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A large number of theoretically predicted waveforms are required by matched-filtering searches for the
gravitational-wave signals produced by compact binary coalescence. In order to substantially alleviate the
computational burden in gravitational-wave searches and parameter estimation without degrading the
signal detectability, we propose a novel reduced-order-model (ROM) approach with applications to
adiabatic 3PN-accurate inspiral waveforms of nonspinning sources that evolve on either highly or slightly
eccentric orbits. We provide a singular-value decomposition-based reduced-basis method in the frequency
domain to generate reduced-order approximations of any gravitational waves with acceptable accuracy and
precision within the parameter range of the model. We construct efficient reduced bases comprised of a
relatively small number of the most relevant waveforms over three-dimensional parameter-space covered
by the template bank (total mass 2.15 M⊙ ≤ M ≤ 215 M⊙, mass ratio 0.01 ≤ q ≤ 1, and initial orbital
eccentricity 0 ≤ e0 ≤ 0.95). The ROM is designed to predict signals in the frequency band from 10 Hz to
2 kHz for aLIGO and aVirgo design sensitivity. Beside moderating the data reduction, finer sampling of
fiducial templates improves the accuracy of surrogates. Considerable increase in the speedup from several
hundreds to thousands can be achieved by evaluating surrogates for low-mass systems especially when
combined with high-eccentricity.
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I. INTRODUCTION

This presentwork is a response to the growing demand for
a computationally efficient generation of eccentric wave-
form families in gravitational-wave (GW) searches. To the
extent of our knowledge, surrogate model building for this
particular family of waveforms has not yet been tested. As
ROM techniques have proved exceedingly efficient for other
models (such as for aligned-spin BBHs), we thus anticipate
similar benefits of extremely large speedups in the time-
consuming process of generating eccentric waveform. Our
aim is to give a proof-of-principle demonstration of its
exceptional potential and to offer a novel and practical way
to dramatically accelerate parameter estimations.
Compact binary coalescences (CBCs) in binary compact

objects, such as stellar-mass binary black holes (BBHs)
and/or binary neutron stars (BNSs), are among the most
promising GWs sources for ground-based GW detectors
[1]. Binaries that evolved through typical main sequence
evolution [2] are expected to shed their formation eccen-
tricities over time due to gravitational radiation reaction.
For this reason, isolated compact binaries are commonly
assumed to move on quasicircular orbits by the time they

spiral into the sensitive frequency band of terrestrial GW
observatories [3,4]. Some relatively young sources, never-
theless, which had too short time for the gravitational
radiation reaction to completely circularize their orbits
retain some residual eccentricity [5]. Therefore, CBC
inspirals with non-negligible orbital eccentricities are
plausible sources [3]. Some results [6,7] support the
qualitative conclusion that neglecting residual orbital
eccentricities (even small ones) in CBCs may seriously
deteriorate matched-filter detection performance. A number
of possible astrophysical scenarios and mechanisms allows
the formation of observationally relevant eccentric ultra-
compact binaries (see in [8–10]). Short-period CBCs may
form by dynamical capture in dense stellar environments,
present in both galactic central regions and globular clusters,
or by tidal capture of compact object by NSs which is
described in great detail in [11–13]. Stable hierarchical triple
star-systems may form in globular clusters where multi-
body interactions are involved. It has been estimated that
∼30% of binaries formed in systems where the Kozai
resonance increased the eccentricity of the inner binary will
have initial eccentricities e0 > 0.1 when they enter the
frequency window of the aLIGO [14]. Great majority
(∼90%) of stellar-mass BH binaries formed by scattering
in galactic cores containing a supermassive BH have
e0 > 0.9, where e0 denotes the initial eccentricity of the
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binary by the time it enters the lower part of the frequency
band of detectors [12]. Roughly 0.1–10 eccentric inspiral
events per year up to redshift z ∼ 0.2 are anticipated to be
discovered by aLIGO-type observatories [8]. One of the key
goals of GW observatories is to measure the intrinsic
parameters of coalescing BNSs. Moreover, Favata (2014)
pointed out that neglecting initial eccentricities e0 ≳ 0.002
causes systematic errors that exceed statistical errors in
aLIGO measurements [15]. Since the phasing of the GW
signal is significantly more important for parameter esti-
mation, and eccentricitymodify the phasing beginning at 1.5
and 0PN orders, eccentricity corrections to the SPA (sta-
tionary phase approximation) phase have to be included at
leading order.
Putative frequency modulated GW signals (also known

as “chirps”) from CBC inspirals will be buried in the noisy
data streams of the advanced detectors. Data analysis of
targeted search techniques operate by matched-filtering to
extract any possible signal from the white Gaussian noise
by cross-correlating the discrete-time sequences of the
detector data against a large set of theoretical waveform
templates (or filters) which approximate potential astro-
physical signals [16]. The utility of this technique rests
partly on how accurately the applied template waveforms
model the signal being sought. Stellar-mass BBHs and
BNSs in the inspiral regime are adequately described by
high-order post-Newtonian (PN) waveform templates. PN
approximations in Refs. [17–19] are expansions of Einstein
field equations to any specified order in a small parameter
v=c which provide a powerful formalism for modelling
CBCs during the inspiral phase, when the orbital speed of
the binary v is much smaller than the speed of light c [14].
A PN extension of order ðv=cÞn to the Newtonian expres-
sion of gravity is said to be of ðn=2ÞPN order. We construct
PN template families by making use of a fast and accurate
computational tool, the CBWAVES software, developed by
the Virgo Group at Wigner RCP. The 3PN-accurate
equations of motion (and the spin precession equations
if needed) of the orbiting bodies are integrated by a fourth-
order Runge-Kutta method while the far-zone radiation
field is determined by a simultaneous evaluation of analytic
waveforms. The waveforms involve all high-order relativ-
istic contributions for generic eccentric orbits up to 2PN-
order accuracy [20]. The choice of PN template families
used in this paper is also motivated by the very fact that
such templates are available in the LSC Algorithms Library
(LAL) which applies some of them in targeted searches,
although current searches do not exceed 2PN order [21].
GWs are parametrized by a set of intrinsic and extrinsic

parameters λ ¼ λextrinsic þ λintrinsic, associated with the
astrophysical model of their respective sources. The earlier
are intrinsic to the source (such as the masses, spins and
eccentricity of the compact objects) while the extrinsic
parameters are those which depend on the relative location
of the source with respect to the detector (such as the time

of arrival t0 of the signal at the detector and the phase of the
signal ϕ0 at a reference time t0). Each template has a
specific set of values for its parameters which are hereinafter
collectively referred to as model parameters. A collection of
points in a p-dimensional parameter space, provided that p
is the number of model parameters, is called a template bank
(or template grid) [22]. A template bank generated with
minimal match MM could contain a large number of
templates that scales as L ∼ ð1 −MMÞ−p=2. The number
of templatesL required for correlations grows rapidlywithp
and the number of GW cycles Lcyc [23]. A fully coherent
GW search for a CBC with p ¼ 8 parameters lasting for
Lcyc ¼ 105 cycles would require as much as L ¼ 1040

waveform model evaluations [24].
Over the last three decades methods have been devel-

oped for setting up template banks which minimize the
computational cost in GW searches without degrading the
signal detectability, measured by the signal-to-noise ratio
(SNR) [25–27]. Since the 1990s, a method most feasible for
small-dimensional parameter space (p ¼ 2, 3, or 4 at most)
has been popular to address the problem of template
placement by associating the parameter space with a
positive-definite metric space. In this geometric framework,
the metric measures the fractional loss in squared SNR of a
predicted signal (at one point in the parameter space)
filtered through the optimal waveform template corre-
sponding to a nearby point in the parameter space [28].
In 2009, a template placement algorithm was developed
that is suitable for any number of dimensions, provided that
the metric distance between two points in the parameter
space is large or well defined [29].
Beside the issue of assembling sufficiently large tem-

plate banks, parameter estimation (PE) carries a number of
challenges unique to large data sets. The exploration of the
parameter space of BBHs relies on numerical relativity
(NR) simulations of the field equations to discover how
such mergers evolve [30]. Even a very coarse survey of the
parameter space would require an enormous number,
typically L ¼ 106–107 [31], of expensive NR simulations
which impose a computationally insuperable obstacle. The
required number is in fact subtantially greater than the
combined number of all simulations ever performed by
each and every NR group [32,33]. Consequently, tech-
niques which can estimate the astrophysical parameters fast
and accurately are needed to overcome this computational
bottleneck [34].
Reduced-order modeling or model-order reduction is a

practical mathematical tool to extract the fundamental
features of a computationally demanding high-order model
through exploiting only a reduced set of information.
Investigations [35–38] over the last few years have revealed
that GW templates exhibit significant redundancy in the
parameter space, suggesting that the amount of information
required to represent a fiducial waveform model is appre-
ciably smaller than commonly anticipated. The reduction of

DÁNIEL BARTA and MÁTYÁS VASÚTH PHYS. REV. D 97, 124011 (2018)

124011-2



information content is achieved through expressing the
essential information by means of only a remarkably few,
reduced number of representative waveforms r ≪ L to
construct a reduced-order model (ROM) also known as a
surrogate model. ROMs provide compressed approxima-
tions of any selected waveforms within the same physical
model. They are projection-based techniques that aim to
lower the computational complexity in the simulations by
mapping the original full-order model (FOM) onto an
appropriate subspace of much lower dimension spanned
by a reduced-order basis (RB). To find these representative
waveforms that constitutes the RB several methods, includ-
ing singular value decompsition (SVD) and greedy meth-
ods have been proposed, usually combined with the
empirical interpolation method (EIM) [35,39]. SVD-based
methods have been applied in Refs. [38,40,41] to inter-
polate time-domain inspiral waveforms. We are going to
provide an efficient (fast and accurate) representations of
approximated waveforms for any desired parameter values
within the model by using the information provided by only
r RB waveforms instead of the total number L [37,42]. The
SVD-based approach to significantly accerelate PE process
used in Ref. [16] is to directly interpolate the likelihood
function over a significant portion of the parameter space.
Moreover there is yet another method, presented in
Refs. [30,43], that defines special reduced-order quadrature
(ROQ) rules to assist in fast likelihood evaluation.
The rest of the paper is organized as follows: Sec. II deals

with the procedure for generating fiducial PN waveforms
by CBWAVES, with respect to the statistics of the cost of
computing individual waveforms to estimate the total cost
of building template banks. Section III proposes the
simplest strategy (regular spacing) for template placement
in the intrinsic parameter space, followed by the repre-
sentation of the fiducial waveform templates on a common,
finely sampled and regularly spaced frequency grid.
Section IV gives a general description of our approach
to construct efficient ROM assembled from the reduced
bases and of its characteristic features, particularly the
truncation error. Section V is dedicated to assess the overall
performance of the ROM, including the accuracy of the
surrogate model and its computational cost relative to that
of the fiducial model. Conclusions, remarks, limitations,
and an outlook for future research will be given in Sec. VI.

II. FIDUCIAL WAVEFORM MODELS

Current searches for GWs from NS and stellar-mass BH
binaries use restricted stationary-phase approximations to
the Fourier transform of 3.5PN-accurate circular inspiral-
only waveforms, such as spin-aligned TaylorF2 or
SpinTaylorT4 [14]. The first part of this section describes
a procedure for constructing PN nonspinning eccentric
inspiral waveforms by CBWAVES model in the time domain.
The second part deals with the statistics of the cost of
computing individual time-domain (TD) waveforms, drawn

from a relatively large number of sample points in a finite-
sample distribution.

A. Construction of eccentric post-Newtonian
waveform templates

The CBWAVES open-source software was developed by
the Virgo Group at Wigner Research Centre for Physics
with the intent of providing efficient computational tool
capable of generating gravitational waveforms produced by
generic spinning binary configurations moving on eccentric
closed or open orbit within the applied PN framework. A
detailed examination of the software’s performance is given
in Ref. [20]. The source release and binary packages
supported both on x86 and x86_64 platforms are available
at the group’s website [44].
In the PN formalism, the spacetime is assumed to be split

into the near and wave zones. The field equations for the
perturbed Minkowski metric are solved in both regions. A
fourth-order Runge-Kutta (RK4) method with adaptive
step-size control is carried out to numerically solve for
the 3PN-accurate near-field radiative dynamics at each time
t > t0, where t0 is the time of arrival of the signal at the
detector, while the far-zone radiation field [45] decom-
posed as

hij ¼
2Gμ
c4D

ðQij þ P0.5Qij þ PQij þ PQSO
ij

þ P1.5Qij þ P1.5QSO
ij þ P2Qij þ P2QSS

ij Þ ð1Þ

is determined in harmonic coordinates by a simultaneous
evaluation of orbital elements ðϕ; r; nÞ, where D is the
distance (typically a few Mpc) to the GW source that
consists of two point particles of masses m1 and m2 and
μ ¼ m1m2=M is its reduced mass. The term Qij is the
Newtonian mass quadrupole moment, P0.5Qij, P1.5Qij,
P2Qij are higher-order relativistic corrections up to 2PN
order beyond the Newtonian term while PQSO

ij , P1.5QSO
ij ,

P2QSS
ij are corrections arising from spin-orbit and spin-spin

effects, respectively. Here, for brevity, we will not repeat
lengthy PN coefficients. They are written out explicitly in
the appendix of Ref. [20].
Radiative orbital dynamics involving all possible cor-

rection terms up the 3PN order beyond the Newtonian term
are written out explicitly in terms of mean motion n and
orbital eccentricity e in Ref. [10]. The secular evolution is
treated adiabatically, assuming that the timescales of the
shrinkage of orbits (due to gravitational energy radiation _E)
and the precession (due to angular momentum flux _J) are
much longer than that of the orbital period. Consequently,
the functions (_x1PN; _e1PN…) in the equations derived from
_E and _J depend only on the eccentricity e, and not on
eccentric anomaly u. Hence, the adiabatic evolution equa-
tions for x≡ ðMωÞ2=3 and e form a closed system, and can
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be solved independently of the Kepler’s equation. Given
initial conditions xð0Þ and eð0Þ, we can solve the system of
ordinary differential equations numerically to obtain xðtÞ
and eðtÞ. The integration of the equations of motion is
terminated at the innermost stable circular orbit (ISCO),
which is located at

rISCO ¼ 6GM=c2 ð2Þ

in Schwarzschild spacetime (for a nonspinning sorces). The
orbital angular frequency at the ISCO is

fISCO ¼ c3=ð6
ffiffiffi
6

p
πGMÞ; ð3Þ

which marks the end of the inspiral phase. It ought to be
noted that the PN equations of motion applied in the
computation are a series expansion of corrections to the
acceleration of the binary components. Whole-order terms
in the series represent conservative, relativistic corrections,
and half-order terms represent dissipative corrections [18].
It is critical to point out that the PN approximation can

not be reliably applied when higher-order corrections to the
equations of motions become comparable in magnitude to
lower-order corrections. Levin, McWilliams, and Contreras
argue in Ref. [18] that the PN expansion breaks down in the
strong-field regime when 3.5PN order term becomes larger
than preceding terms and drives the binary system to larger
separation. The range of validity for the PN approximation
in the late inspiral phase has been examined in Ref. [20] by
CBWAVES simulations through PN expansion parameter,
ϵ ∼ ðv=cÞ2 ∼ GM=ðrc2Þ, which was found to be bellow
the critical upper bound ϵ ∼ 0.08–0.1. Therefore the equa-
tions of motion shall be cut off at the radial separation
r ≈ 10GM=c2, in accordance with Ref. [18], well outside
the radius of Schwarzschild ISCO (2). As a consequence,
the highest orbital frequency [19],

fLSO ¼ c3½ð1 − e2LSOÞ=ð6 − 2eLSOÞ�3=2ðπGMÞ−1; ð4Þ

at the last stable orbit (LSO) for nonrotating eccentric
sources is less than the orbital frequency at the ISCO (3) if
eLSO, associated with the residual orbital eccentricity at the
end of inspiral phase, exceeds 1=3.
Figure 1 demonstrates that the integration run time tint

depends sensitively both on the initial eccentricity and on
the disparity of components’ masses ðm1; m2Þ in a binary
system. The tint increases exponentially with decreasing
total mass M. The mass disparity, defined by q̄≡ 1 − q,
allows better comparability with e0 than q itself, consid-
ering that tint asymptotically increases—faster than with
decreasingM—towards infinity as either e0 (left panel) or q̄
(right panel) tends to 1. The physical interpretation of these
competing trends is very simple:
(1) The lighter the components of the binary are, the

longer it takes for them to gradually descend onto

their ISCO through a sequence of increasingly
circular orbits [46].

(2) The more eccentric the orbit was initially, the longer
it takes to shed its residual eccentricity over many
orbital periods [3].

(3) Among different configurations of equal total mass,
the one with the largest mass disparity has the
longest inspiral time for harboring the lightest
component [46].

At the high total-mass region on Fig. 1, the influence of first
trend grows comparable to that of the last two to reverse the
trend of decreasing integration run time. Figure 3 shows the
influence of M and q on the length of integration run-time
tint from a different aspect. Excluding the red and yellow
dots, each point in the colored triangular region is assigned
to a hue level running from dark to light as the value of tint
increases on a logarithmic scale. The dark blue “basin”
represents the region where M and q simultaneously lower
the value of tint to its minimum. Isoclines running in parallel
are connecting points at which tint has the same value;
therefore, they are associated with horizontal lines in
Fig. 1 (b). The influence of growing q becoming compa-
rable to and gradually greater than that of M accounts also
for the drift from the linear rising trend in the curvature of
isoclines that occurs at the high-q region on Fig. 3.
Although Fig. 3 suggests that over 85% of the waveform
templates of initial eccentricity e0 ¼ 0 are computed up to
10 sec; in fact, only 4.6% of all waveform templates require

(a) (b)

FIG. 1. The integration run-time tint increases exponentially
with decreasing total mass M. With increasing initial eccentricity
e0 (left panel) or mass disparity q̄ (right panel), tint grows
asymptotically at a significantly faster rate than with decreasing
M. The integration time of those template waveforms that
enter a detector’s sensitivity band at a frequency of 10 Hz has
been measured 20 times, each at 11 distinct values of M ∈
½2.15 M⊙; 215 M⊙� for three distinct values of initial eccentric-
ity; e0 ¼ f0; 0.7; 0.98g and mass disparity; q̄ ¼ f0; 0.1; 0.99g
represented by blue, orange and green dots, respectively. The
template waveforms were generated at a uniform sampling
frequency 16.384 kHz. Around each median curve of corre-
sponding tint values, the shaded bands represent their respective
95% pointwise confidence band.
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less then 10 sec to integrate, as demonstrated in Fig. 2. Out
of a total of 1800, only those 120 templates are shown in
Fig. 3 that are located in the e0 ¼ 0 plane. Still, the figure
illustrates well that in the same e0-plane the frequency of
templates with little tint is extremely high compared to that
of templates with large tint, regardless of the value e0.
In the next section, we shall give a quantitative descrip-

tion of the summary statistics computed from the relative
frequency of occurrence (or empirical probability) of the
integration time-runs.

B. Probability distribution of integration run-times

Let T ¼ ftint1 ; tint2 ;…; tintL g be a univariate independent
and identically distributed (IID) finite data sample drawn
from the probability (or relative frequency) distribution of
the discrete random variable t ∈ T while a discrete set of L
time-domain input waveforms,

hðtÞ≡ fhðt; λlÞgLl¼1; ð5Þ
is computed at each parameter point λl (see Sec. III A) by
evaluating Eq. (1) at a distance D ¼ μ simultaneously with
the integration of the equations of motions at 3PN order that
requires integration run-times tintl .

Since we do not make any prior assumption about the
probability distribution, we shall use a nonparametric
model where the statistical measures are determined by
the finite data sample T . In statistics, kernel density
estimation (KDE) is a fundamental data-smoothing
technique that provides a nonparametric estimate, based
on observed data T , of an unobservable underlying
probability density function (PDF) of the continuous
random variable inf T ≤ t ≤ sup T . A PDF, denoted by
ft and illustrated in Fig. 2, is a non-negative Lebesgue-
integrable function that defines the cumulative distribu-
tion function (CDF) of a real-valued random variable t,
evaluated at a value t0 as

F t½t0�≡ Pr½t ≤ t0� ¼
Z

t0

−∞
ft½τ�dτ: ð6Þ

FIG. 2. PDF denoted by ftðtÞ (blue line) and CDF by F tðtÞ
(orange line) are displayed as functions of the random variable
t ∈ ½inf T ; sup T �, corresponding to tint-values, which is mea-
sured in seconds on the lower horizontal axis and in standard
deviation (σ ¼ 266.885 sec) round the mean value of t on the
upper horizontal axis. The smooth KDE with adaptive bandwidth
is based on the data sample T collected from the integration run-
times of L ¼ 1800waveform templates that were generated in the
parameter space Ω, described in Sec. III A. The location of the
mode, the median, and the arithmetic mean are illustrated by
dotted, dashed, and solid red lines, respectively, in ascending
order of their locations. This order of the measures of central
tendency is a characteristic feature of right-skewed (positive
skewness) distributions.

FIG. 3. The template bankhðtÞ ofL ¼ 1800waveform templates
was set up over a domain fðM;q;e0ÞjM∈½2.15M⊙;215M⊙�;
q∈½0.01;1�;e0∈½0;0.95�g⊂Ω by computing Eq. (5) with uniform
grid spacings fΔM¼14.19M⊙;Δq¼0.06;Δe0¼0.063g. Red
points, confined within a triangular region with a boundary ∂Ω
(thick gray line), represet the parameter points of those 120 input
waveforms that are situated in the k ¼ 0 plane section of the
parameter spaceΩ. In order tomeasure the accuracy of the ROMof
waveforms, Eq. (37) is evaluated at equidistant parameter points
(yellow points) from their respective nearest basis-waveform
neighbors. Each background point in the colored triangular region
is assigned to a hue level running from dark to light as the value of
the integration run-time tint increases on a logarithmic scale. tint
increases exponentially with decreasing total mass M and grows
asymptotically at a significantly faster rate with increasing mass
disparity q̄. The dark blue basin, where the great majority of
template waveforms are concentrated, represents the region where
M and q simultaneously lower the value of tint to its minimum.
Isoclines (thin gray curves) running in parallel are connecting
points at which tint has the same value. A drift from the linear rise in
the curvature of isoclines occurs at the high-q region, where the
influence of growing q becomes comparable to and gradually
greater than that of M.

FAST PREDICTION AND EVALUATION OF ECCENTRIC … PHYS. REV. D 97, 124011 (2018)

124011-5



It represents the probability that the random variable t,
with the expected value given by

E½t� ¼
Z

∞

−∞
t0dF t½t0�; ð7Þ

takes on a value less than or equal to t0 and its kernel
density estimator is

f̂h½t� ¼
1

Lh

XL
l¼1

K

�
t − tintl

h

�
; ð8Þ

where K ≥ 0 is a symmetric kernel with total integral
normalized to unity and h > 0 is the bandwidth (or smooth-
ing parameter).Onemight intuitively chooseh as small as the
data sample T allows; however, there is always a tradeoff
between the bias of the estimator and its variance. Another
option is the use of adaptive bandwidth kernel estimators in
which the bandwidth changes as a function of t.
A specific quantitative measure of the probability dis-

tribution is the nth moment,

μn ≡ E½ðt − cÞn�; ð9Þ
of the continuous randomvariable t about some central value
c (e.g. themean, denoted by μ) whereE is the expected value
of t defined by Eq. (7). The graphical representation of the
most commonmeasures of central tendency (mean, median,
mode) is depicted on Fig. 2 with solid, dashed and dotted red
lines, respectively. The PDF rapidly increases with the
random variable t up to a point at t ¼ 0.81653 sec. From
then on, this monotone increase slows down and eventually
comes to a halt at t ¼ 4.438 sec, whichmarks the mode, i.e.
the most frequent value in the distribution. The median,
which represents the value separating the higher half of the
probability distribution from the lower half, is located at
t ¼ 20.615 sec. The mean, which represents the first
moment of the PDF [μ≡ μ1 in Eq. (9)], is situated
at t ¼ 77.499 sec.
The central tendency of distributions is typically con-

trastedwith its dispersion thatmeasures the extent towhich a
distribution stretched or squeezed. Common measures of
statistical dispersion are the variance and standard deviation:
The variance of t is the second central moment, given by (9)
as Var½t�≡ E½ðt − μÞ2�, and the standard deviation is its
square root, denoted by σ. For the given distribution,
σ ¼ 266.885 sec. Finally, the shape (or asymmetry) of
probability distributions is quantitatively measured by the
third and fourth central moments, called “skewness” and
“kurtosis” and denoted by Skew½t�≡ E½ðt − μÞ3=σ3� ¼
18.56 and Kurt½t�≡ E½ðt − μÞ4=σ4� ¼ 490.04, respectively.

III. TEMPLATE PLACEMENT AND THE
FREQUENCY GRID

We may now discuss the placement of a grid of TD
waveform templates in a compact parameter space,

followed by the generation of a sequence of frequency-
domain (FD) templates on a common finely sampled
uniform frequency grid. The TD waveforms are Fourier
transformed and split into their amplitude and phase parts.
These functions are accurately represented on a sparse
frequency grid with only Oð104Þ nodes, with a sampling
frequency recorded well above the Nyquist frequency of
the shortest time-series in the template bank.

A. Template placement in an associated
three-dimensional parameter space

The set of input waveforms (5) is computed by
CBWAVES, described in Sec. II A, at corresponding param-
eter points,

λ≡ fλl ∈ ΩgLl¼1; ð10Þ

in a compact p-dimensional parameter space Ω ⊂ Rp

where p is the number of model parameters. We restrict
ourselves to a feasible three-dimensional parameter space
consisting of totally ordered one-dimensional sets of values
of corresponding model parameters ðm1; m2; eÞ that define
a sparse grid of points

λ≡m1 ⊗ m2 ⊗ e ¼ fðmi;mj; ekÞ∶
i ∈ ½0; imax�; j ∈ ½i; imax�; k ∈ ½0; kmax�g ð11Þ

covering the desired parameter range in the particular
model involved. Owing to the invariance of input wave-
forms under exchange of the components’ masses
ðm1; m2Þ, the values of the two-dimensional index pair
ði; jÞ are constrained to a triangular subregion in the
positive quadrants where i ≤ j. Considering that the wave-
form templates span a three-dimensional parameter space,
each template is successively placed into a single vector (5)
as indexed by

l≡
��

imax −
i − 1

2

�
iþ j

�
kmax þ kþ 1 ð12Þ

in the range of values 1 ≤ l ≤ L. This flat index corre-
sponds to the position of templates in the parameter space.
The total number of templates in the set is then expressed as

L ¼ ½ð2imax þ 1Þ2 − 2�kmax=8þ 1: ð13Þ

It is desirable to work with a dense grid of short waveforms
encompassing the late inspiral phase to make a better
coverage of the selected region of the parameter space. For
the sake of simplicity, we sample at equidistant parameter
combinations within the region. Nevertheless, using a
template placement algorithm that is based on a tem-
plate-space metric over the parameter space makes a far
more efficient coverage [47,48]. Generally, the algorithms
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that use geometrical techniques concentrate more points
near the boundaries of the region and at lower mass-ratios.
The set of initial eccentricity fek∶1 ≤ k ≤ kmaxg is

chosen to cover the entire interval [0, 0.95] and the mass
ratio q≡m1=m2 ≤ 1 is allowed to range between equal
mass at q ¼ 1 and relatively extreme systems at q ≈ 0.01
with total mass M=M⊙ ∈ ½2.15; 215�. In terms of the
symmetric mass ratio η ¼ μ=M the model covers approx-
imately η ∈ ½0.01; 0.25�. Figure 3 shows the placement of
those L ¼ 120 templates (red dots) that are situated in the
k ¼ 0 plane section of the parameter space Ω, out of a total
of 1800 templates and are collected in hðtÞ. These
templates are confined within a triangular region with a
boundary ∂Ω (thick gray line). The four waveforms of
extreme parameter values of eccentricity and total mass are
shown in Fig. 4.

B. Production of frequency-domain waveforms

For optimal orientation all time-domain waveforms in
Eq. (5), composed of their two fundamental polarizations
hþ and h× in the dominant l ¼ m ¼ 2 mode are repre-
sented by complex-valued GW strain amplitudes,

hnðλlÞ≡ hþðtn; λlÞ − ih×ðtn; λlÞ; ð14Þ

at N equidistant grid points,

ftn ¼ nΔtgn∈½0;N−1�; ð15Þ

as elements of a finite sequence ofN regularly spaced samples
of the complex-valued TD waveforms fh0ðλlÞ; h1ðλlÞ;…;
hN−1ðλlÞg. The sequence is converted by a fast Fourier
transform (FFT), denoted by a linear operator F∶h → h̃,
into an other equivalent-length sequence of regularly spaced
samples,

fh̃kðλlÞgk∈½−N=2;N=2−1� ¼ FfhnðλlÞgn∈½0;N−1�; ð16Þ

evaluated at the same N equidistant frequency grid points
ff−N=2;…; f0;…; fN=2−1g considering that ROM construc-
tion, to be discussed in Sec. IV,will require a set of values that
reside in the same grid points over all the waveforms in the
template bank.
(1) This is achieved by having the length of all fre-

quency series truncated to that of the shortest
waveform in time, denoted by

T ¼ tN−1 − t0: ð17Þ

This particular waveform is associated with the
highest mass, lowest eccentricity configuration
ði ¼ imax; j ¼ imax; k ¼ 0Þ in the template bank
and its position in the parameter space, given by
Eq. (12), is lshort ¼ ðimax þ 3Þimaxkmax=2þ 1.

(2) Another possible way, used by [49,50], to adjust the
frequency series to the same length is to make the
shorter-length waveforms of sufficient length by ex-
tending them with other templates such as TaylorF2.

The Fourier coefficients in Eq. (16), given by

h̃kðλlÞ≡
XN−1

n¼0

hnðλlÞe−2πikn=N; k ∈ ½0; N − 1�; ð18Þ

are complex-valued functions of the frequency fk which
encodes both the amplitude and the phase,

h̃ðAÞkl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re½h̃kðλlÞ�2 þ Im½h̃kðλlÞ�2

q
=N;

h̃ðϕÞkl ¼ −i ln ðh̃kðλlÞ=jh̃kðλlÞjÞ; ð19Þ

respectively. In this interpretation, h̃kðλlÞ corresponds to
the cross-correlation of the time sequence hnðλlÞ and an
N-periodic complex sinusoid e2πikn=N at a frequency point
fk ≡ k=N that represents k cycles of the sinusoid. Therefore,
Eq. (18) acts in place of a matched filter for that frequency.
Now, the sequence of frequency-domain waveforms (16) can
be reexpressed as “chirps” in a simple form,

fh̃kðλlÞg ¼ fh̃ðAÞkl expðiΛh̃ðϕÞkl Þg; ð20Þ
where the oscillation degreeΛ is a large number. Thebehavior
of GWs in the late inspiral phase is highly oscillatory, but the
amplitude and the phase themselves are smoothly varying
functions of frequency [51]. It will thus be more expedient to
perform high-accuracy parametric fits of the phase and
amplitude given by (19) rather than of the complexwaveform
(14) itself. The preprocessed amplitudes and phases are
collected in the columns of separate template matrices
fHðAÞ;HðϕÞg ∈ RN×L,

H ¼ ðh̃Þkl ∈ CN×L; ð21Þ
where we have dropped the amplitude or phase labels for
brevity andwhereL is the total number of templates, and each
template h̃lðfkÞ is given on a common frequency grid of
length N. We may choose to represent the waveforms at a
large number of frequency points so that N ≳ L.

C. Definition of a regularly spaced
high-resolution frequency grid

Provided that T in (17) is the longest time length, the
time spacing is defined as

Δt ¼ T=ðN − 1Þ ð22Þ

by Eqs. (15) and (17). The time spacing and the number of
time steps N in the grid (15) are chosen such that the FD
waveforms (20) are sampled at a rate of fs and cover a
suitable and well-resolved frequency range ½flow; fhigh�.
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(1) The lower limit of the frequency range flow is
specified by the low-frequency cutoff of the detector
noise spectrum which is close fcutoff ¼ 10 Hz for
advanced detectors design.

(2) The upper limit fhigh is determined to be at fISCO ¼
2.045 kHz by the ISCO frequency (3) for the lowest
total mass configuration of interest M ¼ 2.15 M⊙.

The Nyquist criterion requires the sampling frequency to
be at least twice the highest frequency contained in the
signal to avoid aliasing. Thus, the smallest sufficient
sampling frequency is fs ¼ 4096 samples per second for
being the first power of 2 to meet the criterion. Note that the
typical sampling rate being used by aLIGO and aVirgo
observatories in ongoing searches for GWs is at 2048 Hz
[52]. Instead, an equidistant grid withN ¼ 4000 grid points
is sampled at fs ¼ 16.384 kHz in the frequency band
Mf ∈ ½0.0001; 0.0216� in geometric units ðG ¼ c ¼ 1Þ.
The total massM is expressed in units of geometrized solar
mass by M⊙½s� ¼ G=c3 ×M⊙½kg� ≈ 4.93 × 10−6 sec. At
the time resolution Δt ¼ 1=fs ≈ 4.59M which corresponds
to a Nyquist frequency,

fNy ¼ fs=2 ≈ 2.03 × 10−32M−1; ð23Þ

a waveform long enough for the BNS system of total mass
M ¼ 2.15 M⊙ down to flow ¼ 2.48 × 10−35M−1 is given
and is about T ¼ ðN − 1ÞΔt ≈ 1.83 × 104M long in time.
The spacing in frequency domain is

Δf ¼ 2fNy=N; ð24Þ

so the power will be either in positive or negative
frequencies, depending on conventions and we need to
consider only half of the FFT. Combining this with the
relations (22)–(23), one has

Δf ¼ N − 1

N
1

T
≈ 5.45 × 10−5M−1: ð25Þ

Only half of the points in the FFT spectrum are unique, the
rest are symmetrically redundant. Thus, the points of
negative frequencies contain no new information on the
periodicity of the random number sequence. Which
amounts to swapping the left and right half of the result
of the transform.

IV. SVD-BASED REDUCED-ORDER SURROGATE
MODEL BUILDING

In this section, we summarize some of the characteristic
features of SVD that are especially useful for reduced-order
modeling and discuss our approach to construct a com-
pressed approximate representation of a collection of
fiducial waveforms at the cost of truncation error. Next,
projection coefficients of the waveforms are determined in
terms of the reduced basis. In conclusion, the ROM is

assembled from the reduced basis and projection coeffi-
cients interpolated over the parameter space. Our procedure
follows the well-established strategy that has been pursued
by Pürrer and by Cannon for building frequency-domain
ROMs [37,38,49,50].

A. Singular values and truncation error

Formally, the decomposition of the template matrix
H ∈ CN×L in Eq. (21) is expressed by a factorization of
the form

H ¼ VΣU†; ð26Þ

where the complex unitary matrices

V ¼ ½v1j…jvL� ∈ RL×L;

U ¼ ½u1j…juN � ∈ RN×N ð27Þ

are orthogonal sets of nonzero eigenvectors of the non-
negative self-adjoint operators H†H and HH† so that
U†U ¼ I and V†V ¼ I. The rank-nullity theorem states
that the SVD (26) provides a decomposition of the range of
H [49]. Accordingly, the left-singular vectors (or eigen-
samples) fvi ∈ Vg provide an orthonormal basis,

rangeðHÞ ¼ spanfv1;…; vRg; ð28Þ
for the range of H (column space) where the maximal
number of linearly independent columns of H is
R≡ rankðHÞ ≤ L. In a qualitative sense, each vi represents
a typical waveform pattern. The right-singular vectors (or
eigenfeatures) fui ∈ Ug provide a basis for the domain
of H (row space) and represent the evolution of the
magnitude of each waveform along the frequency grid
points. The diagonal entries of the rectangular matrix
Σ ∈ RN×L correspond to the non-negative real singular
values (SVs) σ1 ≥ … ≥ σs ≥ 0 where s ¼ minðN;LÞ. SVs
are roots of eigenvalues of H†H (and of HH†) describing
the spectrum of the template matrix H, arranged in
monotonically decreasing order (see Fig. 5). If the number
of frequency points is significantly larger than the number
of waveforms (i.e. L ≪ N) then a thin SVD is a more
compact and economical factorization of Eq. (26) than the
full-rank SVD that comprises all R eigensamples. In
practice, low-rank matrices are often contaminated by
errors, and for that reason they feature an effective rank
Reff smaller than its exact rank R. The reduced-rank
approximation of the template matrix H is expressed by

Hr ¼
Xr
i¼1

σivi ⊗ uTi ð29Þ

which comprises only those r < R singular vectors which
correspond to singular values of a significant magnitude.
The approximated representation (29) of the fiducial

DÁNIEL BARTA and MÁTYÁS VASÚTH PHYS. REV. D 97, 124011 (2018)

124011-8



template bankH is the rth partial sum of the outer-product
expansion of the expression (26) where r denotes the
desired target rank. The Eckart–Young theorem [53]
implies that the low-rank SVD in Eq. (29) provides the
optimal rank-r reconstruction of the template matrix,

Hr ≡ argmin
rankðH0

rÞ¼r
kH −H0

rk; ð30Þ

in the least-square sense where the truncation error of
approximated representation (29) in both the spectral and
Frobenius norm is given by

kH −Hrk2 ¼ σrþ1ðHÞ;

kH −HrkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XminðN;LÞ

i¼rþ1

σ2i ðHÞ
vuut ; ð31Þ

respectively.
Figure 5 shows σ̂i ≡ σi=σ1 on logarithmic scale as a

function of the number of SVD components i ¼ f1;…; Rg
involved in the approximated representation. Each σ̂i,
which describes the relative magnitudes of the correspond-
ing eigenfeatures, is computed from the truncated SVD
(29) of template matrices with three distinct full-ranks
R ¼ f550; 936; 1800g (i.e. total number of templates). The
truncation error in the approximation, in accordance with
Eq. (31), decreases with the number of SVD components

retained. The ultimate accuracy (or minimal error) achiev-
able is limited by the total number of templates L that the
original template matrix H contains. The growing rate of
decay in the SV spectrum demonstrates that the individual
SVD components gradually lose their relevance for being
included in the approximation. In this respect, the spectrum
has three clearly distinctive regions characterized by the
rate at which SVs decrease:
(1) Over-reduced SVDs (k≲ 400) retain insufficient

amount of information to construct a representation
by the orthonormalization (28) with less than relative
error of 10−5–10−6. The initial steep exponential fall
attests that the information contained in the corre-
sponding eigenfeatures is predominantly relevant. In
fact, the first few components shown on Fig. 6
contain roughly 90% of all the information on the
input waveforms, regardless of rankðHÞ. Then, SVs
decrease at a much lower, yet a slowly increasing
rate, practically indistinguishable for different values
of full rank R.

(2) Sufficiently reduced SVDs (400≲ k≲ 500–600)
efficiently select the relevant information, so that
the relative error of representation (42) is kept well
suppressed while the number of SVD components

FIG. 4. The panels illustrate the inspiral evolution of equal-
mass BBH/BNS systems (q̄ ¼ 0) starting at a Keplerian mean
orbital frequency of 5 Hz at a distance D ¼ μ. The four most
distinct template waveforms were generated by CBWAVES at a
uniform sampling frequency of 16.384 kHz with extreme values
of total mass M ¼ f2.15 M⊙; 215 M⊙g and initial eccentricity
e0 ¼ f0.00; 0.95g in the investigated parameter space Ω. (See
large red points on Fig. 3.) The top inset panel presents the last
N ¼ 15, 000 points of the longest waveform (blue) projected onto
an equal number of points of the shortest waveform (red).

FIG. 5. Normalized singular-value spectra of the template
matrix for full ranks R ¼ f550; 936; 1800g are illustrated by
blue, orange and green color, respectively. The horizontal axis
represents the index of SVs, while the vertical axis represents the
relative variance of SVs. The main panel displays the relative
variance of σ̂i of the matrix HðAÞ which encodes the amplitude
part of waveform templates while the corresponding relative
variance of σ̂i for the phase is shown in the top inset. At
r ¼ R − 1, its infimum, σ̂r, falls onto a dotted black line given
by log σ̂r − log σ1 ≈ −34.8877–0.00204394R. The rate at which
the ratio decreases is significantly lower under the dashed black
line given by −6.23703–0.0250683R. Excluding waveforms in
the lower section causes less errors by a magnitude much smaller
than in the upper section.
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stored in the reduced-rank template matrix is sig-
nificantly lower than that of the full rank. The larger
the full-rank R is, the more SVD components have to
be kept to achieve the same accuracy of represen-
tation.

(3) Under-reduced SVDs (k≳ 500–600) admit the low-
est possible truncation errors, limited only by the
numerical errors of the full-rank approximation
itself. However, the accuracy of reconstructed wave-
form representation improves at a rate much lower
than in the preceding regions. The loss of relevant
information content due to the reduction of the
number of SVD components is inefficiently low
compared to the improvement of accuracy.

Choosing an optimal target rank r is highly dependent on
the objective. One either desires a highly accurate
reconstruction of the fiducial waveform templates, or a
very low-dimensional representation of the fundamental
features in the templates. In the former case, r should be
chosen close to the effective rank, while in the latter case r
might be chosen to be much smaller. Figure 5 demonstrates
that choosing a target rank r ¼ 456 for the smallest among
fiducial template matrices will result in a truncation error
related to σ̂ ¼ 2.66 × 10−15 at r ¼ 456.

B. Assembly of the surrogate model

The basis for the amplitude or phase space is given in the
columns Bi of the matrix

B≡
�
VL ∈ RN×L; if N > L

V ∈ RN×N; if N ≤ L
ð32Þ

and a full-rank basis is desired. If N < L, then the informa-
tion from L waveforms at N grid points is contained in a
basis of dimension N. The reduced basis waveforms only
resemble the physical behavior of frequency domain

amplitudes and phases for the first basis function, the higher
basis functions are oscillatory (see Fig. 6). To compress the
model, a reduced basis of rank r is selected from the full-rank
basis (28) in the form

Br ¼ Vr ¼ ½v1j…jvr� ∈ RN×r for r < R ≤ N: ð33Þ
For any r the columns of Vr are an optimal orthonormal
bases for the starting waveforms. Notice that Br ⊂ Brþ1,
which demonstrates the underlying hierarchical nature of the
generated template banks [49]. Figure 7 may serve as an
illustration of the underlying sparsity of the selected basis in
the parameter space. The identification of parameter values
associated with the basis waveforms selected by SVD from
the full template bank is not that straightforward as a greedy
algorithm would pick values that parameters take.
Nevertheless, it may safely be said that a very small part
of the parameter space volume is covered; the parameter
points are heavily concentrated at low-mass and low-
eccentricity values.
Hereafter the label r on the rank-r reduced basis will be

dropped for brevity. Given the reduced bases BðAÞ and BðϕÞ,
we compute projection coefficient vectors μ⃗ for any given
input waveform h̃ ∈ RN as follows,

μ⃗ðh̃Þ≡ BTh̃ ∈ Rr; ð34Þ
where the labels referring to amplitude or phase were
dropped for brevity. The projection coefficient vectors for
all waveform templates are packed in the matrices MðAÞ

and MðϕÞ with entries

(a) (b)

FIG. 6. Reduced basis functions for the first five amplitude and
phase SVD modes are represented at N ¼ 4000 grid points in the
frequency domain. The basis functions become increasingly
oscillatory as their index i increases.

FIG. 7. The SVD-based reduced-basis parameter choices in the
three-dimensional parameter space ðm1; m2; e0Þ. Comparing the
positions of the retained r ¼ 600 templates to the placement of
the original R ¼ 1800 template shown in Fig. 3, it becomes clear
that primarily those parameters are selected that are associated
with low-mass and low-eccentricity systems. Only a small
fraction of the whole volume of the parameter space is covered.
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Mkl ¼ μkðh̃lÞ ¼ ðBTHÞkl ∈ Rr×L: ð35Þ

Comparing with Eq. (26), we see thatM ¼ BTH ¼ −ΣUT

for a full-rank basis B ¼ V. It follows that the projection
coefficient matrices are ordered in the same way as the
individual waveforms in H. To undo the packing of the
waveforms in the matrices M we just partition the linear
index l that enumerates the waveforms in H and obtain a
tensor,

Mk;lq;le ¼ μkðh̃ðlq;leÞÞ ∈ Rr×Lq×Le : ð36Þ

To complete the model, we define the projection coefficient
vectors at any position in the chosen parameter space by
suitable interpolants I½M�ðλÞ ∈ Rr for the amplitude and
phase coefficient tensorsMðAÞ;MðϕÞ. For each input wave-
form we have two corresponding r-vectors of projection
coefficients (for amplitude and phase) that are interpolated
over the parameter space. The frequency-domain ROM
representation of waveform templates is then constructed
in the form

h̃Sðλ; fÞ≡ A0ðλÞIf½BðAÞ · I½MðAÞ�ðλÞ�
× expfiIf½BðΦÞ · I½MðΦÞ�ðλÞ�g; ð37Þ

where · denotes matrix multiplication, If½·� interpolates
vectors in frequency on a suitable grid, and A0ðλÞ is an
amplitude prefactor which is stored before the SVD takes
place and an interpolant is computed over the param-
eter space.

V. ACCURACY AND SPEEDUP FOR SURROGATE
MODEL PREDICTIONS

Once a ROM is built, any surrogate waveform can be
evaluated as a sum of reduced basis elements with
incremental errors within the parameter range covered in
the particular model. The main criteria for a successful
ROM are that it facilitates data analysis applications that
were infeasible with the fiducial waveform model and that
it represents waveforms accurately [50]. This section is
dedicated to appraise the overall performance of the ROM
building discussed in Sec. IV. The first part of this section
assesses the accuracy of surrogate model predictions in
terms of the match between the surrogate model and the
fiducial model. In the second part, we provide an overview
of the computational efficiency of the ROM with respect to
computational complexity and cost relative to the cost of
the fiducial model.

A. Reconstruction errors

The overlap integral of two normalized waveforms, say,
of a fiducial CBWAVES waveform hCB and its surrogate
model prediction hS, is given by the mismatch (or unfaith-
fulness) between the two waveforms and is defined as the

normalized inner product (39) maximized over time and
phase shifts,

M≡ 1 −max
t0;ϕ0

hhCB; hSi
khCBkkhSk

; ð38Þ

with an inherited norm given by khk2 ≡ hh; hi. A natural
inner product between the two waveforms is given by the
complex scalar product

hh̃CB; h̃Si≡ 4Re
Z

fhigh

flow

h̃CBðfÞh̃�SðfÞ
Sh̃ðfÞ

df; ð39Þ

where the tilde denotes Fourier transformation given in
Eq. (16), h̃�SðfÞ is the complex conjugate of h̃SðfÞ, Sh̃ðfÞ is
the one-sided power spectral density (PSD) of the detector
noise and flow, fhigh are suitable cutoff frequencies for
detector sensitivity. The low-frequency cutoff depends on
the PSD and is at 10 Hz for advanced detectors design. The
high-frequency cutoff is at 2.045 kHz, which is the ISCO
frequency of the lowest total-mass configuration in our
fiducial model, discussed in Sec. III C.
A discrete version of the normed difference between a

fiducial waveform and its surrogate is what we can actually
measure,

Δh̃2ðλÞ ¼ fs
XN−1

k¼0

����jh̃CBðfk; λÞ − h̃Sðfk; λÞ
����
2

; ð40Þ

where fs is the sampling frequency discussed in Sec. III C.
The square of the normed difference between two wave-
forms, referred to as the surrogate error, is directly related to
their overlap (39). It is the dominant source of error in the
surrogate model that translates directly into errors in the fits
of the parameters for building the surrogate [34]. Figure 8
shows the linear correlation of the surrogate error in
Eq. (40) with the time spacing Δf in the regularly spaced
grids (15)–(16). The surrogate model gradually converges
to the fiducial one at finer time scales (i.e. larger sampling
frequencies). Other errors of interest are the pointwise ones
(separately for the amplitude and phase). They are encoded
in the lth surrogate model prediction (37) as

h̃ðAÞS ðfk; λlÞ≡ If½BðAÞ · I½MðAÞ�ðλlÞ�;
h̃ðϕÞS ðfk; λlÞ≡ If½BðΦÞ · I½MðΦÞ�ðλlÞ�; ð41Þ

respectively. The relative errors in approximating the
amplitude and phase of a fiducial waveform by its surrogate
model prediction are then expressed by

Δh̃ðAÞðfk; λlÞ ¼ j1 − h̃ðAÞS ðfk; λlÞ=h̃ðAÞCBðfk; λlÞj
Δh̃ðϕÞðfk; λlÞ ¼ j1 − h̃ðϕÞS ðfk; λlÞ=h̃ðϕÞCBðfk; λlÞj; ð42Þ
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where the amplitude and phase parts of fiducial waveforms,

h̃ðAÞCBðfk; λlÞ and h̃ðϕÞCBðfk; λlÞ, respectively, are given by
Eq. (19) on N discrete frequency points fk.
Figure 9 shows a comparison between the surrogate and

fiducial model, using the template assigned to l ¼ 1. The
top panel shows that the fiducial and surrogate waveforms
are visually indistinguishable. The bottom panel demon-
strates that both amplitude and phase pointwise errors (42)
increase with frequency. Nevertheless, the errors are indeed
as small as predicted in Fig. 5. A moving average of 50
points was used to smooth out short-term fluctuations in the
error and highlight longer-term trends.

B. Computational cost and speedup for surrogate
model predictions

Apart from the requirements for accuracy or reliability, a
ROM building is considered efficient if it generates cost-
efficient surrogate models. The major advantage of using
surrogate model predictions in lieu of actual waveform
evaluations is their significantly reduced resource con-
sumption. Now we discuss the computational cost, in terms
of operation counts and run time, of ROM building and
present the desired speedup that can be achieved when
evaluating surrogate models.
As described in Sec. IV B, the complete surrogate model

(37) is assembled with the evaluation of r projection
coefficients μlðfÞ given in (34) and 2r fitting functions

fh̃ðAÞl ðλÞgrl¼1 and fh̃ðϕÞl ðλÞgrl¼1 given in (41). In order to
construct a surrogate model for some parameter λ, one only
needs to evaluate each of those 2r fitting functions at λ0,

recover the r complex values fh̃ðAÞl ðλ0Þ exp½−ih̃ðϕÞl ðλ0Þ�grl¼1,

and perform the summation over the index l. Each μlðfÞ
is a complex-valued frequency series with N samples.
Therefore, the total operation count to evaluate the surrogate
model at each λ0 is ð2r − 1ÞN plus the cost to evaluate the
fitting functions [34]. The entire process of constructing a
small, efficient ROM which is comprised of only r ¼ 550
waveform templates sampled at N ¼ 4000 grid points
requires the execution of approximately 4.4 × 106 opera-
tions (excluding the cost of evaluating the fitting functions).
The notion of “speedup,” in our terminology, is the

number that evaluates the relative performance of generating
the samewaveforms on the same processor by the execution
of CBwaves code and of the surrogate model. More
specifically, we test the acceleration of waveform generation
by measures on the length of time required to perform each
computational process. Let as note that the time which was
denoted by tint and was referred to as ‘integration run-time’
in Sec. II A is actually the execution time during which the
processor is actively working on our computations. It is
referred to as CPU time (or run-time) and will be denoted by
tCPU. In contrast, the actual elapsed real time accounts for the
whole duration from when the computational process was
started until the time it terminated. The difference between
the two can arise from architecture and run-time dependent
factors such as waiting for input/output operations (e.g.
saving waveform templates). Consequently, the elapsed real
time is greater than or equal to the CPU time.

FIG. 9. Top panel: The amplitude and the phase part of the
waveform associated with l ¼ 1. There is visual agreement
among the fiducial CBWAVES waveform and its surrogate
prediction throughout the entire frequency range. Bottom panel:
The relative errors (42) with moving average of 50 points, defined
by Eq. (42), in the amplitude and the phase difference between
the fiducial waveform and its surrogate model prediction. The
differences are smaller than the errors intrinsic to the surrogate
model itself, as well as those of state-of-the-art numerical
relativity simulations.

FIG. 8. The linear trend in the change of surrogate error (40) as
a function of the resolution of the frequency grid. Higher
resolution of sampling times (i.e. lower resolution for sampling
frequencies) result lesser uncertainty in estimating the amplitudes
and phases. Surrogate errorΔh̃2 ¼ 1.98 × 10−7 is marked with an
orange point for a frequency-grid spacing Δf ¼ 5.45 × 10−5M−1

which was obtained in Eq. (25). The value of surrogate error
corresponds to the mean relative error of the amplitude Δh̃ðAÞ ≈
4 × 10−14 shown in Fig. 9.
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Figure 10 shows (on top) the computation time or CPU
time for CBwaves waveforms (solid lines) against corre-
sponding surrogate waveforms (dashed lines) as a function
of total mass of the binary system. The total mass M is
measured in the same 11 points as in Fig. 1 for three
different initial eccentricities (e0 ¼ f0.98; 0.6; 0g) of equal-
mass configurations, each associated with different colors.
The computation time tCPU for surrogates is multiplied by a
factor of 300 in order to shift the curves close to their
respective CBWAVES counterparts and enable visual com-
parison. The bottom panel demonstrates that surrogates are
several thousand times faster around 10–50 M⊙ to evaluate
as compared to the cost of generating CBWAVES wave-
forms. The speedup falls off to several hundreds as the total
mass increases. Moreover, the speedup grows when the
initial eccentricity e0 is increased in much the same way as
with the mass disparity q̄ (cf. Fig. 6 in [50]). The speedup is
roughly twice as great for configurations having extremely
high initial eccentricity (e0 ¼ 0.98) as for circular ones
(e0 ¼ 0). The resemblance of the influence of e0 and q̄
exercize on the speedup can be attributed to their asymp-
totical nature as it had been pointed out earlier in Sec. II A.
It is also evident that the speedup culminates when wave-
forms for configurations of very low total mass and very
high eccentricity are generated. Such waveforms are
prohibitively expensive to generate with CBWAVES in

contrast to surrogates that are generated at the same cost,
regardless of the parameters of the configuration.
Let us note that successive versions of SEOBNR ROMs

have been developed and put to use within LAL (LSC
Algorithms Library) to shorten data analysis applications
carried out since the first observation runs have begun [54].
It has been shown in [34,35] that the cost of evaluating the
surrogatemodel is linear in the number of samplesN (cf. our
Fig. 8 where the surrogate error depends on the sampling
rate). Depending on the sampling rate, the speedup is
between 2 and almost 4 orders of magnitude. The speedup
in evaluating surrogate models compared to generating
NR waveforms with the LAL analysis routines is crucial
for searches and theoretical parameter estimations. SEOBNR
(aligned-spin Effective-One-Body), IMRPhenomD
(Inspiral-Merger-Ringdown Phenomenological Model ‘D’)
and PhenSpinTaylorRD waveform approximants are among
the best available GWmodels for generic spinning, compact
binaries. In comparison with our results, the speedup
achieved at the typical rate of 2.048 kHz used by aLIGO
and aVirgo observatories is roughly 2300 [52].

VI. CONCLUDING REMARKS AND OUTLOOK

The primary goals of the present paper have been to
propose a potential extension of the ROM techniques to
alleviate the computational burden of constructing wave-
form templates for coalescing compact binaries with any
residual orbital eccentricity and to validate the applicability
of ROMs to this particular family ofwaveforms. ROMs have
been applied to several waveform families (SEOBNR,
IMRPhenomP and PhenSpinTaylorRD) in LAL routines
for gravitational-wave data analysis [35–42]. The afore-
mentioned waveform families provide efficient descriptions
of gravitational waves emitted during the late IMR (inspiral,
merger, and ringdown) stages of compact binary systems,
but only in the zero-eccentricity limit. The major motivation
for extending the scope of application beyond the zero-
eccentricity limit is based on the ground, referred to in Sec. I,
that the great majority of compact objects formed in dense
stellar environments retain some non-negligible eccentricity
when entering the frequency band of ground-based GW
detectors [3,4], as well as the impact of eccentricity on the
accuracy of parameter estimation for BNSs [15].
Our approach to construct frequency-domain ROMs has

been predominantly based on the method outlined in
Refs. [49,50] (see Sec. IV). Input waveforms comprised
in the ROM are Fourier transformed and split into their
amplitude and phase parts (see Sec. III B). These functions
are accurately represented on a common, finely sampled
and regularly spaced frequency grid defined in Sec. III C
with only N ¼ 4000 equidistant nodes, with a sampling
frequency recorded well above the required Nyquist fre-
quency, at fs ¼ 16.384 kHz. Figure 8 demonstrates that,
beside the degree of model order reduction, the accuracy of
surrogate-waveform representation relies on the sampling

FIG. 10. Top panel: Computational time tCPU to generate
fiducial waveforms with CBWAVES code (dots; connected by
solid lines) against the cost of evaluating corresponding surro-
gates by ROM (rectangles; connected by dashed lines). The
computational time was measured for three different initial
eccentricities of equal-mass configurations, each associated with
different colors. Bottom panel: The speedup in evaluating the
surrogate model is several thousand times faster around
10–50 M⊙ than generating CBWAVES waveforms. For high total
mass the speedup falls off to several hundreds. The speedup is
roughly twice as great for configurations having extremely high
initial eccentricity at e0 ¼ 0.98 (blue line) as for circular ones at
e0 ¼ 0 (green line).
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frequency. The upper and lower limits of frequency con-
tained in the grid are determined from the ISCO frequency
for the lowest total-mass configuration of interest (which is
roughly 2 kHz in the present work) and the low-frequency
cutoff of the detector noise spectrum (which is close to
10 Hz for aLIGO design). The ROM is designed to be
capable of producing surrogates for GWs from coalescing
compact binaries of total mass between 2.15 M⊙ and
215 M⊙, thereby covering the entire total-mass range of
stellar-mass BBH/BNS systems of interest for ground-
based GW detectors. The mass ratio is allowed to range
between equal mass at q ¼ 1 and relatively high mass-
ratio at q ≈ 0.01 while the initial orbital eccentricity
changes over a relatively wide range of values from
e0 ¼ 0 (circular orbits) up to e0 ¼ 0.95 (highly eccentric
orbits). Configurations with both low total-mass and high
mass-ratio would imply component masses well bellow
1 M⊙, which, of course, are excluded as inconceivable
astrophysical sources. Despite the fact that the investigation
has been restricted to a feasible three-dimensional subset of
the full eight-dimensional parameter space of GW signals
(see Fig. 3), the conclusions of Sec. IV, in agreement with
that of Refs. [34–36,49,50], suggest that a full representa-
tion of the eight-parameter space might actually be achiev-
able with a relatively compact reduced basis (cf. Ref. [34]).
Template placement algorithms based on template-space
metric (such as in Refs. [47,48]) make admittedly far more
effective coverage of the parameter space than the uniform
spacings we used in this preliminary study. As a matter of
fact, Fig. 7 illustrates that the large majority of parameters
of the selected templates constituting the reduced basis are
concentrated along the axes of the parameter space.
The reduced bases were built separately for the input

amplitude and phase (see Fig. 6) by the decomposition of
template matrices that comprise 550, 936, and 1800 input
waveforms, respectively. The projection coefficients for
corresponding input waveforms projected onto their
reduced bases, were calculated as functions of the model
parameters ðM; q; e0Þ and were interpolated by tensor
product cubic lines over the parameter space. Finally, the
ROM which preserves fundamental features of the original
full-order model is assembled from its constituent parts.
Figure 5 demonstrates the underlying hierarchical nature of
the generated template banks and indicates that the trunca-
tion error in the approximated representation of surrogates
decreases with the number of SVD components retained,
characterized by a rate at which SVs decrease. Extremely
little (r≲ 400) or large numbers (r≳ 500–600) of SVD
components retained are equally poor choices because the
amount of information is either insufficient to construct
accurate representations or excessively large compared to
the achieved accuracy. An effective rank is chosen prefer-
entially from aROMwhich possesses the lowest SVwith the
smallest possible number of components retained (in our
case r ¼ 456). The first part of Sec. V assess the error of

surrogate model predictions for waveforms that were origi-
nally not present in the original template bank, with special
regard to the impact of frequency on the reconstruction error.
To that end, reference waveforms were generated by
CBWAVES in all the intersection points right between the
grid points of the original template bank (see the yellow in
Fig. 3). Finally, the surrogates were evaluated in the
corresponding parameter-space points for comparison and
the relative error was measured along all the N ¼ 4000
frequency points. The bottom panel of Fig. 9 attests that the
relative error of the approximated representation is consis-
tent with the error estimates derived from the singular values
(Δh̃ðAÞ ≈ 10−15, Δh̃ðϕÞ ≈ 10−13) over a large portion of
the frequency range, but larger than expected at around
the starting frequency (Δh̃ðAÞ ≈ 10−13, Δh̃ðϕÞ ≈ 10−13). The
figure indicates that the relative error of the amplitude and
phase increaseswith the frequency. Our results provide clear
examples of the construction and use of ROMs for eccentric
inspiral waveforms.
Our results also provide strong evidence that large

increases in the speed of computation are obtained through
the use of ROMs. Figure 1 has exposed that the cost of
computing input waveforms increases exponentially as the
total mass decreases, but rises asymptotically at an even
faster rate than the initial eccentricity or mass disparity
increase. In contrast to the cost of EOB waveform (full
IMR) generation that rises steeply as the starting frequency
is decreased (see Ref. [50]), the cost of CBWAVES wave-
form (inspiral-only) generation rises more gradually. The
cost of input waveform generation varies considerably in the
region of parameter space ðM; q; e0Þ explored and depicted
in Fig. 3, but Fig. 2 has revealed that only a surprisingly
small fraction of waveforms of high-eccentricity and high-
mass-disparity configurations are actually responsible for
the prohibitively large time-consumption of integrating a
large number of 3PN-accurate equation of motion over the
investigated range of parameters. As discussed in the second
part of Sec. V (based on Ref. [49]), the cost of generating
surrogate waveforms (shown in the top panel of Fig. 10)
comprises a constant cost of the spline interpolation at each
frequency point and a cost of performing the interpolations
of coefficients over the parameter space. The speedup in
evaluating the surrogate model, shown in the bottom panel
of Fig. 10, is 2–3 orders of magnitude faster than generating
corresponding CBWAVES waveforms overall, reaching a
factor of several thousand around 10–50 M⊙.
Finally, the method presented in this paper is limited to

building surrogate models of inspiral-only PN input wave-
forms for the reason that eccentric binaries circularize in the
last few cycles before the merger. Nevertheless, composite
waveforms that fully cover all the IMR stages can be
constructed as prescribed in Refs. [49,50] by matching the
inspiral and NR waveforms of merger stages in either the
time or frequency domain and then fitting this ‘hybrid’
waveform to the ring-down part, described by damped
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exponentials. The gap between the initial part of the
waveform and its final ring-down part, described by
damped exponentials, is bridged by a phenomenological
phase. The practical implementations of ‘hybrid’ wave-
forms that comprise eccentric inspirals of will be left for
future work. We anticipate substantial speedup factors to
come for predicting NR waveforms with a surrogate model
compared to the expensive numerical simulations for the
same parameters. Developing an efficient template place-
ment technique (such as in Refs. [47,48]) for better
coverage of the parameter space and an adaptive sampling

technique in the frequency domain are critical factors in the
operational efficiency of ROMs and have been left for
future work. All these ultimately leading to computation-
ally feasible and successful exploration of the full eight-
dimensional parameter space of GW signals.
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