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In this work we have investigated various properties of a spinning gyroscope in the context of Horndeski
theories. In particular, we have focused on two specific situations—(a) when the gyroscope follows a
geodesic trajectory and (b) when it is endowed with an acceleration. In both these cases, besides developing
the basic formalism, we have also applied the same to understand the motion of a spinning gyroscope in
various static and spherically symmetric spacetimes pertaining to Horndeski theories. Starting with the
Schwarzschild de Sitter spacetime as a warm up exercise, we have presented our results for two charged
Galileon black holes as well as for a black hole in scalar coupled Einstein-Gauss-Bonnet gravity. In all these
cases we have shown that the spinning gyroscope can be used to distinguish black holes from naked
singularities. Moreover, using the numerical estimation of the geodetic precession from the Gravity Probe
B experiment, we have constrained the gauge/scalar charge of the black holes in these Horndeski theories.
Implications are also discussed.
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I. INTRODUCTION

General relativity has been very successful in explaining
the kinematics as well as the dynamics of our observable
universe. The success story of general relativity, since its
discovery, continues to grow steadily as it passes more and
more experimental tests with flying colors. Apart from the
earlier predictionsmade byEinstein, such as bending of light,
perihelion precession of Mercury and gravitational redshift
[1–4], the modern era is also blessed with numerous fruitful
tests of general relativity. Some notables among them are the
Hulse and Taylor experiment [5], the findings of Gravity
Probe B [6] and of course the most recent discovery of
gravitational waves [7–9]. These discoveries have tested
general relativity both in the weak field as well as in the
strong field regime. For example, the merger of two black
holes is necessarily a strong field phenomena, while the
Gravity Probe B experiment has been carried out in theweak
field regime. As the later one is of relevance in the present
context, we shall briefly describe the same below. Gravity
Probe Bwas designed tomeasure the inertial frame dragging
and geodetic precession effect of a spinning gyroscope
orbiting Earth due to the Earth’s gravitational field. To have
a better estimate, four gyroscopeswere used and theywere all
placed in a satellite orbiting the earth at an approximate
altitude of 650 km from the Earth’s surface and with an
orbital time period of 97.65 min. The measured values of the

geodetic precession and frame dragging by Gravity Probe B
are 6601.8�18.3mas=yr and 37.2� 7.2 mas=yr respec-
tively, while general relativity predicts them to be
6606.1 mas=yr and 39.2 mas=yr. This clearly suggests that
general relativity is indeed in close agreement with the
experimental evidences [6,10–12] as far as Gravity Probe B
is concerned.
Beside this enormous triumph, general relativity has its

fair share of limitations as well. It fails both at the very large
and at the very small length scales. In particular, general
relativity cannot explain (without invoking some exotic
matters like dark energy) the accelerated expansion of the
Universe [13–16] and also it completely breaks down near
the singularities, thereby losing its predictive power [17].
This suggests that general relativity behaves as an effective
theory and may be replaced by some more fundamental
theory at both these scales. This motivates the search for a
modified theory of gravitation that can explain (or, better
cure) both these shortcomings from a more fundamental
level [18–20]. The most economic way to achieve the same
would be to modify the Einstein-Hilbert action by either
incorporating higher curvature terms or by introduction of
some additional scalar or tensor fields. Among the mod-
ifications of the Einstein-Hilbert action originating from the
inclusion of higher curvature terms, a few are of consid-
erable interest. In particular, fðRÞ theories of gravity have
drawn significant interest in the past few years due to its
ability to explain the late time cosmic acceleration [21–33]
and its close correspondence with scalar-tensor theories
of gravity [34–41]. In addition, Lovelock theories of
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gravity [42–49], fðTÞ gravity [50–55], higher dimensional
along with higher curvature modifications to gravitational
dynamics [56–60] play crucial roles in explaining various
scenarios among the alternative gravity theories. On the
other hand, among the scalar coupled gravity theories (also
known as the scaler-tensor theories) Horndeski theories are
of particular interest. Since for them the field equations are
still of second order, no Ostrogradsky ghosts are present
[61–80]. These theories have recently been studied quite
extensively in the context of cosmology and black hole
physics. Given the importance of Horndeski theories and
their interesting solution space, it is legitimate to ask how
the Horndeski theories confront various experimental tests
of gravity, thus providing constraints on the parameters of
these theories [18]. Such an exercise has already been
carried out in [80], in the context of perihelion precession
of Mercury and bending angle of light (see also [81]). In
this work we will concentrate on the Gravity Probe B
experiment and ask whether it can provide useful con-
straints on the Horndeski theories. Throughout this work
we will use the geometric unit with c ¼ 1 andG ¼ 1 unless
otherwise stated.
As a first example, let us discuss the charged Galileon

black holes, a subclass of Horndeski theories. Besides
nonminimal coupling between scalar and gravity, the above
model also inherits an additional gauge field which couples
to the scalar sector nonminimally. This particular model has
been explored earlier in detail [76,82,83]. The correspond-
ing action for the complete system, including gravity, scalar
and gauge field takes the following form [76]:

A ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

4
FμνFμν þ βGμν∇μΦ∇νΦ

− η∂μΦ∂μΦ −
γ

2

�
FμσFν

σ −
1

4
gμνFαβFαβ

�
∇μΦ∇νΦ

�
ð1Þ

where the coupling constant β is assumed to be non-
vanishing. Here the action for the gravity sector is taken to
be the Einstein-Hilbert term, for the gauge field it is the
canonical −ð1=4ÞFμνFμν term and finally for the scalar one
has the standard kinetic term. However in addition to the
above, the theory inhibits two more pieces—(a) nonmini-
mal coupling of gravity with scalar field through the
Einstein tensor Gμν and (b) coupling of the stress tensor
of the gauge field to the scalar sector. These two pieces sit
in the action with arbitrary dimensionful coefficients β and
γ respectively. Even though the field equations in this
simplified setting are complicated, one can use the addi-
tional shift symmetry of the Galileon field Φ, such that
Φ → Φþ constant, to derive a conserved Noether current.
Imposing spherical symmetry further simplifies the field
equations and hence it becomes possible to obtain exact
solutions. In the case with η ¼ 0, i.e., in absence of any

canonical kinetic term for Φ one obtains the following
spherically symmetric solution [76]:

ds2 ¼ −
�
1 −

2M
r

þ γðQ2 þ P2Þ
4βr2

�
dt2

þ
�
1 −

2M
r

þ γðQ2 þ P2Þ
4βr2

�−1
dr2 þ r2dΩ2 ð2Þ

where the charges associated with the gauge field are
independent and can be obtained from Ftr ¼ Q=r2 and
Fθϕ ¼ P sin θ. Further the scalar field (or, the Galileon
field) present in this model takes the following form [76]:

Φðr; tÞ ¼ Φ0tþ ψðrÞ;

ψ 0ðrÞ2 ¼
2M
r − γðQ2þP2Þ

4βr2�
1 − 2M

r þ γðQ2þP2Þ
4βr2

�
2
Φ2

0: ð3Þ

Here the additional constant Φ0 appearing in the solution
for the scalar field is related to the coefficient of the
nonminimal coupling between Galileon and gravity, as
Φ2

0 ¼ 1=β. Thus one must have β > 0 to ensure a real
solution for ΦðrÞ. Further the gauge field as well as the
scalar field with the positive branch of the above equation
for ψðrÞ is regular at the event horizon. At this stage one
has no conditions on the coupling between the gauge field
and the Galileon, thus the sign of 1=r2 term can have
either signs.
It is also possible to keep η ≠ 0 and hence the relevant

static and spherically symmetric solution becomes [76]

ds2 ¼ −
�
1 −

2M
r

þ ηr2

3β
þ γðQ2 þ P2Þ

4βr2

�
dt2

þ
�
1 −

2M
r

þ ηr2

3β
þ γðQ2 þ P2Þ

4βr2

�−1
dr2

þ r2dΩ2 ð4Þ

where the ratio η=3β acts as the negative of the effective
cosmological constant. In order to be consistent with the
accelerated expansion of the Universe at the large scale we
consider the de Sitter branch of the above solution, which
requires η < 0. In this case as well the Galileon field and its
derivative are regular at the event horizon. However in this
case the electric and magnetic charges are not independent
and one must have γ > β > 0 to ensure consistent descrip-
tion of the spacetime.
The final static and spherically symmetric spacetime we

will consider is a solution to the scalar coupled Einstein-
Gauss-Bonnet gravity and corresponds to a spherically
symmetric black hole solution with scalar hair. We will
refer to this solution as the Sotiriou-Zhau solution [84,85]
(also see [86–90]). The above solution is derived assuming
a linear coupling between the scalar field Φ and the
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Gauss-Bonnet invariant LGB, such that the action
becomes [85,91]

A¼ 1

8π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
2
−
1

2
∂μΦ∂μΦþαΦLGB

�
ð5Þ

The Gauss-Bonnet invariant appearing in the above action
can bewritten in terms of various curvature quantities and has
the following expression:LGB¼R2−4RαβRαβþRαβμνRαβμν,
with R, Rαβ and Rαβμν having the usual meaning of Ricci
scalar, Ricci tensor and Riemann curvature tensor respec-
tively. The metric associated with the hairy black hole in
Einstein-Gauss-Bonnet gravity correspond to

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2dΩ2; ð6Þ

where the metric elements hðrÞ, fðrÞ as well as the scalar
field profile ΦðrÞ reads [84,85]

fðrÞ ≈ 1 −
2M
r

þMP2

6r3
þOðr−4Þ;

hðrÞ ≈ 1þ 2M
r

þ 8M2 − P2

2r2
þOðr−3Þ;

ΦðrÞ ≈ P
r
þMP2

r2
þOðr−3Þ: ð7Þ

HereP is the scalar charge (or, scalar hair) associatedwith the
above black hole. Further note that the field equation for the
scalar field corresponds to □Φþ LGB ¼ 0, which can be
trivially integrated, since in four dimensions the Gauss-
Bonnet invariant is a total derivative term. As a consequence,
one can demonstrate that the above solution cannot represent
the exterior geometry of a compact object, rather can only
depict a black hole spacetime. In the present context, we shall
explicitly use Eq. (7) and find out the features associatedwith
the motion of a gyroscope in this hairy black hole spacetime.
In addition to the above two solutions, we will also consider
the Schwarzschild-de Sitter solution to set the stage for the
chargedGalileon black hole and the Sotiriou-Zhou solutions.
The paper is organized as follows: In II, we derive the

geodetic precession in a general static and spherically
symmetric spacetime, which subsequently have been
extended for a gyroscope on a non-geodetic trajectory
and have computed its precession frequency in III. The
techniques developed in the earlier sections have been
applied in IV to study the motion of a gyroscope in both
geodesic and accelerated trajectories for spacetimes origi-
nating from Horndeski theories. Moreover we have explic-
itly pointed out the features associated with these
Horndeski theories, but are absent in general relativity.
We have also discussed the viability of these theories and
future directions of exploration á la the Gravity Probe B
experiment.

II. GEODETIC PRECESSION IN A GENERAL
STATIC, SPHERICALLY SYMMETRIC

SPACETIME: FORMALISM

In this section we will discuss in detail the geodetic
precession of a spinning gyroscope in a general static and
spherically symmetric spacetime. The presence of an
external static and spherically symmetric gravitational field
will lead to precession of the spinning axis of the gyro-
scope, which we will compute in our general framework.
This will enable us to evaluate the precession angle of the
gyroscope for spherically symmetric spacetimes in gravity
theories other than general relativity. Thereby one can
easily read off the effect of these alternative gravity theories
on the precession frequency. This in turn possibly can be
used to provide stringent bounds on the parameters
appearing in these alternative gravity models using the
results from Gravity Probe B.
Given the above motivation we will now concentrate on

the derivation of the precession angle for a gyroscope
moving in a circular geodesic in the static and spherically
symmetric spacetime. Later on we will also discuss the
situation for accelerated gyroscopes as well. Since the
spacetime is static and spherically symmetric there exists
two obvious Killing vectors, namely ta ¼ ð∂=∂tÞa, defining
a Killing time t and ϕa ¼ ð∂=∂ϕÞa, defining an appropriate
angular coordinate ϕ. Thus in these Killing coordinates the
general static and spherically symmetric spacetime takes
the following form:

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dΩ2: ð8Þ

Here νðrÞ and λðrÞ are arbitrary function of the radial
coordinate only, to be determined from the field equations
of gravity. Any modification of the gravitational action over
and above general relativity will result into modified field
equations and hence will modify the functions νðrÞ and
λðrÞ as well. This in turn will lead to corrections in the
geodetic precession in comparison to general relativity,
which we will explore in this work.
As the above solution depicts a spherically symmetric

spacetime, we can comfortably choose to work on the
equatorial slice, i.e., with θ ¼ π=2 without losing any
generality. The four-velocity of a gyroscope on a circular
trajectory in the equatorial plane must satisfy the following
conditions: Ur ¼ dr=dτ ¼ 0 ¼ Uθ ¼ dθ=dτ, where τ is
the proper time along the circular trajectory. Thus both the
radial and θ component of the four-velocity must vanish.
Further if Ωg is the angular velocity of the observer on the
circular geodesic then, Ωg ¼ dϕ=dt ¼ Uϕ=Ut. This ena-
bles us to write down the four-velocity of the gyroscope
moving in a circular geodesic as

Ua ¼ Nð1; 0; 0;ΩgÞ; ð9Þ
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where N is the overall normalization factor. To determine
Ωg, we need to know the energy and angular momentum
associated with the gyroscope, for which we assume that
the radius of the circular orbit is rc. Given this information,
the energy Ec and angular momentum Lc associated with
the gyroscope become [92]

E2
c ¼

2eνc

2 − rcν0c
L2
c ¼

r3cν0c
2 − rcν0c

: ð10Þ

In the above expressions for energy and angular momen-
tum, “prime” denotes derivative with respect to the radial
coordinate and νc ≡ νðrcÞ along with ν0c ≡ dν=dr evaluated
at r ¼ rc. Thus the angular velocity associated with the
gyroscope in the circular geodesic takes the following
form:

Ω2
g ¼ ðUϕ=UtÞ2 ¼ e2νc

r4c

�
Lc

Ec

�
2

¼ eνcν0c
2rc

: ð11Þ

Having derived the angular velocity it is easy to determine
the overall normalization factor by solving UaUa ¼ −1,
which in view of Eq. (9) takes the following form:
−eνcN2 þ r2cN2Ω2

g ¼ −1. Thus using the expression for
Ω2

g from Eq. (11) the normalization factor becomes
N2 ¼ 2 expð−νcÞ=ð2 − rcν0cÞ.
The expression for the normalization factor diverges as

rc → rph, where rph is the photon circular orbit. This is
because the photon circular orbit rph satisfies the following
differential equation: 2 ¼ rphν0ph. It is expected since, there
can be no timelike observer moving on a circular orbit with
radius rph. This tells us that the spacetime region beyond
r ¼ rph is not accessible to observers moving in a circular
geodesic. We will discuss the corresponding situation for
nongeodesic gyroscopes in the later sections. The above
completes our discussion as far as the motion of the
gyroscope in a circular geodesic is concerned, we will
now concentrate on the evolution of the spin of the
gyroscope as it moves along the circular geodesic.
The spin of the gyroscope will be described by the spin

four-vector Sa, which is orthogonal to the velocity four-
vector Ua, such that SaUa ¼ 0. Further spin four-vector
will change as the gyroscope moves along the circular
geodesic and the rate of change of the spin four-vector
corresponds to dSa=dτ. This can be achieved by using the
fact that the spin four-vector is parallel transported along
the circular geodesic, such that

DSa

dτ
¼ dSa

dτ
þ Γa

bcU
bSc ¼ 0: ð12Þ

This equation will be used to determine the spin four-vector
after the gyroscope has made one complete rotation, using
which one can evaluate the spin precession. Before that, we
can use the orthogonality condition: UaSa ¼ 0, along with

Eq. (9) to arrive at − expðνcÞNSt þ r2cNΩgSϕ ¼ 0. From
which it is straightforward to determine the temporal
component of the spin four-vector in terms of the angular
part as

St ¼ r2cΩge−νcSϕ: ð13Þ

Having derived the above relation one can now use the
evolution equation for the spin four-vector using the affine
connections for the spherically symmetric metric and
Eq. (12) to arrive at the following differential equations [93]:

dSt

dτ
¼ −Nrce−νcΩ2

gSr;
dSr

dτ
¼ e−λc−νc

rcΩg

N
Sϕ;

dSϕ

dτ
þ NΩg

rc
Sr ¼ 0;

dSθ

dτ
¼ 0: ð14Þ

One can use the relation between St and Sϕ from Eq. (13) to
eliminate St from the above equations. Moreover differ-
entiating the above expressions again with respect to the
proper time τ and converting τ → t using the relation: dt ¼
Ndτ we finally obtain the following evolution equations:

d2Sr

dt2
þ e−ðνcþλcÞ

�
Ωg

N

�
2

Sr ¼ 0;
dSϕ

dt
¼ −

Ωg

rc
Sr: ð15Þ

Thus the Sr component of the spin four-vector satisfies the
differential equation of a simple harmonic oscillator, which
can be solved to yield: SrðtÞ ¼ Srð0Þ cosωgt. Here we have
imposed the initial conditions such that the spin three-vector
was initially directed along the radial direction, i.e.,
Sθð0Þ ¼ 0 ¼ Sϕð0Þ. Given this solution for the radial
component one can immediately solve for Sϕ, yielding:
SϕðtÞ ¼ −ðΩgSrð0Þ=rcωgÞ sinωgt. In both these solutions
for SrðtÞ and SϕðtÞ we have introduced a new frequency of
oscillation pertaining to the spin four-vector defined as

ωg ≡Ωg

�
e−λc

�
2 − rcν0c

2

��
1=2

: ð16Þ

Note that for Schwarzschild solution, e−λ¼eν¼1−ð2M=rÞ,
the term inside square root becomes 1 − ð3M=rÞ which
coincides exactly with the earlier literatures [4]. However we
would like to stress that the above expression is completely
general, given any static and spherically symmetric space-
time one can directly employ the results derived above.
Further note that, the sign ofSϕ is negative,which tells us that
both the Sr and Sϕ components of the spin rotate relative to
the initial radial direction with an angular velocity ωg.
However as evident from Eq. (16) the angular velocity of
rotation of the spin three-vector is different from the angular
velocity of rotation of the gyroscope along the circular
trajectory, resulting in spin precession. That is, when the
gyroscope completes one rotation along the circular
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geodesic, the spin three-vector has not yet completed a
complete rotation as ωg < Ωg. This results into a precession
of the spin three-vector, which is called geodetic precession
and for one complete revolution of the gyroscope along the
circular orbit, it is given by

Gg ¼ 2π

�
1 −

ωg

Ωg

�
¼ 2π

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − rcν0c
2eλc

r !
: ð17Þ

The above expression for geodetic precession produces
appropriate Schwarzschild limit as one can easily verify.
Furthermore, we would like to point out that the geodetic
precession becomes 2π on the circular photon orbit rph. This
merely points out that there can be no timelike circular
geodesic on rph. For Schwarzschild solution it turns out that
this geodetic precession vanishes only for r → ∞ and does
not vanish for any finite r. Thus it would be of interest to
explore if the geodetic precession can vanish at any finite
radial distance if one considers alternative gravity theories.
This will provide a very nice discriminating feature of these
alternative theories, setting them apart from general rela-
tivity. Besides a numerical computation of the geodetic
precession for near-earth artificial satellites makes it possible
to constrain parameters in these alternative theories using
Gravity Probe B. Taking the gyroscope to be an artificial
satellite spaced at an attitude of 650 km and having a
orbital time period of 97.65 min, one arrives at a geodetic
precession which is 6606.1 mas per year. On the other hand,
Gravity Probe B has measured the geodetic precession of
such a system to be 6601.8 mas per year with an error of
�18.3 mas. Thus any deviation of the geodetic precession
from general relativity should fall within the above error
bound. With this information about geodetic precession in
the backdrop,we can compute the same invarious alternative
theories and see what constraints these alternative theories
should satisfy so that the geodetic precession falls with the
error bound prescribed by Gravity Probe B. This is exactly
what we will try to provide in the later parts of this work.

III. PRECESSION FOR NONGEODESIC
OBSERVERS: THE FRENET-SERRET

FORMALISM

For a gyroscope moving in a nongeodesic trajectory,
there exist a formalism known as the Frenet-Serret formal-
ism in order to compute the precession of the gyroscope
[94] (however also see [95,96]). This formalism requires
spacetime to inherit certain symmetries and hence calls for
the existence of Killing vectors. One assumes that the
trajectory of the gyroscope corresponds to a quasi-Killing
orbit, i.e., the four-velocity Ua is a linear combination of
the Killing vectors associated with the spacetime. The
worldlines of the observer can be determined by three
scalars—(a) κ, known as curvature along the curve and
(b) τ1 and τ2, representing the two torsion parameters along

the curve. These three scalars can be derived in terms of the
quasi-Killing vector Ua and its various derivatives.
Given this setup one can use the following equation

depicting the evolution of the spin vector Sa for a Fermi
dragged gyroscope:

DSa

dτ
¼ ðSbabÞUa; ð18Þ

where we have used the fact that the spin vector is
orthogonal to the velocity four-vector, i.e., SaUa ¼ 0. In
the above expression one notes that ai ¼ Ua∇aUi is the
acceleration of the spinning gyroscope. In the case of
geodesic motion the acceleration identically vanishes and
hence Eq. (12) follows.
We would like to emphasize that the above equation is

the evolution equation for the spin of a gyroscope along the
trajectory of the observer and is a particular form of the
Mathisson-Papapetrau equations [97–99]. These equations
describe the motion of a pole-dipole particle in a gravita-
tional field and can be solved only under spin supple-
mentary conditions. In a more technical way, SaUa ¼ 0 is
referred to as a particular constraint namely the Mathisson-
Pirani spin supplementary condition and is extremely
important in the context of spinning particles. There exist
two different ways to compute the spin precession fre-
quency of the gyroscope starting from Eq. (18), one of them
has been discussed in detail in [100] and used explicitly in
[101], while the other method is described in [94,102]. We
would closely follow the second approach in this work to
determine the spin frequency of a gyroscope moving along
a nongeodesic trajectory.
The trajectory of the gyroscope is defined as the Frenet-

Serret frame and is determined by the following set of
orthonormal tetrads denoted by feað0Þ; eaðαÞg, where α
denotes the spacelike components and eað0Þ ¼ Ua. On the

other hand, the spin of the gyroscope is being Fermi-Walker
transported along the trajectory and hence can be defined
using a separate orthogonal tetrad feað0Þ; faðαÞg. Given the

two different tetrads, the gyroscopic precession can be
understood as the relative angular velocity between these
two frames and hence takes the following form [94]:

Ωa
FS ¼ τ1eað3Þ þ τ2eað1Þ; ð19Þ

where, τ1 and τ2 are the two torsion parameters. For a
gyroscope moving in a circular orbit of radius rc on the
equatorial plane of a static and spherically symmetric
spacetime with constant angular velocity Ωnongd, it follows
that τ2 ¼ 0 and hence only τ1 survives. Since the vector eað3Þ
is orthonormal, it follows that the magnitude of precession
frequency to be τ1. For such a gyroscope it follows that the
torsion parameter takes the following value [94]:
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τ1 ¼ grrc Ωnongdð1 − rcacÞeðλc−νcÞ=2; ð20Þ

where any quantity with subscript c implies that it has been
evaluated on the circular trajectory located at r ¼ rc. The
radial acceleration of the particle is being denoted by ac
[i.e., aðrcÞ] and has the following expression:

ac ¼
ν0ceνc − 2rcΩ2

nongd

2ðeνc − r2cΩ2
nongdÞ

: ð21Þ

Using the radial acceleration from Eq. (21) in the expres-
sion for the first torsion parameter τ1 in Eq. (20), we
arrive at

ΩFS ¼ τ1 ¼
Ωnongd

2
eðνc−λcÞ=2

�
2 − rcν0c

eνc − r2cΩ2
nongd

�
: ð22Þ

One can immediately check that the above expression
matches exactly with the results obtained in [101]. Note
that ΩFS is the precession frequency of the gyroscope with
respect to the local inertial frame, i.e., it is defined with
respect to the proper time along the trajectory of the
observer. However we would like to convert the same to
the Killing time coordinate t and thereby introducing a
redshift factor. Thus the precession frequency ωnongd for
nongeodesic observer becomes

ωnongd ¼ ΩFS

�
dt
dτ

�
−1

c

¼ Ωnongd

2
eðνc−λcÞ=2

0
B@ 2 − rcν0cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eνc − r2cΩ2
nongd

q
1
CA; ð23Þ

where the factor dt=dτ corresponds to ðeν − r2Ω2
nongdÞ1=2

obtained by the normalization of Ua. Thus the precession
frequency of the gyroscope moving on a circular, but
nongeodesic trajectory with constant angular velocity
Ωnongd becomes

Gnongd ¼ 2π

�
1 −

ωnongd

Ωnongd

�

¼ 2π

0
B@1 − e−λc=2

1 − rcν0c
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − r2cΩ2
nongde

−νc
q

1
CA: ð24Þ

Note that as Ωnongd is being replaced by Ωg, the angular
velocity for the geodesic observers, one immediately
arrives at Eq. (17) representing precession of geodesic
observers.
However in this particular situation, unlike the case for

geodesic observers, the angular velocity of the nongeodesic
observer, Ωnongd is arbitrary, since there exists no general

prescription to write it down. For this purpose, following
[101]wewill expressΩ as a sumof upper and lower bound of
photon’s angular velocity, which correspond to Ω�

ph ¼
�ðeνc=2=rcÞ. Here the plus sign corresponds to rotation in
anticlockwise direction, while the negative sign signifies
motion in a clockwise direction. FromEq. (22) it follows that
ΩFS diverges atΩnongd ¼ Ω�

ph;nongd and for timelike observer
it is essential that Ω−

ph;nongd < Ωnongd < Ωþ
ph;nongd. Thus one

may define a parameter ϵ, running from 0 to 1 and hence set
the angular velocity of the observer at a circular orbit of
radius rc, such that

Ωnongd ¼ ϵΩþ
ph;nongd þ ð1 − ϵÞΩ−

ph;nongd ¼ ð2ϵ − 1Þ
ffiffiffiffiffiffi
eνc

r2c

s
:

ð25Þ

Hence one immediately observes eνc − r2cΩ2
nongd ¼

eνcf1 − ð2ϵ − 1Þ2g ¼ 4ϵð1 − ϵÞeνc . We will use this result
extensively later on.
In this work we will discuss both the geodesic and

nongeodesic precession of gyroscopes in alternative theo-
ries, with possible interesting phenomenon originating
from nongeodesic motion, which in principle can tell us
about the underlying structure of the spacetime. From the
observational point of view it is difficult to obtain any
constraint using the expression for precession along a
nongeodesic trajectory, since the Gravity Probe B experi-
ment has been carried out using geodesic trajectory. Hence
only the results presented in II will be relevant for imposing
constraints on the various alternative models of interest,
which we will perform in the later sections. Despite the
difficulties in measuring the nongeodesic part of the
precession, there could be few situations where it becomes
important. One such scenario may correspond to determi-
nation of magnetic moment of muon, i.e., through muon
g − 2 measurements. However the corresponding effect of
nongeodesic precession in measurement of muon magnetic
moment seems to be quite small [103–105]. On the other
hand, measurements of electric dipole moment using the
frozen spin method do inhibit nontrivial general relativity
corrections with nongeodesic spin precession playing a key
role [105]. We leave these nontrivial effects due to non-
geodesic motion of spinning particles for future.

IV. SPIN PRECESSION IN HORNDESKI
THEORIES AND GRAVITY PROBE B

In this section we will describe the motion of a spinning
gyroscope either on a geodesic or nongeodesic circular
trajectory in spherically symmetric spacetimes. These
spherically symmetric spacetimes are taken to be solutions
of various alternative theories having their origin in one
way or another into the Horndeski theories of gravity. The
alternative gravity models along with the associated static
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and spherically symmetric spacetimes have already been
discussed in I and hence we will mainly concentrate on the
precession frequencies, namely Gg and Gnongd respectively,
in these spacetimes. As a warm up, we will first discuss the
effect of cosmological constant on the precession frequen-
cies before taking up the effect of alternative theories
on them.

A. Warm up: Einstein gravity
with cosmological constant

Before delving into the computation of precession
frequencies for alternative theories it is instructive to
discuss a more basic scenario as a warm up example.
Since the results of geodesic (as well as nongeodesic)
precession are well known for Schwarzschild spacetime we
consider here the effect of cosmological constant, i.e.,
precession frequency of a gyroscope in Schwarzschild-
de Sitter spacetime. The line element for Schwarzschild-
de Sitter spacetime takes the form of Eq. (8) with
eν ¼ 1 − ð2M=rÞ − ðΛ=3Þr2 ¼ e−λ. There exist two hori-
zons in this spacetime, the inner one is the event horizon,
while the outer one corresponds to the cosmological
horizon. The locations of these horizons can be determined
by solving the cubic equation re−λ¼0¼r−2M−ðΛ=3Þr3
and hence we obtain

reh ¼
2ffiffiffiffi
Λ

p cos
�
1

3
cos−1ð3M

ffiffiffiffi
Λ

p
Þ þ π

3

�
;

rch ¼
2ffiffiffiffi
Λ

p cos

�
1

3
cos−1ð3M

ffiffiffiffi
Λ

p
Þ − π

3

�
: ð26Þ

In principle, the above cubic equation could have three real
roots. However with positive M and Λ, along with the
choice 3M

ffiffiffiffi
Λ

p
< 1 one arrives at reh < rch, while the other

root becomes negative and hence can be discarded. Here,
reh corresponds to the event horizon and rch stands for the
cosmological horizon. Since eν ¼ e−λ it is straightforward
to compute the angular velocity of the gyroscope moving in
a circular geodesic of radius rc using Eq. (11) leading to
Ωg ¼ fðM=r3cÞ − ðΛ=3Þg1=2. Thus subsequently using
Eq. (16) one obtains the spin frequency of the gyroscope
to yield

ωg ¼ Ωg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
rc

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r3c

−
Λ
3

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
rc

s
: ð27Þ

The above expression for spin frequency has some inter-
esting features, namely the ratio ωg=Ωg is independent of
the cosmological constant Λ and coincides with the
corresponding expression for Schwarzschild spacetime.
As a consequence the geodetic precession frequency
becomes Gg ¼ 2π½1 − f1 − ð3M=rcÞg1=2�. Further, the pre-
cession frequency besides vanishing at the usual photon

circular orbit (rph ¼ 3M) also vanishes at r0 ¼ ð3M=ΛÞ1=3.
Thus in order to obtain a nontrivial ωg it is necessary that
the radius of the circular geodesic must satisfy the follow-
ing criteria: rc > maxðrph; r0Þ. Moreover, in order to have
some observable consequences it is necessary for the radius
r0 to be located outside the photon circular orbit but within
the cosmological horizon. The condition r0 > 3M, requires
Λ−1 > 9M2, i.e., Λ has to be tiny, which for solar mass
black holes are trivially satisfied. With the above condition
imposed on Λ one can also ensure that r0 < rch (see Fig. 1).
Thus if one observes that the spin frequency of a gyroscope
moving on a circular geodesic is vanishing at some finite
radius outside rph, then one may conclude that the
spacetime inherits a cosmological constant. Interestingly,
given this radius one can also determine the numerical
value of the cosmological constant if the black hole mass is
known [this has been explicitly demonstrated in Fig. 2(a)].
Since the spin frequency vanishes at rc ¼ rph and

at rc ¼ r0, it follows that it must attain a maximum
value within this range, which can be obtained by setting
∂rcωg ¼ 0 and then verifying ∂2

rcωg > 0. This essentially
corresponds to the real root of the cubic equation,
Λr3c þ 3rc − 12M ¼ 0 and has also been clearly illustrated
in Fig. 2(a). Note that there is very little effect of the
numerical value of the cosmological constant on the location
of the maxima, which is approximately situated at rc ≃ 4M.
We would like to emphasize that this feature is very

much unique and appears in the presence of cosmological
constant alone. In normal Schwarzschild black hole there

FIG. 1. The above figure depicts the horizon structure in
Schwarzschild-de Sitter spacetime. The event horizon reh (thick
black line), the photon radius rph (densely dotted brown line), the
cosmological horizon rch (thick dotted blue line) and finally
the radius r0 (dot dashed red line) have been presented. As the
figure clearly demonstrates, the radius r0 where the geodetic
precession frequency vanishes lies within the photon radius and
the cosmological horizon. Thus it is accessible to any stationary
observer and can act as a discriminator between Schwarzschild
and Schwarzschild-de Sitter spacetime.
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will be a maxima, but it will finally go to zero at infinity.
While in Schwarzschild-de Sitter spacetime it follows that
the spin frequency has to vanish at some finite radius before
the cosmological horizon. This serves as a distinct feature
of Schwarzschild-de Sitter spacetime. Before finishing this
section, let us briefly comment on the precession frequency
for nongeodesic observer, using the Frenet-Serret formal-
ism developed in III. Given the metric elements for the
Schwarzschild-de Sitter spacetime, one can immediately
compute the spin frequency ωnongd using Eqs. (25) and (23)
respectively,

ωnongd ¼
ð2ϵ − 1Þð1 − 3M=rcÞ

rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵð1 − ϵÞp : ð28Þ

The variation of ωnongd with radial distance for different
choices of ϵ has been depicted in Fig. 2(b). As evident from
the figure, the precession frequency ωnongd vanishes at the
photon circular orbit located at rph ¼ 3M and then remains
nonzero throughout, which is in direct agreement with
Eq. (28). As Eq. (28) further reveals, for ϵ < 0.5 the spin
frequency is positive, while for ϵ > 0.5 it is negative. This
feature can also be observed from Fig. 2(b) as well. Finally,
the precession frequency of a gyroscopic moving along a
circular nongeodesic trajectory becomes

Gnongd ¼ 2π

�
1 −

ωnongd

Ωnongd

�

¼ 2π

0
B@1 −

1 − ð3M=rcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵð1 − 2M=rc −

Λr2c
3
Þð1 − ϵÞ

q
1
CA: ð29Þ

It is clear that Gnongd becomes 2π on the photon circular
orbit, since ωnongd vanishes there. Moreover if one expands
the expression for Gnongd to leading order in Λ, then the
effect will be smaller compared to that for Schwarzschild.
Since for geodesic observers, Gg is identical to that in
Schwarzschild spacetime, the above can act as a discrimi-
nator between geodesic and nongeodesic observer in terms
of spin frequency.

B. Spin precession in asymptotically flat charged
Galileon black hole

Having discussed the spin precession for both geodesic
and nongeodesic observers in the simpler context of
Schwarzschild-de Sitter spacetime, let us now concentrate
on the asymptotically flat branch of a charged Galileon
black hole. As elaborated earlier, this corresponds to an
exact solution in the context of Horndeski theories, in
which a scalar field couples nonminimally to gravity and a
gauge field. In this case as well the metric elements of
the four-dimensional spherically symmetric spacetime,
following Eq. (2) can be written as in Eq. (8) with, eν¼
1−ð2M=rÞþðM2q=r2Þ¼e−λ, whereM2q¼γðQ2þP2Þ=4β
[76]. Note that q can take negative values as well, which
will be a characteristic property of these Horndeski
theories. Moreover, for positive values of q, there will
be two horizons located at r�eh ¼ M �M

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
(as

depicted in Fig. 3) respectively. Thus for q > 1, there will
be a naked singularity. While for negative values of q, there
will be no naked singularity, but only a single horizon
located at r̃eh ¼ M þM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jqjp

(see Fig. 4). In what
follows, we will treat the positive and negative values of q

(a) (b)

FIG. 2. Spin frequency ωg and ωnongd for geodesic and nongeodesic gyroscopes respectively have been illustrated in the context of
Schwarzschild-de Sitter spacetime. (a) The above figure illustrates the variation of the geodetic spin frequency with the radial distance
for various choices of the cosmological constant Λ. It is clear that the spin frequency (ωg) vanishes at two points, one is at the photon
circular orbit rph ¼ 3M and another is at r0 ¼ ð3M=ΛÞ1=3. The later one is well inside the cosmological horizon rch and hence is in
principle detectable. (b) Spin precession (ωnongd) for a gyroscope moving in a nongeodesic circular trajectory is shown for different
values, with Λ being fixed at 10−4M−2. The frequency Ωnongd only vanishes at photon circular orbit (rph ¼ 3M). Further, for ϵ > 0.5,
ωnongd is negative and for ϵ < 0.5, ωnongd is positive.
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separately. Given the spacetime structure one can immedi-
ately compute the angular velocity Ωg of a gyroscope
moving in a circular geodesic as well as its spin frequency
ωg using Eqs. (11) and (16) respectively. This yields

ωg ¼ Ωg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
rc

þ 2M2q
r2c

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M
r3c

−
M2q
r4c

��
1 −

3M
rc

þ 2M2q
r2c

�s
: ð30Þ

From the above expression for ωg it is clear that the spin
frequency vanishes at rc ¼ r0 ¼ qM and at the outer
and inner photon circular orbits located at rc ¼ r�ph ¼
ð3M=2Þf1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð8=9Þqp g respectively, for positive val-
ues ofq (see Fig. 3). On the other hand, for negativevalues of
q, the spin frequency will vanish only on the photon circular
orbit, located at r̃ph ¼ ð3M=2Þf1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð8=9Þjqjp g (illus-
trated in Fig. 4).
Given the above spacetime structure there can be two

independent situations corresponding to positive q values
and negative q values respectively. Each of them can be
further sub-divided depending on the behavior of ωg for
different values of q. For positive q values we can have
three separate situations:

(i) In this case q < 1. Thus both the horizons as well as
the photon circular orbits exist. The spin frequency
ωg vanishes at the photon circular orbits located at
r�ph as well as at rc ¼ r0. But since r0 < rþeh < rþph

(see Fig. 3), it immediately follows that r0 will be
cloaked by the event horizon and hence it will not be
an observable. Thus in this case for an outside
observer the spin frequency of a gyroscope moving
in a circular geodesic only vanishes at the photon
circular orbit as expected. This is illustrated in
Fig. 5a.

(ii) Another situation corresponds to 1 < q < 9=8. In
this case a naked singularity appears due to dis-
appearance of the event horizon. However both the
photon circular orbits are still in place. In this case
r0 < r−ph < rþph (as evident from Fig. 3) and hence
the radius r0 is again not accessible, as the spin
frequency cannot exist in the region r−ph < rc < rþph.
This is depicted in Fig. 5(b).

(iii) Finally for q > 9=8, neither the event horizon nor
the photon circular orbit exist and hence the spin
frequency ωg vanishes only on the radius r0 ¼ qM.
Hence the radius r0 will become an observable. Thus
in this particular case one can have a gyroscope
moving in a circular orbit with zero angular velocity
(i.e., it will not move but will remain stationary) and
as a consequence ωg ¼ 0 and hence the spin vector
will also not change direction. This is presented in
Fig. 5(c).

Thus if it is possible to observe the spin frequency ωg to be
vanishing at some finite radius, then it is possible to argue
about existence of a naked singularity in this spacetime.
This generalizes the claim of [101] for Horndeski theories
as well. Thus motion of a gyroscope can indeed discrimi-
nate naked singularity from event horizon. On the other
hand, for negative q values the event horizon is omnipres-
ent as evident from Fig. 4 and further there exist no such
radius r0, where the spin frequency ωg vanishes. Thus in

FIG. 3. The above figure presents the horizon structure in the
black hole spacetime associated with Horndeski theories for
positive values of q. The event horizon rþeh (thick black line) is
always at a greater radius compared to r−eh (blue, dotted line),
while they coincide at the extremal limit (i.e., q ¼ 1). The photon
radius rþph (thick, violet line) is always the outermost one, while
r−ph (brown, heavily dotted curve) is within the outer event
horizon. The radius r0 (red, dot dashed line) is always within
the outer photon radius and is only an observable for q > 9=8,
when the photon orbits become nonexistent.

FIG. 4. The above figure depicts the horizon structure in the
asymptotically flat black hole spacetime in charged Galileon
theories for negative values of q. There is a single event horizon
r̃eh (thick black line) and a photon orbit r̃ph (thick violet line). The
photon orbit radius is always greater than the event horizon. For
negative q no such radius r0 exists where ωg vanishes.
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this case one will have the usual behavior for spin
frequency, e.g., vanishing at infinity and at photon circular
orbit, having no such nontrivial features.
After addressing the issue of spin frequency in the

context of geodesic motion, let us spell out the expression
for geodetic precession frequency

Gg ¼ 2π

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
rc

þ 2M2q
r2c

s !
; ð31Þ

which can be obtained by using Eq. (17) along with the
expression for the metric elements. It turns out that the
precession frequency vanishes on the photon circular
orbits (r�ph) but remains finite for rc>rþph [also evident
from Fig. 5(a)]. Further it is possible to compute the
difference between geodetic precession frequencies of
the asymptotic branch of charged Galileon black hole
and Schwarzschild solution, which turns out to be negative
for positive q and vice versa.

(a) (b)

(c)

FIG. 5. Geodetic spin frequency is being presented for asymptotically flat branch of the charged Galileon black hole solution in
Horndeski theories for different choices of q. (a) The above figure depicts the variation of spin frequency (ωg) with radial distance when
the parameter q ≤ 1. Even though in this case ωg vanishes at both the photon orbits and at r0, since the inner photon orbit (r−ph) as well as
r0 lies within the event horizon (r

þ
eh), they are not accessible to an outside observer. It is clear that ωg has a maxima at rc ¼ 3M for q ¼ 1,

and the maxima gradually shifts away from 3M with a decrease in the q value. (b) The above figure depicts how the spin frequency ωg

varies with radial distance, when 1 ≤ q < 9=8. For q ¼ 1, the spin frequency ωg vanishes at the outer photon orbit rþph alone (as shown
by the red dot dashed curve). For other values of q, larger than unity but less than 9=8, the spin frequency ωg vanishes at three distinct
radii, at the outer photon orbit, the inner photon orbit and at r0 respectively. Note that ωg cannot have any real value within r�ph. (c) We
have illustrated the spin frequency ωg for three different values of q. The first one lies within the range 1 < q < 9=8 and hence vanishes
at three points (see the red dotted curve). From the right, they are the outer photon orbit, inner photon orbit and r0. However for q > 9=8
(the black and the blue dashed curves) ωg vanishes only at r0, which becomes an observable as neither the event horizon nor the photon
circular orbit exists in this case.
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On the other hand, for nongeodesic trajectories the spin
frequency of the gyroscope can be obtained using Eq. (22),
such that

ωnongd

Ωnongd
¼ 1 − ð3M=rcÞ þ ð2M2q=r2cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ϵð1 − ϵÞf1 − ð2M=rcÞ þ ðM2q=r2cÞg
p ð32Þ

or; ωnongd¼
ð2ϵ−1Þf1−ð3M=rcÞþð2M2q=r2cÞg

rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵð1−ϵÞp : ð33Þ

As evident from the previous discussion, the parameter ϵ
can neither be zero nor unity, since these values for ϵ will
render the above discussion invalid. Moreover like the case
for geodesic observer, here also we can have ωnongd ¼ 0

[see Figs. 6(a) and 6(c)]. But they are situated precisely at
the photon orbit (r�ph) for any nonzero value of ϵ (except for
ϵ being 0 or 1) and with ϵ ¼ 0.5, Ωnongd become identically
zero for any value of rc. Further the spin frequency exhibits
a minima at rc ¼ 3Mð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2q=3
p Þ, which is within the

photon circular orbit. While for q > 9=8 the photon circular
orbit disappears and the minima becomes an observable.
This provides yet another root to probe existence of naked
singularity, using non-geodesic observers. While for
ϵ > 0.5, the spin frequency is always positive, but for
ϵ < 0.5 it is negative, in conformity with Eq. (33) [see also
Figs. 6(b) and 6(d)]. Finally the precession frequency for
the nongeodesic observer becomes

Gnongd ¼ 2π

�
1−

1− ð3M=rcÞþ ð2M2q=r2cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵð1− ϵÞf1− ð2M=rcÞþ ðM2q=r2cÞg

p �
:

ð34Þ

Similar to the previous case, for this solution as well we can
expand the above expression around q ¼ 0 and hence
compute the deviation from general relativity, which turns
out to be negative for positive q and vice versa.
Let us now impose the corresponding boundon the charge

parameter q using the Gravity Probe B experiment. For that
purpose we bring in the Newton’s constant, while keeping
the speedof light at unity. InGravity ProbeBexperiment one
considers a satellite orbiting earth carrying gyroscopes.
Since the experiment was carried out for a gyroscope
moving on a geodesic, the precession Gg will be applicable
here. The number of complete revolutions of such a satellite
per day is n ¼ ð24 × 60Þ=97.65 ≈ 15. Thus in one year total
number of revolutions would correspond to 365 × n. Hence
the precession per revolution must be within the following
range: ð−4.199 × 10−6; 2.601 × 10−6Þ arc- sec. Applying
this result to the spin precession in the context of asymp-
totically flat branch of the charged Galileon black hole we
obtain jqj < 0.03. The above bound on the charge parameter
is consistent with other solar system tests, e.g., perihelion
precession of Mercury and bending angle of light.

In particular, it turns out that the constraint from perihelion
precession of Mercury corresponds to jqj < 0.024 and
hence is stronger than the above bound from Gravity
Probe B [80]. On the other hand, the constraint from
Gravity Probe B is much better than the corresponding
bound from bending angle of light, which corresponds to
jqj < 0.046 [80]. Thus the constraint from Gravity Probe B
indeed improves the bound from bending angle of light by
∼35%, however it is the perihelion precession of Mercury,
which provides the most stringent bound.
As we have elaborated earlier, this solution can have

several origins. For example, an identical spacetime metric
appears in the context of Maeda-Dadhich solution, which
originates from the Kaluza-Klein reduction of a higher
dimensional solution in the context of Einstein-Gauss-
Bonnet gravity. Intriguingly, the Maeda-Dadhich solution
must have negative q and hence the associated spin
frequency will be higher than its general relativistic
counterpart. In this physically distinct scenario as well
the spacetime is geometrically indistinguishable from the
asymptotically flat black hole solution pertaining to
charged Galileon theories and hence the results presented
in this section can be applied in a straightforward manner.
Hence the bounds on the parameter q from Gravity Probe B
will also translate into bounds on the associated parameters
in other alternative gravity models.

C. Spin precession in asymptotically
de Sitter charged Galileon black hole

In this section, we shall consider the asymptotically de
Sitter branch of the charged Galileon black hole within the
context of Horndeski theories. The corresponding solution
has already been discussed in I and presented in Eq. (4).
This metric can also be casted in a form similar to Eq. (8),
such that, eν ¼ e−λ ¼ 1 − ð2M=rÞ − ðΛ=3Þr2 þ qðM2=r2Þ.
Here, Λ ¼ jηj=β and M2q ¼ γðQ2 þ P2Þ=ð4βÞ > 0. Given
this spherically symmetric solution, the location of the
event horizon can be found by solving the algebraic
equation

r2 − 2Mr −
Λ
3
r4 þ qM2 ¼ 0: ð35Þ

The above equation has three real solutions denoting the
cosmological horizon (rch) along with an outer (inner)
event horizon located at r�eh respectively (see Fig. 7). While
the location of photon circular orbit can be obtained from
solving the equation 2 ¼ rν0, such that the following
algebraic relation can be obtained:

r2 − 3Mrþ 2qM2 ¼ 0: ð36Þ

Thus photon circular orbit is not affected by the presence of
an effective cosmological constant and will be located at,
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r�ph ¼ ð3M=2Þð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8q=9

p Þ while � has their usual

meaning of outer and inner photon circular orbits respec-

tively. The angular frequency associated with the motion of

a gyroscope is given as

Ωg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r3c

−
Λ
3
−
qM2

r4c

s
: ð37Þ

This would immediately suggest that the spin frequency ωg

becomes

(a)

(c) (d)

(b)

FIG. 6. Spin frequency is being illustrated for nongeodesic trajectories in the context of asymptotically flat black hole solutions
associated with charged Galileon theories. (a) The above figure shows variation of ωnongd with radial distance, while keeping fixed at 0.7.
The spin frequency vanishes on the photon orbits while a minima appear at rc ¼ 3Mð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2a=3
p Þ for q < 3=2. For q > 9=8, the

photon orbits no more exist and the precession is nonzero everywhere. The existence of minima can be used to probe the existence of
naked singularity. (b) In the above figure we took q ¼ 0.9 and have plotted the variation of ωnongd with radial distance for different values
of ϵ. The precession vanishes as rc goes to infinity and it reaches smaller and smaller values as becomes close to 0.5. For ϵ > 0.5 the spin
frequency ωnongd is positive while for ϵ < 0.5 it is negative. (c) The above figure depicts the spin frequency ωnongd as a function of radial
distance rc and charge parameter q for nongeodesic observers with ϵ ¼ 0.3. The contour representing ωnongd ¼ 0 has also been
presented. (d) The above figure illustrates the variation of the spin frequency ωnongd with the radial distance rc and the charge parameter
q for non-geodesic observers with ϵ ¼ 0.7. The contour with ωnongd ¼ 0 has also been shown.
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ωg ¼
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r3c

−
Λ
3
−
qM2

r4c

s 1
A�1 − 3M

rc
þ 2qM2

r2c

�
1=2

: ð38Þ

Similar to the previous cases here as well, the spin
frequency vanishes at the photon circular orbits r�ph as
well as when Ωg vanishes. Vanishing of Ωg corresponds to
the presence of additional correction terms to the Einstein-
Hilbert action and of course has contribution from the
cosmological constant. These additional locations where
spin frequency of a gyroscope vanishes correspond to
solutions of the following algebraic equation:

Λ
3
r4c þ qM2 −Mrc ¼ 0 ð39Þ

which has two real solutions, denoted by r�0 , while the other
two are complex conjugate to each other.
Furthermore, given the structure of the event horizon,

photon circular orbit as well as the radius r�0 , illustrated in
Fig. 7, we shall try to understand the behavior of spin
frequency as well as geodetic precession against the charge
parameter for a specific value of Λ (fixed at Λ ¼ 10−1M−2

for illustration purpose). Keeping this in mind, we will try
to present a detailed analysis of the parameter space of the
Galileon charge vis-á-vis the spin frequency of the gyro-
scope below.
(1) For 0 < q≲ 1.03897, both the photon orbits and

event horizons exist. Even if the spin frequency ωg

vanishes at the photon circular orbits as well as at

rc ¼ r�0 , both the inner photon circular orbit and r−0
are located inside the outer event horizon as shown
in Fig. 7(a), i.e., r−ph < r−0 < rþeh. Hence, only the r

þ
ph

and rþ0 would be noticeable for a distant observer,
this is illustrated in Fig. 8(a).

(2) For 1.03897≲ q ≤ 9=8, the event horizon does not
appear anymore and the singularity would be naked.
In this case, as one can easily interpret from Fig. 7(a)
that r−0 < r−ph < rþph < rþ0 . So, even with a naked
singularity, the observable radii where the spin
frequency would vanish is rþ0 and rþph respectively.
This is because, ωg become imaginary within the
region r−ph < rc < rþph and the gyroscope can no
longer exists there, see Fig. 8(b).

(3) For 9=8 ≤ q ≲ 1.46808, neither the event horizons
nor the photon orbits exist. In this case, the spin
frequency only vanishes at r�0 and unlike the
previous situations, both of these would be observ-
able. Finally for q ⪆ 1.46808 the spin frequency
becomes imaginary as Ω2

g become negative. There-
fore the gyroscope can no longer exist in the
spacetime with the above parameter space.

Following Eqs. (17) and (38), it is straightforward to
compute the geodetic precession frequency associated with
the geometry of the charged Galileon black hole as

Gg ¼ 2π

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
rc

þ 2qM2

r2c

s !
: ð40Þ

(a) (b)

FIG. 7. Location of the event horizons, photon orbits and r�0 are being presented against the charge parameter q for two different
choices of the cosmological constant Λ in case of an asymptotically de Sitter charged Galileon black hole. (a) The horizon structure has
been depicted with Λ ¼ 10−1M−2, for different values of q. For q > 1.03897, thebevent horizons do not exist and a naked singularity
appears. Similarly for q > 9=8, photon orbits disappear and spin frequency would only vanish at rc ¼ r�0 . Increasing the charge
parameter further such that q > 1.46808, the spin frequency become imaginary at any value of r. (b) The variation of horizon structure
with the Galileon charge q is being presented for Λ ¼ 10−2M−2. In this case the event horizons disappear for q ⪆ 1.00338 while for
q > 9=8 the photon circular orbits cease to exist. In addition, for q ⪆ 3.16287, r�0 no longer exists and hence the spin frequency become
imaginary for any value of the radial parameter.
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Surprisingly, the above expression is independent of the
cosmological constant Λ and the constraints on the param-
eter q would be exactly similar to those presented in IV B.
This essentially suggests that the existence of a cosmo-
logical constant cannot be identified by only studying the
geodetic precession frequency. While, the spin frequency
ωg or in particular, the angular velocityΩg of the gyroscope
carry the imprints of the cosmological constant.
On the other hand, for a gyroscope moving along an

accelerated trajectory the associated spin frequency can be
written following Eq. (23) as

ωnongd ¼
�
2ϵ − 1

rc

�
1 − 3M

rc
þ 2q

r2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵð1 − ϵÞp : ð41Þ

This is in exact agreement with Eq. (33) which describes an
asymptotically flat spacetime (see Fig. 6 for an elaborate
discussion). Following the above expression along with
Eq. (24), the nongeodetic precession becomes

Gnongd ¼ 2π

2
641 − 1 − 3M

rc
þ 2q

r2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵð1 − ϵÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
rc

− Λ
3
r2c þ q

r2c

q
3
75: ð42Þ

In passing, we would like to point out that the cosmological
constant appears in the denominator of the above expres-
sion, which is due to the angular velocity Ωg of the
gyroscope. The rest of the properties associated with
Gnongd has already been discussed in the previous section
and hence will not be repeated here.

D. Spin precession in Einstein-dilaton-Gauss-Bonnet
gravity: The Sotiriou-Zhou solution

In this final section, we will discuss another alternative
gravity model and a spherically symmetric solution
within its framework. This is again a subclass of
Horndeski theories and corresponds to Einstein-dilaton-
Gauss-Bonnet gravity. The associated action and the
corresponding solution has already been presented in I.
The most interesting fact associated with this solution
being, it inherits scalar hair. Thus we hope to put some
bounds on the scalar charge using the Gravity Probe B
experiment and discover some interesting features asso-
ciated with this spacetime as far as spinning object is
considered. In this case the two metric components eνðrÞ

and eλðrÞ are different, with the following functional
dependences: eν¼1−ð2M=rÞþðMP2=6r3Þ and eλ ¼
1þ ð2M=rÞ þ fð8M2 − P2Þ=2r2g. Note that the metric
components are derived from the perturbative solution
presented in Eq. (7) and for simplicity we have kept only
the lowest order term presenting the deviation from the
Schwarzschild solution. Given the above metric elements,
there will be two horizons, whose location can be deter-
mined from the algebraic equation e−λ ¼ 0 and corre-
sponds to r�eh ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ðP2=2Þ

p
. Thus the location of

the event horizon rþeh will always be smaller compared to
2M irrespective of the sign of P, which is also evident
from Fig. 9.
Given the metric elements one can immediately compute

the angular velocity of the spinning gyroscope on a circular
geodesic leading to

(a) (b)

FIG. 8. The spin frequency ωg is presented in the asymptotically de Sitter branch of the charged Galileon black hole, where the
cosmological constant is being fixed at Λ ¼ 10−3M−2. (a) The above figure depicts the variation of ωg with radial distance for different q
values. It is clear that the spin frequency vanishes at the outer photon circular orbit as well as at rþ0 . The other two radii, namely r−0 and
the inner photon circular orbit are clocked by the event horizon and hence not visible to an observer. In the case of q ¼ 1, rþ0 is located at
≈14M, while the outer photon orbit exactly placed at 2M. (b) In case of q ⪆ 1.00033, there is no event horizon in the spacetime and the
singularity is visible. The spin frequency vanishes at r�0 as well as at the photon circular orbits. But as the frequency become imaginary
within the photon circular orbits, neither the inner photon circular orbit nor r0 would be an observable. For q > 9=8, no photon orbits
exist anymore and ωg vanishes only at rc ¼ r�0 .
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ωg ¼ Ωg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
rc

þ P2

2r2c

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r3c

−
MP2

4r5c

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
rc

þ P2

2r2c

s
:

ð43Þ

In this case as well, the spin frequency vanishes at three
locations—(a) the two photon circular orbits (r�ph) located at
the solutions of the algebraic equation: 2r2−6MrþP2¼0

as well as at (b) r0 ¼ jPj=2, whereΩg also vanishes (see 9).
Thus similar to the previous solution, in this case as well
there can be three situations depending upon the value of
the scalar charge P. These are

(i) The first situation corresponds to 0 < ðP=MÞ < ffiffiffi
2

p
.

In this case both the event horizons and the
photon orbits exist. Since circular geodesics are
not possible within the event horizon, the gyroscope
can exist only up to rþph, where the spin frequency ωg

vanishes. This is illustrated in Fig. 10(a).
(ii) Another possibility is to have

ffiffiffi
2

p
<ðP=MÞ<3=

ffiffiffi
2

p
.

In this case a naked singularity forms resulting
into disappearance of the event horizon. However
the circular photon orbit still exists. In this case the
spin frequency ωg vanishes at three places, the
outer photon orbit, the radius r0 and at the inner
photon orbit. Again the radius r0 is not an observ-
able, since there can be no circular geodesic in
between the region r0<rc<rþph. This is illustrated in
Fig. 10(b).

(iii) The last possibility corresponds to ðP=MÞ > 3=
ffiffiffi
2

p
.

In this case neither the event horizon nor the photon
orbit exists. Hence the spin frequency ωg will vanish
at r0 alone. As a consequence the radius r0 will
become an observable. Hence by just checking
whether the spin frequency of a gyroscope vanishes
at some radius, one may infer about the presence of a
naked singularity besides the existence of scalar hair.
This situation is depicted in Fig. 10(b).

Having derived the spin frequency, it is straightforward
to compute the geodetic precession with the following
expression:

FIG. 9. The above figure depicts the horizon structure of
Sotiriou-Zhou spacetime. The outer event horizon rþeh (thick
black line) is always at a greater radius compared to r−eh (blue
line), while they coincide at the extremal limit (i.e., P ¼ ffiffiffi

2
p

M).
The photon radius rþph (thick, violet line) is always the outermost
one, while r−ph (brown, dotted curve) is within the inner horizon.
The radius r0 (red, dot dashed line) is always within the outer
photon radius and is only an observable for ðP=MÞ > 3=

ffiffiffi
2

p
,

when the photon orbits become nonexistent.

(a) (b)

FIG. 10. Geodetic spin frequency is being illustrated in the context of Sotiriou-Zhau solution. (a) The spin frequency ωg has been
plotted against radial distance for three different values of P=M. The case ðP=MÞ ¼ 1 is being presented by the blue, dashed curve
vanishing at the outer photon orbit. In the other two cases, ðP=MÞ < 3=

ffiffiffi
2

p
and hence the outer photon orbit always exists on which ωg

vanishes. (b) Spin frequency ωg is shown for three different values of P=M greater than
ffiffiffi
2

p
. For

ffiffiffi
2

p
< ðP=MÞ < 3=

ffiffiffi
2

p
(the blue dashed

and the thick black curves), the spin frequency vanishes at the outer photon orbit, r0 and the inner photon orbit respectively. Beyond this
value, i.e., for P > ð3= ffiffiffi

2
p ÞM, ωg vanishes only on the radius r0 (as the red dot dashed curve depicts).
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Gg ¼ 2π

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
rc

þ P2

2r2c

s !
: ð44Þ

The geodetic precession frequency Gg of a gyroscope
moving in a circular orbit takes nontrivial values, except
for the photon circular orbits, where ωg vanishes. Since the
spacetime is asymptotically flat, the geodetic precession
becomes arbitrarily small at large distances, as expected.

Further the geodetic precession for a gyroscope in Sotiriou-
Zhou spacetime is less than the expression for general
relativity as one can easily verify.
One can smoothly carry over the analysis to nongeodesic

trajectories as well. The essential steps of the computation
follows the general derivation in III. Using the metric
components presented earlier, we arrive at the following
expression for spin frequency of nongeodesic observers,
using Eq. (23) as

ωnongd

Ωnongd
¼ f1 − ð3M=rcÞ þ ðP2=2r2cÞgf1 − ð2M=rcÞ þ ðMP2=6r3cÞg−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ϵð1 − ϵÞ½1þ ð2M=rcÞ þ fð8M2 − P2Þ=2r2cg�
p ð45Þ

or; ωnongd ¼
2ϵ − 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵð1 − ϵÞp f1 − ð3M=rcÞ þ ðP2=2r2cÞgf1 − ð2M=rcÞ þ ðMP2=6r3cÞg−1=2

f1þ ð2M=rcÞ þ ½ð8M2 − P2Þ=2r2c�g1=2
: ð46Þ

As evident from the above expression the spin frequency
vanishes on the circular photon orbit but remains non-zero
otherwise (see Fig. 11). Thus intriguingly the spin fre-
quency for non-geodesic observers do not vanish anywhere
when P=M > 3=

ffiffiffi
2

p
. This is a distinctive signature of

Sotiriou-Zhau spacetime, essentially originating from the
presence of scalar hair. Finally use of Eq. (24) yields the
precession frequency associated with the gyroscope mov-
ing in a circular but nongeodesic trajectory as

Gnongd ¼ 2π

 
1−

ð1− 3M=rcþ P2

2r2c
Þð1− 2M=rcþMP2

6r3c
Þ−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2M
rc
þð8M2−P2Þ

2r2c

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ð1− 2ϵÞ2

p
!
:

ð47Þ

This is also smaller compared to the corresponding ex-
pression in Schwarzschild spacetime. Note that the pre-
cession frequency is nontrivial except for the photon orbits,
which is expected as ωnongd vanishes there.
However, there is one issue of applying the above result

pertaining to the Gravity Probe B experiment directly to the
Sotiriou-Zhau solution. This particular model of Einstein-
dilaton-Gauss-Bonnet gravity does not admit any star (or
for that matter any perfect fluid) solution, as elaborated in
the Introduction. Nevertheless it opens up a very interesting
avenue of exploration. Recently, there have been several
observational evidences of a supermassive black hole
located at the center of the Milky Way galaxy, named
Sgr A* [106,107]. There are several stars (in particular S2
and S6) orbiting this supermassive black hole, which can
provide an ideal test bed for these alternative theories. Since
these stars have intrinsic spins and they are moving in
geodesic orbits around Sgr A*, the analysis presented
above will become directly applicable to that situation.

With the event horizon telescope or square kilometer array
becoming functional in the near future one can possibly
measure the spin precession with better accuracy and hence
will be able to constrain the respective theories much better
[108,109]. In these contexts the results derived in this work
will be of considerable interest.
As a crude estimate, if one blindly applies the results

associated with the Gravity Probe B experiment in the
context of Sotiriou-Zhau solution, then the following bound
is being obtained: ðP=GMÞ < 0.11. Here we have reintro-
duced the Newton’s constant. The above bound is com-
pletely consistent with the results derived in [80] and is
within ∼10% of the bound obtained from both perihelion
precession and bending angle of light. Further note that the
above scenario is directly applicable to a few more
situations as well. One such scenario corresponds to black
hole in the presence of Kalb-Ramond field [110]. This also
provides a hairy black hole solution identical in structure to
the Sotiriou-Zhou solution and hence the above analysis
will be directly applicable in this case. Thus the above
constraint on scalar charge P translates into the Kalb-
Ramond field charge in that context, thereby providing yet
another application of our result in a different setup.

V. DISCUSSION

The properties of a spinning gyroscope have been
discussed in Horndeski theories involving arbitrary cou-
plings between scalar and gravity, while yielding second
order field equations. The fact that the equations of motion
are of second order ensures that the theory is free from any
Ostrogradsky ghosts, which is very much desirable [61]. In
this work we have explored the possibility of Horndeski
theories becoming viable alternative to general relativity in
the light of geodetic precession of a spinning gyroscope
and the Gravity Probe B experiment. Moreover as
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suggested earlier in [101,111,112], gyroscope can also be
used as a useful probe to understand the basic structure of
spacetime geometry, in particular existence of naked
singularity may be inferred using spinning particles. In
this work we have explored both the types of spin
precession, first we have elaborated the motion of a
spinning gyroscope along a geodesic orbit, while in the
second, we consider a Fermi transported gyroscope orbiting

in a non geodesic trajectory for a general static and
spherically symmetric spacetime. The first case has been
studied in detail in the context of Schwarzschild spacetime
and is further supported with some experimental proofs
such as Gravity Probe B, while the second one has not
received much attention until Iyer and Vishveshwara [94]
came up with the Frenet-Serret formalism. We have
employed this particular framework to understand the

(a) (b)

(c) (d)

FIG. 11. Spin frequency for non-geodesic observers is being shown for Sotiriou-Zhau spacetime. (a) The non-geodetic frequency
ωnongd is being plotted against radial distance for different P values while ϵ is kept fixed at 0.7. Since ωnongd vanishes only on the photon
circular orbit, the curves for ωnongd will hit zero only once. (b) Variation of ωnongd with radial distance for different choices of ϵ is being
shown, while P is kept fixed at 2M. Alike the charged Galileon black hole, the nature of the plot remains similar with an overall sign
change taking place as ϵ crosses 0.5. (c) The above figure illustrates the spin frequency ωnongd as a function of the radial distance rc and
the scalar charge P for nongeodesic observers with ϵ ¼ 0.3. The contour representing ωnongd ¼ 0 has also been depicted. (d) The above
figure shows the variation of spin frequency ωnongd with the radial distance rc and the charge parameter q for nongeodesic observers with
ϵ ¼ 0.7. The contour with ωnongd ¼ 0 has also been presented.
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properties of Fermi dragged gyroscopes in the Horndeski
theories.
Having developed the above formalism for a general

static and spherically symmetric spacetime, we have
applied the same to the Schwarzschild-de Sitter solution
and have investigated the properties of a spinning gyro-
scope. Unlike Einstein’s gravity, the features distinctly
depend on the cosmological constant and show contrasting
behavior when compared to the Schwarzschild black hole.
As is well known in the case of Schwarzschild solution, the
spin frequency vanishes at the photon orbit located at
r ¼ 3M which in fact, is closely related to the reversal of
the centrifugal force [113–115]. But, when a nonzero
cosmological constant is present, the spin frequency of
the gyroscope vanishes at two points, one is the usual
photon orbit at r ¼ 3M and another is at r0 ¼ ð3M=ΛÞ1=3.
This can be used as a probe to distinguish the de Sitter
spacetime from the asymptotically flat solutions of
Einstein’s gravity. In case of the Fermi dragged gyroscope,
the precession only vanishes at the photon circular orbit and
r0 ceases to exist.
The second example discusses another exact solution of

Horndeski theories, corresponding to the asymptotically
flat branch of a charged Galileon black hole. Unlike the
previous case, this solution is associated with non-minimal
coupling of the Galileon field with gravity and a gauge
field. The properties of a spinning gyroscope in this
spacetime are further categorized for positive and negative
values of the Galileon charge q. It is shown that for q > 0,
the spin frequency vanishes at the photon circular orbit
along with at r0 ¼ qM. But r0 always remains within the
outer photon circular orbit and is only visible when the
photon circular orbits cease to exist. Thus when naked
singularity is present, the spin frequency may vanish and
one may use this fact to distinguish the existence of event
horizon from naked singularity. On the other hand, in the
case of q < 0, the spin frequency of a gyroscope can only
vanish at the outer photon orbit. We have also produced an
useful upper bound on the parameter q within which it
obeys the findings of Gravity Probe B and is consistent
with the previous literatures. Similar considerations apply

for the asymptotically de Sitter branch of the charged
Galileon black hole as well.
Finally we have explored the Sotiriou-Zhau solution in

the context of hairy black holes in scalar coupled Einstein-
Gauss-Bonnet gravity. The geometry is sharply different
from the previous cases as here gtt ≠ −grr. Similar to the
charged Galileon black hole, the spin frequency of the
gyroscope vanishes at the outer photon orbit and as well as
at r0 ¼ jPj=2. For a large value of the scalar charge
parameter P, when the photon circular orbit no more
exists, the radius r0 ¼ jPj=2 appears in the spacetime
structure. Thus in this case as well one can differentiate
between a spacetime inheriting event horizon and naked
singularity by inspecting whether the spin frequency of a
spinning gyroscope vanishes or not. We have also presented
possible observational avenues to explore, in view of the
supermassive black hole Sgr A* in the Milky Way. In
particular measuring the precession frequency of the stars
orbiting the supermassive black hole may provide another
strong field test of gravity and it will be possible to provide
more stringent constraints on the model parameters, which
will either constrain them significantly or will rule them out.
Note that our analysis has been based on spherically

symmetric configuration, while a similar approach for the
stationary or axisymmetric black holes can be obtained by a
straightforward extension of the method presented here.
This would be more relevant from the astrophysical point of
view as black holes are likely to have angular momentum.
This we leave for the future.
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