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We apply the Gauss-Bonnet theorem to the study of light rays in a plasma medium in a static and
spherically symmetric gravitational field and also to the study of timelike geodesics followed for test
massive particles in a spacetime with the same symmetries. The possibility of using the theorem follows
from a correspondence between timelike curves followed by light rays in a plasma medium and spatial
geodesics in an associated Riemannian optical metric. A similar correspondence follows for massive
particles. For some examples and applications, we compute the deflection angle in weak gravitational fields
for different plasma density profiles and gravitational fields.
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I. INTRODUCTION

The study of gravitational lenses has had and continues
to have a tremendous impact on our understanding of the
components of the Universe and the distribution of matter.
From the observational point of view, we can cite many
examples in which through the study of the curvature of
light the content of matter of astrophysical objects can be
determined (see, for example, Refs. [1–3] and references
therein).
On the other hand, studies of gravitational lens systems are

also important in the characterization of the cosmic micro-
wave background radiation and related cosmological aspects
[4–16]. At the same time, from the astrophysical point of
view, its study is also necessary because it allows us to predict
the shape (or shadow) of a black hole or the gravitational
lensing properties of more exotic compact bodies.
In general, the expressions for the deflection angle or the

associated optical scalars are written in terms of derivatives
of the different components of the metrics. Notwithstanding
that, in Ref. [17], we presented an expression for the
deflection angle in terms of the curvature scalars, which
was generalized to the cosmological context in Ref. [18] and
recently by us to second order in perturbations of a flat
metric [19]. Intriguingly, this is not the only known way to
write the deflection angle in terms of curvature quantities.
Recently, Gibbons and Werner introduced an elegant new
way of studying gravitational lensing using the Gauss-
Bonnet theorem and an associated optical metric [20]. In
particular, they obtained a relation between the deflection
angle, the Gaussian curvature of the associated optical
metric, and the topology of the manifold.
Since then, many and varied applications have emerged.

In particular, in the last years, this new technique has been

used to compute gravitational lensing quantities in a variety
of spacetimes in vacuum, electrovacuum or with different
scalar fields or effective fluids. In Refs. [21–34], we find
applications of the method to the study of a variety of
different spacetimes with spherical symmetry, and in
Ref. [35], the method was modified by Werner in order
to allow the study of gravitational lensing in rotating and
stationary spacetimes. This new version was applied to a
variety of metrics in Refs. [36–41].
On the other hand, one expects that compact astrophysi-

cal objects and even galaxies or clusters of galaxies will be
immersed in a plasma fluid. In general, in the visible
spectrum, the modification of the gravitational lensing
quantities due to the presence of the plasma is negligible
because they are only significant in the radio-wave regime.
Nevertheless, there exists in actuality some radio-telescope
projects that work in the frequency bandwidth in which
these effects could be observable [42–46]. Motivated by
that, a proliferation of works dealing with the influence of
plasma media on the trajectory of light rays in a external
gravitational field associated to compact bodies have
resurged [47–65].
For all these reasons, it would be desirable to find new

ways to study this problem in situations in which there exists
a plasma environment. In this paper, inspired in the powerful
Gibbons-Werner method, we use an appropriately chosen
two-dimensional optical metric to extend the use of the
Gauss-Bonnet theorem to spherically symmetric spacetimes
in the presence of a cold nonmagnetized plasma. Even when
we do not discuss nondispersivemedia, a similar application
of the optical metric to that case is possible.
Moreover, there exists a correspondence between the

dynamics of light rays in an homogeneous plasma and
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massive particles following the geodesic at the same
spacetime. This allows us to use the Gibbons-Werner
method also in these situations. Recently, Gibbons intro-
duced a Jacobi metric, which is basically the same we
discuss here [66]. For an example, we will use this
correspondence to compute the bending angle for massive
particles in a Schwarzschild solution.
This work is organized as follows. In Sec. II, we briefly

review the dynamic of light rays in a cold nonmagnetized
plasma medium and in particular how to use the optical
metric to obtain information about the orbits of light rays
through the use of the Gauss-Bonnet theorem. In Sec. III,
we present a collection of known examples but also new
applications for several compact objects surrounded by an
homogeneous plasma. In Sec. IV, we show how this
method can also be applied to the discussion of nonuniform
plasma, and in particular, we show, for weak gravitational
fields and small deflection angles, the equivalence between
the deflection angle obtained in the framework of the
Gibbons-Werner method and that which is obtained from
explicit solutions of the Hamilton equations as shown by
Ref. [48]. In Sec. V, we discuss how to use this method to
compute deflection angles of massive particles in spheri-
cally symmetric spacetimes. We finalize with general
comments and the prospect of future research. An
Appendix with a couple of extra examples of the use of
the method in a nonuniform plasma medium is also
included.

II. OPTICAL METRIC AND THE
GAUSS-BONNET THEOREM

A. Optical metric associated to a plasma medium
in an external gravitational field

Let us consider a static spacetime ðM; gαβÞ filled with a
cold nonmagnetized plasma described by the refractive
index n [52,53],

n2ðx;ωðxÞÞ ¼ 1 −
ω2
eðxÞ

ω2ðxÞ ; ð1Þ

where ωðxÞ is the photon frequency measured by a static
observer while ωeðxÞ is the electron plasma frequency,

ω2
eðxÞ ¼

4πe2

me
NðxÞ ¼ KeNðxÞ; ð2Þ

where e and me are the charge of the electron and its mass,
respectively, and NðxÞ is the number density of electrons in
the plasma. Note that only light rays with ωðxÞ > ωeðxÞ
propagate through the plasma. On the other hand, if
ωðxÞ < ωeðxÞ, the refractive index becomes imaginary,
and the waves with such frequencies will not propagate
through the plasma and will be evanescent. The reason that
the plasma frequency sets the physical scale can be

understood as originating in the relation between the
conduction current and the displacement current. In the first
place, the conduction current always opposes to the
displacement current. On the other hand, if the frequency
of the electromagnetic wave is bigger than the plasma
frequency, then the conducting current is smaller than the
displacement current, and the electromagnetic propagation
occurs; however, for a wave with the plasma frequency, the
current density exactly cancels the displacement current,
and for smaller frequencies, the conducting current
becomes bigger than the displacement current, and the
total effective current (conducting plus displacement) has
the wrong sign to allow propagation. In the following, we
will not consider this kind of situation; however, we refer to
Ref. [67] for a study of propagation of electromagnetic
waves in nondispersive media with a complex refractive
index in curved spacetimes using an effective metric that
includes absorption.
Note that, due to (1), photons in a plasma deviate from

null geodesics of the underlying spacetime in a frequency-
dependent way. Moreover, even in the presence of an
homogeneous plasma, namely, with ωeðxÞ ¼ constant, if
the underlying spacetime produces a nontrivial gravita-
tional redshift, that is, the photon frequency ω changes
along the trajectory, it produces a nontrivial dispersion
through (1) and therefore allows again a deviation of the
light rays from the null geodesics trajectories. Of course,
this last effect is not present in a flat spacetime.
In this context, light propagation is usually described

through the Hamiltonian [52] (see also Ref. [68] for a
complete and detailed treatment),

Hðx; pÞ ¼ 1

2
ðgαβðxÞpαpβ þ ω2

eðxÞÞ; ð3Þ

where light rays are solutions of Hamilton’s equation

lα ≔
dxα

ds̃
¼ ∂H

∂pα
;

dpα

ds̃
¼ −

∂H
∂xα ; ð4Þ

with the constraint

Hðx; pÞ ¼ 0; ð5Þ

and s̃ is an curve parameter along the light curves.
From (5), we can see that, in general, light rays, instead

of following timelike or null geodesics with respect to gαβ,
describe timelike curves with the exception of a homo-
geneous plasma medium in which light rays follow timelike
geodesics of gαβ. It can be heuristically understood by
noting that, even in a flat spacetime filled with a homo-
geneous plasma, it follows from (1), and n ¼ cjkj=ω, with
jkj the norm of the wave number vector, that the dispersion
relation reads ω2 ¼ c2jkj2 þ ω2

e, and therefore a photon
behaves as if it has an effective inertial mass meff ¼ ℏωe.
On the other hand, in a gravitational field, and using the
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equivalence principle, this effective mass agrees with the
gravitational mass, allowing the photon to follow timelike
geodesics. These heuristic considerations were made math-
ematically precise by Kulsrud and Loeb, who studied
electromagnetic wave packets, in Ref. [69]. See also
Ref. [70], in which more general dispersion relations were
studied for a wider variety of plasma situations in a
covariant way.
In the general case, even when the fact that they do not

follow geodesics does not represent any restriction for the
study of light propagation in a plasma medium, it is usually
convenient to make a metric transformation under which
light rays propagate as timelike geodesics (see, for exam-
ple, Refs. [54,71] for the use of a conformal metric
transformation for which light rays behave as timelike
geodesics).
Note also that, defining the tensor

g̃αβ ¼ gαβ þ ð1 − n2ðx;ωðxÞÞuαuβ; ð6Þ

the Hamiltonian (3) takes the form

Hðx; pÞ ¼ 1

2
g̃αβðx;ωðxÞÞpαpβ; ð7Þ

with inverse g̃αγ (defined as g̃αβg̃αγ ¼ δβγ ):

g̃αβ ¼ gαβ þ
�
1 −

1

n2ðx;ωðxÞÞ
�
uαuβ: ð8Þ

In all these expressions, we use the photon frequency
measured by a static observer, which is at rest with respect
to the plasma medium, with normalized 4-velocity uα with
respect to gαβ given by

ωðxÞ ¼ −pαuα ð9Þ

and the expression (1) for the refractive index.
As explained in Ref. [72], the tensor g̃αβ is not in general

a metric tensor, due to its dependence on pα. However, for
nondispersive media, it is a indeed a metric, and the light
rays follow null geodesics with respect to it (see Ref. [72]
for more details). In such situations, the tensor (8) is known
as the Gordon metric [73].
On the other hand, for the case of static spacetimes, even

considering dispersive media, one can use a Fermat-like
principle [72], in which the spatial projections of the light
rays on the slices t ¼ constant that solve Hamilton’s
equations (4) are also spacelike geodesics of the following
Riemannian optical metric:

goptij ¼ −
n2

g00
gij: ð10Þ

From now on, we will restrict our attention to static and
spherically symmetric metrics surrounded by a cold

nonmagnetized plasma with the same symmetries; that
is, the physical spacetime is assumed to be described by a
metric of the form

gαβdxαdxβ ¼−AðrÞdt2þBðrÞdr2þCðrÞðdϑ2þ sin2ϑdφ2Þ
ð11Þ

and with a radial dependence of the plasma frequency,
ωe ¼ ωeðrÞ. Of course, we could consider a suitable
coordinate system in which, instead of the three metric
functions A, B, and C, we write the metric in terms of only
two new functions; however, we will retain the form (11)
because we would like to write general expressions that
remain valid for a large family of coordinate systems. Note
that we are neglecting the self-gravitation of the plasma. We
also assume asymptotic flatness and that the plasma
medium is static with respect to observers following
integral curves of the timelike Killing vector field
ξα ¼ ð ∂∂tÞα. Consequently, we can take uα as

uα ¼ δαtffiffiffiffiffiffiffiffiffi
AðrÞp : ð12Þ

Because of the gravitational redshift, the frequency of a
photon at a given radial position r is given by

ωðrÞ ¼ ω∞ffiffiffiffiffiffiffiffiffi
AðrÞp ; ð13Þ

where ω∞ is the photon frequency measured by an observer
at infinity. This implies that the refractive index n only has a
radial dependence. Without a loss of generality, we will
also take ϑ ¼ π=2. As we are interested in the application
of the Gauss-Bonnet theorem to the determination of the
bending angle, following Gibbons andWerner [20], we will
make use of the associated two-dimensional Riemannian
manifold ðMopt; goptij Þ with optical metric (10) (restricted to
the plane ϑ ¼ π=2),

dσ2 ¼ goptij dx
idxj ¼ n2ðrÞ

AðrÞ ðBðrÞdr
2 þ CðrÞdφ2Þ: ð14Þ

This metric is conformally related to the induced metric on
the spatial section t ¼ constant, ϑ ¼ π=2, of the physical
spacetime, and therefore it preserves the angles formed
between two curves at a given point.

B. Gauss-Bonnet theorem

Let us recall the Gauss-Bonnet theorem for a two-
dimensional Riemannian manifold. The Gauss-Bonnet
theorem connects the intrinsic geometry of a surface, given
by the integral of the Gaussian curvature, with its topology
described by the Euler characteristic number, which is a
topological invariant.
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Precisely, this theorem can be enunciated as follows [74].
Let D ⊂ S be a regular domain of an oriented two-
dimensional surface S with Riemannian metric ĝij, the
boundary of which is formed by a closed, simple, piece-
wise, regular, and positive oriented curve ∂D∶ R ⊃ I → D.
Then,

Z Z
D
KdSþ

Z
∂D

κgdσ þ
X
i

ϵi ¼ 2πχðDÞ; σ ∈ I; ð15Þ

where χðDÞ andK are the Euler characteristic and Gaussian
curvature ofD, respectively; κg is the geodesic curvature of
∂D; and ϵi is the exterior angle defined in the ith vertex, in
the positive sense (see Fig. 1).
Given a smooth curve γ with tangent vector _γ such that

ĝð_γ; _γÞ ¼ 1 ð16Þ

and acceleration vector ̈γ, the geodesic curvature κg of γ can
be computed as

κg ¼ ĝð∇_γ _γ; ̈γÞ; ð17Þ

which is equal to zero if and only if γ is geodesic because _γ
and γ̈ are orthogonal.
Following the work of Gibbons and Werner [20], we will

apply this theorem to the opticalmetric goptij of (14) in order to
calculate the deflection angle in a plasma medium. For this,
we start with the simply connected domain DR as shown in
Fig. 2 with a boundary conformed by a spatial geodesic γp
(which codifies the information of the light ray traveling
from a source toward the observer, with an impact param-
eter b) and a curveCR, defined by rðφÞ ¼ R ¼ constant. By
taking the limit of the radius R of this curve going to infinity,
and using the fact that in this limit the sum of the exterior
angles must be equal to π and that in the situation under
consideration χðDRÞ ¼ 1, the resulting deflection angle α
can be obtained from the following expression [see Fig. 2 for
more details]:

lim
R→∞

Z
πþα

0

�
κg

dσ
dφ

�����
CR

dφ ¼ π − lim
R→∞

Z Z
DR

KdS: ð18Þ

In terms of the curvature tensor associated with the
optical metric, the Gaussian curvature K can be computed
from

K ¼ RrφrφðgoptÞ
detðgoptÞ : ð19Þ

Note that, in general, it follows from (14) that

dσ
dφ

����
CR

¼ nðRÞ
�
CðRÞ
AðRÞ

�
1=2

: ð20Þ

III. EXAMPLES AND APPLICATIONS TO
HOMOGENEOUS PLASMA MEDIUM

To verify this approach for calculating the bending angle
in the presence of a plasma medium, we will consider some
illustrative examples and applications.
Let us consider a gravitational lens surrounded by a

nongravitating homogeneous plasma of which the electron
number density reads

NðrÞ ¼ N0 ¼ constant: ð21Þ

Note that in this case, without the presence of a nonuniform
gravitational field, the refractive index should be constant

FIG. 1. A regionDwith boundary ∂D ¼ ∪i∂Di. In each vertex,
we have defined the exterior angle ϵi in the positive sense.

FIG. 2. ∂DR ¼ CR ∪ γp. In this diagram, the point S represent
the source, and the observer is identified with O. γp is identified
with a light ray emitted by the source and that reaches the
observer at O. b is identified with the impact parameter. The gray
region represents the presence of the plasma, and L represents the
source of the gravitational lens. CR is a curve defined by
rðφÞ ¼ R ¼ constant. Note that all this region belongs to the
two-dimensional optical manifold ðMopt; goptij Þ, and therefore the
true information of the presence of the plasma medium is already
codified in goptij .
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and therefore should not be a lensing effect. However,
because of the presence of the gravitational field, the
homogeneous plasma medium effect is not trivial. In
general, this effect will be dependent of the total mass
or other parameters that characterize the geometry.

A. Schwarzschild spacetime

For a first example, we will calculate the bending
angle for a spherically symmetric lens described by the
Schwarzschild metric,

AðrÞ ¼ 1−
2m
r
; BðrÞ ¼ 1

1− 2m
r

; CðrÞ ¼ r2; ð22Þ

where r > 2m. The refractive index for this case reads

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
e

ω2
∞

�
1 −

2m
r

�s
: ð23Þ

Thus, the associated optical metric (14) is given by

dσ2 ¼ rðω2
∞ − ω2

eÞ þ 2mω2
e

ðr − 2mÞω2
∞

�
dr2

1 − 2m
r

þ r2dφ2

�
; ð24Þ

with determinant gopt,

gopt ¼ r3ðω2
∞r − ω2

erþ 2ω2
emÞ2

ðr − 2mÞ3ω4
∞

: ð25Þ

By using (19), we get for the Gaussian curvature

K ¼ ω2
∞m

r3ðω2
∞r − ω2

erþ 2ω2
emÞ3

× ½ð3ω2
eω

2
∞ − 2ω4

∞ − ω4
eÞr3

þ ð−9ω2
∞ω

2
e þ 3ω4

∞ þ 6ω4
eÞr2m

þ ð6ω2
∞ω

2
e − 12ω4

eÞrm2 þ 8ω4
em3�: ð26Þ

Now, to compare the bending angle calculated using the
Gauss-Bonnet theorem with expressions in the literature,
we will only consider it at first order inm. So, we only need
the following expression at linear order:

KdS ¼ −
2ω2

∞ − ω2
e

r2ðω2
∞ − ω2

eÞ
mdrdφþOðm2Þ: ð27Þ

The geodesic curvature of CR with respect to the metric
(24) reads

κg ¼
ω∞jω2

eR2 − ω2
∞R2 − 4Rω2

emþ 3mω2
∞Rþ 4ω2

em2j
R3=2ðω2

∞R − ω2
eRþ 2ω2

emÞ3=2 :

ð28Þ

On the other hand, from (20) and (24), it follows that for
this curve

dσ
dφ

����
CR

¼ R
ω∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðω2

∞ − ω2
eÞ þ 2mω2

e

R − 2m

r
: ð29Þ

Therefore, as expected for this number density profile and
physical metric (which imply that the optical metric is
asymptotically Euclidean), we corroborate that

lim
R→∞

κg
dσ
dφ

����
CR

¼ 1: ð30Þ

At linear order in m, it follows using (18) in the limit
R → ∞, and taking the geodesic curve γp approximated by
its flat Euclidean version parametrized as r ¼ b= sinφ, with
b representing the impact parameter in the physical
spacetime that

α ¼ − lim
R→∞

Z
π

0

Z
R

b
sinφ

KdS: ð31Þ

Finally, using (27), the deflection angle reads

α ¼ 2m
b

�
1þ 1

1 − ðωe=ω∞Þ2
�
þOðm2Þ; ð32Þ

which agrees with the known expression found using
another methods [48]. Of course, in the absence of the
plasma (ωe ¼ 0), or in the limit at which its presence is
negligible (ωe=ω∞ → 0), this expression reduces to the
known vacuum formula α ¼ 4m

b .

B. Schwarzschild metric pierced by a cosmic string
in presence of a global monopole

Now, we want to explore how the presence of a plasma
could modify the deflection angle in the Schwarzschild
metric with a global monopole characterized by a param-
eter η and also pierced by a cosmic string characterized by a
parameter μ. This metric was recently analyzed by Jusufi
using the Gauss-Bonnet theorem in vacuum [21]. For this
case, we have

AðrÞ¼ 1−
2m
r
; BðrÞ¼ 1

1− 2m
r

; CðrÞ¼ a2p2r2; ð33Þ

where a2 ¼ 1–8πη2 and p2 ¼ ð1 − 4μÞ2 indicate the
presence of a global monopole and a cosmic string,
respectively.
As the 00 component of this metric is the same as the

Schwarzschild metric previously considered, the photon
frequency and the refractive index are the same.
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Then, the associated optical metric (14) is given by

dσ2¼ rðω2
∞−ω2

eÞþ2mω2
e

ðr−2mÞω2
∞

�
dr2

1− 2m
r

þa2p2r2dφ2

�
; ð34Þ

with determinant gopt,

gopt ¼ a2p2r3ðω2
∞r − ω2

erþ 2ω2
emÞ2

ðr − 2mÞ3ω4
∞

: ð35Þ

As one expects, the Gaussian and geodesic curvatures are
the same as in the Schwarzschild case.
In way similar to the previous example, we only consider

KdS at first order in m,

KdS ¼ −
apð2ω2

∞ − ω2
eÞ

r2ðω2
∞ − ω2

eÞ
mdrdφþOðm2Þ: ð36Þ

On the other hand, using (20), we have

dσ
dφ

����
CR

¼ apR
ω∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðω2

∞ − ω2
eÞ þ 2mω2

e

R − 2m

r
; ð37Þ

but at difference of the previous example (Sec. III A), we
obtain

lim
R→∞

κg
dσ
dφ

����
CR

¼ ap: ð38Þ

At linear order in m, it follows from the use of (18) in the
limit R → ∞, and taking the geodesic curve γp approxi-
mated by its flat Euclidean version parametrized as
r ¼ b= sinφ, that

lim
R→∞

Z
πþα

0

�
κg

dσ
dφ

�����
CR

dφ ¼ π − lim
R→∞

Z
π

0

Z
R

b
sinφ

KdS: ð39Þ

Hence, the deflection angle reads

α¼
�

π

ap
−π

�
þ2m

b

�
1þ 1

1− ðωe=ω∞Þ2
�
þOðm2Þ: ð40Þ

This expression generalizes the result in Ref. [21] to the
case of light rays propagating in a homogeneous plasma. In
particular, if we neglect the plasma effects, ωe=ω∞ → 0,
Eq. (40) reduces to the expression of that reference.

C. Self-dual Lorentzian spacetimes

In Ref. [75], a family of metrics that contains as a
particular case the Schwarzschild solution was presented.
This family also contains a variety of different kinds of
compact bodies as black holes, wormholes, and naked
singular geometries. The metric depends on three param-
eters ν, λ, and m,

AðrÞ ¼
�
νþ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r �2

;

BðrÞ ¼ 1

1 − 2m
r

; CðrÞ ¼ r2: ð41Þ

Note that in this case ωðrÞ ¼ ω∞

ffiffiffiffiffiffiffiffi
Að∞Þ

p ffiffiffiffiffiffiffi
AðrÞ

p with Að∞Þ ¼
ðνþ λÞ2. Therefore, for ν ≠ −λ (which is not asymptoti-
cally flat and will be not discussed here), we have

nðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
e

ω2
∞

�
νþ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q 	
2

ðνþ λÞ2

vuut
: ð42Þ

At linear order in m, the Gaussian curvature reads

K ¼ −
ðνþ λÞ½ðνþ 2λÞω2

∞ − ðνþ λÞω2
e�m

ðω2
∞ − ω2

eÞr3
; ð43Þ

on the other hand, for the two-form KdS, we get

KdS ¼ −
νþ2λ
νþλ ω

2
∞ − ω2

e

ω2
∞ − ω2

e

m
r2
drdφ: ð44Þ

The exact expression for the geodesic curvature of CR is
very cumbersome; however, at linear order in m, the
behavior of κg dσ

dφ for large R is (as should be expected)

κg
dσ
dφ

����
CR

¼ 1 −
m
R

νþ2λ
νþλ ω

2
∞ − ω2

e

ω2
∞ − ω2

e
þOðR−2Þ: ð45Þ

Finally, using the same arguments that allowed us to arrive
at Eq. (31), the deflection angle reads

α ¼ 2m
b

νþ2λ
νþλ ω

2
∞ − ω2

e

ω2
∞ − ω2

e
: ð46Þ

In the absence of the plasma, this expression reduces to
α ¼ 2m

b
νþ2λ
νþλ , which can be checked to agree with the

expression obtained using alternative methods, as, for
example, by solving the null geodesic equation.
For the choice of the parameters of ν ¼ 0, λ ¼ 1, we

recover the result for a Schwarzschild metric, Eq. (32).
If ν ¼ ν0 ¼ constant and λ ¼ 0, which describes the so-

called spatial Schwarzschild wormhole, the deflection
angle results in α ¼ 2 m

b, which is independent of the
presence of the plasma. It is not unexpected, because in
this case the refractive index is constant, due to there not
being a gravitational redshift. This fact remains true for any
spacetime of which the lapse function is equal to 1, as, for
example, for the Ellis wormhole.
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D. Homogeneous plasma in more general alternatives
to the Schwarzschild solution

Let us consider a more general class of spherically
symmetric metrics with the behavior in the components of
the metric [76,77]

AðrÞ ¼ 1 −
μ

rq
þOðr−ðqþ1ÞÞ; ð47Þ

BðrÞ ¼ 1þ γ

rq
þOðr−ðqþ1ÞÞ; ð48Þ

CðrÞ ¼ r2
�
1þ β

rq

�
þOðr−ðq−1ÞÞ; ð49Þ

with μ, β, and γ three parameters and q ≥ 0. As explained in
Ref. [76], a coordinate transformation can be made such
that the components of the metric preserve the form of
Eqs. (47)–(49) but with β ¼ 0 (Schwarzschild-like coor-
dinates) or β ¼ γ (isotropic coordinates). At the moment,
we will keep the form (47)–(49) in order to not restrict the
coordinate freedom.
This family of metrics contains as a particular case the

asymptotic field limit of the Schwarzschild solution (taking
μ ¼ γ ¼ 2m, β ¼ 0, and q ¼ 1) and the Ellis wormhole
(taking μ ¼ γ ¼ 0, β ¼ a2, and q ¼ 2). For this class of
metrics, the refractive index for an homogeneous plasma
reads

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
e

ω2
∞

�
1 −

μ

rq

�s
: ð50Þ

Neglecting the nonlinear terms in μ, γ, and β, that is, terms
of order Oðr−ðqþ1ÞÞ, the optical metric reads

dσ2¼ω2
∞½ðω2

∞−ω2
eÞrqþðγ−μÞω2

∞− γω2
e�

ðω2
∞−ω2

eÞ2rq
dr2

þω2
∞½ðω2

∞−ω2
eÞrqþðβ−μÞω2

∞−βω2
e�

ðω2
∞−ω2

eÞ2rq
r2dφ2; ð51Þ

with determinant gopt,

gopt ¼ ðrq þ γÞðr2 þ βr2−qÞ½rqðω2
∞ − ω2

eÞ þ μω2
e�2

rqðrq − μÞ2ω4
∞

: ð52Þ

After some computations, the resulting expression for KdS
linear in μ, β, and γ reads

KdS¼ −
½ðγ − βÞ þ qðμþ βÞ�ω2

∞ − ½ðq− 1Þβþ γ�ω2
e

2ðω2
∞ −ω2

eÞrqþ1
drdφ:

ð53Þ

The asymptotic expression for κg dσ
dφ is

κg
dσ
dφ

����
CR

¼1−
qω2

∞μ

ðω2
∞−ω2

eÞRq−
γ

2Rqþ
ð1−qÞβ
2Rq þO

�
1

Rqþ1

�
:

ð54Þ

Therefore, we can use again Eq. (31), and the final result for
the deflection angle is

α¼
ffiffiffi
π

p
Γðq

2
þ 1

2
Þ

2bqΓð1þ q
2
Þ
½ðq− 1Þβþ γþqμ�ω2

∞ − ½ðq− 1Þβþ γ�ω2
e

ω2
∞ −ω2

e
;

ð55Þ

where

ΓðuÞ ¼
Z

∞

0

vu−1e−vdv ð56Þ

is the Gamma function. This expression generalizes some
known particular formulas considered in the literature
without the presence of a plasma medium.
In isotropic coordinates (β ¼ γ), the expression (55)

reduces to

α ¼
ffiffiffi
π

p
Γðq

2
þ 1

2
Þq

2bqΓð1þ q
2
Þ
ðγ þ μÞω2

∞ − γω2
e

ω2
∞ − ω2

e
; ð57Þ

and in Schwarzschild-like coordinates (β ¼ 0), it reduces to

α ¼
ffiffiffi
π

p
Γðq

2
þ 1

2
Þ

2bqΓð1þ q
2
Þ
ðγ þ qμÞω2

∞ − γω2
e

ω2
∞ − ω2

e
: ð58Þ

In the absence of plasma, these expressions agree with the
relations found in Refs. [76,77]. In particular, for the choice
of the parameters μ ¼ γ ¼ 2m and q ¼ 1, Eqs. (57) and
(58) reproduce the result of the deflection angle for
the Schwarzschild solution. For the choice μ ¼ γ ¼ 0,
β ¼ a2, and q ¼ 2, using (55), we find that α ¼ πa2

4b2, which
is the well-known value of the deflection angle for the
Ellis spacetime at lower order in a2 in the weak field
approximation.
Let us focus now in the expression (57) for the bending

angle in isotropic coordinates. From this expression, and
due to the spherical symmetry, there exist simple relations
that allow us to compute the useful optical quantities in
weak gravitational lensing [17] in terms of the expression
for the deflection angle, namely, the shear γ̃ ¼ −γ̃ðbÞe2iθ
(with θ a polar angle defined in the celestial sphere of the
observer [17]) and the convergence κ̃. We find in the case
under study that

γ̃ðbÞ ¼ −Δ
ffiffiffi
π

p
Γðqþ3

2
Þ½ðγ þ μÞω2

∞ − γω2
e�

bqþ1Γðq
2
Þðω2

∞ − ω2
eÞ

; ð59Þ
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κ̃ðbÞ ¼ −Δ
ffiffiffi
π

p ðq − 1ÞΓðqþ1
2
Þ½ðγ þ μÞω2

∞ − γω2
e�

2bqþ1Γðq
2
Þðω2

∞ − ω2
eÞ

; ð60Þ

with Δ ¼ dldls
ds

, a scale factor dependent on the distances dl,
dls, and ds representing the distance lens observer, lens
source, and observer source, respectively. Now, we con-
sider some interested families as classified in Ref. [76].
Note that there exists an intersection between them. In the
following, we omit writing the global factor Δ.

1. Family I: Extended dust distributions

This case is obtained by requiring that μ ¼ γ. In such a
situation, the metrics coming from Eqs. (47)–(49) can be
interpreted in the framework of the Einstein equations as
coming from an effective energy-momentum tensor of a
perfect fluid with vanishing pressure [76]. For this family,
the deflection angle, the shear, and the convergence reduce
to

α ¼
ffiffiffi
π

p
Γðq

2
þ 1

2
Þqμ

2bqΓð1þ q
2
Þ
2ω2

∞ − ω2
e

ω2
∞ − ω2

e
; ð61Þ

γ̃ðbÞ ¼ −
ffiffiffi
π

p
Γðqþ3

2
Þμ

bqþ1Γðq
2
Þ

2ω2
∞ − ω2

e

ω2
∞ − ω2

e
; ð62Þ

κ̃ðbÞ ¼
ffiffiffi
π

p ð1 − qÞΓðqþ1
2
Þμ

2bqþ1Γðq
2
Þ

2ω2
∞ − ω2

e

ω2
∞ − ω2

e
: ð63Þ

The Schwarzschild solution is a particular example of this
family, with q ¼ 1 and μ ¼ 2m. For this value of q, the
convergence is zero, independent of the presence of the
plasma. As explained by Bozza and Postiglione [76], if
0 < q < 1 and μ > 0, the energy density is positive.
However, if q > 1, the convergence is negative, and it is
produced by an exotic lens with an effective energy-
momentum tensor with a negative mass density. In all this
family, the correction factor due to the presence of the
homogeneous plasma is the same as in the Schwarzschild.

2. Family II: Pure anisotropic pressure distribution

This family is characterized by q ¼ 1, and it results in an
effective energy-momentum tensor that has zero energy
density and an anisotropic pressure. The optical scalars are

α ¼ ðγ þ μÞω2
∞ − γω2

e

bðω2
∞ − ω2

eÞ
; ð64Þ

γ̃ðbÞ ¼ −
ðγ þ μÞω2

∞ − γω2
e

b2ðω2
∞ − ω2

eÞ
; ð65Þ

κ̃ðbÞ ¼ 0: ð66Þ

If γ ¼ μ ¼ 2m, we recover again the Schwarzschild
solution. If μ ¼ 0, the plasma does not influence the total
deflection angle. The particular case μ ¼ −γ will be
analyzed in case V.

3. Family III: Constant lapse family

This family is characterized by μ ¼ 0, and therefore as
there is not gravitational redshift, a homogeneous plasma
does not influence the optical scalars. Their expressions
read

α ¼
ffiffiffi
π

p
Γðq

2
þ 1

2
Þqγ

2bqΓð1þ q
2
Þ ; ð67Þ

γ̃ðbÞ ¼ −
ffiffiffi
π

p
Γðqþ3

2
Þγ

bqþ1Γðq
2
Þ ; ð68Þ

κ̃ðbÞ ¼ −
ffiffiffi
π

p ðq − 1ÞΓðqþ1
2
Þγ

2bqþ1Γðq
2
Þ : ð69Þ

4. Family IV: Zero lensing family (in the absence
of plasma)

This family is characterized by μ ¼ −γ. Without the
presence of a plasma, the total deflection angle is zero;
however, in the presence of a plasma, even when it is
homogeneous, the deflection angle takes a nonzero value. It
is due to the fact that there exists a nontrivial redshift that
makes the refractive index dependent of the radial coor-
dinate r; however, the spatial components of the metric
cannot cancel this new contribution. The optical scalars for
this situation are

α ¼
ffiffiffi
π

p
Γðq

2
þ 1

2
Þ

2bqΓð1þ q
2
Þ

qμω2
e

ω2
∞ − ω2

e
; ð70Þ

γ̃ðbÞ ¼ −
ffiffiffi
π

p
Γðqþ3

2
Þμω2

e

bqþ1Γðq
2
Þðω2

∞ − ω2
eÞ
; ð71Þ

κ̃ðbÞ ¼
ffiffiffi
π

p ð1 − qÞΓðqþ1
2
Þμω2

e

2bqþ1Γðq
2
Þðω2

∞ − ω2
eÞ
: ð72Þ

5. Family V: Zero spatial curvature

This family is characterized by γ ¼ 0. which makes the
t ¼ constant slices be flat. Curiously, for this family, the
optical scalars take the same form as in the zero lensing
family.
Another relevant quantity that in general changes in the

presence of a plasma is the angular position of the Einstein
ring. Let us assume that the parameters μ and γ are positive.
Therefore, from (57) and the weak lens equation, it follows
that the Einstein ring θpl in the presence of a plasma is
given by
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θpl ¼
� ffiffiffi

π
p

Γðq
2
þ 1

2
Þq

2Γð1þ q
2
Þ

ðγ þ μÞω2
∞ − γω2

e

ω2
∞ − ω2

e

dls
dsd

q
l

� 1
qþ1

: ð73Þ

The relative change between the Einstein ring θpl in the
presence of the plasma and its value θ0 in its absence is
given by

Δθ0
θ0

¼ θpl − θ0
θ0

¼
�
1 − γ

γþμ
ω2
e

ω2
∞

1 − ω2
e

ω2
∞

� 1
qþ1

− 1: ð74Þ

Under the assumption that ω2
e=ω2

∞ ≪ 1, we can approxi-
mate the above expression to

Δθ0
θ0

≈
μ

ð1þ qÞðμþ γÞ
ω2
e

ω2
∞
: ð75Þ

For an example of the magnitude of the change in the
position of the Einstein ring in Fig. 3, assuming that
μ ≠ 0 and δ ¼ γ=μ are positive, we have plotted the level
curves of (75) for the quotient ωe=ω∞ ¼ 6 × 10−3. For this
particular frequency relation, and with a value of
θ0 ≈ 1 sec, the change is of the order of 1–10 μ sec. The
change in the position for a Schwarzschild metric is a
particular case of the level curve defined by δ ¼ 1, and it
was analyzed by the same value of ωe=ω∞ in Ref. [48].

IV. NONUNIFORM PLASMA MEDIUM

Now, to show how this approach to calculate the bending
angle is also useful for light rays propagating in nonuni-
form plasma, we will recover a general expression for the

deflection angle in the weak lensing regime obtained for the
first time by Bisnovatyi-Kogan and Tsupko [48] in solving
the Hamilton equations. In Appendix, we also show some
explicit examples.
Let us consider an asymptotically flat and spherical

symmetric gravitational lens surrounded by an inhomo-
geneous plasma of which the electron number density NðrÞ
is a decreasing function of the radial coordinate r and such
that its radial derivativeN0ðrÞ is also decreasing and smaller
than NðrÞ. In isotropic coordinates, the components of the
metric in the physical spacetime is codified in the following
expressions:

AðrÞ¼1−μh00ðrÞ; BðrÞ¼1þγhrrðrÞ; CðrÞ¼ r2BðrÞ:
ð76Þ

The refractive index reads

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
eð1 − μh00ðrÞÞ

ω2
∞

s
: ð77Þ

The associated optical metric is given by

dσ2 ¼
�ð1þ γhrrÞðω2

∞ − ω2
e þ μω2

eh00Þ
ω2
∞ð1 − μh00Þ

�
ðdr2 þ r2dφ2Þ;

ð78Þ

with determinant gopt,

gopt ¼
�ð1þ γhrrÞðω2

∞ − ω2
e þ μω2

eh00Þ
ω2
∞ð1 − μh00Þ

�
2

r2: ð79Þ

As we are only interested in terms that are linear in γ and μ,
we write the Gaussian curvature at linear order in these
parameters, arriving at an expression of the form

K ¼ Kpl þ μKμ þ γKγ; ð80Þ

with

Kpl ¼
ω2
∞

2rðω2
∞ − ω2

eÞ3
× ½KeðrN0Þ0ðω2

∞ − ω2
eÞ þ rK2

eN02�;

ð81Þ

Kμ ¼ −
ω4
∞

2rðω2
∞ − ω2

eÞ2
× ½ðrh000Þ0 þ F μðh00N0; h00N00; h000N0Þ�; ð82Þ

Kγ ¼−
ω2

2rðω2
∞−ω2

eÞ
× ½ðrhrr0Þ0 þF γðhrrN0;hrrN00;hrr0N0Þ�

ð83Þ

FIG. 3. Level curves of the relative change in the position of the
Einstein rings Δθ0=θ0 for the class of metrics given by (47)–(49).
As expected, for a fixed value of the quotient δ ¼ γ=μ, the relative
difference becomes smaller as q grows. The level curve that takes
the value 9 × 10−6 (not shown) contains the particular point
(q ¼ 1, δ ¼ 1), corresponding to the relative position change in
the Einstein rings associated with a Schwarzschild metric for the
mentioned rate of frequencies.
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and where the functions F μ and F γ are defined as

F μðh00N0; h00N00; h000N0Þ
¼ 2Keðω2

∞ − ω2
eÞ½h00ðrN0Þ0 þ rN0h000� þ 3h00rK2

eN02;

ð84Þ

F γðhrrN0;hrrN00;hrr0N0Þ
¼Kehrr½rðω2

∞−ω2
eÞN00 þN0ðω2

∞−ω2
eþKerN0Þ�: ð85Þ

Here, Kpl represent the plasma contribution to the
Gaussian curvature, which is also present in the case of
a flat spacetime. Kμ and Kγ take into account the deviation
of the metric from the flat background, and therefore they
contain not only information about the pure gravitational
fields but also about the interaction between this field and
the plasma.
In principle, we could use this expression for the

Gaussian curvature in order to compute the deflection
angle. However, as in general the change in the deflection
angle due to the presence of the refractive index is smaller
than the main part due to the pure gravitational effect, we
will assume as in Ref. [48] that the deflection angle is small
and therefore, as a first approximation, the geodesic γp can
be taken as the straight line geodesic of the flat Euclidean
space. On the other hand, we neglect all higher-order terms
of the form OðN02; μN0; μN00; γN02; γN00Þ. Therefore, in the
following, we discard the last term in Kpl and the terms F μ

and F γ in the other components of the Gaussian curvature.
Working at the mentioned order, we obtain for KdS

KdS¼ 1

2

�
KeðrN0Þ0
ω2
∞−ω2

e
−
ω2
∞ðrh000Þ0
ω2
∞−ω2

e
μ− ðrhrr0Þ0γ

�
drdφ: ð86Þ

Furthermore, we need to compute kg and dσ
dφ along the curve

CR associated to the optical metric (78), which gives

κg ¼
ω∞

2R2ðω2
∞ − ω2

e þ ω2
eμh00Þ3ð1þ γhrrÞ3ð1 − μh00Þ

× jRKeð1 − μh00Þ2ð1þ γhrrÞN0

− ð1 − μh00Þðω2
∞ − ω2

e þ ω2
eμh00Þð1þ γðrhrrÞ0

− Rμh000ω2
∞j: ð87Þ

On the other hand, we have that

dσ
dφ

����
CR

¼ R
ω∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ γhrrÞðω2

∞ − ω2
e þ ω2

eμh00Þ
1 − μh00

s
; ð88Þ

where all the functions in (87) and (88) are evaluated in
r ¼ R. Hence, we can check that, due to the asymptotic
behavior of h00, hrr, and NðrÞ,

lim
R→∞

κg
dσ
dφ

����
CR

¼ 1: ð89Þ

Collecting all these results together, we find that the
deflection angle in this approximation is given by

α ≈ − lim
R→∞

Z Z
DR

KdS

¼ −
Z

π

0

Z
∞

b= sinφ

1

2

�
KeðrN0Þ0
ω2
∞ − ω2

e
−
ω2
∞ðrh000Þ0
ω2
∞ − ω2

e
μ − ðrhrr0Þ0γ

�
× drdφ: ð90Þ

Using integration by parts in the first two terms of the
radial integral and neglecting again in the process the terms
of order OðN02; h00N0Þ, we obtain

α≈
Z

π

0

1

2

�
KeðrN0Þ
ω2
∞ −ω2

e
−
ω2
∞ðrh000Þ
ω2
∞ −ω2

e
μ− ðrhrr0Þγ

�����
r¼b= sinφ

dφ:

ð91Þ

If we transform to a new coordinate z related to r as
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p
, thus satisfying tanφ ¼ b=z, we can write

the expression (91) as

α≈−
Z

∞

−∞

b
2r

�
−

KeN0

ω2
∞ −ω2

e

þ ω2
∞h000

ω2
∞ −ω2

e
μþðhrr0Þγ

�����
r¼

ffiffiffiffiffiffiffiffiffi
b2þz2

p dz; ð92Þ

which is in complete agreement with the expression (30)
derived by Bisnovatyi-Kogan and Tsupko in Ref. [48]. For
completeness, the deflection angle for two different elec-
tronic density profiles is calculated in Appendix.

V. APPLICATION OF THE GAUSS-BONNET
THEOREM TO GRAVITATIONAL DEFLECTION

OF MASSIVE PARTICLES

A. Optical metric

Let us consider a static gravitational field. As was
already remarked by several authors in the past (see
Refs. [48,49] and references therein), there exists a corre-
spondence between the dynamic of light rays of frequency
ω∞ in a homogeneous cold nonmagnetized plasma (with
characteristic frequency ωe) and the timelike geodesic
motion of a test massive particle with mass μ and energy
E∞ as measured by an asymptotic observer at the same
gravitational field. In particular, if we make the identi-
fication ωe → μ ¼ constant, ω∞ → E∞, it follows that we
can use the Hamiltonian (4) to describe the geodesic motion
of massive particles.
For the same reason, given any static spacetime of the

form
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gαβ ¼ −AðxiÞdt2 þ gijdxidxj; ð93Þ

we can associate an optical metric (10) with each test
particle of mass μ and energy E∞. Noting that the local
energy EðxaÞ as measured by a static observer is related to
E∞ by EðxaÞ ¼ E∞=

ffiffiffiffiffiffiffiffiffiffiffiffi
AðxaÞp

, it follows that the optical
metric reads

goptij ¼ −
n2

AðxiÞ gij ¼ −
1 − μ2

E2
∞
AðxiÞ

g00
gij: ð94Þ

This metric is implicit in the general work of Synge about
geometrical optics in dispersive and nondispersive media
(see Chap. XI of Ref. [72]) and also in the recent work of
Gibbons in which he reintroduced (up to a constant factor
E2
∞) the same metric under the name of the Jacobi metric

[66]. We refer to the last reference for an elegant derivation
and discussion of some of its properties.
Let us focus in the geodesic motion of a massive particle

of mass μ in and static and spherically symmetric space-
time. In particular, we are interested in the description of
the motion of the particle that leaves a source in an
asymptotically flat region, reaches the lens at a minimal
distance r0, and follows its trip until an asymptotic
observer. The particle is assumed leaving the asymp-
totic region with a speed v as measured by an asymptotic
observer and therefore with an energy

E∞ ¼ μffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð95Þ

In the same way, let us assume that the particle has an
angular momentum J,

J ¼ μvbffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð96Þ

with b the impact parameter. It follows that the optical
metric reads

dσ2 ¼ n2ðrÞ
AðrÞ ðBðrÞdr

2 þ CðrÞdφ2Þ; ð97Þ

with

n2ðrÞ ¼ 1 −
μ2

E2
∞
AðrÞ ¼ 1 − ð1 − v2ÞAðrÞ: ð98Þ

With all this information, we can now study the spatial
geodesics of the metric (97). Note that what follows is
general for any refractive index and not only for massive
particles. In particular, the geodesic motion follows from
the Lagrangian

L ¼ 1

2

�
n2ðrÞ
AðrÞ ðBðrÞ

�
dr
dσ

�
2

þ CðrÞ
�
dφ
dσ

�
2
��

; ð99Þ

with the on-shell constraint

n2ðrÞ
AðrÞ

�
BðrÞ

�
dr
dσ

�
2

þ CðrÞ
�dφ
dσ

	
2
�
¼ 1: ð100Þ

From (99), it follows that

n2C
A

dφ
dσ

¼ J
E∞

: ð101Þ

We refer to Ref. [66] for a justification of the identification
between the constant associated to this conserve quantity
and J=E∞, where one must also take into account that the
optical metric defined in (94) is related to the metric ds2

used by Gibbons by ds2 ¼ E2
∞dσ2.

From this relation and the expressions (100) and (101), it
follows that

�
dr
dφ

�
2

¼ C
B

�
E2
∞Cn2

J2A
− 1

�
: ð102Þ

The last expression for the orbital equation was also
recently derived using the Hamiltonian approach [49,52].
Using the metric (97) with nðrÞ given by (98), we can

apply the Gauss-Bonnet theorem to the study of lensing for
massive particles in any spherically symmetric gravitational
field. Of course, if we want to compute the deflection angle
using the Gauss-Bonnet theorem, we only need the flat
trajectory of the particle written as usual, r ¼ b= sinφ;
however, the main motivation to explicitly write (102) is
that we will apply the Gibbons-Werner method to study the
deflection angle of massive particles at second order in a
Schwarzschild metric of mass m, and for such goal, we
need to know the orbit at first order in m.

B. Application: Deflection angle of massive particles
at second order in a Schwarzschild spacetime

Here, we restrict our attention to a Schwarzschild
spacetime of mass m with AðrÞ, BðrÞ, and CðrÞ given
by (22). Using the variable u ¼ 1=r, Eq. (102) reads

�
du
dφ

�
2

¼ −u2 þ 2mu3 þ 2mð1 − v2Þ
b2v2

uþ 1

b2
: ð103Þ

This equation reduces to the equation of a massless particle
for v ¼ 1. We want to find solutions of this equation
describing the scattering of massive particles in the weak
gravitational region, with the condition that the particle
comes from an asymptotic region, passes through the lens
at a closer position at φ ¼ π=2, and escapes to the
asymptotic region again. To solve (103), and following
the approach of Ref. [78], we assume that the solution can
be expressed in powers of m as
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u ¼ 1

b
ðsinðφÞ þmu1ðφÞ þm2u2ðφÞÞ þOðm3Þ: ð104Þ

Hence, using the mentioned conditions, we find

uðφÞ ¼ sinφ
b

þv2 cos2φþv2þ2

2b2v2
mþ m2

16b3

�ð8þ32v2−3v4Þ
v4

sinφþ6ð4þv2Þðπ−2φÞ
v2

cosφ−3sin3φ

�
þOðm3Þ: ð105Þ

For v ¼ 1, this expression reduces to the known second-order solution of (103) for massless particles [78].
Now, we apply the Gauss-Bonnet theorem to compute the deflection angle to second order. From the optical metric that

follows from (22), (97), and (98), we compute the associated determinant and Gaussian curvature,

gopt ¼ ½2ð1 − v2Þmþ v2r�2r3
ðr − 2mÞ3 ; ð106Þ

K ¼ m½8ð1 − v2Þ2m3 þ 6rm2ð1 − v2Þð2v2 − 1Þ − 3v2ð1 − 2v2Þmr2 − v2ð1þ v2Þr3�
½2mð1 − v2Þ þ v2r�3r3 : ð107Þ

As we are interested in the computation at second order
of the deflection angle, we need the expression for KdS at
second order, which is given by

KdS ¼
�
−
1þ v2

v2r2
m −

v4 þ 6v2 − 4

v4r3
m2

�
drdφþOðm3Þ:

ð108Þ

On the other hand, as was discussed for the homogeneous
plasma in Schwarzschild solution, doing the correspondent
identifications between frequencies and energy and mass, it
follows that (30) remains valid. Consequently, the deflec-
tion angle at second order is computed from (31) with rγ ¼
u−1γ ðφÞ and uγðφÞ given by the first two terms of (105).
After doing the integrals, the final result for the deflection
angle reads

α ¼ 2m
b

�
1þ 1

v2

�
þ 3π

4b2

�
1þ 4

v2

�
m2 þOðm3Þ: ð109Þ

This expression reduces to the known result for massless
particles. For massive particles, there exist two different
expressions in the literature. The first one is given by
Accioly and Ragusa [79], and the second one is given by
Bhadra et al. [80]. There is also a third work by He and Lin
[81], in which a numerical computation of the deflection
angle was made, with agreement with the result of Accioly
and Ragusa. Our computation also is consistent with the
results of Ref. [79]. It can also be checked conserving
the Oðm2Þ terms of the expression (105) and applying the
method proposed in Ref. [78] to compute the bending
angle. For a final comment, let us note that by doing the

identification v2 ↔ 1 − ω2
e

ω2
∞
we can use expression (109) in

order to obtain the deflection angle at second order in an
homogeneous plasma for light rays,

α ¼ 2m
b

�
1þ 1

1 − ω2
e=ω2

∞

�

þ 3π

4b2

�
1þ 4

1 − ω2
e=ω2

∞

�
m2 þOðm3Þ; ð110Þ

which generalize at second order Eq. (32). However,
because of the smallness of the plasma effects, this
correction does not appear to be relevant for near-future
observations.

VI. FINAL REMARKS

In this work, we have shown how the Gauss-Bonnet
theorem can be successfully used to study plasma media in
gravitational fields. To use this theorem, we have made the
following assumptions: the underlying spacetime is static
with a timelike Killing vector field ξα and, in particular,
spherically symmetric and asymptotically flat; it is sur-
rounded by a cold nonmagnetized plasma that is also
assumed to be spherically symmetric and at rest with
respect to the timelike orbits of ξα; and the region under
study of the light rays is in the weak gravitational regime.
Then, using an appropriate Riemannian optical metric that
satisfies a Fermat-like variational principle and that is
conformal to the induced metric on the spatial slices Σt
of the physical metric (which are orthogonal to ξα), it
follows that the Gibbons-Werner method can be applied.
In this way, we obtain an invariant and geometrical

expression for the deflection angle in terms of geometrical
and topological quantities even when in the physical
spacetime the light rays do not follow in general null
geodesics. Moreover, by using a correspondence between
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the motion of a massive particle and the dynamics of light
rays in a homogeneous plasma, we have successfully
applied the Gibbons-Werner method to the study of the
deflection angle of massive particles. In particular, we have
shown several applications for the case of a homogeneous
plasma and some nonhomogeneous profiles. In the last
cases, we have only computed the lower-order correction
due to the plasma. For amore complete treatment, we should
write the equation for the trajectory γp in a more preciseway
and integrate in a way similar to that for the second-order
computation of the deflection angle for massive particles.
The observational relevance of the influence of the

plasma in the bending angle and in the associate quantities
has been analyzed by different authors and for several
astrophysical situations [47,48,71,82,83]. We would like to
mention here that the plasma frequency f ¼ ωe=2π usually
takes values from a few kHz to 100 MHz [71]. Even when
on the surface of the Earth we are limited by the ionosphere
to observe only frequencies above 10 MHz, there exists
radioastronomy projects that consider the idea of putting in
orbit 50 or more nanosatellites with low-frequency anten-
nas with a frequency sensitivity in the range of 0.1–10MHz
[45,46]. As shown in Table I, for this range of frequencies,
the deviation in the position of the images (as determined
by the Einstein rings) is not negligible. The Schwarzschild
metric case was analyzed in the past for a ratio ωe=ω∞ of
the order of 10−3 [48,82]. Here, we also present the values
for observations in a lower range of frequencies and also for
other potential exotic objects. In the last cases, when q > 1,
the influence of the plasma is smaller than in the
Schwarzschild spacetime but still potentially detectable.
In particular, we can observe that if the Einstein ring
without the presence of the plasma takes a value of the
order of 1 arc sec, then the difference between the optical
and the radio-frequency images varies from micro-arc-
seconds to milli-arc-seconds. These differences should be
detectable in the near future.

On the other hand, the Gauss-Bonnet theorem is only
useful for describing not only weak gravitational lensing
but also lensing effects in the strong regime and providing
finite distance corrections. Note also that, even when we
have applied the Gauss-Bonnet theorem to static and
spherically symmetric gravitational fields with a dispersive
medium characterized by a refractive index nðr;ωðrÞÞ, it
can be also applied to nondispersive fluids. It follows as a
consequence that in that case the light rays with tangent
vectors lα must be null geodesics of the Gordon metric, and
therefore they must satisfy the condition gαβlαlβ ¼ 0,
that is,

dt2 ¼ n2ðrÞ
AðrÞ ðBðrÞdr

2 þ CðrÞdφ2Þ; ð111Þ

which implies an optical metric as in (10).
To finalize, let us remark that recently great interest in the

study of plasma environments in gravitational fields pro-
duced by rotating sources has arisen [54,56–58,84–89]. To
deal with such situations, a modification of the Gauss-
Bonnet theorem approach [35–41] can be used. In future
works, we will show how to apply these techniques for the
study of more general plasma environments and the
gravitational lensing of massive particles in rotating and
stationary gravitational fields.
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APPENDIX: EXPLICIT COMPUTATION OF
DEFLECTION ANGLE FOR TWO DIFFERENT

NONHOMOGENEOUS PLASMA MEDIA

For completeness, we compute the deflection angle for
two different number density profiles. We also make the
assumption that ωe

ω∞
≪ 1.

1. Plasma medium with NðrÞ=N0r−h, h > 0
in a Schwarzschild background

Here, we consider a gravitational lens surrounded by an
inhomogeneous plasma of which the number density of
electrons reads

NðrÞ ¼ N0r−h; h > 0; ðA1Þ

surrounding the exterior of a spherical mass described by
the Schwarzschild metric (22). It follows that the photon
frequency has the same behavior as in the homogeneous
case; however, the refractive index changes,

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

KeN0

rhω2
∞

�
1 −

2m
r

�s
: ðA2Þ

TABLE I. Relative change in the position of the images for
three different frequency ratios ωe=ω∞ as determined by (74) for
the class of metrics discussed in Sec. III 4. Here, we assume that
μ ¼ γ with μ ≠ 0. Note that the same relative change is valid for
the deflection angle and the other optical scalars.

q ωe=ω∞
ΔΘ0

Θ0
¼ Θpl−Θ0

Θ0

1
10−1 2.5 × 10−3

10−2 2.5 × 10−5

10−3 2.5 × 10−7

1.5
10−1 2.0 × 10−3

10−2 2.0 × 10−5

10−3 2.0 × 10−7

2
10−1 1.7 × 10−3

10−2 1.7 × 10−5

10−3 1.7 × 10−7
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In this case, the associated optical metric is given by

dσ2 ¼ rðω2
∞ − KeN0r−h þ 2mN0Ker−ð1þhÞÞ

ω2
∞ðr − 2mÞ

×

�
dr2

1 − 2m
r

þ r2dφ2

�
; ðA3Þ

with determinant gopt,

gopt ¼ ðrhþ1ω2
∞ − KeN0rþ 2mKeN0Þ2r3
ðr − 2mÞ3r2hω4

∞
; ðA4Þ

and for the Gaussian curvature, we get

K ¼ −
1

2

ω2
∞

r3ðrhþ1ω2
∞ − KeN0rþ 2KeN0mÞ3 ×



8ω2

∞m3KeN0

�
h −

1

2

�
ðhþ 3Þr2hþ1

− 12ω2
∞m2KeN0

�
5

3
hþ h2 −

3

2

�
r2hþ2 þ 6ω2

∞mKeN0

�
hþ 3

2

��
h −

2

3

�
r2hþ3 − r2hþ4KeN0h2ω2

∞

þ 8m

�
1

2
r3hþ3ω4

∞ −
3

4
mr3hþ2ω4

∞ þ
�
m3rh −

3

2
m2rhþ1 þ 3

4
mrhþ2 −

1

8
rhþ3

�
K2

eN2
0ðh − 2Þ

��
: ðA5Þ

To compare with expressions for the bending angle
calculated with other methods, we only take into account
linear terms in m and N0, discarding terms proportional to
mN0,

KdS ¼
�
−
2m
r2

þ h2r−ðhþ1ÞKeN0

2ω2
∞

�
drdφ

þOðm2; N2
0; mN0Þ: ðA6Þ

Furthermore, we need to compute kg and dt
dφ along the

curve CR associated with the optical metric (A3), which
gives

κg ¼
R

h−3
2 ω∞j4KeN0ðh − 2Þðm − R

2
Þ2 þ 6Rhþ1ω2

∞ðR3 −mÞj
ð2Rhþ1ω2

∞ − KeN0Rþ 2mKeN0Þ3=2
ðA7Þ

and

dσ
dφ

����
CR

¼ R
ω∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
∞R − R1−hKeN0 þ 2R−hKeN0m

R − 2m

r
: ðA8Þ

Hence, we can check that

lim
R→∞

κg
dσ
dφ

����
CR

¼ 1: ðA9Þ

Finally, using again the expression (31), the deflection
angle reads

α ¼ 4m
b

−
KeN0

ω2
∞

ffiffiffi
π

p
Γðh

2
þ 1

2
Þ

bhΓðh
2
Þ þOðm2; N2

0; mN0Þ: ðA10Þ

The expression (A10) agrees with the formula found by
Bisnovatyi-Kogan and Tsupko in Ref. [48].

2. Plasma medium with NðrÞ=N0e− r=r0
in a Schwarzschild background

For a last example, let us consider a Schwarzschild
metric with a plasma medium with a charge number density
profile given by

NðrÞ ¼ N0e−r=r0 : ðA11Þ

In that case, the refractive index is given by

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

KeN0e−r=r0

ω2
∞

�
1 −

2m
r

�s
; ðA12Þ

and the associated optical metric is

dσ2 ¼ r½ω2
∞ − ω2

eðrÞ� þ 2mω2
eðrÞ

ðr − 2mÞω2
∞

�
dr2

1 − 2m
r

þ r2dφ2

�
;

ðA13Þ

where

ω2
eðrÞ ¼ KeN0e−r=r0 : ðA14Þ

The determinant gopt of the optical metric (A13) reads

gopt ¼ ½ω2
∞r − ω2

eðrÞðr − 2mÞ�2r3
ðr − 2mÞ3ω4

∞
; ðA15Þ

while the Gaussian curvature associated with this metric is
given by
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K ¼ ω2
∞

2r20r
3½ðω2

∞ − ω2
eðrÞÞrþ 2ω2

eðrÞm�3
× frðr − 2mÞω2

∞ω
2
eðrÞ½r4 − ð4mþ r0Þr3

þ ð4m2 −mr0Þr2 þ 6mr0ðr0 þmÞr − 6m2r02�
− r0½ω4

eðrÞðr − 2mÞ3ðmð2r0 þ rÞ − r2Þ
þ 2ω4

∞mr0r2ð2r − 3mÞ�g; ðA16Þ
which in the case of N0 ¼ 0 reduces to the expression for
the Gaussian curvature of the optical metric associated to
the Schwarzschild. At linear order in m, we find

KdS ¼
�
−
2m
r2

þ ω2
eðrÞ½ω2

∞ðr − r0Þ þ r0ω2
eðrÞ�

2r20ðω2
∞ − ω2

eðrÞÞ2
�
drdφ

þOðm2; N0mÞ: ðA17Þ
The geodesic curvature of CR reads

κg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR − 2R0ÞðR − 2mÞ2w2

eðRÞ þ 2ω2
∞r0RðR − 3mÞ

p
2ω−1

∞ r0R3=2½ðω2
∞ − ω2

eðRÞÞRþ 2mw2
eðRÞ�3=2

:

ðA18Þ

For this metric, we also have

dσ
dφ

����
CR

¼ R
ω∞


½ω2
∞ − ω2

eðRÞ�Rþ 2mω2
eðRÞ

R − 2m

�
1=2

; ðA19Þ

and therefore we check again that

lim
R→∞

κg
dσ
dφ

����
CR

¼ 1: ðA20Þ

Finally, the deflection angle follows

α ¼ 4m
b

−
bKeN0

r0ω2
∞

K0

�
b
r0

�
þOðm2; N2

0; mN0Þ; ðA21Þ

with K0 the modified zero Bessel function of the second
kind. A similar expression obtained using another method
can be found in Ref. [82].
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