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In the present article, we investigate the Periastron precession for a spinning test particle moving in
nearly circular orbits around naked singularities. We consider two well-known solutions that can produce a
spacetime with naked singularity—(a) first, the Reissner-Nordström metric, which is a static charged
solution with spherical symmetry, and (b) second, the stationary, axisymmetric Kerr metric. For simplicity,
we only consider the motion confined on the equatorial plane in both these cases and solve exactly the
Mathisson-Papapetrou equations. In addition, we analytically compute the Periastron precession within the
framework of linear spin approximation. The inclusion of the spin parameter modifies the results with
nonspinning particles and also reflects some interesting properties of the naked geometries. Furthermore,
we carried out a numerical approach without any assumptions to probe the large order spin values. The
implication of the spin-curvature coupling in connection with the naked geometries is also discussed.
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I. INTRODUCTION

The study of spinning particles is important to under-
stand the evolution of extreme mass ratio binaries [1–3].
Unlike monopole particles, spinning objects are deviated
from the geodesic trajectories due to the spin-curvature
coupling [4–7]. In 1937, Mathisson studied their motion in
the linearized gravity [8], and shortly afterward, Papapetrou
derived the orbit equations for these particles in the curved
spacetime [9,10]. Following this, Dixon arrived with the
equations of motion of extended objects with multipole
mass moments [11–13]. These equations have wide
and substantial interest in the field of general relativity,
spanning from describing trajectories of extended objects
[14,15] to modeling a binary system [16]. A Hamiltonian
description for these particles is given in Refs. [17,18]. The
notion of spinning particles may provide a better under-
standing to model the behavior of compact objects, such as
a black hole or star, around a massive black hole. A similar
situation may be found at the center of most of the galaxies,
including our own Galaxy with a supermassive black hole
at its center named Sgr A* [19,20].
In this work, we shall explicitly study the motion of these

particles in a curved background and be primarily con-
cerned with the Periastron precession on the equatorial
plane. We assume that the orbits are nearly circular and the
radial frequency (Ωr) is not equal to the orbital frequency
(Ωϕ); hence, the precession becomes nonzero. Considering
our own Solar System, the planets precess due to the
perturbation from nearby planets or the quadrapole poten-
tial from Sun. These effects have been studied in

Refs. [21,22]. But for the planet Mercury, dominant
contribution comes from the relativistic effects, and tools
of general relativity become essential to explain it appro-
priately [23]. According to the Einstein’s theory of general
relativity, the generic elliptical orbits are not closed in the
presence of gravity. This primarily suggests that the particle
would never come back to its initial position after a orbital
period. In the case of a geodesic trajectory, this precession
can be easily computed. However, for a spinning particle, it
is a nontrivial job [24]. For spinning black hole binaries, the
Periastron advance is computed in Ref. [25] for quasicir-
cular orbits by combining both numerical relativity and the
effective one body approach. A similar finding by adapting
post-Newtonian approximation can be found in Ref. [26].
Relevant studies for nonspinning binaries are shown in
Ref. [27]. We refer our readers to Refs. [28–31] for detailed
discussion on the effects of spin in a binary system.
In the present context, we consider a spinning test

particle orbiting in a nearly circular trajectory while the
background spacetime consists of a naked singularity. We
explicitly solve the exact Mathisson-Papapetrou equations
and analytically compute the difference betweenΩr andΩϕ

up to terms linear in spin. In addition, to accommodate
quadratic spin dependence, numerical tools have also been
used. The absence of the event horizon will allow us to
investigate the effect of spin-curvature coupling on the
periastron precession close to singularity. We consider two
solutions of Einstein-Maxwell field equations that can
provide a naked singularity at a certain limit. First is the
Reissner-Nordström spacetime, and in this case, the hori-
zon does not exist for the Q > M limit, where M and Q are
the mass and charge of the spacetime respectively. This is
called the naked Reissner-Nordström spacetime or an*sm13ip029@iiserkol.ac.in
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overcharging geometry.On the other hand, a similar situation
may arise in the case of aKerr geometry fora > M, with a the
angular momentum of the spacetime. It is called an over-
spinning geometry or Kerr superspinor. Naked geometries
have gathered intensive attention in recent times due to their
interesting properties [32–34]. Even if these objects are
highly transient in nature [35], they are suggested to be a
promising source of high energy particles in the Universe
[36]. A study on the stability analysis of these geometries can
be found in Ref. [37]. Though it is true that they have some
pathological behavior such as geodesic unpredictability or
causality violation [38], they might be astrophysically
important and worth exploring [39,40]. We study the effects
of these geometries on the motion of a spinning particle
specifically in connection with the periastron precession.
The rest of the article is organized as follows. In Sec. II,

we shall start with the evolution equations for a spinning
particle and discuss several properties of their motion. In
Sec. III, we derive the bound circular orbits of a spinning
particle in overspinning and overcharging geometry.
Section IV is devoted to studying the periastron shift for
these orbits on the equatorial plane. Later on in Sec. V, we
provide a numerical example for periastron precession in
both the geometries for large spin values. Finally, we shall
close the article with concluding remarks in Sec. VI.
Throughout the text, we have used the units with

c ¼ G ¼ 1 and the metric signature ð−;þ;þ;þÞ.

II. SPINNING PARTICLE IN A
GRAVITATIONAL FIELD

The Mathisson-Papapetrou equations [8,9] are given as

_Pa ¼ −
1

2
Ra

bcdUbScd;

_Sab ¼ PaUb − PbUa; ð1Þ

where Pa defines the 4-momentum, Sab is the antisym-
metric spin tensor, and Ua is the four-velocity of the
spinning particle. The spin tensor Sab is essentially related
to the structure of the pole-dipole particle, while we have
neglected other higher moments. It should be noted that the
above equations are not sufficient alone to determine the
complete trajectory of a spinning particle. So, further
conditions are essential to specify its motion. For a unique
choice of the center of mass of the particle, we may employ
the Tulczyjew-Dixon spin supplementary condition (SSC)
[41], which is given as

SabPb ¼ 0: ð2Þ

This SSC certainly conserves the dynamical mass (μ) of the
spinning body [42], and we may now define a normalized
momentum Va as

Va ¼ Pa=μ; VaVa ¼ −1: ð3Þ

It is important to note that the four-velocity, Ua, is not
normalized in general when the supplementary condition is
given as Eq. (2). So, an additional constraint on the
4-velocity is required to show that the particle is timelike,

UaUa < 0: ð4Þ

For simplicity, we may choose [43]

UaVa ¼ −1: ð5Þ

Also, for convenience, we replace the spin tensor Sab with a
spin 4-vector Sa,

Sab ¼ 1ffiffiffiffiffiffi−gp ϵabcdScPd; ð6Þ

where g is the determinant of the metric. Form Eqs. (1)–(5),
one can establish a relation between four-velocity and the
momentum,

Ua − Va ¼ SabRbcdfVcSdf

2ðμ2 þ 1
4
RpqrsSpqSrsÞ

: ð7Þ

Furthermore, the symmetries of the spacetime will con-
tribute to additional conserved quantities, and due to the
nonzero spin, they may include some spin-dependent
terms. For example, with a given killing vector field Ka,
the conserved quantity is given as [44,45]

C ¼ KaPa −
1

2
SabKa;b: ð8Þ

It should be noted that, unlike energy (−Pt) or angular
momentum (Pϕ), C defines a different quantity which
depends on spin. For example, when Ka ¼ ξa, a timelike
killing vector, the energy is given as Einfy ¼ −ξaPa, which
is not conserved in the presence of spin. But the conserved
quantity is given as

Ct ¼ −Einfy −
1

2
Sabξa;b: ð9Þ

So, for spinning particles, we define E ¼ −Ct and Jz ¼ Cϕ,
and these reduce to the well-defined energy (ξaPa) and
angular momentum (ηaPa) for a geodesic, where ηa is the
spacelike killing vector field.

A. Motion in the Reissner-Nordström spacetime

In this subsection, we shall discuss the motion of a
spinning particle in the Reissner-Nordström spacetime. The
metric element is given as
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ds2 ¼ −
�
1 −

2M
r

þQ2

r2

�
dt2 þ dr2�

1 − 2M
r þ Q2

r2

�
þ r2ðdθ2 þ sin θ2dϕ2Þ; ð10Þ

where M and Q are the mass and charge parameter of the
spacetime respectively. In addition to that, as the system is
endowed with the spherical symmetry, we shall confine our
discussion only on the equatorial plane without losing
any generality. In this case, the spin vector remains
perpendicular to the orbital plane, and only the z-component
of the vector, Sz ¼ −rSθ, survives. The total spin is given as
jSj ¼

ffiffiffiffiffiffiffiffiffiffi
SθSθ

p
¼ jSzj, and this is a constant of motion. By

using Eqs. (1)–(7), one can write down the relation between
the 4-momentum and the four-velocity as

U t ¼ Vt

N

�
1 −

MS2

r3
þ S2Q2

r4

�
;

Ur ¼ Vr

N

�
1 −

MS2

r3
þ S2Q2

r4

�
;

Uϕ ¼ Vϕ

N

�
1þ 2MS2

r3
−
3S2Q2

r4

�
;

N ¼ 1þ S2

r4
½ðQ2 −MrÞ þ ð4Q2 − 3MrÞVϕVϕ�: ð11Þ

The above expressions can be used along with Eq. (8) to
produce the equations of motion:

ðΣsrnΛsrnUrÞ2 ¼
�
Er2þJzS

r2
fQ2−Mrg

�
2

−ΔRN

�
ðJz−ESÞ2þΣ2

srn

r2

�
;

ðΣsrnΛsrnU tÞ¼ 1

ΔRN
½Er4þJzSðQ2−MrÞ�;

ðΣsrnΛsrnUϕÞ¼ ðJz−ESÞ
�
1þ

�
3MS2−

4Q2S2

r

�
1

rΣsrn

�
:

ð12Þ
Here, E and Jz are defined as two conserved quantities
related to timelike and spacelike symmetries of the space-
time, as described in the last section. The quantity S
represents the total spin of the particle. We define Σsrn
and Λsrn as

Σsrn ¼ r2
�
1 −

MS2

r3
þQ2S2

r4

�
;

Λsrn ¼ 1þ S2

Σ3
srn

ð4Q2 − 3MrÞðJz − ESÞ2: ð13Þ

In addition, to retain the timelike property of the spinning
particle, one has to ensure UaUa < 0, and this will give
further constraints on its motion.

B. Motion in the Kerr spacetime

The Kerr metric, written in the Boyer-Lindquist coor-
dinates, is given by

ds2 ¼ −
ðΔ − a2sin2θÞ

Σ
dt2 þ Σ

Δ
dr2 þ Σdθ2

−
4Mar sin2θ

Σ
þ ðr2 þ a2Þ2 − Δa2sin2θ

Σ
sin2θdϕ2;

ð14Þ
where M and a are the mass and angular momentum
parameter of the spacetime and Δ ¼ r2 − 2Mrþ a2,
Σ ¼ r2 þ a2 cos2 θ. Saijo et al. derived the equation of
motion of a spinning particle on the equatorial plane of a
Kerr black hole [43,46]. These equations are given as

ðΣsΛsUrÞ2¼P2
s −Δ

�
Σ2
s

r2
þfJz− ðaþSÞEg2

�
;

ðΣsΛsU tÞ¼ a

�
1þ3MS2

rΣs

�
fJz− ðaþSÞEgþ r2þa2

Δ
Ps;

ðΣsΛsUϕÞ¼
�
1þ3MS2

rΣs

�
fJz− ðaþSÞEgþ a

Δ
Ps; ð15Þ

where Ps, Σs, and Λs are given as

Ps ¼ E

�
r2 þ a2 þ aSþ aSM

r

�
−
�
aþMS

r

�
Jz;

Σs ¼ r2ð1 −MS2=r3Þ;

Λs ¼ 1 −
3MS2r
Σ3
s

fJz − ðaþ SÞEg2: ð16Þ

Similar to the spherically symmetric case in Sec. II A, the
quantity S represents the total spin acting only in the z
direction, S ¼ ð0; 0; 0; SzÞ. This is either parallel (S > 0) or
antiparallel (S < 0) to the rotational axis of the geometry.
Further, by using Eqs. (15) and (16), one can rewrite the
timelike condition as given in Eq. (4),

r5
�
1−

MS2

r3

�
4

>3MS2
�
2þMS2

r3

�
fJz−ðaþSÞEg2: ð17Þ

The above equation determines the closest interaction of a
spinning particle with the black hole. For the S ¼ 0 limit, it
is trivially satisfied, and no additional constraint is applied
on its motion.

III. CIRCULAR ORBITS IN NAKED GEOMETRIES

In this section, we briefly study the existence of circular
orbits and carry out their stability analysis in both Reissner-
Nordström and Kerr spacetime. For analytical convenience,
we only consider the equatorial plane. The necessary
conditions for a circular orbit to exist are given as
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_r2 ¼ VeffðrÞ ¼ 0; ̈r ¼ 1

2

dVeffðrÞ
dr

¼ 0: ð18Þ

Here, Veff is defined as the radial effective potential, and a
dot defines a derivative with respect to the affine parameter
τ. The above equations, in principle, can be solved to
compute the energy and angular momentum of a particle.

A. Reissner-Nordström spacetime

Before delving into the rotating geometry, let us first
discuss the circular orbits in Reissner-Nordström spacetime.
We shall start by solving the Eq. (18) to computeE and Jz in
both the geodesic and spinning cases. In the spinning case,
we approximate the results only up to the linear order in spin.
The minima of the energy and angular momentum will give
the innermost stable circular orbit (ISCO) for different sets
of parameters such as Q or S [47].

1. Geodesic motion

A circular geodesic in the Reissner-Nordström geometry
has energy ERN

Geo and angular momentum JRNGeo:

ðJRNGeoÞ2 ¼ r2
Mr −Q2

r2 þ 2Q2 − 3Mr
;

ERN
Geo ¼

r2 − 2MrþQ2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 3Mrþ 2Q2

p : ð19Þ

The above equation would immediately suggest that
r2 − 3Mrþ 2Q2 > 0. It essentially indicates that no cir-
cular orbit could exist for a timelike particle with r2 −
3Mrþ 2Q2 ≤ 0 while r2 − 3Mrþ 2Q2 ¼ 0 describes the
photon orbit. The other constraint Mr > Q2 only appears
due to the geometry of the considered spacetime and is
trivially satisfied in the case of a Schwarzschild spacetime.
The ISCO is determined by V 00

effðrÞ ¼ 0, where a prime
defines a derivative with respect to r. The ISCOs can be
further subcategorized as the following:

(i) Case A: For 5M8Q4 − 9M6Q6 þ 4M4Q8 < 0 or
Q < Qc ¼

ffiffiffi
5

p
M=2, one can show V 00

effðrÞ ¼ 0 has
three solutions,

r1 ¼ 2M

	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f4M2−3Q2g

q
cos

�
θ

3

�

;

r2 ¼ 2M

	
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f4M2−3Q2g

q
cos

�
θ

3
þπ

3

�

;

r3 ¼ 2M

	
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f4M2−3Q2g

q
cos

�
θ

3
−
π

3

�

; ð20Þ

where θ¼ tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9M6Q6−4M4Q8−5M8Q4
p

8M6−9M4Q2þ2M2Q4

�
, and the sol-

utions follow the order as r3<Q2=M<r2<r1<∞.
This immediately rules out r3 asMr3 < Q2, and it is

inconsistent with Eq. (19). For the case with r ¼ r2,
the reason is a bit involved and can be explained as the
following. In the case of naked Reissner-Nordström
geometry with M < Q < Qc, there can exist two
different regions, i.e., Q2=M < r < r2 and
r1 < r < ∞, where stable circular orbits can exist.
But these two domains are separated by a region with
instability that is r2 < r < r1, where no stable orbit
can exist. In the present context, where we are
interested in orbits arriving from spatial infinity,
we consider the ISCO is located at r ¼ r1 and beyond
that no stable orbit exists.

(ii) Case B: In the case forQ≥Qc or 5M8Q4−9M6Q6þ
4M4Q8 ≥ 0, the ISCO is located at r ¼ Q2=M.

2. Spinning particle

We now consider the motion of a spinning particle
moving in a circular orbit and compute the energy
and angular momentum associated with it. The effective
radial potential is given by Veffðr; SÞ, which explicitly
depends on the spin parameter as given in Eqs. (12)
and (13):

Veffðr;SÞ¼
1

ðΣsΛsÞ2
�
P2
s −Δ

�
Σ2
s

r2
þfJz− ðaþSÞEg2

��
:

ð21Þ

Hence, similar to the S ¼ 0 case, one can solve Eq. (18)
with the above potential up to terms linear in spin. The
energy and angular momentum are given as

Eð1;2Þ ¼ΔRN

r
ffiffiffi
α

p � S
2r3

�
2

ffiffiffiffiffiffi
βα

p
−ΔRN

ffiffiffi
β

p ΔRNþα−4βþQ2

α3=2

�
;

Jð1;2ÞZ ¼∓ r
ffiffiffi
β

pffiffiffi
α

p þSΔRNðΔRNþα−4βþQ2Þ
2rα3=2

; ð22Þ

where ΔRN ¼ r2 − 2MrþQ2, α ¼ r2 − 3Mrþ 2Q2, and
β ¼ Mr −Q2, with M and Q representing their usual
meanings. Here,EðiÞ is defined as the energy corresponding
to angularmomentum JðiÞz , for i ¼ 1 to 2. In Figs. 1(a)–1(d),
both EðiÞ and JðiÞ are shown for various charge parameters
Q, while the spin of the particle is fixed at S ¼ 0.1M. To
compute the ISCO, one has to solve V 00

effðr; SÞ ¼ 0 along
with the necessary conditions for circular orbit as given in
Eq. (18). Similar to the geodesic case with 0 < Q ≤ M, the
ISCO appears at r ¼ rS1 , which is now a function of S. But
whenever M < Q < QS

c, two disconnected stable regions
appear within Q2=M < r < rS2 and rS1 < r < ∞. In this
case, QS

c is the critical value of the charge parameter
of the spacetime beyond which these two stable regions
merge and the ISCO exists at r ¼ Q2=M. For S ¼ 0.04M,
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the QS
c ≈ 1.1188402M, while at S ¼ −0.04M, QS

c
becomes 1.1172409M.

B. Kerr spacetime

The motion of geodesic trajectories is well studied in the
Kerr spacetime both in the equatorial and nonequatorial
planes [48,49]. In addition to that, the various aspects of
nakedKerr spacetime or Kerr superspinors are also explored
in connection with these motions [50,51]. Hence, we shall

only concentrate on the motion of spinning particles and

study their orbits.
The motion of a spinning particle, as we described

earlier, depends on the choice of a reference point

and is more involved than the geodesics. Due to this,

we shall carry out an approximate expression for both

energy and angular momentum, which is valid only up

to the linear order in spin. These are written as [46]

E ¼ r3=2 − 2Mr1=2 ∓ aM1=2

r3=4ðr3=2 − 3Mr1=2 ∓ 2aM1=2Þ1=2 þ
SES

2r11=4ðr3=2 − 3M
ffiffiffi
r

p
− ∓ 2a

ffiffiffiffiffi
M

p Þ3=2 ;

JZ ¼ ∓ M1=2ðr2 � 2aM1=2r1=2 þ a2Þ
r3=4ðr3=2 − 3Mr1=2 ∓ 2aM1=2Þ1=2 þ

SJS

2r11=4ðr3=2 − 3Mr1=2 ∓ 2aM1=2Þ3=2 ; ð23Þ

(a)

(c) (d)

(b)

FIG. 1. The energy and angular momentum of a spinning particle are shown in the Reissner-Nordström spacetime. The spin parameter
is set at S ¼ 0.1M.
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where

JS ¼ 2r5 − 13Mr4 ∓ 9aM1=2r7=2 þ 18M2r3

� 21aM3=2r5=2 þ 2a2Mr2 ∓ 3a3M1=2r3=2

þ 4a2M2r� 7a3M3=2r1=2 þ 3a4M;

ES ¼ Mða�
ffiffiffiffiffiffiffi
Mr

p
Þðr2 þ 3a2 � 4a

ffiffiffiffiffiffiffi
Mr

p
Þ: ð24Þ

Now, in principle, there are two total solutions to E and Jz,
which can be easily interpreted from the above equations.
But we shall only consider the solutions which can describe
the motions arriving from infinity as well as close to
r ¼ M. This only appears when the denominator is given as
r3=2 − 3Mr1=2 þ 2aM1=2. The expression r3=2 − 3Mr1=2 þ
2aM1=2 ¼ 0 never gives a real solution of r in the over-
spinning geometry (a > M), and both the energy and
angular momentum behave regularly in the considered
region. In Figs. 2(a)–2(b), energy and angular momentum
are shown for a variety of spin parameters. Both of
them approach zero at r → M for any numerical value of
the spin parameter. It is, in fact, related to a particular
consequence of the nearly overspinningKerr spacetime, i.e.,
a ¼ limϵ→0Mð1þ ϵÞ, while for ϵ ≈Oð1Þ, this is no longer
valid.

IV. PERIASTRON PRECESSION FOR
SPINNING PARTICLES

In this section, we shall discuss the periastron precession
related to a spinning particle orbiting in nearly circular
orbits. We mainly explore the modification of precession
frequency due to the intrinsic momentum of a particle. In
addition, we also study the role played by the background
metric specifically in connection with the naked geom-
etries. As we have discussed earlier, both of the spacetimes
we have considered here, namely the Reissner-Nordström

geometry and Kerr spacetime, can produce a spacetime
with naked singularity.
Let us now consider a spinning particle moves in a stable

circular orbit with radius r ¼ r0, and then it is slightly
displaced from its position. It will start to oscillate about r0
with a frequencyΩ2

r ¼ − 1
2
ðd2Veff

dr2 Þ
r¼r0

and moves in a nearly

circular orbit, where Veff is defined as the effective radial
potential of the particle. In the Newtonian gravity, this will
form a closed loop, and Ωr is equal to Ωϕ ¼ _ϕ ¼ dϕ

dτ [52].
But close to the black hole where relativistic effects are
dominant, we have Ωr ≠ Ωϕ, and their difference is
referred to the periastron precession and given as

ΩP ¼ Ωϕ −Ωr ¼
dϕ
dτ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
−
d2Veff

dr2

�s
: ð25Þ

In the next sections, we shall explicitly use the above
expression to compute the periastron precession related to a
spinning particle.

A. Reissner-Nordström spacetime

In the Reissner-Nordström spacetime, Ωr and Ωϕ can be
computed by using Eqs. (22) and (25). They can be
approximated up to linear order in spin as

ðΩ∓
ϕ Þ2 ¼

1

r2
β

α
∓ SΔRN

ffiffiffi
β

p 4Q2 − 3Mr
r4α2

;

ðΩ∓
r Þ2 ¼ γ

r4α
� S

ffiffiffi
β

p
ΔRNδ

r5α2
; ð26Þ

where ΔRN, α, and β have the predefined meaning and

γ ¼ −4Q4 þ 9MQ2rþMr2ðr − 6MÞ;
δ ¼ 8Q2r − 3Mð2Q2 þ r2Þ: ð27Þ

(a) (b)

FIG. 2. Energy and angular momentum of a spinning particle in Kerr geometry.
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It is easy to see that the frequencies diverge at α ¼ 0, which
is the photon orbit. A timelike particle would require
infinite energy to move in that orbit. Hence, that scenario
is not physically acceptable and is excluded in the text. The
periastron shift is shown in Figs. 3 and 4 for different
charge parameters in the Reissner-Nordström spacetime,
while we fix the spin value at S ¼ �0.04M. It was
suggested earlier in Sec. III A 2 that in a naked
Reissner-Nordström geometry there exist two disconnected
regions with stable circular orbits when the charge param-
eter follows M < Q < QS

c . But whenever Q ≥ QS
c, these

two regions get connected, and a stable circular could exist
up to r ¼ Q2=M. This can be well understood from Figs. 3
and 4 where we consider two different values of the charge
parameterQ and the consequences change accordingly. For
Q ¼ 1.11M, two stable regions are disconnected by an
unstable domain, and as given in Sec. III A 2, the ISCO

exists at r ¼ rS1 . This is reflected in the precession
frequency as shown in Figs. 3(a) and 3(b). In Fig. 3(a),

the precession frequency is computed for JZ ¼ Jð1ÞZ , and the
orbits are given with Ωϕ < 0. Hence, the precession fre-
quency is given by ΩP ¼ −ðjΩϕj − jΩrjÞ. In the case of
Fig. 3(b), the orbits are characterized asΩϕ > 0. We assume
the precession is given by ΩP ¼ ðjΩϕj − jΩrjÞ. A similar
convention is used for Q ¼ 1.19M, as shown in Fig. 4.
It is shown in Fig. 3(a) thatΩP steadily decreases close to

the singularity and becomes minimum at r ¼ rS1 . Similarly,
in Fig. 3(b), ΩP increases and attains a maximum value at
r ¼ rS1 . In the case of Q ¼ 1.19M, two separate regions of
stabilitymerge, and the ISCO is located atQ2=M. Precession
frequency reaches a maximum (or minimum) and starts to
decrease (or increase) as it moves close to the singularity. It is
also important to note thatΩP vanishes at a particular value of

(a) (b)

FIG. 3. The periastron shift is shown in a Reissner-Nordström spacetime with the charge parameter, Q ¼ 1.11M. The straight line is
for S ¼ 0.04M, and the dotted line is for S ¼ −0.04M. Two regions of stability are disconnected, and the ISCO exists at r ¼ rS1 . (a)

Periastron precession is shown for JZ ¼ Jð1ÞZ and E ¼ Eð1Þ. (b) Figure shows the periastron shift with JZ ¼ Jð2ÞZ and E ¼ Eð2Þ.

(a) (b)

FIG. 4. The figure shows the periastron precession for Q ¼ 1.19M and S ¼ 0.04M;−0.04M. In this case, the ISCO exists at

r ¼ Q2=M ¼ 1.4161M. The straight and dotted lines represent the same significance as in Fig. 3. (a) Precession is shown for JZ ¼ Jð1ÞZ

and E ¼ Eð1Þ. (b) Shift is depicted for JZ ¼ Jð2ÞZ and E ¼ Eð2Þ.
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r, i.e., jΩϕj ¼ jΩrj, and then changes its sign. This phe-
nomenon could be useful to distinguish an overcharging
geometry from a black hole. A numerical study to probe the
large spin values is carried out in the last section.
In a standard way, the periastron shift can be calculated

for r ≫ M:

Ωð∓Þ
P ¼∓ 3M3=2 −Q2=ð2 ffiffiffiffiffi

M
p Þ

r5=2

− S

�
3M
r3

þ 12M2 − 27Q2=4
r4

�
: ð28Þ

The above equation reduces to the well-defined Perihelion
shift for S ¼ 0 and Q ¼ 0.

B. Kerr spacetime

Considering the case with Kerr spacetime, we may
employ Eqs. (23) and (25) to evaluate the frequencies
up to the linear order in spin,

Ω2
ϕ ¼ M

r3=2η
þ 2FS

ffiffiffiffiffi
M

p

η2r3=4
;

Ω2
r ¼

M

r7=2
χ

η
þ 2GS

r7=4η2
; ð29Þ

where

F ¼ 3ða2M þMð2M − rÞrþ a
ffiffiffiffiffiffiffi
Mr

p ðr − 3MÞÞ
2r11=4

;

G ¼ 3Mð ffiffiffiffiffiffiffi
Mr

p
− aÞð7a3M1=2 þ aM1=2ð14M − 5rÞrþ 5a2r1=2ðr − 4MÞ þ r5=2ðr − 2MÞÞ

2r15=4
;

χ ¼ ð−3a2 þ 8a
ffiffiffiffiffi
M

p ffiffiffi
r

p þ rðr − 6MÞÞ;
η ¼ 2aM1=2 þ ðr − 3MÞr1=2:

Similar to the Reissner-Nordström case, one can carry out
the approximate expression for periastron shift with the
r ≫ M limit:

ΩP ¼
�
3M3=2

r5=2
−
4aM
r3

�
þ S

�
−
3M
r3

þ 3aM1=2

r7=2

�
: ð30Þ

C. Nearly overspinning Kerr spacetime

Here, we consider a nearly overspinning geometry and
compute the periastron frequency close to r ¼ M. This
particular limit is maximally efficient in terms of energy
extraction from a naked singularity [53,54],

a ¼ lim
ϵ→0þ

Mð1þ ϵÞ: ð31Þ

The E and Jz can be computed in this limit by using
Eq. (23):

E¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a−M

p ð4M2þ3aS−MSÞ
4

ffiffiffi
2

p
M5=2

;

J¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a−M

p ð3a2Sþ2aMð2MþSÞþM2ð7S−4MÞÞ
4

ffiffiffi
2

p
M5=2

: ð32Þ

It is easily noticeable that both of the above quantities are
close to zero for a → M, and it also can be seen from Fig. 2.
These expression can be used to compute the periastron
frequency up to linear order in spin at r ¼ M,

ΩP ≈
1ffiffiffi
2

p
�

1ffiffiffiffiffi
M

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
a −M

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5M − 3a

p

M3=2

�
þ FðSÞ; ð33Þ

where

FðSÞ ¼ 3S

4
ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

a −M
p

M5=2 þ M2 þ 7a2 − 8aMffiffiffiffiffiffiffiffiffiffi
M7=2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5M − 3a

p
�
: ð34Þ

The first term in Eq. (33) diverges as a approachesM, while
FðSÞ becomes close to zero in this limit. This essentially
suggests that the effect of the spin parameter can be
neglected at r ¼ M, while the spacetime follows Eq. (31).
Even if these results are carried out in an approximate
framework, the above statement can be extended for large
spin values as well. This is explicitly shown in the next
section.

V. NUMERICAL RESULTS

In this section, we study the numerical aspects of the
problem and investigate the behavior in the large spin
domain. We start with the Reissner-Nordström geometry
and concentrate only on the Q > M limit. Further, we shall
address the Kerr superspinors with a > M.

A. Naked Reissner-Nordström geometry

Here, we investigate the nature of ΩP with two different
charge parameters, Q ¼ 1.11M and Q ¼ 1.19M. In the
first case as shown in Fig. 5(a), two different regions
of stability are disconnected, and precession frequency
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reaches a maximum (or minimum) at the ISCO. The situa-
tion is similar to the analytical results as shown in Fig. 3.
Here, we assume that whenever Ωϕ > 0 the precession
frequency is given as ΩP ¼ ðjΩϕj − jΩrjÞ, and for Ωϕ < 0,
the frequency becomes ΩP ¼ −ðjΩϕj − jΩrjÞ. In case of
Q ¼ 1.19M, these two regions get connected, andΩP attains
either a maximum (Ωϕ > 0) or minimum (Ωϕ < 0), as
shown in Fig. 5(b). It is also instructive to note that the
frequency vanishes at a particular value of r and then
changes its sign. This is an interesting and nontrivial feature
associated with the naked Reissner-Nordström geometry
and easy to understand by examining Eq. (28). For a
nonspinning particle at large distance (r ≫ M), the leading
order contribution inΩP vanishes atQ ¼ ffiffiffi

6
p

M and changes
its sign for Q ≶

ffiffiffi
6

p
M. This particular limiting value would

change whenever one considers a nonzero value of the spin
parameter S. Even if the nature of the precession frequency
remains unaffected due to the intrinsic momentum of a
particle, there are certain differences that appear at the S ≠ 0
limit. For example, as Reissner-Nordström geometry is

endowed with spherical symmetry, ΩðþÞ
P ¼ −Ωð−Þ

P , when-
ever S ¼ 0, and it can be easily established from Eq. (28).
But in the presence of the spin parameter, this is no longer
valid as it can be interpreted from Fig. 5.

B. Naked Kerr geometry

In this case, as shown in Figs. 6(a) and 6(b), ΩP
explicitly depends on the sign of the spin parameter in
the large limit. It is, in fact, related to the spin-spin coupling
between the particle and the rotating spacetime. For a
parallel arrangement, the force is repulsive, while it is
attractive for the antiparallel situation. But the effect is only
visible in the large limit such as S ¼ −0.4M. For positive
spin values, though, the nature almost remains similar to the
geodesic case. But one can easily notice that for S ≈OðMÞ

the timelike constraint as given in Eq. (17) will be
particularly important, and this essentially restricts the
motion close to singularity.
The effect of the sign of the spin parameter can be read

off by investigating the nature of Ωϕ for positive and
negative spin values. In the case of a negative spin, Ωϕ

rapidly increases close to the singularity as a consequence
of the attractive spin-spin force, as shown in Fig. 6(a). On
the other hand, with a positive spin, the spin-spin force is
repulsive, and Ωϕ slowly decreases close to the singularity
similar to a geodesic orbit, depicted in Fig. 6(b). Even if this
is the case for r ≶ M, at r ¼ M, the situation is different for
nearly overspinning geometries as pointed out in Sec. IV C.
The effect of the spin parameter is encoded within the term
FðSÞ as shown in Eq. (33), and this can be easily neglected
in the nearly overspinning limit. Though the analytic
computation is carried out within the linear spin limit, it
is true for any spin values as shown in Fig. 6. For example,
at a ¼ 1.001M and r ¼ M, the value of MΩP becomes
21.3614 in the S ¼ 0 limit, while for the S ¼ 0.1M and
S ¼ −0.1M cases, MΩP becomes 21.3631 and 21.3777
respectively.
For a consistency check, we compare our results with the

periastron shift as given in Refs. [25,26]. In that case, an
approximate expression for the ratio of angular frequency
(Ωϕ) and radial frequency (Ωr) is given as

WP ¼
Ωϕ

Ωr
¼
�
1−

6M
r

þð8aþ6SÞ ffiffiffiffiffi
M

p

r3=2
−
3a2þ6aS

r2

−
18M3=2S

r5=2
þ30MaS

r3
−
12

ffiffiffiffiffi
M

p
a2S

r7=2
þOðS2Þ

�
−1=2

;

ð35Þ

where a and S are given as the spin parameters for the
spacetime and the spinning particle respectively. A series

(a) (b)

FIG. 5. The precession frequency of a spinning particle in Reissner-Nordström geometry.
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expansion for the above formula to accommodate the
leading order terms is given as

WP ¼ 1þ 3M
r

−
ffiffiffiffiffi
M

p ð4aþ 3SÞ
r3=2

þ 3ð9M2 þ a2 þ 2aSÞ
2r2

−
3M3=2

r5=2
ð12aSþ 6SÞ þOð1=r3Þ: ð36Þ

Similarly, by employing Eq. (29), we also can establish

Ωϕ

Ωr
¼ 1þ 3M

r
−

ffiffiffiffiffi
M

p ð4aþ 3SÞ
r3=2

þ 3ð9M2 þ a2 þ 2aSÞ
2r2

−
3M3=2

r5=2
ð12aSþ 7SÞ þOð1=r3Þ: ð37Þ

The above expression exactly matches with Eq. (36) up to
the r−2 term, while from the term r−5=2 onward, the
coefficients start to mismatch. This is due to the fact that
they assume different sets of assumptions and techniques to
evaluate the frequencies. More importantly, the angular
velocity (ωϕ) with respect to a static observer, i.e., ωϕ ¼ dϕ

dt
given in Ref. [25], also follows an expression different from
our approach.

VI. CONCLUSION

In the present article, we have discussed the motion of a
spinning particle in both overcharging Reissner-Nordström
and overspinning Kerr spacetime. We primarily concen-
trated on the nearly circular orbits and computed the
periastron precession related to them. For simplicity, we
confined our computations within the equatorial plane and
stuck to the linear approximation of the spin vector for

analytical convenience. Even if these calculations are
proven to be useful in the S ≪ OðMÞ limit, to probe large
spin values, one has to take into account the square order
spin terms and also beyond that. Hence, a numerical
evaluation is inevitable, and we carried out the same in
our study.
We started with the Reissner-Nordström spacetime and

studied the stable circular orbits for both geodesic and
spinning particles. It was already pointed out in Ref. [47]
that this is a nontrivial problem whenever one considers a
naked singularity, i.e., Q > M. Depending on the charge
parameter of the spacetime, one may end up with two
disconnected stable regions or a single smooth region.
More precisely, for M < Q < Qc, two disconnected
regions appear, while for Q ≥ Qc, one comfortably gets
a single and smooth stable region. The situation does not
change radically as one considers a spinning particle
instead of a geodesic. Only Qc becomes a function of
the spin parameter, and hence the regions of stability
slightly change. Considering the precession frequency,
one can easily show that critical charge parameter (QS

c)
explicitly affects the nature of ΩP. In the first case with two
disconnected stable regions, ΩP steadily increases up to
r ¼ rS1 , which is nothing but the ISCO. But in the second
case, ΩP attains an extremal value in the stable domain as
shown in Fig. 4. In the numerical analysis to probe large
spin values, the situation remain similar to what is shown
in Fig. 5.
Considering the second case with Kerr geometry, we first

studied the stability of circular orbits on the equatorial
plane. Though we particularly concentrated on the nearly
overspinning limit as shown in Eq. (31), similar studies can
be carried out for larger values of angular momentum of the
spacetime. In the nearly overspinning limit, both the energy

(a) (b)

FIG. 6. The periastron frequency is shown in an overspinning Kerr geometry with a ¼ 1.001M.
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and angular momentum approach zero at r → M, which is
true for any spin values. The periastron precession is shown
in Fig. 6. It should be emphasized that spin-spin interaction
between the rotating geometry and spinning particle will be
crucial. This was particularly absent in case of the Reissner-
Nordström spacetime. For large and negative spin values
such as S ¼ −0.4M, this force is attractive and is respon-
sible for a large deviation as shown in Fig. 6. A further
increase in the spin parameter (S ¼ −0.8M) essentially
restricts the particle to interact closely with the singularity.
This is due to the violation of the timelike constraint as
shown in Eq. (17). We also pointed out that the effect of the
spin parameter would be negligible at r → M as far as one
is working in the nearly overspinning limit. In addition, as
one continues to make ϵ smaller and smaller, ΩP corre-
sponds to larger and larger values and eventually diverges
for the ϵ ¼ 0 limit. It is interesting to note that a similar

phenomenon can be shown in the case of energy extractions
from a nearly overspinning geometry.
As we have already mentioned that the analysis is carried

out completely on the equatorial plane for both the space-
times, it would be a nontrivial exercise to carry out a similar
study in the nonequatorial plane in the case of the Kerr
geometry. We leave this as a future plan.
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