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In this paper we investigate the exterior vacuum electromagnetic fields of slow-rotating magnetized
compact stars in conformal gravity. Assuming the dipolar magnetic field configuration, we obtain an
analytical solution of the Maxwell equations for the magnetic and the electric fields outside a slowly
rotating magnetized star in conformal gravity. Furthermore, we study the dipolar electromagnetic radiation
and energy losses from a rotating magnetized star in conformal gravity. In order to get constraints on the L
parameter of conformal gravity, the theoretical results for the magnetic field of a magnetized star in
conformal gravity are combined with the precise observational data of radio pulsar period slowdown, and it
is found that the maximum value of the parameter of conformal gravity is less than L ≲ 9.5 × 105 cm
(L=M ≲ 5).
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I. INTRODUCTION

The end state of the life-cycle evolution of massive stars
from several to ∼ hundred Solar masses through a super-
nova explosion may form either a neutron star or a black
hole. Collapsed black hole according to the no hair theorem
does not have intrinsic magnetic field (see e.g. [[1]–[5]]).
On the contrary the formed neutron stars are highly
magnetized objects and one of the main aims of the modern
astrophysics of compact relativistic stars is to get a clear
understanding of the configuration, structure and evolution
of the stellar magnetic field. The precise measurements of
electromagnetic signals from the radio-pulsars show that
the magnetic fields of compact relativistic stars decrease in
strength with the stellar age and the recycled old neutron
stars have weaker magnetic fields. The strong electromag-
netic field will affect observational data on high energetic
processes in the vicinity of the compact star in all
electromagnetic radiation spectra. Observational data of
radio-pulsars and soft gamma ray repeaters (SGR) have
shown that the surface magnetic field of a typical neutron
star is about 1012 G, while for magnetars observed as SGRs
and anomalous X-ray pulsars (AXP) it may reach the
extreme values as 1015 G [6,7]. Therefore, the comparison

of the evolution of magnetic fields and of the rotation
observed in neutron stars with those modeled and theo-
retically predicted is a great challenge to get the constraints
on the neutron star properties in the extreme physics
regime. The continued analysis of the evolution of mag-
netic fields and the precise measurement of the spin of
relativistic stars at various evolutionary stages is therefore
necessary to get the constraints on alternate theories of
gravity in the strong field regime. The electromagnetic
signal detected from pulsars is mainly due the to the
magneto-dipolar radiation of the rotating compact star,
and energy loss due to electromagnetic radiation causes the
spin-down of the relativistic star [8–16]. The structure of
the pulsar magnetosphere and related astrophysical proc-
esses has been widely studied in the literature, see e.g.,
Refs. [17–25].
Thus the strong gravitational field regime near relativ-

istic compact stars can play a role of laboratory to test
general relativity versus other modified or alternative
theories of gravity. Testing gravity theories using the strong
field regime has been performed for X-ray sources from
some black hole candidates [26–37]. The comparison of the
electromagnetic field and radiation of the compact star with
the pulsar spin down can also be used to constrain
alternative theories of gravity [37,38].
The impact of strong electromagnetic fields can be

observed by other astrophysical processes such as gravita-
tional lensing, motion of test particles, and the
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electromagnetic spectrum of accretion discs [39–44]. An
analytical solution of the exterior electromagnetic field of a
rotating magnetized star in the Newtonian limit has been
found in [45]. Interior solutions for the electromagnetic
fields of a constantmagnetic density star are studied bymany
authors, see, for example, [46]. General relativistic correc-
tions to the electric and magnetic field structure outside
magnetized compact gravitational objects have been studied
in [1] and have been further extended by a number of authors
[2,10,11,24,25,47–74]. Magnetic fields of spherical com-
pact stars in a braneworld have been studied in [75].
In this work we investigate the vacuum electromagnetic

fields of slow-rotating magnetized compact stars in con-
formal gravity proposed in [76]. An example of Lagrangian
in this large class of conformally invariant theories of
gravity is

L ¼ ϕ2Rþ 6gμν∂μϕ∂νϕ; ð1Þ
where the scalar field ϕ (dilaton) is combined with the Ricci
scalar. This Lagrangian is invariant under conformal trans-
formations,

gμν → g�μν ¼ Sgμν;

ϕ → ϕ� ¼ S−1=2ϕ; ð2Þ
where S ¼ SðxÞ is a function of the spacetime coordinates.
Because the world around us is not conformally invari-

ant, conformal symmetry must be broken, and one of the
possibilities is that it is spontaneously broken. In such a
case, Nature must select one of the vacua, namely a certain
gauge corresponding to a specific choice of the conformal
factor S. In the symmetric phase, the theory is invariant
under conformal transformations, i.e., the physics is inde-
pendent of the conformal factor S. In the broken phase, the
choice of the conformal factor S does lead to observational
effects. Such a choice may look arbitrary, but this is a
fundamental feature of any spontaneously broken sym-
metry, not just of conformal gravity. In what follows, we
will consider the infinite family of conformal factors found
in [76] because they have the property to solve the
singularity problem in the Kerr metric.
In the paper [77] the quasinormal modes of the scalar

fields of a black hole in conformal gravity have been studied.
The energy conditions of a black hole in conformal gravity
have been studied in [78]. Conformal invariance preserva-
tion at the quantum level has been discussed in [79].
The present paper is organized as follows. Section II is

devoted to the vacuum electromagnetic fields of a rotating
magnetized compact star in conformal gravity, and we
present an exact analytical solution of the general relativistic
Maxwell equations for themagnetic and the electric fields of
a slow-rotating neutron star in conformal gravity. In Sec. III,
we calculate the energy losses from a slow-rotating neutron
star in conformal gravity. In Sec. IV, we obtain astrophysical
constraints on the value of the parameter of conformal

gravity, L, from the comparison with current observational
data. Finally, in Sec. V, we summarize our results and give a
future outlook related to the present work. Throughout the
paper, all physical quantities are denoted with “ �”. We use a
space-like signature ð−;þ;þ;þÞ, a systemof units inwhich
G ¼ c ¼ 1 and, we restore them when we need to compare
our results with observational data. Greek indices run from
0 to 3 and Latin indices from 1 to 3.

II. VACUUM ELECTROMAGNETIC FIELDS
OF A ROTATING MAGNETIZED COMPACT

STAR IN CONFORMAL GRAVITY

In this section we briefly discuss the electromagnetic
fields in the spacetime of a magnetized compact star in
conformal gravity. One of the most difficult mathematical
problems is to solve the Einstein-Maxwell equations, which
are coupled nonlinear differential equations, but one can
solve them in someapproximationwhen the electromagnetic
field does not affect the spacetime around the compact star
(see e.g., [10,11] for more details). Assuming that the
electromagnetic field and its energy are too small to change
the spacetime geometry around the compact star, we con-
sider the electromagnetic field in the fixed spacetime
geometry and investigate the effects of the background
gravitational field on the electromagnetic field of the
slow-rotating relativistic star in conformal gravity.
The spacetime of the most rapidly rotating compact

(neutron) stars observed as millisecond pulsars can be
described within the slow rotation limit [80]. In Boyer-
Lindquist coordinates (t; r; θ;ϕ) the spacetime outside of the
slowly rotating magnetized star in conformal gravity can be
expressed by the following line element [76]:

ds�2 ¼ SðrÞ
�
−N2dt2 þ 1

N2
dr2 þ r2dθ2

þ r2sin2θdϕ2 − 2ωðrÞr2sin2θdtdϕ
�
; ð3Þ

with

N2ðrÞ ¼ 1 −
2M
r

; r ≥ R;

whereM is the total mass and R is the radius of the compact
star. ωðrÞ ¼ 2aM=r3 is the angular velocity of the dragging
of inertial frames, and a is the specific angular momentum,
which is defined asa ¼ J=M, andJ ¼ IΩ is the total angular
momentum, with the moment of inertia I and the angular
velocity Ω (or the period P ¼ 2π=Ω of the star), which are
very important and precisely measurable quantities/param-
eters in the observation of pulsars.
The function SðrÞ in Eq. (3) is the scaling factor and, in

the slow-rotating limit, has the form [76]

SðrÞ ¼
�
1þ L2

r2

�
2ðnþ1Þ

; n ¼ 1; 2; 3;…; ð4Þ
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whereL is aparameterwithdimensionsof a length andn is an
integer positive number. The theory does not provide any
prediction for the value ofL, sowe can expect thatL is either
on the order of the Planck length, L ∼ LP, or on the order of
the gravitational radius of the object,L ∼M, as these are the
only two length scales of the system [76]. The first option is
realized with the scale already present in the action, whereas
the latter is with the scale that breaks conformal symmetry
on-shell.A priori, both scenarios are possible and natural. In
the present paper, we will consider the second option with
L ∼M, as it is the only one with potential astrophysical
implications in compact objects. IfL ∼ LP, modifications of
Einstein’s gravity would only show up in high-energy/high-
curvature regimes. The choice ofn is related to the symmetry
breaking. As in any spontaneously broken symmetry, we
cannot say why Nature selects a particular vacuum in the
class of good vacua. In our work, we consider the simplest
case, n ¼ 1, and we briefly describe how our results change
for larger values of n.
In the present paper we will investigate the electromag-

netic properties of slow-rotatingmagnetizedcompact stars in
conformal gravity. In order to study the electromagnetic
fields of the compact star, one has to find the solutions of the
general relativistic Maxwell equations which can be written
as in [10,81].
Stellar Model:
Before doing any calculation, we list the stellar model

assumptions.
(i) The magnetic moment of the star does not vary in

time as a result of the high electrical conductivity of
the stellar medium σ → ∞; see e.g., [81].

(ii) In the case of the slow-rotating limit, one can consider
only the linear approximation of the angular veloc-
ities as follows OðωÞ and OðΩÞ, respectively.

(iii) The star has a spherical shape in the slow-rotating
approximation. There is not a deformation due to
rotation.

(iv) The medium outside of the star is vacuum.
(v) One can look for the stationary solutions of the

Maxwell equations for the components of the
magnetic field in the following form [10,81]

Br̂ðr;θ;ϕ; tÞ¼F�ðrÞ× ½cosχ cosθþ sinχ sinθcosλ�;
ð5Þ

Bθ̂ðr;θ;ϕ; tÞ¼G�ðrÞ× ½cosχ sinθ− sinχ cosθcosλ�;
ð6Þ

Bϕ̂ðr;θ;ϕ;tÞ¼H�ðrÞ×sinχ sinλ; λ¼ϕ−Ωt; ð7Þ
where the unknown functions F�ðrÞ, G�ðrÞ, and
H�ðrÞ are corrections to the magnetic field due to
general relativity and conformal gravity and χ is the
inclination angle of the magnetic field relative to the
stellar rotation axis.

In the paper [5], such a consideration has already been
performed in thegeneral relativistic case, and the expressions
for the stationary vacuum electromagnetic fields of a slow-
rotating relativistic star have been clearly shown. Following
the techniques used in [5], we find the relations for the
electromagnetic fields of a slow-rotating compact star in
conformal gravity that are distinguished by the scaling factor
SðrÞ in comparisonwith the general relativistic ones.One can
simply write them in the following form:

ðBî; EîÞCG ¼ 1

S
ðBî; EîÞGR ði ¼ 1; 2; 3Þ; ð8Þ

or

ðB;EÞCG ¼ 1

S
ðB;EÞGR; ð9Þ

where the vectors B and E are the magnetic and the electric
fields, respectively. Collecting all the statements which are
introduced here, one can easily find the profile functions
F�ðrÞ, G�ðrÞ, and H�ðrÞ in the expressions (5)–(7) for the
components of the magnetic field in the following form (see
e.g., Ref. [5])

F�ðrÞ ¼ −
3μ

4M3S

�
lnN2 þ 2M

r

�
1þM

r

��
; ð10Þ

G�ðrÞ ¼ H�ðrÞ ¼ 3μN
4rM2S

�
r
M

lnN2 þ 1

N2
þ 1

�
; ð11Þ

where μ is the magnetic dipole moment of the magnetized
compact star. From the astrophysical point of view, the
electric field of compact stars (pulsars and magnetars) is at
leastV=c times weaker than the stellar magnetic field, where
V is the linear velocity of the neutron star surface. Analytical
expressions for the electric field are given in Appendix.
Hereafter, introducing the normalized dimensionless

radial coordinate η ¼ r=R and assuming zero inclination
angle χ ¼ 0, one can write the exact solutions for the
components of the magnetic field (5)–(7) in the following
form

Br̂ðη; θÞ ¼ −
3B0

ϵ3S

�
lnN2 þ ϵ

η

�
1þ ϵ

2η

��
cos θ; ð12Þ

Bθ̂ðη; θÞ ¼ 3B0N
ηϵ2S

�
2η

ϵ
lnN2 þ 1

N2
þ 1

�
sin θ; ð13Þ

Bϕ̂ðη; θÞ ¼ 0; ð14Þ

where B0 ¼ 2μ=R3 is the Newtonian value of the magnetic
field at the polar cap of the star, ϵ ¼ 2M=R is the
compactness of the star, and N2ðηÞ ¼ 1 − ϵ=η is the lapse
function. The scaling factor can be rewritten in terms of the
normalized dimensionless radial coordinate in the follow-
ing form:
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SðηÞ ¼
�
1þ ϵ2

4η2

�
L
M

�
2
�
2ðnþ1Þ

; n ¼ 1; 2; 3;…; ð15Þ

and in what follows wewill focus on the scenario in whichL
can be on the order of the gravitational radius of the system,
hence also on the order of the stellar radius R. Note that the
scaling factor is always greater than 1 (S ≥ 1). This means,
without doingany calculations, that one can conclude that the
magnetic field of the compact star decreases in conformal
gravity. More precisely, Figs. 1 and 2 show the normalized
radial dependence of the radial and the tangential compo-
nents of themagnetic field described by Eqs. (12) and (13) of
a relativistic star in conformal gravity when n ¼ 1. One can
easily see that in both cases the components of the magnetic
field strength are lowered by increasing the dimensional
parameter L, which means the magnetic field of a relativistic
star decreases in the spacetime of conformal gravity.

III. ASTROPHYSICAL APPLICATION

In this section, we will briefly study the electromagnetic
dipole radiation from a rotating magnetized neutron star in
conformal gravity. Note that such a phenomenon is at the
basis of the observational evidence of radio pulsars identified
with the rotatingmagnetized neutron stars. In the case of pure
electromagnetic radiation, the luminosity of the magnetized
star in conformal gravity can be calculated as [11]

L�
em ¼ Ω�4

R R6

6c3
B�2
R sin2χ; ð16Þ

whereΩ�
R is the angular velocity in the observer’s frame and

B�
R is the value of the magnetic field strength at the surface of

the star:

Ω�
R ¼ Ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SRð1 − ϵÞp ; ð17Þ

and

B�
R ¼ B0

f
SR

; ð18Þ

with

f ¼ −
3

ϵ3

�
ϵ

�
1þ ϵ

2

�
þ lnð1 − ϵÞ

�
; ð19Þ

where the subscript R indicates the value at r ¼ R. From
Eq. (16), one can easily see that the luminosity of a rotating
magnetized neutron star in conformal gravity is decreased
due to the decrease of the magnetic field strength and by the
gravitational redshift of the effective rotational angular
velocity Ω�

R.
In the case of pure dipole electromagnetic radiation,

the Newtonian value of the luminosity has the following
form [82]

L0em ¼ Ω4R6

6c3
B2
0sin

2χ: ð20Þ

In order to calculate the rate of the energy loss from the
radio pulsar through dipolar electromagnetic radiation in
conformal gravity, one has to consider the ratio of the
luminosity in Newtonian and in conformal gravity [6]

L�
em

L0em
¼

�
f

1 − ϵ

�
2
�
1þ ϵ2

4

�
L
M

�
2
�−8ðnþ1Þ

: ð21Þ

The dependence of the rate of energy loss from the
compactness of the magnetized neutron star in conformal
gravity for different values of the parameter L=M is
illustrated in Fig. 3. The plot shows the increase of the
rate of energy loss with the increase of the compactness of
the star.
Figure 4 shows the dependence of the rate of energy loss

of a magnetized neutron star in conformal gravity from the
module of the parameter L=M for different values of the
compactness ϵ of the star.

FIG. 1. Normalized dimensionless radial r=R dependence of
the radial component of the magnetic field Br̂=B0 cos θ in
conformal gravity for the compactness ϵ ¼ 0.3 with zero incli-
nation angle χ ¼ 0.

FIG. 2. Normalized dimensionless radial r=R dependence of
the tangential component of the magnetic field Bθ̂=B0 sin θ in
conformal gravity for the compactness ϵ ¼ 0.3 with zero incli-
nation angle χ ¼ 0.
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IV. RESULTS AND DISCUSSION

Now one can get constraints on the conformal parameterL
by comparing the obtained theoretical results on electromag-
netic radiation from the rotatingmagnetized star in conformal
gravity with the observational data on spin down for the well
known rotating magnetized compact stars and magnetars
observed as radio pulsars and SGRs/AXPs. In order to get the
upper limit for the parameter L, one can consider the P − _P
diagram for typical pulsars [9,83–87]. From the observation
data [62] shown inFig. 5, one can see that the averagevalue of
the magnetic field strength for a typical radio pulsar is about
BAv ¼ B0 ≃ 1012 G, its period is P ≃ 1 s, the period deriva-
tive is about _P ≃ 10−15 s s−1, and the lowest value of the
magnetic field strength in observation is aroundB�

R ¼ BLow ≃
1011 G (with P≃1 s and _P ≃10−17 ss−1). Using these obser-
vational values and the magnetodipolar formula (18) one can
find the upper limit for the value of the parameter as L≲
9.5 × 105 cm (L=M ≲ 5) for n ¼ 1. This statement is in
agreement with Figs. 6 and 7 on the dependence of the
magnetic field at the surface of the NS from the parameter
L=M for different values of the compactness of the star.

FIG. 4. Dependence of the energy losses L�
em=L0em from the

parameter L=M for different values of the compactness
ϵ of the star.

FIG. 5. P − _P diagram for the observable pulsars and magnet-
ars from the paper [88].

FIG. 6. Dependence of the ratio of the magnetic field from the
parameter L=M for different values of the compactness ϵ.

FIG. 7. Dependence of the ratio of the magnetic field
from the compactness of the star ϵ for different values of the
parameter L=M.

FIG. 3. Dependence of the energy losses L�
em=L0em from

the compactness ϵ of the star for different values of the
parameter L=M.
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In the Table I, dependence of the model parameters n and
L=M is obtained on comparison of the the magnetodipolar
formula (18) with the observational data on spin down of
the radio pulsars.

V. SUMMARY

In the present work we have investigated the modifications
of the electromagnetic fields of a rotatingmagnetized compact
star arising from the parameters of the conformal gravity and
their astrophysical implications to the neutron stars observed
as pulsars. We have studied the general relativistic Maxwell
equations for the dipolar electromagnetic fields of a slowly
rotating magnetized compact star in terms of the parameter of
conformal gravity. and then obtained the analytical solution
for the dipolar magnetic field in terms of the parameter L.
Alongwith themagnetic field,wehaveobtained the analytical
expressions for the electric field of a rotating magnetized star
in conformal gravity.
As an important application of the obtained results, we

have calculated energy losses of slow rotating magnetized
neutron stars in conformal gravity through magneto-dipolar
radiation and found that the rotating star with nonzero L
parameter will lose less energy when compared to a rotating
neutron star in general relativity. This permits us to check the
effects of the scaling factor arising from the conformal

gravity in the vicinity of a rotating magnetized star,
especially, when one calculates the electromagnetic lumi-
nosity from the star. The latter is a very important measurable
quantity in pulsar astrophysics. The obtained dependence
has been combined with the astrophysical data on precise
measurement of pulsar period slowdown in order to con-
strain the L parameter. We have found the upper limit for the
parameter of conformal gravity as L≲ 9.5 × 105 cm.
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APPENDIX: ELECTRIC FIELD OF A COMPACT
STAR IN CONFORMAL GRAVITY

The components of the electric field can be chosen in the
following form [5]

Er̂ðr; θ;ϕ; tÞ ¼ ½f�ðrÞ þ f�3ðrÞ� cos χð3cos2θ − 1Þ þ 3½g�1ðrÞ þ g�3ðrÞ� sin χ sin θ cos θ cos λ; ðA1Þ

Eθ̂ðr; θ;ϕ; tÞ ¼ ½f�2ðrÞ þ f�4ðrÞ� cos χ sin θ cos θ þ ½g�2ðrÞ þ g�4ðrÞ� sin χ cos λ − ½g�5ðrÞ þ g�6ðrÞ� cos 2θ sin χ cos λ; ðA2Þ

Eϕ̂ðr; θ;ϕ; tÞ ¼ ½g�5ðrÞ þ g�6ðrÞ� sin χ cos θ sin λ − ½g�2ðrÞ þ g�4ðrÞ� sin χ cos θ sin λ; ðA3Þ

where ff�i ðrÞg and fg�i ðrÞg are functions of the radial coordinate r. The explicit form of the profile functions in the
spacetime of conformal gravity is given by [5]

f�1ðrÞ ¼
μΩC�C�

1

6cR2S

�
2M2

3r2
þ 2M

r
− 4þ

�
3 −

2r
M

�
lnN2

�
; ðA4Þ

f�2ðrÞ ¼ −
μΩC�C�

1

cR2S
N

��
1 −

r
M

�
lnN2 − 2 −

2M2

3r2N2

�
; ðA5Þ

f�3ðrÞ ¼
15μωr3

16cM5S

�
C�
3

�
2M2

3r2
þ 2M

r
− 4þ

�
3 −

2r
M

�
lnN2

�
þ 2M2

5r2
lnN2 þ 2M3

5r3

�
; ðA6Þ

f�4ðrÞ ¼ −
45μωr3

8cM5S
N

�
C�
3

��
1 −

r
M

�
lnN2 − 2 −

2M2

3r2N2

�
þ M4

15r4N2

�
; ðA7Þ

TABLE I. Dependence of the parameters n and L=M after
comparison of magnetodipolar formula (18) with observation
data for the value of the compactness ϵ ≃ 0.4.

n 1 2 3 5 10 20 100

L=M 4.87 3.74 3.15 2.49 1.79 1.28 0.58
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g�2ðrÞ ¼
3μΩr

8cM3NS

�
lnN2 þ 2M

r

�
1þM

r

��
; ðA8Þ

g�4ðrÞ ¼ −
3μωr

8cM3NS

�
lnN2 þ 2M

r

�
1þM

r

��
: ðA9Þ

where the constants of integration C�, C�
1, and C�

3 can be found from the boundary conditions. The other functions are
related to those above as follows [5]:

g�1 ¼ f�1; g�3 ¼ f�3; g�5 ¼
1

2
f�2; g�6 ¼

1

2
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