
 

Noether and Abbott-Deser-Tekin conserved quantities in scalar-tensor
theory of gravity both in Jordan and Einstein frames

Krishnakanta Bhattacharya,* Ashmita Das,† and Bibhas Ranjan Majhi‡

Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

(Received 15 March 2018; published 8 June 2018)

We revisit the thermodynamic aspects of the scalar-tensor theory of gravity in the Jordan and in the
Einstein frame. Examining the missing links of this theory carefully, we establish the thermodynamic
descriptions from the conserved currents and potentials by following both the Noether and the Abbott-
Deser-Tekin (ADT) formalism. With the help of conserved Noether current and potential, we define the
thermodynamic quantities, which we show to be conformally invariant. Moreover, the defined quantities
are shown to fit nicely in the laws of (the first and the second) black hole thermodynamics formulated by
the Wald’s method. We stretch the study of the conformal equivalence of the physical quantities in these
two frames by following the ADT formalism. Our further study reveals that there is a connection between
the ADT and the Noether conserved quantities, which signifies that the ADT approach provide the
equivalent thermodynamic description in the two frames as obtained in Noether prescription. Our whole
analysis is very general as the conserved Noether and ADT currents and potentials are formulated off-shell
and the analysis is exempted from any prior assumption or boundary condition.
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I. INTRODUCTION

To date the predictions of general relativity (GR), as
proposed by Einstein, are successfully verified by several
experiments with enormous degree of precision. The
discovery of gravitational wave in the year of 2016 [1]
has added another feather to the crown. Despite of the big
success of this theory, several recent experiments [2–4]
reveal that the Einstein’s general relativity is not a complete
theory. In order to address the limitations of GR, several
modified theories of gravity are proposed which has been
the subjects of ardent research works for past few decades.
Each of these modified GR theories have their own
significance and provides distinct motivation to analyse
them critically. Among various modified theories of grav-
ity, the scalar-tensor theory is the most popular one for
many reasons [5–10]. This modified theory can be analysed
with respect to the two frames, one is known as Jordan
frame where the conventional Lagrangian of GR gets
modified with the inclusion of the scalar field ϕ. As a
result, in the modified action, the Ricci scalar gets mini-
mally coupled with the scalar field. This nonminimal
coupling can be removed by the conformal transformation
of the metric tensor along with the rescaling of the scalar
field and, by the virtue of these transformations, one arrives
to the another frame, known as the Einstein frame.

There are lot of arguments on the fact that which of these
two frames can be considered as more physical one [11,12]
(also see the reviews [13,14] to get more insights). There is
another controversial aspect of this theory which states
whether the conformal equivalence of the action in the two
frames is merely a mathematical equivalence or this equiv-
alence is also reflected in the dynamical [15–18] and the
underlying thermodynamic aspects aswell [19–23] (also see
the recent papers [24–28], which discusses on the equiv-
alence of the two frames in the quantum level). There are a
few unsolved issues such as, what are the explicit covariant
expressions of the physical quantities (energy, entropy,
temperature) and how they are connected in the two frames.
Although, the expression of the entropy and the temperature
is widely accepted [20,21] to some extent but, there is a
controversy in the expression of the energy which can be
used for the thermodynamic description in this theory. Most
of the existing expressions of energy (or mass) as described
in literature are not conformally invariant [29–31], whereas,
the expressions of the entropy and the temperature are
conformally invariant. This makes the physicists more
puzzled as none of the existing energy, so far, can be used
together with entropy and temperature for the thermody-
namic description. In this regard, the question, which
remains unsolved for a long time is what is the thermody-
namic approach to define the mass (or energy). Thus, in
order to resolve these issues, more investigation is required
to provide satisfactory answers to these questions.
In our previous work [32], we have systematically devel-

oped the arguments to prove that all the thermodynamic
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quantities (For example: energy, entropy, temperature) must
be equivalent in the two frames, without taking any prior
assumption but, we could not formulate the exact covariant
expression of the thermodynamic quantities using themethod
which we have followed in [32]. It is well-known that the
conserved currents in a theory play an important role to
understand the thermodynamic aspects of the corresponding
theory. Therefore, in this work, we formulate the thermody-
namic descriptions using the conserved quantities following
the two different methods. One is the Noether prescription of
defining the conserved currents and the potentials due to the
diffeomorphism and, the other one is the ADT method of
defining conserved currents in the presence of a Killing
vector. In both the cases, the conserved quantities will be
obtained off-shell. Therefore, the expressions of the currents
and potentials are also applicable for a generic null-surface as
well, which are not derived using the equations of motion.
Therefore, from the viewpoint of the emergent gravity
paradigm, our analysis play a significant role. Using the
obtained conserved quantities, we shall define the covariant
expressions of all the thermodynamic quantities, which will
be shown to fit nicely in the (first and second) laws of black
hole thermodynamics. Subsequently, we show that the
thermodynamic quantities are exactly conformally invariant
without using any prior assumptions or boundary conditions.
Similar conclusion has also been made in the context of
cosmological aspects of this theory where several physical
quantities have been defined in an invariant way [33–35].
Moreover, we obtain that the conserved currents in these

two approaches (Noether and ADT) are connected to each
other andwe shall show the explicit connectionbetween them.
In addition, the ADT potentials in two frames are shown to be
related with each other in the similar fashion like the Noether
counter parts, establishing the equivalence of thermodynamic
quantities, defined by the ADT potentials. Thus, our work,
provides a robust method to formulate the off-shell conserved
quantities in two different approaches and resolves the
ambiguities in the thermodynamic descriptions in the scalar-
tensor theory which prevailed for the last few decades.
The paper will be organized as follows. In the following

section, we provide a brief description of the scalar-tensor
theory from the action level. In the next section, we formulate
theoff-shellmethodof defining theconservedNoether current
and potential in the two frames due to the diffeomorphism. In
the later section,we shall define the thermodynamic quantities
in these two frames and prove the first law of BH thermo-
dynamics in each frame following the Iyer-Wald formalism
[36]. Then, we establish the conformal invariance of defined
thermodynamic quantities in the two frames and subsequently
the entropy increasing theorem (the second law) is also
established. Then, in Sec. V, we focus on another approach
called off-shell ADT formalism in the two frames of the
scalar-tensor theory and obtain the corresponding thermody-
namic descriptions. We shall conclude our analysis high-
lighting the major outcomes and its implications in Sec. VII.

II. ACTION IN JORDAN AND EINSTEIN FRAMES:
IN A NUTSHELL

Let us start describing the scalar-tensor theory from the
rudimentary level, i.e., from the action level. The action of
the scalar-tensor theory in the Jordan frame is given as

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L

¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

16π

�
ϕR −

ωðϕÞ
ϕ

gab∇aϕ∇bϕ − VðϕÞ
�
:

ð1Þ
In this frame the scalar field ϕ, is nonminimally coupled
with the Ricci-scalar and the Brans-Dicke parameter ω,
which is a generalized function of the scalar field ϕ. Here,
we consider only the gravitational action for our further
analysis. We mention that in our analysis, the presence of
the external matter fields does not play any significant role
in order to obtain the relations among the thermodynamic
quantities in these two frames in the background of a scalar-
tensor theory.
Earlier works suggest that the nonminimal coupling of

the scalar field with the Ricci-scalar can be eradicated with
the help of the conformal transformation which is given as,

gab → g̃ab ¼ Ω2gab; Ω ¼
ffiffiffiffi
ϕ

p
; ð2Þ

with the rescaling of the scalar field

ϕ → ϕ̃ with dϕ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

16π

r
dϕ
ϕ

: ð3Þ

In several literature it is mentioned that by the virtue of the
above two simultaneous transformations (2) and (3), one
arrives to the Einstein frame and the action in this frame can
be written as,

Ã ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
L̃

¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
16π

−
1

2
g̃ab∇̃aϕ̃∇̃bϕ̃ −Uðϕ̃Þ

�
; ð4Þ

where Uðϕ̃Þ ¼ VðϕÞ
16πϕ2. But, in our earlier work [32] we have

investigated the exact relation of the Lagrangians in these
two frames due to the conformal transformation and obtain,

ffiffiffiffiffiffi
−g̃

p
L̃ ¼ ffiffiffiffiffiffi

−g
p

L −
3

16π

ffiffiffiffiffiffi
−g

p
□ϕ: ð5Þ

Let us now discuss about the last term of the above
equation, which we shall see later plays an important role in
our main analysis. Note that this term is a total derivative
term and contains second order time derivative of ϕ.
Therefore it creates issues in obtaining the equation of
motion for the following reasons. Being a second order
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derivative term, one needs to fix simultaneously the field and
its canonical momentum at the two end points in the least
action formalism. Classically, if we fix arbitrarily both the
parameters ϕ as well as the first order derivative of ϕ at the
two boundary points, there may not exist a classical solution
for the field ϕ consistent with the boundary conditions.
Moreover, in general, we prefer that the action principle
must obey the composition rule. This implies that, at the
intermediate point, the first order derivative of ϕ has to be
continuous but not necessarily to be a smooth function. It
infers that the first order derivative ofϕ remains arbitrary (for
instance, see a detailed discussion in page 241 of [37]). Thus,
in the classical regime, fixing both ϕ and its first order
derivative simultaneously at the boundary is not admissible.
Moreover, this prescription stems further problem in quan-
tizing the theory as the simultaneous application of these two
boundary conditions, indeed contradicts the uncertainty
principle. It may be pointed out that this problem, however,
is not new in the context of the general relativity (GR) as the
same happens in case of the variations of Einstein-Hilbert
action with respect to gab to obtain Einstein’s equations of
motion. Twoways are usually being adopted to resolve such
situation. One needs to either discard this total derivative
term or add a judiciously chosen boundary term which
cancels the unwanted terms, appearing in the variation of the
original action. For example, in GR, the popular boundary
term is the Gibbons-Hawking-York (GHY) boundary term.
The similar can be done in the present situation as well.
Addition of a precise GHY like boundary term in this case
has also been adopted in this theory (for a discussion, see
[32]). But remember that such a choice is not unique as there
may exist other termwhich also serves the same purpose (for
GR case, see [38]). On the other hand, following the other
argument, the boundary term [the last term of Eq. (5)] has
usually been disregarded in the literature.
The prescription of neglecting the total derivative term at

the level of finding equation of motion may be permissible;
but such a term can be important in defining various physical
quantities of the theory. Observe that the actions in two
frames are same if one does not discard the last term of
Eq. (5). Thus, discarding of it influences an in-built
inequivalence between these Lagrangians which can yield
several deeper inequivalence even at the classical level (see
[32] for this particular issue). Therefore, we keep this term
for our analysis. In this paper our motivation is to find the
thermodynamic quantities in the two frames and establish a
connection between them. It may beworthwhile to point out
that a boundary term can contribute to thermodynamical
description of gravity. Therefore, in terms of finding
thermodynamic quantities and their relations in these two
frames, surface terms in the actionmay play a very important
role. Hence for a robust study of the thermodynamic
description of the scalar-tensor theory, now onward we
perform our further analysis by considering themost general
form of Lagrangian of the following form:

L0 ¼ L − ð3=16πÞ□ϕ: ð6Þ
Our analysis is in the same line of Noether prescription by
Wald in GR case [36]. In this discussion one considers the
diffeomorphism invariant action as

ffiffiffiffiffiffi−gp
Rwithout dropping

or adding a boundary term in it to define thermodynamics.
Adopting the same spirit, we also do not discard or include
anything in the theory.We shall find that the thermodynamic
quantities are well defined and equivalent in two frames
which was usually sporadically stated in earlier analysis,
thereby establishing the importance of retaining the boun-
dary term.

III. CONSERVED QUANTITIES IN NOETHER
PRESCRIPTION: OFF-SHELL CONDITION

In this section, we shall obtain the Noether current and
the Noether potential due to the diffeomorphism invariance
of the Lagrangian. We start with the analysis in Jordan
frame followed by Einstein frame in the later part and we
emphasize on the point that our approach is very general in
nature where we perform our mathematical analysis under
the off-shell condition.

A. Jordan frame quantities

The arbitrary variation of the action with the Lagrangian
L0 in the Jordan frame yields

δð ffiffiffiffiffiffi
−g

p
L0Þ ¼ ffiffiffiffiffiffi

−g
p

Eabδgab þ
ffiffiffiffiffiffi
−g

p
EðϕÞδϕ

þ ffiffiffiffiffiffi
−g

p ∇aΘ0aðq; δqÞ; ð7Þ
where q ∈ fgab;ϕg. Eab ¼ 0 and EðϕÞ ¼ 0, provide the
equations of motion for the metric tensor gab and the scalar
field ϕ respectively andΘ0aðq; δqÞ is the boundary term. As
we look for the off-shell Noether and ADT currents,
we nowhere use the equations of motion while obtaining
those quantities. The exact expressions of Eab, EðϕÞ, and
Θ0aðq; δqÞ are given by,

Eab ¼
1

16π

�
ϕGab þ

ω

2ϕ
∇iϕ∇iϕgab −

ω

ϕ
∇aϕ∇bϕ

þ V
2
gab −∇a∇bϕþ∇i∇iϕgab

�
;

EðϕÞ ¼
1

16π

�
Rþ 1

ϕ

dω
dϕ

∇iϕ∇iϕþ 2ω

ϕ
□ϕ −

dV
dϕ

−
ω

ϕ2
∇aϕ∇aϕ

�
; and

Θ0aðq; δqÞ ¼ Θaðq; δqÞ − 1

16π

�
3

2
gijδgij∂aϕ

− 3gia∂bϕδgib þ 3∂aðδϕÞ
�
; ð8Þ

where,
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Θaðq; δqÞ ¼ 1

16π

�
−2gab

ω

ϕ
ð∇bϕÞδϕþ ϕδva

− 2ð∇bϕÞpiabdδgid

�
: ð9Þ

Here, Gab ¼ Rab − 1
2
gabR is the Einstein tensor and

δva ¼ 2pibad∇bδgid;

piabd ¼ ∂R=∂Riabd ¼ ð1=2Þ½gibgad − gidgab�: ð10Þ

The terms within the curly brackets in the expression of
Θ0aðq; δqÞ in (8), are originated from the variation of the
□ϕ term in L0. People usually do not take the contribution
from these extra terms but, we show later, these extra terms
in Θ0aðq; δqÞ play crucial role in the conformal invariance
of the thermodynamic quantities in the two frames.
It is well known that in Einstein’s gravity, one can define

the conserved off-shell Noether current due to the fact
that the covariant derivative of the Einstein tensor vanishes
(see the project 8.1 of [37]). In the scalar-tensor theory, we
are able to find out a similar identity, which helps us to
formulate the off-shell Noether current.
From the Eq. (8), we calculate ∇bEab, which is given as

∇bEab ¼ Gabð∇bϕÞ −
1

2ϕ

dω
dϕ

ð∇aϕÞð∇bϕÞð∇bϕÞ

−
ω

ϕ
ð∇aϕÞ□ϕþ 1

2

dV
dϕ

ð∇aϕÞ

−∇b∇a∇bϕþ∇a∇b∇bϕ: ð11Þ

Using ∇b∇a∇bϕ −∇a∇b∇bϕ ¼ Rab∇bϕ in the above
Eq. (11) and using the expression of Eϕ from (8), one
finally obtains,

∇bEab ¼ −
1

2
ð∇aϕÞEðϕÞ: ð12Þ

The above relation shows the explicit connection between
Eab and EðϕÞ which is not intuitively expected by looking
into the first two equations of Eq. (8). This relation in turn
helps us to find out the explicit value of the off-shell
Noether current and potential in the Jordan frame.
Due to the diffeomorphism xa → xa þ ξa, the off-shell

change in the Lagrangian is given from (7) as,

£ξð
ffiffiffiffiffiffi
−g

p
L0Þ ¼ −2

ffiffiffiffiffiffi
−g

p
Eab∇aξb þ ffiffiffiffiffiffi

−g
p

EðϕÞξa∇aϕ

þ ffiffiffiffiffiffi
−g

p ∇aΘ0aðq; £ξqÞ; ð13Þ

where £ξ denotes the Lie variation. The left-hand side
(LHS) of the Eq. (13) gives

£ξð
ffiffiffiffiffiffi
−g

p
L0Þ ¼ L0£ξð

ffiffiffiffiffiffi
−g

p Þ þ ffiffiffiffiffiffi
−g

p
£ξL0Þ

¼ ffiffiffiffiffiffi
−g

p
L0∇aξ

a þ ffiffiffiffiffiffi
−g

p
ξa∇aL0

¼ ffiffiffiffiffiffi
−g

p ∇aðL0ξaÞ: ð14Þ

The contribution from the right-hand side (RHS) of (13)
can be written as,

− 2
ffiffiffiffiffiffi
−g

p ∇aðEabξbÞ þ 2
ffiffiffiffiffiffi
−g

p
ξb∇aEab

þ ffiffiffiffiffiffi
−g

p
EðϕÞξa∇aϕþ ffiffiffiffiffiffi

−g
p ∇aΘ0aðq; £ξqÞ:

Using the relation of (12) in the above expression, the
whole expression reduces to a total derivative term which is
given as,

ffiffiffiffiffiffi−gp ∇a½−2Eabξb þ Θ0aðq; £ξqÞ�. Thus, finally
(13) gives,

∇a½L0ξa þ 2Eabξb − Θ0aðq; £ξqÞ� ¼ 0: ð15Þ

Therefore, one can identify the term within the square
bracket as a conserved quantity which is nothing but the
Noether current due to the diffeomorphism. We denote it by
J0a, where,

J0a ¼ L0ξa þ 2Eabξb − Θ0aðq; £ξqÞ: ð16Þ

The above expression of J0a can be further expressed as
J0a ¼ ∇bJ0ab, where the antisymmetric (off-shell) Noether
potential is given as (see the Appendix A for detail
discussion)

J0ab ¼ 1

16π
½∇aðϕξbÞ −∇bðϕξaÞ�: ð17Þ

These quantities play an important role in the study of black
hole thermodynamics which we shall derive by following
the Iyer-Wald formalism in the subsequent section.
For the sake of completeness, let us mention the

expression of Noether potential in the Jordan frame when
one consider the Lagrangian L instead of L0 and it can be
depicted as,

Jab ¼ 1

16π
½ϕð∇aξb −∇bξaÞ þ 2ξað∇bϕÞ − 2ξbð∇aϕÞ�:

ð18Þ

The above relation in (18) is usually given as the Noether
potential in the literature [19,32]. However, the Noether
potential in (18), cannot be expressed as proportional to the
Noether potential in the Einstein frame. On the other hand,
we subsequently show that, the expression of the Noether
potential, as given in (17), can be written as proportional to
the Noether potential in the Einstein frame, which imply
conformal invariance of the thermodynamic quantities in
these two frames. Let us now follow the Noether pre-
scription in the Einstein frame.

BHATTACHARYA, DAS, and MAJHI PHYS. REV. D 97, 124013 (2018)

124013-4



B. Einstein frame quantities

Applying the variational principle on the action men-
tioned in Eq. (4), we obtain

δð
ffiffiffiffiffiffi
−g̃

p
L̃Þ ¼

ffiffiffiffiffiffi
−g̃

p
Ẽabδg̃ab þ

ffiffiffiffiffiffi
−g̃

p
Ẽðϕ̃Þδϕ̃

þ
ffiffiffiffiffiffi
−g̃

p ∇̃aΘ̃aðq̃; δq̃Þ; ð19Þ

where q̃ ∈ fg̃ab; ϕ̃g and

Ẽab¼
G̃ab

16π
−
1

2
∇̃aϕ̃∇̃bϕ̃þ

1

4
g̃ab∇̃iϕ̃∇̃iϕ̃þ

1

2
g̃abUðϕ̃Þ;

Ẽðϕ̃Þ ¼ ∇̃a∇̃aϕ̃−
dU

dϕ̃
; and

Θ̃aðq̃;δq̃Þ¼ δṽa

16π
−ð∇̃aϕ̃Þδϕ̃: ð20Þ

As in the earlier case, here G̃ab is the Einstein tensor in this
frame and

δṽa ¼ 2p̃ibad∇̃bδg̃id;

p̃iabd ¼ ð1=2Þ½g̃ibg̃ad − g̃idg̃ab�: ð21Þ

Proceeding similarly as in the Jordan frame analysis, here
also we work under the off-shell condition and in order to
define off-shell conserved quantities one needs a Bianchi-
type identity in the Einstein frame. From (20), it is
straightforward to show that a similar expression as in
the Jordan frame [i.e., (12)] can be obtained as follows,

∇̃bẼab ¼ −
1

2
ð∇̃aϕ̃Þ

�
□̃ ϕ̃−

dU

dϕ̃

�
¼ −

1

2
ð∇̃aϕ̃ÞẼϕ: ð22Þ

Like the Jordan frame analysis, here we use the above
equation to derive the off-shell Noether current and Noether
potential in the Einstein frame. We refer our reader to the
earlier mathematical analysis as done in the Jordan frame
and Appendix B in order to get a detail calculations of the
Noether current and Noether potential in Einstein frame.
Hence, here we summarize our result for Noether current
and potential as,

J̃a ¼ L̃ξ̃a þ 2Ẽabξ̃b − Θ̃aðq̃; £ξq̃Þ: ð23Þ

and,

J̃ab ¼ 1

16π
½∇̃aξ̃b − ∇̃bξ̃a�: ð24Þ

Thus, we obtain the conserved off-shell Noether current
and the Noether potential in the two frames.
Now, we adopt the Wald’s formalism to established the

first law of the black hole thermodynamics in the two
frames by using the above derived quantities, in the

following section. We shall define all the thermodynamic
quantities and show the explicit conformal invariance of
these quantities in the two frames in the background of the
scalar-tensor theory.

IV. THERMODYNAMIC QUANTITIES
BY IYER-WALD FORMALISM AND
THEIR CONFORMAL INVARIANCE

A. Jordan frame

The expression of the Noether current and the Noether
potential in the Jordan frame are given in (16) and (17).
According to the Wald’s formalism we shall use the on-
shell condition which is given by, Eab ¼ 0. Let us now take
the variation of the metric tensor and the scalar field which
leaves the diffeomorphism vector ξa invariant (remember,
δξa ≠ 0 in general as δgab ≠ 0) and therefore the change in
the conserved on-shell Noether current with respect to the
variation of the fields becomes,

δð ffiffiffiffiffiffi
−g

p
J0aÞ ¼ δð ffiffiffiffiffiffi

−g
p

L0Þξa − δ½ ffiffiffiffiffiffi
−g

p
Θ0aðq; £ξqÞ�: ð25Þ

Using Eq. (7), we get the variation of the Noether current in
terms of the boundary term Θ0a, which is given as

δð ffiffiffiffiffiffi
−g

p
J0aÞ ¼ ffiffiffiffiffiffi

−g
p ½∇iΘ0iðq; δqÞ�ξa − δ½ ffiffiffiffiffiffi

−g
p

Θ0aðq; £ξqÞ�:
ð26Þ

We shall see that this variation of the Noether current can be
written in terms of the symplectic Hamiltonian density by
using an identity which one can straightforwardly obtain:

£ξ½
ffiffiffiffiffiffi
−g

p
Θ0aðq; δqÞ� ¼ ffiffiffiffiffiffi

−g
p

ξa∇i½Θ0iðq; δqÞ�
− 2

ffiffiffiffiffiffi
−g

p ∇b½ξ½aΘ0b�ðq; δqÞ�; ð27Þ
where A½aBb� ¼ ð1=2ÞðAaBb − AbBaÞ. Using the above
identity in (26), we obtain

δð ffiffiffiffiffiffi
−g

p
J0aÞ ¼ £ξ½

ffiffiffiffiffiffi
−g

p
Θ0aðq; δqÞ� − δ½ ffiffiffiffiffiffi

−g
p

Θ0aðq; £ξqÞ�
þ 2

ffiffiffiffiffiffi
−g

p ∇b½ξ½aΘ0b�ðq; δqÞ�: ð28Þ
Now define:

ωa ¼ −£ξ½
ffiffiffiffiffiffi
−g

p
Θ0aðq; δqÞ� þ δ½ ffiffiffiffiffiffi

−g
p

Θ0aðq; £ξqÞ�: ð29Þ
The significance of ωa will be explained in a few steps later.
With this definition of ωa, one can obtain from (28),

ωa ¼ −δð ffiffiffiffiffiffi
−g

p
J0aÞ þ 2

ffiffiffiffiffiffi
−g

p ∇b½ξ½aΘ0b�ðq; δqÞ�: ð30Þ
Let us now discuss the significance of ωa. For a classical
system we write, δLðxi; _xiÞ ¼ ½ð∂L∂xiÞ − dtð∂L∂ _xi

Þ�δxi þ
dt½piδxi� where, xi is the generalized coordinate and pi ¼
∂L
∂ _xi

is the generalized momentum. The equation of motion
vanishes on-shell and, the variation of the Hamiltonian due
to the arbitrary variation of the coordinates xi is given as
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δHðxi; piÞ ¼ δ½piðdtxiÞ� − dt½piðδxiÞ�: ð31Þ

By comparing (29) and (31), one can identify that ωa as the
variation of the symplectic Hamiltonian density where the
boundary terms in both the equations are equivalent to each
other as,

ffiffiffiffiffiffi−gp Θ0aðq; δqÞ≡ piðδxiÞ and ffiffiffiffiffiffi−gp Θ0aðq; £ξqÞ≡
piðdtxiÞ.
Thus, with this above identification, the total variation of

the Hamiltonian can be written as [using the Eq. (30)],

δH½ξ� ¼
Z
c
dΣa

ωaffiffiffiffiffiffi−gp

¼ −δ
Z
c
dΣa∇bðJ0abÞ þ 2

Z
c
dΣa∇b½ξ½aΘ0b�ðq; δqÞ�;

ð32Þ

where, the integration is done on Cauchy hypersurface
which we symbolize as c. dΣa ¼ na

ffiffiffi
h

p
d3x is the elemental

surface area of the three-dimensional Cauchy hypersurface,
with na being the normal and h being the determinant of the
induced metric of the surface. Applying the Stoke’s law in
the above equation we can reduce the 3-surface integral of
above (32) to a 2-surface integral. We consider ξa is a
Killing vector and the outer surface lies at assymptotic
infinity (i.e., ∂c∞). The inner surface of c is taken as a
bifurcation surface, i.e., H which also can be depicted as
the horizon of the black hole. This implies ξa ¼ 0 at H.
Thus, from (32) we obtain,

δH½ξ� ¼ −
1

2
δ

Z
H
dΣabJ0ab þ

1

2
δ

Z
∂c∞

dΣabJ0ab

−
Z
∂c∞

dΣabξ
½aΘ0b�ðq; δqÞ: ð33Þ

As ξa ¼ 0, no contribution comes from the term
ξ½aΘ0b�ðq; δqÞ on H. Moreover, as ξa is a Killing vector,
δH½ξ� ¼ 0. By following the Wald’s prescription [36], the
first term on the RHS of (33), yields − κ

2π δS with κ being
the surface gravity and, the other terms result in δM −
ΩHδJ (for a more rigorous discussions see [36]). Here, we
define the entropy (S), the mass of the black hole (M), and
the angular momentum (J) as,

δS ¼ π

κ
δ

Z
H
dΣabJ0ab;

δM ¼ 1

2

Z
∂c∞

½δðdΣabJ0abÞ − 2dΣabξ
½aΘ0b�ðq; δqÞ�jξ¼ξðtÞ ;

δJ ¼ −
1

2

Z
∂c∞

½δðdΣabJ0abÞ − 2dΣabξ
½aΘ0b�ðq; δqÞ�jξ¼ξðϕÞ :

ð34Þ

So, finally from (33), we obtain

δM ¼ TδSþ ΩHδJ; ð35Þ

where we use temperature T ¼ κ=ð2πÞ in the above
equation. We comment that Eq. (35) is the desired form
of first law of the black hole thermodynamics in the Jordan
frame with the Lagrangian L0. Instead of L0, if one consider
the Lagrangian as L in the Jordan frame, the expression of
the entropy, mass and the angular momentum of the black
hole can be obtained by replacing J0ab with Jab and
Θ0bðq; δqÞ with Θbðq; δqÞ in (34). Let us now approach
toward the Einstein frame and find out the thermodynamic
quantities in that frame.

B. Einstein frame

Proceeding similarly as the analysis of the first law of
thermodynamics in the Jordan frame in previous subsec-
tion, it takes hardly any computation to affirm that in the
Einstein frame we get the first law of the black hole
mechanics as δM̃ ¼ T̃δS̃þ Ω̃HδeJ and, the corresponding
thermodynamic quantities are defined as

δS̃ ¼ π

κ̃
δ

Z
H
dΣ̃abJ̃ab;

δM̃ ¼ 1

2

Z
∂c∞

½δðdΣ̃abJ̃abÞ − 2dΣ̃abξ̃
½aΘ̃b�ðq̃; δq̃Þ�jξ̃¼ξ̃ðtÞ ;

δJ̃ ¼ −
1

2

Z
∂c∞

½δðdΣ̃abJ̃abÞ − 2dΣ̃abξ̃
½aΘ̃b�ðq̃; δq̃Þ�jξ̃¼ξ̃ðϕÞ :

ð36Þ

Let us now compare the thermodynamic quantities
obtained in the two frames.

C. Comparison of the thermodynamic quantities

We consider the Killing vector in the Einstein frame (ξ̃a)
is same as in the Jordan frame, i.e., ξ̃a ¼ ξa. The justifi-
cation of taking the Killing vectors ξ̃a ¼ ξa can be found in
[32]. The idea is the following. If ξa is a Killing vector in
Jordan frame, then it must be a conformal Killing vector in
Einstein frame (see [20] for a discussion on this under
conformal transformation). Remember that here we are
discussing the whole thermodynamics in presence of
Killing vector in both frames. Therefore ξ̃a ¼ ξa to be
Killing one, we need to impose the condition that the
conformal factor must be Lie transported along ξa; i.e.,
£ξΩ2 ¼ 0. Earlier the authors in [19] have addressed this
issue by assuming the above condition and shown that the
thermodynamic quantities are equivalent in these two
frames under the condition of spacetime to be asymptoti-
cally flat.
As ξ̃a ¼ ξa, we obtain ξ̃a ¼ ϕξa and, the relation

between the complimentary null vectors in the two frames
are given as la ¼ l̃a. Thus,

BHATTACHARYA, DAS, and MAJHI PHYS. REV. D 97, 124013 (2018)

124013-6



dΣ̃ab ¼
ffiffiffĩ
σ

p ðξ̃al̃b − ξ̃bl̃aÞd2x ¼ ϕ2dΣab; ð37Þ

where σ and σ̃ ¼ ϕ2σ are the determinant of the induced
metric of the two-surface in the Jordan and Einstein frames
respectively. Therefore using the above relation, it can be
easily seen that, (see the Appendix C for detail discussion)

J̃ab ¼ J0ab

ϕ2
: ð38Þ

In the Appendix C, we also show that,

Θ̃a ¼ Θ0a

ϕ2
: ð39Þ

Using the above relations, it can be seen that S̃ ¼ S, M̃ ¼
M and J̃ ¼ J in these two frames. We comment that the
equivalence of the angular velocity and the surface gravity
(or the temperature) in these two frames can be shown by
following the procedure as described in [19].
We want to emphasize on the fact that Jab and Θa in the

Jordan frame (when one takes the Lagrangian as L instead
of L0), cannot be written as proportional to the correspond-
ing quantities in the Einstein frame. Therefore, one cannot
establish the exact equivalence of the thermodynamic
quantities between the Jordan and the Einstein frame, by
considering the Lagrangian L in the Jordan frame.
Whereas, in our case, we show the conserved Noether
potentials of the two frames are proportional to each other
with the proportionality factor as ϕ2. This implies, in our
case, the conserved Noether charge is the same in two
frames. We want to further emphasize that in the work of
Koga and Maeda [19], assuming the spacetime to be
asymptotically flat, the equivalence of the thermodynamic
quantities in the two frames have been established by
following the Wald’s formalism. On the contrary in our
work, by considering a more generalized Lagrangian L0, we
establish the exact equivalence of thermodynamic param-
eters without making any assumption or imposing boun-
dary conditions. Therefore, in this regard our analysis is
more general and implying a crucial fact that in order to
explore the thermodynamic equivalence in the two frames,
one needs to consider the Lagrangian as L0 in the Jordan
frame instead of L.

D. Connection of the derived mass
with the Brown-York mass term

Above, we have defined the masses in the two frames
which are conformally invariant and are compatible with
the first law. In literature, there are several prescription of
defining the mass but, most of them are not conformally
invariant. The only candidate, which is conformally invari-
ant in the literature, is the Brown-York (BY) mass [39] (also
see [40] which discusses that the BY mass is conformally

invariant but, the BY energy is not). Therefore, we inves-
tigate whether the derived expressions of mass in (34) and
(36) are the same as the BY mass. Here, we do the analysis
in the Einstein frame for simplicity. From the transforma-
tion relations of the quantities, the same conclusion can be
drawn in the Jordan frame as well.
We consider 2-dimensional null-hypersurface character-

ized by the induced metric σ̃ab ¼ g̃ab − ñañb þ ũaũb,
where ũa and ña are the timelike and spacelike normals
respectively. From the above expression of δM̃ in (20) we
obtain,

δM̃ ¼ δM̃BY −
1

8π

Z
d2x̃δð

ffiffiffĩ
h

p
K̃ð3ÞÞ

þ
Z

d2x̃½
ffiffiffĩ
h

p
ñaΘ̃aðq̃; δq̃Þ�; ð40Þ

where, M̃BY ¼ 1
8π

R
d2x̃ Ñ

ffiffiffĩ
σ

p
k̃ð2Þ is the expression for BY

mass with Ñ being the lapse function and k̃ð2Þ being the
trace of the extrinsic curvature tensor of the null surface and
K̃ð3Þ ¼ ∇̃aña is the trace of the extrinsic curvature tensor of
the induced 3-surface characterized by the induced metric
h̃ab ¼ g̃ab − ñañb. The above relation (40) shows the
explicit connection of our derived mass with the BY mass.
The above relation can be further modified using
Eq. (12.104) of [37], which is given as

δM̃ ¼ δM̃BY −
1

16π

Z
d2x̃

ffiffiffĩ
h

p
½ðK̃ð3Þ

ab − K̃ð3Þh̃abÞδh̃ab

− D̃iŨi þ ñað∇̃aϕ̃Þδϕ̃�: ð41Þ

Here, D̃i denotes the covariant derivative operator in the
three-space h̃ab and Ũi ¼ 2ñjh̃

i
kδg̃

jk − ñih̃jkg̃jk. This shows
that our mass is connected with the BY mass with some
additive terms.

E. Entropy increase theorem and the modified null
energy condition in Jordan frame

We analyse the entropy increase theorem in the back-
ground of this framework in order to get a complete picture
of thermodynamic description of the scalar-tensor theory.
Usually in GR the entropy increase theorem is established
by assuming the null energy condition. But, we do not
know what would be the null energy condition in the Jordan
frame. Hence, one has to search for a similar energy
condition which is different from the usual null energy
condition. Here we show an interesting fact that the
obtained similar energy condition in the Jordan frame, is
proportional to the null energy condition as defined in the
Einstein frame.
In this context a similar work has been done in [41],

where the authors have interpreted the term at the RHS of
the Eq. (5) of [41] as the stress-energy tensor of the scalar
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field ϕ. But, we have not adopted that approach in our
analysis. In our work, using Eab ¼ 0 from (8), we obtain,

Gab ¼ −
ω

2ϕ2
∇iϕ∇iϕgab þ

ω

ϕ2
∇aϕ∇bϕ −

V
2ϕ

gab

þ 1

ϕ
∇a∇bϕ −

1

ϕ
∇i∇iϕgab: ð42Þ

From the above equation we cannot identify the RHS as the
energy-momentum (EM) tensor of the scalar field ϕ in the
Jordan frame as this is not compatible with the usual
definition of the EM tensor (given as Tab ¼ 2ffiffiffiffi−gp δLmatter

δgab
).

Thus, in this section, we try to provide a justifiable way to
obtain the increase in the entropy by using the modified
energy condition.
From (42), we calculate Rablalb (with la being a null

vector), which is given as,

Rablalb ¼
ω

ϕ2
ðla∇aϕÞ2 þ

1

ϕ
lalb∇a∇bϕ: ð43Þ

The first term is a positive definite for ω > 0. Thus we write

Rablalb −
1

ϕ
lalb∇a∇bϕ ≥ 0: ð44Þ

The expression of the entropy in the Jordan frame is given
in (34) and using this equation our explicit calculation
shows that the entropy can be written as S ¼ A=4, where

A ¼
Z
H

ffiffiffi
σ

p
ϕd2x: ð45Þ

The above expression of the entropy matches to the Kang’s
prescription in [21]. Let us now find out the change in
entropy along a null geodesic congruence. Hence, we
calculate

dA
dλ

¼
Z
H

ffiffiffi
σ

p
ϕd2xθ0: ð46Þ

Here, λ parametrizes the null-congruence and θ0 ¼ θðlÞþ
1
ϕ
dϕ
dλ, where θ

ðlÞ ¼ 1ffiffi
σ

p d
ffiffi
σ

p
dλ is the expansion parameter along

the null vector la. We intend to establish in the following
analysis that dS

dλ ≥ always, by showing Θ0 ≥ 0.

dθ0

dλ
¼ dθðlÞ

dλ
−

1

ϕ2
ðla∇aϕÞ2 þ

1

ϕ
lalbð∇a∇bϕÞ;

¼ −
1

2
θ2 − σ2 − Rablalb −

1

ϕ2
ðla∇aϕÞ2

þ 1

ϕ
lalbð∇a∇bϕÞ: ð47Þ

The last expression is obtained using null Raychaudhuri
equation where the null vector la is an orthogonal-hyper-
surface. Using (44) we obtain dθ0

dλ ≤ 0. Therefore, the
prohibition of caustics demands that θ0 ≥ 0. Thus the
entropy increase theorem is established in this frame.
We now discuss that what is the significance of the

condition in (44). Although (44) is an identity in the Jordan
frame, here we urge to prove that it corresponds to the null
energy condition in the Einstein frame.
In the Einstein frame,

G̃ab

16π
¼ 1

2
∇̃aϕ̃∇̃bϕ̃ −

1

4
g̃ab∇̃iϕ̃∇̃iϕ̃ −

1

2
g̃abUðϕ̃Þ: ð48Þ

The right-hand side of the above equation can be identified

as the stress-energy tensor (
T̃ðϕ̃Þ
ab
2
) of the scalar field ϕ̃. Thus

we obtain

T̃ðϕ̃Þ
ab l

alb ¼ ðl̃a∇̃aϕ̃Þ2 ≥ 0: ð49Þ

The above equation (49) is the null energy condition in the
Einstein frame. Due to the conformal transformation we
obtain,

T̃ðϕ̃Þ
ab l

alb ¼ 1

ϕ2ω

�
2ωþ 3

16π

��
Rablalb −

1

ϕ
lalb∇a∇bϕ

�
: ð50Þ

Thus, we can conclude that the energy condition in the
Jordan frame (44) corresponds to the null energy condition
in the Einstein frame.

V. OFF-SHELL ADT POTENTIAL

The identification of the conserved charges in GR has
always been an important task for decades. There are
several methods of defining the conserved charges, each
with some advantages and disadvantages in its way. The
ADM formalism [42] of computing the total conserved
charge due to the Killing vectors has enjoyed the central
attention, which holds good for the asymptotically flat
spacetime. However, for the asymptotically nonflat or AdS
spacetime, this approach fails.
For the asymptotically AdS solutions, a covariant

method was developed by Abbott and Deser [43] to
compute the conserved Killing charges asymptotically.
This method was later extended by Deser and Tekin for
the higher order gravity theories [44–46] which popularly
known as the Abbott-Deser-Tekin (ADT) formalism. Here,
we extend the ADT formalism in the scalar-tensor theory
which is absent in literature. Moreover, we show the
explicit connection between the off-shell Noether potential
and the ADT potential and address the issue of invariance
of the ADT potentials in these two frames.
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For a Killing vector ξa, one can write,

JiADTjon−shell ¼ δEijξj; ð51Þ

which indeed is a conserved quantity under the on-shell
condition. Here, δEij is the linearized tensor (first order
change in the Equation of motion of the metric tensor due to
gab → gab þ δgab). The conservation of the JiADT follows
from the fact that∇bδEab ¼ 0 on-shell [using Eq. (12)] and
the property of the Killing vector (i.e., δEab∇aξb ¼ 0). This
conserved current we call as the ADT current. In the similar
manner, the conserved on-shell ADT current in the Einstein
frame can be written as, J̃iADTjon−shell ¼ δẼijξ̃j. At this
stage, we urge to derive the off-shell ADT currents in order
to make a more general and robust analysis. Hence, we
define the off-shell ADT currents in each frame and follow
the similar method as done in Einstein’s gravity case [47].

A. Jordan frame

We obtain that off-shell δEijξj can be written as an
antisymmetric total derivative term added with some extra
terms, where each of the extra terms is proportional to the
Eab, i.e.,

δEijξj ¼ ∇jJ
ij
ADT − Eikhkjξj þ

1

2
ξiEjkhjk −

1

2
ξjEi

jh; ð52Þ

where

JijADT ¼
1

32π
½ϕðξj∇khki − ξi∇khkjþ ξk∇ihkj

− ξk∇jhkiþ ξið∇jhÞ− ξjð∇ihÞþhjk∇kξ
i −hik∇kξ

j

þh∇½iξj�Þ þ ð∇kϕÞðξjhik − ξihjkÞ�: ð53Þ

and hab ¼ δgab or equivalently hab ¼ −δgab. Identifying
JiADT ¼ ∇jJ

ij
ADT in Eq. (52), we obtain

JiADTjoff−shell ¼ δEijξj þ Eikhkjξj −
1

2
ξiEjkhjk þ

1

2
ξjEi

jh:

ð54Þ

We refer our readers to the Appendix D for the detail
derivation.
As JijADT is an antisymmetric tensor, ∇iJiADT ¼ 0 even in

the off-shell which imply that the off-shell ADT current is
also a conserved quantity.
We now find out the conserved ADT current and

potential in the Einstein frame in the following section.

B. Einstein frame

As similar to the Jordan frame, off-shell δẼijξ̃j can be
written as,

δẼijξ̃j ¼ ∇̃jJ̃
ij
ADT − Ẽikh̃kjξ̃

j þ 1

2
ξ̃iẼjkh̃jk −

1

2
ξ̃jẼi

jh̃; ð55Þ

where

J̃ijADT ¼
1

32π
½ξ̃j∇̃kh̃

ki− ξ̃i∇̃kh̃
kjþ ξ̃k∇̃ih̃kj− ξ̃k∇̃jh̃ki

þ ξ̃ið∇̃jh̃Þ− ξ̃jð∇̃ih̃Þþ h̃jk∇̃kξ̃
i− h̃ik∇̃kξ̃

jþ h̃∇̃½iξ̃j��;
ð56Þ

and h̃ab ¼ δg̃ab, h̃ab ¼ −δg̃ab. Therefore following the
same analogy as in Jordan frame, one can define the
off-shell ADT current in the Einstein frame as,

J̃iADTjoff−shell ¼ δẼijξ̃j þ Ẽikh̃kjξ̃
j −

1

2
ξ̃iẼjkh̃jk þ

1

2
ξ̃jẼi

jh̃:

ð57Þ

We refer the Appendix E for the detail derivation of the
above Eq. (56). Following the earlier arguments, we com-
ment that also in the Einstein frame the off-shell ADT
current, i.e., J̃iADT is a conserved quantity.

VI. CONNECTION BETWEEN CONSERVED
OFF-SHELL ADT AND NOETHER POTENTIALS

Here, we urge to study the connection between the off-
shell ADT potential and the Noether potential. For the
Einstein’s gravity, this connection has been studied in
literature [48]. Equation (54) can be written as, (we drop
the subscript “off-shell” onward because all the further
calculations are done off-shell)

ffiffiffiffiffiffi
−g

p
JiADT ¼ δð ffiffiffiffiffiffi

−g
p

EijξjÞ −
1

2

ffiffiffiffiffiffi
−g

p
ξiEjkhjk: ð58Þ

The above relation follows from the fact that δξi ¼ 0 and
δϕ ¼ 0 as we consider only the change due to gab →
gab þ hab. By varying the Noether current in Jordan frame,
i.e., Eq. (16), under the change in the metric tensor, we
obtain

δð ffiffiffiffiffiffi
−g

p
J0iÞ ¼ 2δð ffiffiffiffiffiffi

−g
p

EijξjÞ−
ffiffiffiffiffiffi
−g

p
ξiEjkhjk

þ ffiffiffiffiffiffi
−g

p
ξi∇b½Θ0bðq;δqÞ�− δ½ ffiffiffiffiffiffi

−g
p

Θ0iðq;£ξqÞ�:
ð59Þ

Using the Eq. (58), the above equation reduces to

δð ffiffiffiffiffiffi
−g

p
J0iÞ ¼ 2

ffiffiffiffiffiffi
−g

p
JiADT þ

ffiffiffiffiffiffi
−g

p
ξi∇b½Θ0bðq; δqÞ�

− δ½ ffiffiffiffiffiffi
−g

p
Θ0iðq; £ξqÞ�: ð60Þ

As ξa is the Killing vector, in the above expression,
therefore we use δ½ ffiffiffiffiffiffi−gp Θ0iðq; £ξqÞ� ¼ £ξ½ ffiffiffiffiffiffi−gp Θ0iðq; δqÞ�
[which follows from the fact that ωa ¼ 0 in (29)]. Using
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this relation in the above equation, it is straightforward to
obtain

ffiffiffiffiffiffi
−g

p
JijADT ¼ 1

2
δð ffiffiffiffiffiffi

−g
p

J0ijÞ − ffiffiffiffiffiffi
−g

p
ξ½iΘ0j�ðq; δqÞ: ð61Þ

In the Einstein frame, by following the similar steps one
finally obtains,

ffiffiffiffiffiffi
−g̃

p
J̃ijADT ¼ 1

2
δð

ffiffiffiffiffiffi
−g̃

p
J̃ijÞ −

ffiffiffiffiffiffi
−g̃

p
ξ̃½iΘ̃j�ðq̃; δq̃Þ: ð62Þ

The above Eqs. (61) and (62) show the explicit connections
between the ADT and the Noether conserved quantities in
the two frames.
Now we intend to show that how the ADT potentials are

conformally connected in the two frames. Using (38) and
(39) in the Eqs. (61) and (62), it can be easily shown that,

J̃ijADT ¼ JijADT
ϕ2

: ð63Þ

Thus our result is implying that the ADT potentials in the
two frames are conformally connected to each other in the
same manner as we obtain in the case of Noether potentials.
Thus, the conserved ADT charges are invariant in the two
frames. Such a prediction was given earlier in [49].
Let us now conclude this section with the following

comments. In Komar’s method [50] of defining the mass
and angular momentum at the asymptotic infinity by using
the conserved Noether current, there appears an anomalous
factor of 2 [51]. This anomaly can be tackled by the
background subtraction method as described in [51].
Later, Wald provided an elegant solution in this context
by considering the variation of the Noether current
(we implemented the similar analysis in the Sec. IV
and defined the mass and the angular momentum in terms
of the integrals containing the Noether current along with
the correction term [as in Eq. (33)], which resolves the
anomalous 2.
Apart from the Wald’s formalism, the first law can be

established from the conserved ADT currents as well [52].
One can see from (61) and (62), the ADT potential consists
of the Noether potential along with the same extra
correction term which appears in the Wald’s formalism
[as in Eq. (33)]. The similar idea has also been successfully
adopted in other spacetime solutions like Lifshitz black
holes [53]. Thus we emphasize that the both way of
establishing the first law are equivalent and, therefore these
two methods can be implemented alternatively according to
one’s convenience. For the reasons stated above, we do not
include the explicit calculation of establishing the first law
using the ADT formalism.

VII. CONCLUSIONS

It is widely known that the correspondence between the
thermodynamic quantities and the spacetime geometry is
not confined only to the Einstein’s theory of general
relativity. Moreover, the recent experimental developments
are strongly suggesting us that, in order to get a complete
understanding of general relativity, one should move on to
the studies of modified theories of gravity and their
implications in gravitational and cosmological phenomena.
The scalar-tensor theory is one of the most popular among
the alternative theories of gravity but the underlying the-
rmodynamic description of this theory is not yet pro-
perly developed. Some of the ambiguities are as follows:
We have mentioned earlier that the scalar tensor theory can
be analysed in the Jordan frame and as well as in the
Einstein frame. Until now there is no exact covariant
expression of energy which can fit across all the thermo-
dynamic aspects of the theory in these two frames.
Moreover in this connection, there are several conflicts
between the physicists regarding the description of thermo-
dynamic quantities and their invariance in these two
frames.
In literature, the authors of [19] have shown that in the

background of an asymptotically flat spacetime, the
thermodynamic quantities are conformally equivalent in
these two frames in the scalar tensor theory. In our previous
work [32], we have shown that the thermodynamic quan-
tities must be conformally invariant but, in that framework
we could not provide the exact covariant expression of the
energy. However, there is another standard mechanism in
literature called ADT formalism, which also can be used as
a tool to understand the thermodynamic properties of
spacetime geometry. We emphasize on this point that the
critical study of thermodynamic properties using the ADT
formalism has not been analyzed yet in the background of
the scalar-tensor theory.
In this work, we intend to cast light on the above issues

and provide satisfactory answers to all these incongruities
in this theory. We start from the basic action level of the
scalar-tensor theory and show that the usual Lagrangian in
the two frames differ by a total derivative term due to the
conformal transformation. It is common in the study of
scalar-tensor theory, that most of the authors does not
carefully mention that the two Lagrangians in Jordan frame
and the Einstein frame are equivalent only up to a total
derivative term. Although a total derivative term does not
contribute to the dynamics of the system, but one must
contemplate deeply before one injudiciously neglect that
term in this theory while studying the thermodynamic
aspects. In our present work, we show that this surface term
actually plays the crucial role to obtain the conformal
equivalence of the thermodynamic quantities without
imposing any assumptions and boundary conditions.
In this work, the study of thermodynamic properties of

spacetime geometry is based on the concept of conserved
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currents as obtained from the two different approaches such
as the Noether approach and the ADT approach. All the
conserved quantities are off-shell, which can be used for a
generic null surface and can play a significant role in the
context of the emergent gravity paradigm. At first, we
obtain the off-shell Noether current and potential in both
the frames and, following the Wald’s formalism, we
identify the thermodynamic quantities from the conserved
Noether current. Later, we show that the identified thermo-
dynamic quantities fit nicely in the first law and the second
law of black hole mechanics. Subsequently we obtain an
important result in the background of our theoretical
framework that the thermodynamic parameters are con-
formally invariant in these two frames, if one consider the
□ϕ term in the Lagrangian. Hence, at this stage, we
comment that to examine the conformal invariance of
the thermodynamic quantities in the two frames in the
background of the scalar-tensor theory, one must not
disregard the contributions from the surface term. We also
emphasize that following our procedure of, i.e., the
inclusion of □ϕ term, one can avoid the use of any
boundary condition and assumption regarding the nature
of spacetime. Observing the above conclusions in Noether
prescription, we are keen to verify our results using the
ADT formalism in both the frames of this theory. Therefore
following the ADT mechanism, we obtain the conserved
ADT current and the corresponding ADT potential in both
the frames. Thereafter, we establish the connection of the
ADT current and potential to the Noether counterparts.
Moreover, we discuss the connection of the off-shell ADT
currents with the off-shell Noether current and Wald’s
formalism. Our results strongly support that, implementing
both of these standard formalism we find that the thermo-
dynamic descriptions and the thermodynamic quantities are
invariant in the two frames in the background of the scalar-
tensor theory. Our results suggest that these two approaches
of finding conserved quantities and describing the first law
of black hole thermodynamics are basically equivalent to
each other. We hope this work will be a significant one in
the thermodynamic description of the scalar-tensor theory.
Finally, we mention that in usual thermodynamics there

are intensive quantities (such as temperature and pressure
etc.) which do not change by conformal scalings, while
there are extensive quantities (like energy) which do change
under scaling. Our present situation is in contradiction with
this usual understanding. This issue can be understood in
the following way. In black hole thermodynamics, we
cannot categorize the extensive and the intensive variables
like the usual thermodynamic cases. For example, the
entropy is an extensive variable and also a function of
all other extensive parameters in the usual thermodynamics.
But, in black hole mechanics it is not an extensive variable
as it is proportional to the area of the black hole horizon.
If the two black holes are combined together, then
Bekenstein-Hawking area expression implies that the

entropy of the combined black hole is greater than the
sum of the entropy of the individual black holes. Moreover,
the temperature and pressure in the usual thermodynamic
case are intensive thermodynamic entities. But, in black
hole thermodynamics, those two quantities are scale
dependent (for instance, in the case of Schwarzschild black
hole the Hawking temperature is inverse of mass of the
black hole). The principal of equivalence implies that
the temperature is red-shifted or blue-shifted in the same
manner as of the frequency of the photons. Apart from
these obvious differences with the usual thermodynamics,
there are a few other facts (e.g., specific heat of
Schwarzschild black hole is negative) which clearly
indicates that one cannot classify the black hole thermo-
dynamic entities as the extensive or the intensive ones.
Therefore, the usual scaling argument cannot be
applied here.

APPENDIX A: DERIVATION OF THE EQ. (17)

The expression of the of Θ0aðq; £ξqÞ can be obtained
from (8). Let us calculate term by term. At first we obtain

2ð∇bϕÞPiabd£ξgid

¼ ð∇dϕÞ½∇aξd þ∇dξ
a� − 2ð∇aϕÞð∇iξ

iÞ; ðA1Þ

and

£ξva ¼ 2Pibad∇b£ξgid ¼ 2Piabd∇b£ξgid

¼ ∇b∇aξb þ∇b∇bξa − 2∇a∇bξ
b: ðA2Þ

Hence we obtain,

2ð∇bϕÞPiabd£ξgid−ϕ£ξva

¼ð∇bϕÞð∇aξbÞþϕ∇b∇aξb−ϕ□ξa

þð∇bϕÞð∇bξaÞ−2ð∇aϕÞð∇bξ
bÞ−2ϕgacRkcξ

k; ðA3Þ

Here, we have used ½∇b∇d�ξi ¼ Rijbdξ
j to obtain the last

term. Now,

ð∇bϕÞð∇aξbÞ þ ϕ∇b∇aξb − ϕ□ξa ¼ ∇b½ϕð∇aξb −∇bξaÞ�
þ ð∇bϕÞð∇bξaÞ;

ðA4Þ

and

2ð∇bϕÞð∇bξaÞ−2ð∇aϕÞð∇bξ
bÞ¼2∇b½ξað∇bϕÞ−ξbð∇aϕÞ�

þ2ξb∇b∇aϕ−2ξa□ϕ:

ðA5Þ

Substituting the values of (A4) and (A5) in (A3), we finally
obtain
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2ð∇bϕÞPiabd£ξgid − ϕ£ξva

¼ ∇b½ϕð∇aξb −∇bξaÞ þ 2ξað∇bϕÞ − 2ξbð∇aϕÞ�
þ 2ξb∇b∇aϕ − 2ξa□ϕ − 2ϕgacRkcξ

k: ðA6Þ

Moreover, a straightforward calculations give (the extra
contributions from the □ϕ term)

3

2
gij£ξgij∂aϕ − 3gia∂bϕ£ξgib þ 3∂að£ξϕÞ
¼ 3∇b½ξb∇aϕ − ξa∇bϕ� þ 3ξa□ϕ: ðA7Þ

Thus we finally obtain

Θ0aðq; £ξqÞ

¼ 1

16π

�
−∇b½∇aðϕξbÞ −∇bðϕξaÞ�

−
2ω

ϕ
ð∇aϕÞξb∇bϕ − 2ξb∇b∇aϕ

− ξa□ϕþ 2ϕgacRkcξ
k

�
: ðA8Þ

Using (A8) and L0 from (6) in (16) yields

J0a ¼ 1

16π

�
½∇aðϕξbÞ−∇bðϕξaÞ�

þ
��

ϕR−
ωðϕÞ
ϕ

gab∇aϕ∇bϕ−VðϕÞ
�
ξa

þ 2
ω

ϕ
ð∇aϕÞξbð∇bϕÞ þ 2ξb∇b∇aϕ− 2ξa□ϕ

− 2ϕgacRkcξ
k

�
þ 2Eabξb

�
: ðA9Þ

One can identify the second-bracketed term as a whole as
−2Eabξb [see the expression of Eab from (8)] and, hence,
the expression of J0a is given by a total derivative of
antisymmetric Noether potential, the expression of which
has been given in (17).

APPENDIX B: DERIVATION
OF THE EQS. (23) AND (24)

The exact expression of Θ̃aðq̃; £ξ̃q̃Þ can be obtained from
(20). Straightforwardly, one can obtain

£ξṽa ¼ ∇̃b∇̃aξ̃b þ ∇̃b∇̃bξ̃a − 2∇̃a∇̃bξ̃
b

¼ ∇̃b∇̃bξ̃a − ∇̃b∇̃aξ̃b þ 2g̃acR̃kcξ̃
k: ðB1Þ

Thus, from (23) one can obtain

J̃a ¼
��

R̃
16π

−
1

2
g̃ij∇̃iϕ̃∇̃jϕ̃ −Uðϕ̃Þ

�
ξ̃a þ ð∇̃aϕ̃Þξ̃bð∇̃bϕ̃Þ

−
2

16π
g̃acR̃kcξ̃

k

�
þ 1

16π
∇̃b½∇̃aξ̃b − ∇̃bξ̃a� þ 2Ẽabξ̃b:

ðB2Þ

The second-bracketed terms, as a whole, contribute as
−2Ẽabξ̃b and, therefore, J̃a can be written as a total
derivative term as J̃a ¼ ∇̃bJ̃ab. Thus the expression of
J̃ab will be of the form given in (24).

APPENDIX C: DERIVATION
OF THE EQS. (38) AND (39)

Proving (38) is pretty straightforward.

J̃ab ¼ g̃aig̃bjJ̃ij

¼ g̃aig̃bjð∂aξ̃b − ∂bξ̃aÞ

¼ gaigbj

ϕ2
½∂aðϕξbÞ − ∂bðϕξaÞ�

¼ 1

ϕ2
½∇aðϕξbÞ −∇bðϕξaÞ�: ðC1Þ

Thus, Eq. (38) is obtained.
The expression of Θ̃a is given in (20). Now, ∇̃bðδg̃idÞ ¼

ð∂bϕÞδgid þ ϕ∇̃bðgidÞ − gid
ϕ ð∂bϕÞδϕ þ gid∂bðδϕÞ. Then

using Γ̃a
bc¼Γa

bcþ 1
2ϕðδab∂cϕþδac∂bϕ−gbc∂aϕÞ in ∇̃bðgidÞ,

it requires a few steps to obtain (39).

APPENDIX D: DERIVATION OF THE EQ. (53)

For gab → gab þ hab, the expression of δGijξj is given
as [47]

ðδGijÞξj ¼ ∇jFij −Gikhkjξj þ
1

2
ξiGjkhjk −

1

2
ξjGi

jh;

ðD1Þ

where, δGij denotes the linearization of the Einstein tensor.
Remember, here ξa is a Killing vector and

Fij ¼ 1

2
½ξj∇khki − ξi∇khkj þ ξk∇ihkj − ξk∇jhki þ ξið∇jhÞ − ξjð∇ihÞ þ hkj∇kξ

i − hki∇kξ
j þ h∇½iξj��: ðD2Þ

Now, in this frame the expression of Eab has been given in (8). For gab → gab þ hab
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16πðδEijÞξj ¼ ϕ½ðδGijÞξj� −
ω

2ϕ
hijgabð∂aϕÞð∂bϕÞξj −

ω

2ϕ
ξihabð∂aϕÞð∂bϕÞ þ

ω

ϕ
hjbgaið∂aϕÞð∂bϕÞξj −

V
2
hijξj

þ hiaξbð∇a∇bϕÞ þ giahjbξjð∇a∇bϕÞ − hijgabξjð∇a∇bϕÞ
− ξihabð∇a∇bϕÞ − giaξbδð∇a∇bϕÞ þ ξigabδð∇a∇bϕÞ: ðD3Þ

Now, we express 16πEij ¼ ϕGij þ Ēij where

Ēij ¼ ω

2ϕ
gijgabð∂aϕÞð∂bϕÞ −

ω

ϕ
giagjbð∂aϕÞð∂bϕÞ þ

V
2
gij − giagjb∇a∇bϕþ gijgab∇a∇bϕ: ðD4Þ

Then, using (D1) and (D3) we obtain

16πðδEijÞξj ¼ ϕ∇jFij − 16πEikhkjξj þ
16π

2
ξiEjkhjk −

16π

2
ξjEi

jhþ Ēikhkjξj −
1

2
ξiĒjkhjk þ

1

2
ξjĒi

jh

−
ω

2ϕ
hijgabð∂aϕÞð∂bϕÞξj −

ω

2ϕ
ξihabð∂aϕÞð∂bϕÞ þ

ω

ϕ
hjbgaið∂aϕÞð∂bϕÞξj −

V
2
hijξj þ hiaξbð∇a∇bϕÞ

þ giahjbξjð∇a∇bϕÞ − hijgabξjð∇a∇bϕÞ − ξihabð∇a∇bϕÞ − giaξbδð∇a∇bϕÞ þ ξigabδð∇a∇bϕÞ: ðD5Þ

Now,

Ēikhkjξj −
1

2
ξiĒjkhjk þ

1

2
ξjĒi

jh¼ ω

2ϕ
hijgabð∂aϕÞð∂bϕÞξj þ

V
2
hijξj − giahjbξjð∇a∇bϕÞ þ hijgabξjð∇a∇bϕÞ

−
ω

ϕ
hjbgaið∂aϕÞð∂bϕÞξj þ

ω

2ϕ
ξihabð∂aϕÞð∂bϕÞ þ

1

2
ξihabð∇a∇bϕÞ−

1

2
giaξbhð∇a∇bϕÞ:

ðD6Þ

Substituting (D6) in (D5), we obtain

16πðδEijÞξj ¼ ∇jðϕFijÞ − Fijð∂jϕÞ − 16πEikhkjξj þ
16π

2
ξiEjkhjk −

16π

2
ξjEi

jhþ hiaξbð∇a∇bϕÞ

−
1

2
ξihabð∇a∇bϕÞ − giaξbδð∇a∇bϕÞ þ ξigabδð∇a∇bϕÞ −

1

2
giaξbhð∇a∇bϕÞ: ðD7Þ

Now,

δð∇b∇aϕÞ ¼ −δΓi
abð∂iϕÞ ¼ −

1

2
½∇ahib þ∇bhia −∇ihab�ð∂iϕÞ: ðD8Þ

Using the above relation (D8) with (D2), one obtains

−Fijð∂jϕÞ − giaξbδð∇a∇bϕÞ þ ξigabδð∇a∇bϕÞ ¼
1

2
ð∂jϕÞ½−ξi∇khjk − hjkð∇kξ

iÞ þ hikð∇kξ
jÞ − h∇½iξj� þ ξk∇khij�

¼ 1

2
∇j½ð∂kϕÞðξjhik − ξihjkÞ� þ 1

2
hjkξi∇k∇jϕ

þ 1

2
hikð∇kξ

jÞð∇jϕÞ −
1

2
hð∇jϕÞð∇iξjÞ − 1

2
hijξk∇k∇jϕ: ðD9Þ

Substituting the above relation of (D9) in (D7), we obtain

16πðδEijÞξj ¼ ∇jðϕFijÞ þ 1

2
∇j½ð∂kϕÞðξjhik − ξihjkÞ� − 16πEikhkjξj þ

16π

2
ξiEjkhjk −

16π

2
ξjEi

jh

þ 1

2
fhiaξbð∇a∇bϕÞ − giaξbhð∇a∇bϕÞ þ hikð∇kξ

jÞð∇jϕÞ − hð∇jϕÞð∇iξjÞg: ðD10Þ
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Using the property of the Killing vector, the terms inside
the curly bracket vanish and, one obtains

ðδEijÞξj ¼ ∇jJ
ij
ADT − Eikhkjξj

þ 1

2
ξiEjkhjk −

1

2
ξjEi

jh; ðD11Þ

where, the final expression of JijADT is given in (53).

APPENDIX E: DERIVATION OF EQ. (56)

To prove (56), we shall follow the same procedure as in
the Jordan frame. Here, let us take Ẽij ¼ G̃ij

16π þ ¯̃Eij with

¯̃Eij¼−
1

2
g̃aig̃bjð∂aϕ̃Þð∂bϕ̃Þþ

1

4
g̃ijg̃abð∂aϕ̃Þð∂bϕ̃Þþ

1

2
g̃ijU:

ðE1Þ

Therefore,

ðδẼijÞξ̃j ¼
1

16π
ðδG̃ijÞξ̃j þ ðδ ¯̃EijÞξ̃j

¼ 1

16π
∇̃jF̃ij − Ẽikh̃kjξ̃

j þ 1

2
ξ̃iẼjkh̃jk

−
1

2
ξ̃jẼi

jh̃þ
�
¯̃Eikh̃kjξ̃

j −
1

2
ξ̃i ¯̃Ejkh̃jk

þ 1

2
ξ̃j ¯̃Ei

jh̃þ ðδ ¯̃EijÞξ̃j
�
: ðE2Þ

where, the expression of F̃ij is similar to the expression
given in (D2) (only with tilde overhead). Detail calculations
show that the terms inside the curly brackets in (E2) vanish
and, one finally obtains

ðδẼijÞξ̃j¼ ∇̃jJ̃
ij
ADT− Ẽikh̃kjξ̃

jþ1

2
ξ̃iẼjkh̃jk−

1

2
ξ̃jẼi

jh̃; ðE3Þ

where, the final expression of J̃ijADT is given in (56).
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