
 

Gravitational waves from quasinormal modes of a class
of Lorentzian wormholes

S. Aneesh,1,* Sukanta Bose,2,3,† and Sayan Kar4,‡
1Department of Physics, Indian Institute of Technology, Kharagpur 721 302, India

2Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007, India
3Department of Physics and Astronomy, Washington State University,

1245 Webster, Pullman, Washington 99164-2814, USA
4Department of Physics and Center for Theoretical Studies Indian Institute of Technology,

Kharagpur 721 302, India

(Received 27 February 2018; published 5 June 2018)

Quasinormal modes of a two-parameter family of Lorentzian wormhole spacetimes, which arise as
solutions in a specific scalar-tensor theory associated with braneworld gravity, are obtained using standard
numerical methods. Being solutions in a scalar-tensor theory, these wormholes can exist with matter
satisfying the weak energy condition. If one posits that the end-state of stellar-mass binary black hole
mergers, of the type observed in GW150914, can be these wormholes, then we show how their properties
can be measured from their distinct signatures in the gravitational waves emitted by them as they settle
down in the postmerger phase from an initially perturbed state. We propose that their scalar quasinormal
modes correspond to the so-called breathing modes, which normally arise in gravitational wave solutions in
scalar-tensor theories. We show how the frequency and damping time of these modes depend on the
wormhole parameters, including its mass. We derive the mode solutions and use them to determine how one
can measure those parameters when these wormholes are the endstate of binary black hole mergers.
Specifically, we find that if a breathing mode is observed in LIGO-like detectors with design sensitivity,
and has a maximum amplitude equal to that of the tensormode that was observed of GW150914, then for a
range of values of the wormhole parameters, we will be able to discern it from a black hole. If in future
observations we are able to confirm the existence of such wormholes, we would, at one go, have some
indirect evidence of a modified theory of gravity as well as extra spatial dimensions.
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I. INTRODUCTION

Lorentzian wormholes have been around as theoretical
constructs ever since the idea of the Einstein-Rosen (ER)
bridgewas born in 1935 [1]. Amongmany ofEinstein’s ideas
and predictions, gravitational waves (GW) and the cosmo-
logical constant are a part of reality today [2–4], but the
Einstein-Rosen bridge and its progeny—the wormholes—
are yet to see the light of day in the real universe.
Subsequent to the ER article and about a couple of

decades later, Misner and Wheeler, in their paper on
classical physics as geometry [5], first introduced the term
wormhole. Later, through the work of Ellis [6], Bronnikov
[7], Morris, Thorne and Yurtsever [8], Morris and Thorne
[9], Novikov [10], Novikov and Frolov [11], Visser [12]
and many others [13–23], the wormhole idea was further
developed with numerous examples as well as enquiries into

the intriguing possibilities that may arise with wormholes
(e.g., time machines [8,10,11]). Even today, the term worm-
hole, does appear almost every day, in one article or the other,
in the daily list of submitted articles in preprint archives.
Wormholes are, in some sense, good spacetimes. They

do not have horizons or singularities, which make things
interesting as well as difficult. But the absence of horizons
or singularities for wormholes comes at a heavy cost. The
matter required to have a wormhole violates the so-called
energy conditions [24,25], at least in the context of general
relativity. Wormholes seem to require exotic matter—i.e.,
matter for which energy density can become negative in
some frame of reference.
Is there a way to avoid this impasse? Many resolutions

have been suggested in the past [26–39] Among them, one
avenue is to look into modified theories of gravity where
additional degrees of freedom (e.g., say a scalar field) have
a role to play. In the old Brans-Dicke idea [40,41], the
scalar field replaced the gravitational constant G. In later
versions and the most recent ones, the scalar field can
actually arise via the presence of extra spatial dimensions
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[42]. Awell-known model that exploits this is the on-brane
gravity [42] arising in the so-called two-brane model of
Randall–Sundrum [43], wherein the scalar field is related to
the interbrane-distance. Thus, we and our wormhole would
be on one such 3-brane and a scalar field, which is not quite
“matter,” would provide the required negativity so that the
“convergence condition” is violated (as it must be for
wormholes) [24], but the ‘matter’ threading the wormhole
is usual matter, with all the desired properties. The above
line of thought was exploited to construct a class of
wormholes with matter satisfying the energy conditions,
in work done recently by one of the authors here (along
with others) [44,45]. In a way, therefore, the existence of
the wormhole would therefore provide support to an
alternative theory of gravity, as well as to the existence
of extra dimensions.
How then does one show that such a wormhole does

indeed exist? Motivated by recent detections of gravita-
tional waves at LIGO and Virgo [2,3], we explore whether
there is any meaning to a proposal that the final state of
some violent collision of neutron stars and/or black holes
might result in a wormhole of the type we mention above
or, more, realistically, its rotating version. We do not have
any model which shows that a wormhole may indeed
emerge in such a collision. However, such a suggestion is
not entirely new. (See [46–52] for earlier work as well a
more recent one on GW signals from wormholes.). All we
can say, is that, by studying the ringdown and the
quasinormal modes (which we find here), we can, through
a comparison with observational data, estimate the error
bounds in the parameters which define the wormhole and
appear in the quasi-normal modes. The values of the
wormhole parameters may be constrained by other means
such as lensing or time-delay. Thereafter, we can say, to
what extent, through gravitational wave observations we
can constrain the merged object to be a wormhole. It is true,
however, that the binary black hole (BBH) GW signals
observed so far are all consistent with the merger of two
Kerr black holes to another Kerr black hole, but the extent
to which mergers of objects that are not Kerr black holes
could resemble these signals is yet to be established [2,3].
Our paper is organized as follows. In the next section,

we briefly recall the spacetime and the theory for which
this is a solution. Thereafter, in Sec. III, we set up the
search for massless scalar quasinormal modes, in this
background geometry. We try to justify how these scalar
QNMs could precisely be those for the so-called breathing
mode. We solve for QNMs numerically, find them and
demonstrate their characteristics through various plots
and analysis. In Sec. IV, we demonstrate how one can
estimate the errors in the wormhole parameters (more
precisely, one parameter) using inputs from GW obser-
vations. Finally, in Sec. V, we sum up and provide possible
avenues for future work. In the rest of the paper we will
use units in which G ¼ 1 and c ¼ 1.

II. THE CLASS OF WORMHOLE SPACETIMES

Let us begin with the modified theory of gravity, in
which, our wormhole is a solution. As stated in the
Introduction, this is a scalar-tensor theory of a specific
type. It arises as a theory on the four dimensional 3-brane
timelike hypersurface in a five-dimensional background.
We have two 3-branes separated by a distance in extra-
dimensional space–the inter-brane distance is associated
with the scalar, in our low-energy, effective, on-brane scalar
tensor theory of gravity. The subsections below briefly
recall the theory as well as the wormhole solution.

A. Scalar tensor gravity, field equations,
wormhole solutions

The field equations for the on-brane scalar-tensor theory
of gravity are given by [42],

Rμν ¼
κ̄

lΦ

�
Tb
μν −

1

2
gμνTb

�
þΩðΦÞ

Φ2
∇μΦ∇νΦ

þ 1

Φ

�
∇μ∇νΦþ 1

2
gμν□Φ

�
; ð1Þ

where Tb
μν is the stress energy tensor on the 3-brane (labeled

as the “b” brane in [42]) and Φ is the scalar field which
satisfies the field equation,

□Φ ¼ κ̄

l
Tb

2Ωþ 3
−

1

2Ωþ 3

dΩ
dΦ

∇αΦ∇αΦ; ð2Þ

l is the bulk curvature radius and κ̄ is related to the higher
dimensional Newton constant. The coupling functionΩðΦÞ
can be expressed in terms of the scalar field as,

ΩðΦÞ ¼ −
3Φ

2ð1þΦÞ . ð3Þ

The scalar field Φ, as mentioned before, is associated
with the interbrane distance in the bulk. It has to be
nonzero, positive and finite in order to have a meaningful
two-brane model. Tb is the trace of the stress-energy on
the “b” 3-brane, embedded in a five dimensional bulk
spacetime. The above field equations are for the scalar-
tensor theory on this so-called b-brane. For more details
about the theory, the reader is referred to [42].
In the above-mentioned theory, we now consider a static,

spherically symmetric wormhole solution of the field equa-
tions with a vanishing Ricci scalar. Such a solution has been
shown to be given by [44] (see earlier work in [53,54]),

ds2 ¼ −

 
κ þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r !
2

dt2 þ dr2

1 − 2M
r

þ r2ðdθ2 þ sin2θdϕ2Þ; ð4Þ
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where κ, λ are non-zero, positive constants. Note that our
wormhole has two parameters: M, a measure of the throat
radius (2M here, like in Schwarzschild) and κ

λ > 0 which,
being non-zero, signals the absence of a horizon.
The Jordan frame scalar field Φ takes the form,

Φ ¼
�
c1
Mλ

ln
2r0qþM
2r0 þM

þ c2

�
2

− 1; ð5Þ

where r ¼ r0ð1þ m
2r0Þ2 (r0 is the isotropic coordinate), q ¼

κþλ
κ−λ > 1 and c1 and c2 are constants of integration, in this
solution. Assuming c2 ¼ 0 one can show that the WEC can
hold under specific choices of the various parameters [44].
Note that the timelike or null convergence condition is
indeed violated, as it should be, in order to ensure that the
spacetime is a wormhole. However, the required matter
satisfies the WEC. For more details about the solution, the
stress-energy of the matter that supports the wormhole, as
well as the WEC see [44].
If q < 0 (i.e. κ

λ < 1), the scalar field solution remains
similar in its functional form. In order to have a finite, non-
zero radion scalar and also ensure that the WEC holds, we
need c2 ≠ 0, as well as additional constraints on the
parameters.

B. Scalar field propagation

How does a massless scalar field (not necessarily the
scalar Φ in the theory mentioned above, but any generic
scalar field) propagate in the above-mentioned background
spacetime? Such a scalar field, as we show later, is related
to the perturbations of the Brans-Dicke scalar Φ, which we
introduced in the previous subsection. In addition, there are
also gravitational perturbations which we do not fully
consider here. Our problem therefore reduces to solving
a massless Klein-Gordon equation in a fixed, curved
background, i.e.

□Ψ ¼ 0. ð6Þ

Since the background spacetime is spherically symmetric
and static, we can decompose Ψ in terms of the spherical
harmonics,

Ψðt; r; θ;ϕÞ ¼
X∞
l¼0

Xl
m¼−l

ψ lmðrÞ
r

e−iωtYlmðθ;ϕÞ. ð7Þ

By inserting this ansatz in the Klein-Gordon equation we
get the equation satisfied by each mode,

fh
d2ψ lm

dr2
þ 1

2
ðhf0 þ fh0Þ dψ lm

dr
þ ω2ψ lm

¼ rhf0 þ fð2lðlþ 1Þ þ rh0Þ
2r2

ψ lm; ð8Þ

where have defined fðrÞ ¼ −gtt and hðrÞ ¼ ðgrrÞ−1. We
can rewrite the above equation by introducing the tortoise
coordinate r� defined as,

dr�
dr

¼ ðfhÞ−1=2. ð9Þ

The above equation can be integrated to obtain an analyti-
cal expression for the tortoise coordinate, given as,

r� ¼
M
λ

�
2ðp − βÞð2p − βÞ

ðp2 − 1Þ½ðp − βÞ2 − 1� þ 4
ln β

p

ðp2 − 1Þ2

þ ðp − 2Þ lnð1 − pþ βÞ
ðp − 1Þ2 −

ð2þ pÞ lnð1þ p − βÞ
ð1þ pÞ2

�
;

ð10Þ

where p ¼ κ
λ, β ¼ pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
. The asymptotic regions of

the wormhole correspond to r� → �∞. We need to use�r�
in order to cover the two asymptotic regions connected by
the throat, which requires a thin shell joining two copies of
the same geometry [12]. In some sense, r� is, therefore,
like the proper radial distance lwhich also ranges from −∞
to þ∞ with l ¼ 0 being the throat.
With the above definition and details about r� one gets at

the following equation for ψ lm,

d2ψ lm

dr2�
þ ½ω2 − VlðrÞ�ψ lm ¼ 0; ð11Þ

where VlðrÞ, called the effective potential is given by,

VlðrÞ ¼
Mλ

r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �
κ þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �

þ 1

r2

�
κ þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �2�M
r
þ lðlþ 1Þ

�
. ð12Þ

This effective potential as a function of r� is symmetric
about r� ¼ 0 (r ¼ 2M, the throat) with a double-hump
structure and goes to zero in the asymptotic regions. The
plots below (Figure 1) show the variation of the potential
with the different parameters that appear in it.

C. The breathing mode

In the neighborhood of the detector, the background
spacetime is flat and we consider the perturbation of a flat
Minkowski background and the constant background scalar
field,

gμν ¼ ημν þ hμν; Φ ¼ Φ0ð1þ ϵÞ; ð13Þ

where Φ0 is a constant. The field equations become
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□ð−hμν þ ημνϵÞ ¼
2κ̄

lΦ0

Tμν ð14Þ

□ϵ ¼ κ̄

lΦ1

T. ð15Þ

where Φ1 ¼ 3Φ0

1þΦ0
. Here the choice of gauge is

∂νh̄μν ¼ ∂μϵ; ð16Þ

where h̄μν is the trace-reversed metric perturbation. In
vacuum, we have □hμν ¼ 0 ¼ □ϵ and in the transverse
traceless gauge, we get

hμν ¼

2
6664
0 0 0 0

0 hþ − ϵ0 h× 0

0 h× −hþ − ϵ0 0

0 0 0 0

3
7775eiωðt−zÞ ð17Þ

for a plane wave propagating in the z-direction. The scalar
field is Φ ¼ Φ0ð1þ ϵÞ where

ϵ ¼ ϵ0eiωðt−zÞ. ð18Þ
Due to the presence of the scalar field, there is an additional
polarization in the gravitational wave, which is known as
the breathing mode [55]. Usually, if we consider a massive
scalar, then we also have a longitudinal mode. However, in
our work here, we consider only a massless scalar.
In a curved background, the equation for scalar field

perturbation is,

□ðδΦÞ¼gμνδΓα
μν∂αΦþhμνAμν−BδΦ−Cα∂αðδΦÞ; ð19Þ

where we have defined,

Aμν ¼
Ω0

2Ωþ 3
Φ;μΦ;ν þΦ;μ;ν ð20Þ

B ¼ 2κ̄

l
Ω0Tb

ð2Ωþ 3Þ2 þ
Φ;αΦ;α

2Ωþ 3

�
Ω00 −

2ðΩ0Þ2
2Ωþ 3

�
ð21Þ

Cα ¼ 2Ω0

2Ωþ 3
Φ;α. ð22Þ

Here a prime denotes a derivative with respect to Φ and we
have assumed that there is no fluctuation of Tb, the trace of
matter stress energy (i.e., δTb ¼ 0). A similar equation in
the Einstein frame is obtained in [56]. If we can make
an infinitesimal gauge transformation (hμν → hμν þ ξμ;νþ
ξν;μ; δΦ → δΦþ ξμ∂μΦ generated by xμ → xμ − ξμ) which
satisfies,

f□ξα − ξμRα
μ −BξαgΦ;α þ ξμ;νð2Aμν −Φ;μCνÞ−CαΦ;μ;αξ

μ

¼ Cα∂αδΦ− hμνAμν þBδΦ−
�
hαν;ν −

1

2
h;α
�
Φ;α; ð23Þ

where ξα is the gauge function, the equation for scalar field
perturbations reduces to,

□ðδΦÞ ¼ 0. ð24Þ

It can be easily shown that (23) always admits a solution.
For example, since the background spacetime and the
scalar field are static and spherically symmetric, we may
choose the gauge function to be ξμ ¼ ðξt; 0; 0; 0Þ. With this
choice, it turns out that all second derivative terms in the
equation for ξμ vanish and(23) reduces to the form
∂ξt
∂t ¼ fðhμν; δΦ; xμÞ, which can always be integrated.
Since the scalar perturbation obeys the Klein-Gordon
equation in the fixed background metric, the QNMs
calculated may correspond to the breathing mode men-
tioned earlier. The metric and the scalar field fluctuations
produce the gravitational wave that is detected by detectors
situated in the asymptotic region where the background
spacetime can be approximated as flat. The scalar field

FIG. 1. Variation of effective potential with the parameters κ, λ and l: (a) κ ¼ λ ¼ 0.5; M ¼ 1, (b) l ¼ 0, λ ¼ 0.5, M ¼ 1.
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fluctuation produces a breathing mode polarization in the
GWs. The strain excitation in a single detector is a
combination of the projections of the gravitational wave-
forms corresponding to the different polarization states
incident on it [57]. In general it is not possible to isolate
with quadrupolar detectors even the two polarization
components predicted in General Relativity from observa-
tions of a single detector [58], let alone the five polarization
states, which is the maximum number of non-degenerate
states that metric theories of gravity are allowed [59]. With
at least five linearly independent detectors it is possible to
resolve these five polarizations from transient signals
[59,60]. However, that solution is beyond the scope of
this work; rather, here we shall consider only the breathing
mode, and use the QNMs calculated to find the errors on
the estimated metric parameters using a Fisher matrix
analysis.
We now proceed towards obtaining the time-domain

profiles and the QNMs, which will provide inputs for
parameter estimation using GW data.

III. TIME-DOMAIN PROFILE AND
QUASINORMAL MODES

To begin, let us first look at the time domain profile of the
scalar field and then find the quasinormal modes.

A. Time domain profile

The time evolution of the scalar field is obtained by
directly integrating the differential equation following the
method described in [61,62]. We can write the scalar field
equation without imposing the stationary ansatz as,

∂2ψ lm

∂t2 −
∂2ψ lm

∂r2� þ Vlðr�Þψ lm ¼ 0. ð25Þ

Rewriting the wave equation in terms of light cone
coordinates, du ¼ dt − dr� and dv ¼ dtþ dr� we obtain,

�
4

∂2

∂u∂vþ Vlðu; vÞ
�
ψ lm ¼ 0. ð26Þ

In these coordinates, the time evolution operator is,

exp

�
h
∂
∂t
�

¼ exp

�
h
∂
∂uþ h

∂
∂v
�

¼ −1þ exp

�
h
∂
∂u
�
þ exp

�
h
∂
∂v
�

þ h2

2

�
exp

�
h
∂
∂u
�
þ exp

�
h
∂
∂v
�� ∂2

∂u∂v
þOðh4Þ. ð27Þ

By acting this operator on ψ lm and using (26), we arrive at

ψ lmðuþ h; vþ hÞ
¼ ψ lmðuþ h; vÞ þ ψ lmðu; vþ hÞ − ψ lmðu; vÞ

−
h2

8
Vlðu; vÞðψ lmðuþ h; vÞ þ ψ lmðu; vþ hÞÞ þOðh4Þ.

ð28Þ

Using the above equation, we can calculate the values of
ψ lm inside the square which is built on the two null surfaces
u ¼ u0 and v ¼ v0, starting from the initial data specified
on them. The plots (Fig. 2) below show the time domain
profile of the field calculated for various parameter values.
For the v ¼ 0 null line, a Gaussian profile of width 14
centered at u ¼ 10 is assumed. On the u ¼ 0 line we have
assumed constant data. The field has been calculated in the
region 0 < u < 200 and 0 < v < 200 with a step-size of

FIG. 2. Time domain profile and quasinormal ringdown. Profiles have been calculated for κ ¼ 0.5 ¼ λ, M ¼ 1 and l ¼ 0, 1, 2 at

r� ¼ 7. Initial conditions are ψ lmðu; 0Þ ¼ exp ½− ðu−10Þ2
100

� and ψ lmð0; vÞ ¼ 1. The integration grid is u; v ∈ ð0; 200Þ with h ¼ 0.1:
(a) l ¼ 0, (b) l ¼ 1, and (c) l ¼ 2.
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h ¼ 0.1. Figure 2 shows the time domain profiles for
various values of the parameters.

B. Quasinormal modes

The quasinormal modes, first discussed in [63],
are defined as complex eigenfrequencies of the wave
equation (11) which satisfies the boundary conditions
ψ lm ∼ e�iωr� in the asymptotic regions r�→�∞ [61,64].
At the throat, we impose the continuity of dψ lm=dr�. Since
the potential is symmetric about r� ¼ 0, the eigenfunctions
should be either symmetric or antisymmetric. Thus, we get
two families of QNMs corresponding to the initial con-
ditions ψ lmð0Þ ¼ 0 and ψ 0

lmð0Þ ¼ 0, that can be obtained by
a direct integration of the wave equation [65].
In the asymptotic region we solve (11) by expanding ψ lm

as a power series upto a finite but arbitrary order,

ψ lm ¼ ekr�
XN
n¼0

an
rn

¼ ekrrkMð1þλÞXN
n¼0

ān
rn

; ð29Þ

where we have used the asymptotic expansion of r�ðrÞ in
(29). By substituting (29) into (11) and expanding it in
terms of 1=r we can solve for the coefficients ā1; ā2; ā3;…
in terms of ā0. Near 2M we expand ψ lm as,

ψ lm ¼
XN0

n¼0

bn=2ðr − 2MÞn=2. ð30Þ

Using the same method as stated above, b1, b3=2; b2… can
be solved in terms of b0 and b1=2. The tortoise coordinate,
given in (10), near r ¼ 2M can be written as,

r� ¼ c1=2ðr − 2MÞ1=2 þ c1ðr − 2MÞ þ c3=2ðr − 2MÞ3=2
þ � � � : ð31Þ

From (30) and (31) we get,

dψ lm

dr�

				
r�¼0

¼ b1=2
c1=2

. ð32Þ

Thus, we calculate the QNMs by integrating the wave
equation from r0 ¼ 2Mð1þ δÞ (where δ ≪ 1) to a large
value of r and comparing it with the two independent
solutions obtained by substituting k ¼ �iω in (29). This
gives two families of QNMs by starting with either b0 ¼ 0
or b1=2 ¼ 0, which corresponds to the initial conditions
ψ lmð0Þ ¼ 0 and ψ 0

lmð0Þ ¼ 0 respectively.
The values ofω vs λ for l ¼ 0, 1, 2 are shown in the Fig. 3.

Here, as before, κ þ λ ¼ 1 andM ¼ 1 is assumed λ ¼ 0 is an
ultrastatic spacetime and λ ¼ 1 is the Schwarzschild limit. ω
is given in geometric units. Quasinormal frequencies can
also be calculated directly from the time domain profile
(Fig. 2) by fitting it with damped sinusoids using Prony fit
method [61] (see Fig. 4). Few of the frequencies obtained
through both direct integration and Prony fit methods are
given in Table I. Both the methods are found to be consistent
with each other.

C. Approximate analytic fit

In order to perform parameter estimation on the gravi-
tational waves comprised of QNMs, we need to calculate
the derivatives of QNMs with respect to κ

λ and M. For this,
we construct an approximate model for ω as follows (here
κ ¼ 1 − λ, M ¼ 1),

ωre ¼ ða − bλÞð1 − λnÞm
lnð−ωimÞ ¼ cþ d lnð1 − pλqÞ

ω ¼ ωre þ iωim ð33Þ

The values of a; b; c; d;m; n; p; q were calculated using
NONLINEARMODELFIT in Mathematica [66]. For l ¼ 0,

FIG. 3. Real and imaginary parts of QNFs are plotted with respect to λ. HereM ¼ 1 and κ ¼ 1 − λ. Frequencies for all other values of
κ, λ and M can be obtained from this data. The smooth curve joining the data points is the analytical fit which is obtained in the next
section.
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ωre ¼ ð0.27 − 0.08λÞð1 − λ2.36Þ0.24
ωim ¼ −0.19ð1 − 0.99λ0.94Þ1.02 ð34Þ

For l ¼ 1,

ωre ¼ ð0.75 − 0.55λÞð1 − λ7.95Þ0.28
ωim ¼ −0.18ð1 − 0.99λ1.41Þ2.63 ð35Þ

and for l ¼ 2, we have

ωre ¼ ð1.25 − λÞð1 − λ8.87Þ0.33
ωim ¼ −0.18ð1 − 0.96λ1.99Þ6.05 ð36Þ

Figure 3 shows the plots of analytical model of the QNMs.
Since at infinity dτ ¼ ðκ þ λÞdt, the frequency of the signal
measured by an observer at the asymptotic region will be
ν ¼ ωre

2πðκþλÞ and the time constant will be τ ¼ κþλ
jωimj. Thus, for

l ¼ 0,

ν ¼ 8628.13
M

�
1 − 0.29

λ

λþ κ

��
1 −

�
λ

λþ κ

�
2.36
�

0.24
Hz

τ ¼ M
38908.58

�
1 − 0.99

�
λ

λþ κ

�
0.94
�

−1.02
s ð37Þ

For l ¼ 1,

ν ¼ 24375.84
M

�
1 − 0.73

λ

λþ κ

��
1 −

�
λ

λþ κ

�
7.95
�

0.28
Hz

τ ¼ M
36290.32

�
1 − 0.99

�
λ

λþ κ

�
1.41
�

−2.63
s ð38Þ

For l ¼ 2,

ν ¼ 40478.89
M

�
1 − 0.80

λ

λþ κ

��
1 −

�
λ

λþ κ

�
8.87
�

0.33
Hz

τ ¼ M
36026.46

�
1 − 0.96

�
λ

λþ κ

�
1.99
�

−6.05
s ð39Þ

M is in units of solar mass, ν is in Hz and τ is in seconds.
Moreover, the validity of the above fits is verified for κ

λ
larger than a few times 0.001.

The gravitational-wave strain in a detector is a linear
function of the various polarization components the theory
may allow,

hðtÞ ¼
X
A

FAhA; ð40Þ

where A is the polarization index, hA are GW polarization
components, and the coefficients FA are the antenna-
pattern functions that are determined by how well the
polarization components project on the GW detector. The
FA depend on the sky-position angles ðϑ;φÞ of the source
and the polarization angle of the gravitational wave, in
general. In our case, the source is the wormhole studied
here. The contribution to the detector strain from the
breathing mode alone of such a source will be considered
in this work, and is given by

hðtÞ ¼ A sinð2πνtÞe−t=τ; ð41Þ

where the strain amplitude A contains the breathing-mode
antenna pattern [57]

Fb ¼ −
1

2
sin2 ϑ cos 2φ: ð42Þ

Above, ϑ and φ are the polar angle and azimuthal angle,
respectively, that define the sky-position of the source in a
coordinate system where the two arms of the quadrupolar
detector are the x and y axes. Therefore, the strength of the
detector signal, which depends on h linearly, will vary
across the sky even if the rest of the wormhole parameters
remain unchanged. Below, for estimating parameter errors,
we will take the source to be located along the x or y arm of
the detector, i.e., ϑ ¼ π=2 and φ ¼ 0 or π=2.
If a loud enough damped-sinusoid strain signal (41) is

observed in a detector, the parameters of the wormhole can
be deduced from a straightforward Fourier transform. For
example, by an observation of the l ¼ 0 signal in Eq. (37),
one can infer from its measured central frequency ν and the
time-constant τ, the mass M and geometry parameter κ=λ.
When the signal is strong enough to allow the observation
of multiple modes—the higher modes will get progres-
sively weaker inherently, but their signal-to-noise ratio will
also depend on the amplitude of the detector noise at the
mode frequency—the multiple measured mode frequencies

TABLE I. QNMs computed through Prony fit of time domain profile and direct integration.

κ λ l ωprony ωDI

0.9 0.1 2 1.15101310 − 0.14169729i 1.15097690 − 0.14490430i
0.7 0.3 2 0.94816165 − 0.08240778i 0.94989921 − 0.08342129i
0.5 0.5 2 0.75002394 − 0.03201102i 0.75225700 − 0.03285035i
0.4 0.6 2 0.65230556 − 0.01514451i 0.65232260 − 0.01512223i
0.2 0.8 2 0.43641027 − 0.00040061i 0.43221577 − 0.00056867i
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and time-constants can be used to perform self-consistency
checks or even rule out a wormhole as the source of the
signals.
Note that other sources of damped-sinusoid signals can

exist in the GW detectors, both astrophysical and terrestrial in
origin [67,68]. To improve the odds of detecting the former, it
is important to observe the commensurate signals in multiple
GW detectors [58,69]. But to distinguish one astrophysical
source from another, e.g., QNMs of black holes in general
relativity [70] or other braneworld models [71,72], further
comparative studies of their signals are required.
A remaining practical issue is that signalswill typically be

immersed in detector noise, and the measurement of any of
their parameters will have errors. This is what we study next.

IV. GRAVITATIONAL WAVE OBSERVATIONS
OF THE MODES

We use the Fisher information-matrix formalism [73] to
estimate how accurately the wormhole parameters will be
measurable using interferometric detectors like aLIGO. To
estimate the error in κ=λ, we compute that matrix for the
damped-sinusoid signal (41) in a single aLIGO detector at
design sensitivity [74] for that parameter alone. The matrix
is determined by the derivative of the signal h with respect
to κ=λ, which influences both the frequency and the
damping time-constant of the signal. For this first study,
we takeM to be known. For wormholes that result from the
merger of two black holes this parameter can be estimated
from the inspiral part of the signal. Even so, such an
estimation also requires knowledge of the strength of the
signal. Currently, it is not understood how large the QNM
amplitude of these wormholes can be, whether they form
in binary black hole merger processes or otherwise.
Therefore, for reference we take the maximum QNM strain
amplitude to be 10−21, which is approximately the maxi-
mum amplitude of the GW150914 signal [3]. We recognize
that this choice is arbitrary. If at a later date realistic
amplitudes are deduced theoretically or numerically, then
the errors obtained in this paper should be scaled appro-
priately by using those values. Finally, we invert the
information matrix to derive the estimated variance in
the measured values of κ=λ [73]. Its square-root gives the
lower bound on the statistical error in κ=λ. To deduce the
error for multiple statistically independent observations,
one simply replaces the information matrix for a single

FIG. 4. An example of Prony fit of time domain profile.
The data is fitted with four complex frequencies.

FIG. 5. The estimated statistical error in κ=λ (in percentage) is shown for various values of the wormhole massM (in the left figure, where
κ=λ is kept fixed at 0.01) and the wormhole parameter κ=λ (in the right figure, where M is kept fixed at 30 M⊙). These estimates were
obtained for gravitational-wave observations of the breathing mode of the wormhole solution studied here with a detector like aLIGO. The
maximum amplitude of the mode in all cases is set to be 10−21, which is approximately the peak amplitude of GW150914, whose final
detector-frame mass had a median value of about 68 M⊙. The wormhole QNM frequency for l ¼ 0 is 64 Hz for M ¼ 68 M⊙ and
κ=λ ¼ 0.1. For comparison, the frequency of the l ¼ 2, m ¼ 2 QNM of GW150914 was at or above ≃243 Hz [3]. The error in κ=λ
increases with M (left figure) primarily because the mode frequency decreases, thereby, placing the signal in less sensitive part of the
detector band. The right figure shows that the error in κ=λ initially reduces when the value of that parameter is increased. This happens
because the mode frequency shifts to more sensitive parts of the detector band (from 64 Hz at κ=λ ¼ 3 × 10−3 to 85 Hz at κ=λ ¼ 10−2). For
higher values of κ=λ, the error increases owing to decreasing time constant (and, therefore, the effective integration duration) of the mode.
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observation in the above procedure with the sum of the
information matrices for multiple observations.
The parameter errors in κ=λ are plotted in Fig. 5 and 6 for

observations of the breathing mode of the wormhole
described above in an aLIGO and Einstein Telescope
detector, respectively. This is an optimistic estimate since
errors in other source parameters, such as the signal’s time of
arrival and M, and their covariances, which were neglected
here, can worsen the estimation of κ=λ. Moreover, while the
SNR of the complete signal of GW150914 was moderately
high, that of the postmerger signal was not. Hence, the Fisher
estimates, which we base on the peak amplitude of the
merger signal, must be followed up with more reliable
parameter estimation analyses; this preliminary study there-
fore makes the case for adapting a more realistic approach in
a future work for estimation of κ=λ. Such an approach can be
the use of Monte Carlo methods, as demonstrated for binary
black hole parameter estimation in Ref. [75], or Bayesian
methods, such as that used in Ref. [76] for combining the
posteriors of the tidal deformability parameter, which
describes neutron star composition, from multiple binary
neutron star coalescences. Indeed, an exercise that can be
performed is the improvement in the estimation for κ=λ by
combining multiple observations. One way to do that would
be to compute a joint posterior. Another, less optimal
method, would be to stack-up the power from the multiple
signals, as was done for estimating the postmerger oscil-
lation parameters of hypermassive neutron stars in Ref. [77].
Since Fig. 5 suggests a wide enough range of κ=λ where its
value may be measurable fairly accurately, e.g., to distin-
guish the wormhole geometry from Schwarzschild, it
appears to be worthwhile to pursue these more sophisticated,
and computationally expensive methods, in the future.

V. CONCLUSIONS

In summary, we obtained the following results in this
work.
Assuming a two-parameter family of wormholes that

arise in a scalar-tensor theory of gravity, we have first

derived their scalar quasinormal modes using standard
numerical methods. We have cross-checked our numerical
methods with known results on QNMs in other wormhole
geometries available in the literature [48]. The QNMs
obtained and their variation with respect to the parameters
were then fitted using methods of non-linear least square
fitting. These results were then used to estimate the
accuracy with which the wormhole parameter κ=λ, which
appears in the line element, can be measured using inputs
from GW observations. For this first study, we kept things
simple by considering the measurement of just one param-
eter (i.e., κλ), while treating M, which is related to the throat
radius, as known precisely. While it is true that energy
conservation will require M to be bounded from above by
the total mass of the binary black hole merger that produces
it, and that this mass is measurable from observations of
the inspiral phase, it is not clear yet how it determines M.
This matter is left for future exploration.
Under the aforementioned assumptions, we find that for a

certain range of the wormhole parameter it would be
possible to estimate its value from adequately loud signals,
if not in aLIGO, then in the Einstein Telescope (ET). For
example, if themaximumamplitude of the breathingmode is
set to be 10−21, which is approximately the peak amplitude
of GW150914, the error in that parameter can be measured
to within tens of percent for log10ðκ=λÞ ∈ ð−3;−1Þ in an
aLIGO-like detector at design sensitivity. This can be seen in
the right figure in Fig. 5. There we set the M ¼ 30 M⊙,
which describes a wormhole that may form from the merger
of stellar mass black holes that are not too heavy. For larger
M, the error in κ=λ will be larger. Moreover, for possible
wormholes resulting from the merger of black holes of the
type observed by LIGO and Virgo so far, one can determine
κ=λ in ET towithin a few to several tens of percent aswell for
κ=λ ≤ 10 (see Fig. 6) and, therefore, distinguish them from
Schwarzschild (albeit, for nonspinning geometries). The
important caveat is that these error estimates are expected to
worsen when one expands the parameter space by including
spin and accounts for the error in thewormholemass and any

FIG. 6. The two left-most plots are similar to the ones shown in Fig. 5, but for the Einstein Telescope [78]. The right-most plot is for
κ=λ ¼ 10 and the Einstein Telescope; it is interesting how the error decreases with increasing mass for the mass range shown here, before
it rises again (not shown) owing to the signal frequency moving into the low-frequency seismic band). Moreover, whereas κ=λ < 1 in
Fig. 5 here we raise that limit in the middle and right plots.
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covariances that may arise among those two parameters
and κ=λ.
Significantly, since mergers can leave behind remnants

with nonvanishing angular momentum, it is important to
extend the results here by introducing rotation in the
wormhole line element, thereby making it more realistic.
Rotating wormholes have been studied in the literature
[79]. QNMs for rotating Ellis wormholes have been
discussed in [50]. For the line element used in this article,
one would first have to generalize it by including rotation.
More importantly, one would first need to do this in the
scalar-tensor theory and, subsequently, study the conse-
quences for the WEC, if any. This may be followed up by
finding the QNMs and, thereafter, the estimates of param-
eter errors in possible GW observations, now using addi-
tionally the spin parameter.

The real question however is whether one can obtain a
wormhole metric as a result of an astrophysical merger
process. There are some simplistic models of mergers
which are analytic in nature [80]. These could be viable
starting points for understanding whether a wormhole
could be created at all in a merger.
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