cosmic scale factor when the
age of the universe is t ¼ 1 s. We check the stability of this

solution considering linear perturbations δðtÞ and δrðtÞ
about the backgrounds HðtÞ and ρrðtÞ as

HðtÞ¼HðtÞ½1þδðtÞ� and ϱrðtÞ¼ ρrðtÞ½1þδrðtÞ�; ðB3Þ

respectively. The perturbed modified Friedmann and con-
tinuity equations are then given by

6HðtÞδðtÞ ¼ κδrðtÞρrðtÞ½1þ 8αρrðtÞ�; ðB4Þ

_δrðtÞ þ 4HðtÞ 1þ 4αρrðtÞ
1þ 8αρrðtÞ

δðtÞ ¼ 0: ðB5Þ

Substituting δðtÞ from Eq. (B4) into Eq. (B5), and then
solving the resultant equation we find

δrðtÞ ¼ c1 exp
Z

−
2

3

κρrðtÞ½1þ 4αρrðtÞ�
HðtÞ dt: ðB6Þ

Next, using this in Eq. (B5), we find

δðtÞ ¼ κρrðtÞ½1þ 8αρrðtÞ�
6HðtÞ2

× c1 exp
Z

−
2

3

κρrðtÞ½1þ 4αρrðtÞ�
HðtÞ dt: ðB7Þ

Finally, using the background solutions Eq. (B2) [i.e.,
Eq. (24) in the main text] with these, we find the following
solution for the linear perturbations:

δðtÞ ¼ c1
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α

κt2

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α

κt2

q and δrðtÞ ¼
c1
t
: ðB8Þ

We see that our solution is stable against linear perturba-
tions since both δðtÞ and δrðtÞ decrease to zero monoton-
ically as the cosmic time t grows for all cases that we are
interested in, i.e., for α > 0, α ¼ 0 (corresponding to GR)
and α < 0 (with t ≥ tmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−12α=κ

p
).
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