
 

Tilted shear-free axially symmetric fluids

L. Herrera*

Instituto Universitario de Física Fundamental y Matemáticas,
Universidad de Salamanca, Salamanca 37007, Spain

A. Di Prisco†

Escuela de Física, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1050, Venezuela

J. Carot‡

Departament de Física, Universitat Illes Balears, E-07122 Palma de Mallorca, Spain

(Received 28 March 2018; published 5 June 2018)

We carry on a systematic study of the physical properties of axially symmetric fluid distributions, which
appear to be geodesic, shearfree, irrotational, nondissipative, and purely electric, for the comoving
congruence of observers, from the point of view of the tilted congruence. The vanishing of the magnetic
part of the Weyl tensor for the comoving congruence of observers, suggests that no gravitational radiation is
produced during the evolution of the system. Instead, the magnetic part of the Weyl tensor as measured by
tilted observers is nonvanishing (as well as the shear, the four–acceleration, the vorticity and the
dissipation), giving rise to a flux of gravitational radiation that can be characterized through the super–
Poynting vector. This result strengthens further the relevance of the role of observers in the description of a
physical system. An explanation of this dual interpretation in terms of the information theory, is provided.
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I. INTRODUCTION

In a recent paper [1] we have analyzed in some detail
shearfree and geodesic dissipative fluids, using a general
framework for studying axially symmetric dissipative
fluids [2], based on the 1þ 3 approach [3–6].
Such configurations (which have been previously con-

sidered in great detail by Coley and McManus [7,8]),
are shown to be necessarily irrotational and purely electric
(the magnetic part of the Weyl tensor vanishes). Therefore,
these fluid distributions produce spacetimes which belong
to what are known as silent spacetimes [9–11]. Strictly
speaking the term “silent universe” includes additional
restrictions, such as the gravitational field is sourced by
dust and cosmological constant only. However here we
shall use this term as implying only the vanishing of the
magnetic part of the Weyl tensor and the vorticity.
On the other hand, the magnetic part of the Weyl tensor

as well as the vorticity of the fluid lines, are described by
tensors defined in terms of the four–velocity of the fluid.
Accordingly it is pertinent to ask, if the above-mentioned
properties (irrotational and purely electric) remain valid for
a congruence of observers, tilted (Lorentz boosted) with
respect to the congruence of comoving observers which, as

is obvious, are described by a different four-velocity vector
field.
This issue is related to the well known fact that there is an

observer dependence in the description of the source (see
[12–26] and references therein), related to the arbitrariness
in the choice of the four velocity in terms of which the
energy–momentum tensor is split, and the kinematical
variables are defined.
Thus for example, it can be shown [19], that the usual

interpretation of the Lemaitre–Tolman–Bondi spacetime
[27–29], as geodesic and produced by a nondissipative
dust, is valid for comoving observers exclusively. Tilted
observers would detect real (entropy producing) dissipative
processes in such spacetime, and the fluid congruence is no
longer geodesic. An explanation for this particular duality
in the interpretation of the physical properties of the fluid,
in terms of the information theory, was given in [30].
It is the purpose of this work to analyze in detail the

physical properties of axially symmetric fluid distributions,
which appear to be geodesic and shearfree, for the comoving
congruence of observers, from the point of view of the tilted
congruence. To simplify the analysis we shall consider that
the fluid distribution in the comoving frame is nondissipa-
tive. As expected from previous work (see [12–26] and
references therein), the fluid distribution appears to be
dissipative for the tilted observer.
The novelty in this work is, as we shall see, that unlike

the comoving observers, the tilted ones will detect a flux of
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gravitational radiation associated to the magnetic part of the
Weyl tensor, which for the tilted observers is non vanishing.
This is a remarkable result, since the vanishing (or not) of
the magnetic part of the Weyl tensor is very often invoked
as a significant property of a given spacetime (see [31,32]
and references therein). As in [30], an explanation for such
a result is given in terms of the information theory.
However, in this work we stress the fact that an argument
similar to the one put forward by Bennet [33] to solve the
Maxwell’s demon paradox [34], may be used to explain the
very different pictures of a given system, presented by
different congruences of observers in general relativity.
Also, it is obtained that the fluid for the tilted congruence,

appears to be shearing, nongeodesic and nonirrotational.
In order to avoid rewriting most of the equations, we shall

very often refer to [1,2]. Thus,we suggest that the reader have
at hand these references, when reading this manuscript.

II. THE SHEARFREE, GEODESIC, AXIALLY
SYMMETRIC FLUID: THE COMOVING

PICTURE

We shall consider axially and reflection symmetric, non-
dissipative fluid distributions (not necessarily bounded).
For such a system the most general line element may be
written in “Weyl spherical coordinates” as:

ds2 ¼ −A2dt2 þ B2ðdr2 þ r2dθ2Þ þ C2dϕ2 þ 2Gdθdt;

ð1Þ

where A, B, C, G are positive functions of t, r and θ. We
number the coordinates x0 ¼ t; x1 ¼ r; x2 ¼ θ; x3 ¼ ϕ.
The energy momentum tensor in the “canonical” form

reads:

Tαβ ¼ ðμþ PÞVαVβ þ Pgαβ þ Παβ; ð2Þ

where as usual, μ; P;Παβ; Vβ denote the energy density, the
isotropic pressure, the anisotropic stress tensor and the four
velocity, respectively.
We emphasize that, so far, we are considering an Eckart

(comoving) frame where fluid elements are at rest.
If we now impose the shearfree and the geodesic

conditions, and assume that the fluid is nondissipative,
the line element (1) becomes

ds2 ¼ −dt2 þ B2ðtÞ½dr2 þ r2dθ2 þ R2ðr; θÞdϕ2�: ð3Þ

From regularity conditions at the origin we must require
Rð0;θÞ ¼R0ð0;θÞ ¼R;θð0;θÞ ¼R;θθð0;θÞ ¼ 0, where prime
denotes derivative with respect to r. Also it can be shown
that all geodesic and shearfree fluids, are necessarily
irrotational (see [1] for details). As mentioned in the
Introduction, metrics of this type have been thoroughly

investigated in [7,8], therefore we shall not enter into a
detailed analysis of their properties here.
For our comoving observer the four-velocity vector reads

Vα ¼ ð1; 0; 0; 0Þ; Vα ¼ ð−1; 0; 0; 0Þ: ð4Þ

We shall next define a canonical orthonormal tetrad (say

eðaÞα ), by adding to the four-velocity vector eð0Þα ¼ Vα, three
spacelike unitary vectors (these correspond to the vectors
K;L;S in [2])

eð1Þα ¼ Kα ¼ ð0; B; 0; 0Þ; eð2Þα ¼ Lα ¼ ð0; 0; Br; 0Þ;
ð5Þ

eð3Þα ¼ Sα ¼ ð0; 0; 0; BRÞ; ð6Þ

with a ¼ 0, 1, 2, 3 (latin indices within the round brackets
labeling different vectors of the tetrad).
The dual vector tetrad eαðaÞ is easily computed from the

condition

ηðaÞðbÞ ¼ gαβeαðaÞe
β
ðbÞ; eαðaÞe

ðbÞ
α ¼ δðbÞðaÞ; ð7Þ

where ηðaÞðbÞ denotes the Minkowski metric.
In the above, the tetrad vector eαð3Þ ¼ ð1=BRÞδαϕ is

parallel to the only admitted Killing vector (it is the unit
tangent to the orbits of the group of 1-dimensional rotations
that defines axial symmetry). The other two basis vectors
eαð1Þ; e

α
ð2Þ define the two unique directions that are orthogo-

nal to the 4-velocity and to the Killing vector.
For the energy density and the isotropic pressure, we

have

μ ¼ Tαβeαð0Þe
β
ð0Þ; P ¼ 1

3
hαβTαβ; ð8Þ

where

hαβ ¼ δαβ þ VαVβ; ð9Þ
whereas the anisotropic tensor may be expressed through
three scalar functions defined as (see [2], but notice the
change of notation):

ΠKL ¼ eαð2Þe
β
ð1ÞTαβ; ð10Þ

ΠI ¼ ð2eαð1Þeβð1Þ − eαð2Þe
β
ð2Þ − eαð3Þe

β
ð3ÞÞTαβ; ð11Þ

ΠII ¼ ð2eαð2Þeβð2Þ − eαð3Þe
β
ð3Þ − eαð1Þe

β
ð1ÞÞTαβ: ð12Þ

In [1] it was shown, that for the geodesic, shearfree
nondissipative fluid, we have: ΠKL ¼ ΠI ¼ ΠII ¼ Π,
accordingly, the anisotropic tensor may be written in the
form:
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Παβ ¼ Π
�
eð1Þα eð1Þβ þ eð2Þα eð2Þβ þ eð2Þα eð1Þβ þ eð1Þα eð2Þβ −

2hαβ
3

�
:

ð13Þ

As mentioned before, for the comoving observer, and the
line element (3), the four-acceleration, the shear and the
vorticity vanish, whereas for the expansion we get:

Θ ¼ 3 _B
B

; ð14Þ

where overdot denotes derivatives with respect to t.

III. THE ELECTRIC AND MAGNETIC PARTS
OF THE WEYL TENSOR AND THE

SUPER–POYNTING VECTOR

Let us now introduce the electric (Eαβ) and magnetic
(Hαβ) parts of the Weyl tensor (Cαβγδ), defined as usual by

Eαβ ¼ CανβδVνVδ;

Hαβ ¼
1

2
ηανϵρCβδ

ϵρVνVδ; ð15Þ

where ηαβμν denotes the Levi-Civita tensor.
In general, for the line element (1), the electric part of the

Weyl tensor has only three independent nonvanishing
components, whereas only two components define the
magnetic part. However, in our case [comoving observers
and line element (3)] the electric part is defined by a single
scalar function E, whereas the magnetic part vanishes. Thus
we may write:

Eαβ ¼ E
�
eð1Þα eð1Þβ þ eð2Þα eð2Þβ −

2

3
hαβ þ eð1Þα eð2Þβ þ eð1Þβ eð2Þα

�
;

ð16Þ

and

Hαβ ¼ 0: ð17Þ

Also, from the Riemann tensor we may define three
tensors Yαβ, Xαβ and Zαβ as

Yαβ ¼ RανβδVνVδ; ð18Þ

Xαβ ¼
1

2
ηαν

ϵρR⋆
ϵρβδV

νVδ; ð19Þ

and

Zαβ ¼
1

2
ϵαϵρRδβ

ϵρVδ; ð20Þ

where R⋆
αβνδ ¼ 1

2
ηϵρνδRαβ

ϵρ and ϵαβρ ¼ ηναβρVν.

From the above tensors, we may define the super-
Poynting vector by

Pα ¼ ϵαβγðYγ
δZ

βδ − Xγ
δZ

δβÞ: ð21Þ

In our case, we may write:

Pα ¼ Pð1Þe
ð1Þ
α þ Pð2Þe

ð2Þ
α : ð22Þ

In the theory of the super-Poynting vector, a state of
gravitational radiation is associated to a nonvanishing
component of the latter (see [35–37]). This is in agreement
with the established link between the super–Poynting
vector and the news functions [38], in the context of the
Bondi–Sachs approach [39,40].
For the comoving observer and the line element (3), the

magnetic part of the Weyl tensor vanishes identically,
implying at once that Pð1Þ ¼ Pð2Þ ¼ 0. In other words,
no gravitational radiation is detected by the comoving
observer.
We shall now proceed to apply a Lorentz boost to our

comoving congruence, in order to obtain the tilted one.

IV. THE TILTED CONGRUENCE

In order to obtain the tilted congruence, we have to find
the expression for the four-velocity corresponding to this
congruence [in the same globally defined coordinate
system as in (3)]. For doing that we shall proceed in three
steps.
We shall first perform a (strictly locally defined) coor-

dinate transformation to the locally Minkowskian frame
(LMF).
Denoting by Λν̄

μ the local coordinate transformation
matrix, and by V̄α the components of the four-velocity in
such LMF, where x̄α denotes the locally Minkowskian
coordinates, we have:

V̄μ ¼ Λμ̄
νVν; ð23Þ

where

Λ0̄
0 ¼ 1; Λ1̄

1¼B; Λ2̄
2¼Br; Λ3̄

3 ¼BR: ð24Þ

Next, let us apply a Lorentz boost to the LMF associated
to V̄α, in order to obtain the (tilted) LMF with respect to
which a fluid element is moving with some nonvanishing
three-velocity v̄i.
Thus the four-velocity in the tilted LMF is defined by:

˜̄Vβ ¼ Lᾱ
β̄
V̄α; ð25Þ

where Lᾱ
β̄
denotes the corresponding Lorentz matrix.

The boost is applied along the two independent direc-
tions (x̄1; x̄2), thus we have:
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L0̄
0̄
¼ Γ; L0̄

ī ¼ −Γv̄i; Lī
j̄ ¼ δij þ

ðΓ − 1Þv̄iv̄j
v̄2

;

ð26Þ

where latin indices i, j run from 1 to 3, Γ≡ 1ffiffiffiffiffiffiffiffi
1−v̄2

p , v̄2 ¼
v̄21 þ v̄22, and v̄1, v̄2 are the two components of the three-
velocity of a fluid element as measured by the tilted
observer.
Finally, we have to perform a transformation from the

tilted LMF, back to the (global) frame associated to the line
element (3). Such a transformation is defined by the inverse
of Λν̄

μ, and produces the four-velocity of the tilted con-
gruence in our globally defined coordinate system, say Ṽα.
This last operation produces:

ẽð0Þα ¼ Ṽα ¼ ð−Γ; BΓv1; BrΓv2; 0Þ;

Ṽα ¼
�
Γ;

Γv1
B

;
Γv2
Br

; 0

�
: ð27Þ

We can also apply the above procedure to obtain the
remaining vectors of the tilted tetrad, we find:

ẽð1Þα ¼ K̃α ¼
�
−Γv1;B

�
1þðΓ−1Þv21

v2

�
;
BrðΓ−1Þv1v2

v2
;0

�
;

ð28Þ

ẽð2Þα ¼ L̃α ¼
�
−Γv2;

BðΓ−1Þv1v2
v2

;Br

�
1þðΓ−1Þv22

v2

�
;0

�
;

ð29Þ

and

ẽð3Þα ≡ eð3Þα ¼ S̃α ¼ ð0; 0; 0; BRÞ; ð30Þ

where for simplicity we have omitted the bar over the
components of the three velocity.
We can now calculate all the kinematical variables for the

tilted congruence.
The four acceleration

ãα ¼ ṼβṼα;β; ð31Þ

may be expressed through two scalar functions as:

ãα ¼ ãð1Þẽ
ð1Þ
α þ ãð2Þẽ

ð2Þ
α : ð32Þ

From (32) and (A1)–(A3), we can easily find the explicit
expressions for the two scalars ãð1Þ and ãð2Þ.
It is a simple matter to check that if we put v ¼ 0

(Γ ¼ 1), we obtain ãα ¼ 0, as expected.

Next, the shear tensor

σ̃αβ ¼ σ̃ðaÞðbÞe
ðaÞ
α eðbÞβ ¼ Ṽðα;βÞ þ ãðαṼβÞ −

1

3
Θ̃h̃αβ; ð33Þ

may be defined through two independent tetrad compo-
nents (scalars) σ̃ð1Þð1Þ and σ̃ð2Þð2Þ, defined by:

σ̃I ¼ 3ẽαð1Þẽ
β
ð1Þσ̃αβ; σ̃II ¼ 3ẽαð2Þẽ

β
ð2Þσ̃αβ: ð34Þ

These two scalars may be easily obtained from (34) and
the expressions for the nonvanishing coordinate compo-
nents of the shear tensor displayed in (A4)–(A10).
Again, if we go back to the comoving congruence by

assuming v ¼ 0 ðΓ ¼ 1Þ, we get σ̃αβ ¼ 0.
For the vorticity vector defined as:

ω̃α ¼
1

2
ηαβμνṼβ;μṼν ¼ 1

2
ηαβμνΩ̃βμṼν; ð35Þ

where Ω̃αβ ¼ Ṽ ½α;β� þ ã½αṼβ� denotes the vorticity tensor;
we find a single component different from zero, producing:

Ω̃αβ ¼ Ω̃ðẽð2Þα ẽð1Þβ − ẽð2Þβ ẽð1Þα Þ; ð36Þ

and

ω̃α ¼ −Ω̃ẽð3Þα : ð37Þ

with the scalar function Ω̃ given by

Ω̃ ¼ −
Γ2

2

�
−
v02
B

−
v2
Br

− v1 _v2 þ v2 _v1 þ
v1;θ
Br

�
: ð38Þ

Obviously in the limit when v ¼ 0 the vorticity vanishes.
Finally, the expansion scalar, now reads:

Θ̃ ¼ _Γþ 3 _BΓ
B

þ ðΓv1Þ0
B

þ
�
1

r
þ R0

R

�
Γv1
B

þ Γv2R;θ

BRr
þ ðΓv2Þ;θ

Br
; ð39Þ

which of course reduces to (14) if v1 ¼ v2 ¼ 0.
In the above equations and hereafter, primes and dots

denote derivatives with respect to r and t respectively.
For the tilted observers the fluid distribution is described

by the energy momentum tensor:

T̃αβ ¼ ðμ̃þP̃ÞṼαṼβ þ P̃gαβ þ Π̃αβ þ q̃αṼβ þ q̃βṼα: ð40Þ

It should be observed that for the tilted congruence the
system may be dissipative, and the anisotropic tensor
depends on three scalar functions. Thus we may write:
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Π̃αβ ¼
1

3
ð2Π̃I þ Π̃IIÞ

�
ẽð1Þα ẽð1Þβ −

h̃αβ
3

�

þ 1

3
ð2Π̃II þ Π̃IÞ

�
ẽð2Þα ẽð2Þβ −

h̃αβ
3

�

þ Π̃KLðẽð1Þα ẽð2Þβ þ ẽð1Þβ ẽð2Þα Þ; ð41Þ

with

Π̃KL ¼ ẽαð1Þẽ
β
ð2ÞT̃αβ; ð42Þ

Π̃I ¼ ð2ẽαð1Þẽβð1Þ − ẽαð2Þẽ
β
ð2Þ − ẽαð3Þẽ

β
ð3ÞÞT̃αβ; ð43Þ

Π̃II ¼ ð2ẽαð2Þeβð2Þ − ẽαð1Þẽ
β
ð1Þ − ẽαð3Þẽ

β
ð3ÞÞT̃αβ: ð44Þ

Finally, we may write for the heat flux vector:

q̃μ ¼ q̃ð1Þẽ
ð1Þ
μ þ q̃ð2Þẽ

ð2Þ
μ : ð45Þ

Since, both congruences of observers are embedded
within the same space-time (3), then it is obvious that
the Einstein tensor is the same for both congruences, and
therefore the energy-momentum tensors, although split
differently, also must be the same.
Then equating (2) and (40), and projecting on all possible

combinations of tetrad vectors (tilted and nontilted), we find
expressions for the physical variables measured by comov-
ing observers, in terms of the tilted ones, and vice versa.
These are exhibited in the Appendix B.
For the tilted congruence, the nonvanishing components

of the electric and magnetic parts of the Weyl tensor have
been calculated and their expressions are given in the
Appendix C. These tensors may be expressed through the
five scalars (ẼI , ẼII , ẼKL, H̃1, H̃2), as follows:

Ẽαβ ¼
1

3
ð2ẼI þ ẼIIÞ

�
ẽð1Þα ẽð1Þβ −

1

3
h̃αβ

�

þ 1

3
ð2ẼII þ ẼIÞ

�
ẽð2Þα ẽð2Þβ −

1

3
h̃αβ

�

þ ẼKLðẽð1Þα ẽð2Þβ þ ẽð1Þβ ẽð2Þα Þ; ð46Þ

and

H̃αβ ¼ H̃1ðẽð1Þβ ẽð3Þα þ ẽð1Þα ẽð3Þβ Þ þ H̃2ðẽð3Þα ẽð2Þβ þ ẽð2Þα ẽð3Þβ Þ;
ð47Þ

where the above-mentioned scalars are expressed through
the nonvanishing components of the electric and magnetic
parts of the Weyl tensor, as indicated in the Appendix C.
The above expressions produce for the super-Poynting

vector:

P̃ð1Þ ¼
2H̃2

3
ð2ẼII þ ẼIÞ þ 2H̃1ẼKL

þ 32π2q̃ð1Þ

�
μ̃þ P̃þ Π̃I

3

�

þ 32π2q̃ð2ÞΠ̃KL;

P̃ð2Þ ¼ −
2H̃1

3
ð2ẼI þ ẼIIÞ − 2H̃2ẼKL

þ 32π2q̃ð2Þ

�
μ̃þ P̃þ Π̃II

3

�

þ 32π2q̃ð1ÞΠ̃KL: ð48Þ
We can identify two different contributions in (48). On

the one hand we have contributions from the heat transport
process. These are in principle independent of the magnetic
part of the Weyl tensor, which explains why they remain in
the spherically symmetric limit. Next we have contributions
related to the gravitational radiation. These contributions
are described by the first two terms in P̃ð1Þ and P̃ð2Þ. In
order of these contributions to be different from zero we
require that, both, the electric and the magnetic part of the
Weyl tensor to be nonvanishing. More specifically, the sum
of the first two terms in P̃ð1Þ and P̃ð2Þ should not vanish.
This is in fact the case, as can be seen from (C12)–(C14)
and (C19), (C20). Indeed, the vanishing of the above
mentioned terms implies R ∼ r cos θ, which produces the
vanishing of theWeyl tensor (conformal flatness). Therefore,
excluding the particular conformally flat case, the tilted
observer detects a nonvanishing gravitational contribution of
the super-Poynting vector, which as mentioned above
indicates the presence of gravitational radiation.

V. CONCLUSIONS

Using the framework developed in [2] and the results
obtained in [1], we have compared the physical properties
of a physical system described by the line element (3), as
observed by two different congruences of observers
(comoving and tilted).
Thus, whereas the fluid is shearfree, geodesic, irrotational

and nondissipative, from the point of view of the comoving
observer, it appears nongeodesic, shearing, dissipative and
endowed with vorticity, for the tilted congruence.
The fact that tilted observers detect dissipation in a

system that appears nondissipative for comoving observ-
ers, is not new and was emphasized in [19]. To explain
such difference in the description of a given system, as
provided by different congruences of observers, it has
been conjectured in [30] that the origin of this strange
situation resides in the fact that passing from one of the
congruences to the other we usually overlook the fact that
both congruences of observers store a different amount of
information.
This is in fact the clue to resolve the quandary about the

presence or not of dissipative processes, depending on the
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congruence of observers, that carry out the analysis of
the system.
However, in the present case the difference is still sharper

since the tilted observer not only detect a dissipative
process, but also gravitational radiation. Both phenomena
are of course absent in the description of the comoving
observer. This last point is relevant since the tilted observer
also detects vorticity, and as pointed out in [38], vorticity
and gravitational radiation are tightly associated.
The explanation for such a difference is basically the same

as the one proposed for dissipative processes described by
the heat flux vector (remember that gravitational radiation is
a dissipative process too), and reminds us the resolution of
the well-known paradox of the Maxwell’s demon [34].
The Maxwell’s demon (in one of its many, but equiv-

alent presentations) is a small “being” living in a cylinder
filled with a gas, and divided in two equal portions, by a
partition with a small door. Then the demon may open
the door when the molecules come from the right, while
closing it when the molecules approach from the left.
Doing so the demon is able to concentrate all the
molecules on the left, reducing the entropy by NK ln 2
(where N is the number of molecules, and K is the
Boltzman constant), thereby violating the second law of
thermodynamics. Brillouin [41] tried to solve the paradox
by arguing that in the process of selection of molecules,
the demon increases the entropy by an amount equal or
larger than the decreasing of entropy achieved by con-
centrating all molecules on one side. However, soon after,
different researchers were able to propose different ways
by means of which the demon could select the molecules
in a reversible way (i.e., without entropy production). It
has been necessary to wait for more than a century, until
Bennet [33] gave a satisfactory resolution of this paradox.
Roughly speaking, Bennet showed that the irreversible

act which prevents the violation of the second law, is not the
selection of molecules to put all of them in one side of the
cylinder, but the restauration of the measuring apparatus by
means of which the selection is achieved, to the standard
state previous to the state where the demon knows from
which side comes any molecule. The erasure of such
information, according to the Landauer’s principle [42],
entails dissipation. In other words, to get the demon’s mind
back to its initial state, generates dissipation. A somehow
similar picture appears when we go from comoving (which
assign zero value to the three-velocity of any fluid element)
to tilted observers, for whom the three-velocity represents
another degree of freedom. The erasure of the information
stored by comoving observers (vanishing three velocity),
when going to the tilted observers, explains the presence
of dissipative processes (included gravitational radiation)
observed by the latter. The above comments provide full
significance to the statement by Max Born: “Irreversibility
is a consequence of the explicit introduction of ignorance
into the fundamental laws” [43].

Finally, it is worth mentioning that the effect described
here (the detection of gravitational radiation by tilted
observers), somehow reminds us the Unruh effect [44,45],
according to which an accelerating observer (Rindler) in a
Minkowski vacuum state will observe a thermal spectrum of
particles, thereby indicating that two different sets of
observers (inertial and Rindler) describe the same state in
very different terms.
Of course the Unruh effect is of quantum nature, whereas

our results belong to the classical realm. However the main
moral emerging from both results, points to the same
direction, namely: the description of a physical system may
heavily rely on the nature of the observer carrying on the
analysis of the system.
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APPENDIX A: KINEMATICAL VARIABLES

The nonvanishing coordinate components of the four-
acceleration for the tilted congruence are

ã0 ¼ −Γ
�
_Γþ Γ0v1

B
þ Γ;θv2

Br
þ Γv2 _B

B

�
; ðA1Þ

ã1 ¼ ΓB
�
ðΓv1Þ: þ

ðΓv1Þ0v1
B

þ ðΓv1Þ;θv2
Br

−
Γv22
Br

þ Γv1 _B
B

�
;

ðA2Þ

ã2¼ΓBr
�
ðΓv2Þ:þ

ðΓv2Þ0v1
B

þðΓv2Þ;θv2
Br

þΓv2 _B
B

þΓv2v1
Br

�
:

ðA3Þ

The nonvanishing coordinate components of the shear
tensor are

σ̃00 ¼ −
2 _Γð1 − Γ2Þ

3
þ Γ2Γ0v1

B

þ 1 − Γ2

3B

�
ðΓv1Þ0 þ Γv1

�
1

r
þ R0

R

��

þ Γ2Γ;θv2
Br

þ 1 − Γ2

3Br

�
ðΓv2Þ;θ þ

Γv2R;θ

R

�
; ðA4Þ
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σ̃01 ¼
B
2

�
ðΓv1Þ:ð1 − Γ2Þ − Γ2 _Γv1

3
−
Γ0ð1þ Γ2v21Þ

B

−
Γ2v1ðΓv1Þ0

3B
þ Γ3v22

Br
þ 2Γ3v21

3B

�
1

r
þ R0

R

�

−
Γ2v1v2Γ;θ

Br
−
Γ2v2ðΓv1Þ;θ

Br

þ 2Γ2v1ðΓv2Þ;θ
3Br

þ 2Γ3v1v2R;θ

3BrR

�
; ðA5Þ

σ̃02¼
Br
2

�
ðΓv2Þ:ð1−Γ2Þ−Γ2 _Γv2

3
−
Γ0Γ2v1v2

B
þ2Γ2v2ðΓv1Þ0

3B

−
Γ3v1v2
3B

�
1

r
−
2R0

R

�
−
Γ2v22Γ;θ

Br
−
Γ2v2ðΓv2Þ;θ

3Br

−
Γ2v1ðΓv2Þ0

B
−
Γ;θ

Br
þ2Γ3v22R;θ

3BrR

�
; ðA6Þ

σ̃11 ¼ B2

�
−
_Γð1þ Γ2v21Þ

3
þΓ2v1ðΓv1Þ:

þ ð1þ Γ2v21Þ
3B

�
2ðΓv1Þ0 − Γv1

�
1

r
þR0

R

��
−
Γ3v22v1
Br

þ Γ2v2v1ðΓv1Þ;θ
Br

−
ð1þ Γ2v21Þ

3Br

�
ðΓv2Þ;θ þ

Γv2R;θ

R

��
;

ðA7Þ

σ̃12 ¼
B2r
2

�
−
2 _ΓΓ2v1v2

3
þ Γ2v2ðΓv1Þ: þ Γ2v1ðΓv2Þ:

þ Γ2v1v2
3B

�
ðΓv1Þ0 þ Γv1

�
1

r
−
2R0

R

��

þ ð1þ Γ2v22ÞðΓv1Þ;θ
Br

þ 1þ Γ2v21
B

�
ðΓv2Þ0 −

Γv2
r

�

þ Γ2v1v2
3Br

�
ðΓv2Þ;θ −

2Γv2R;θ

R

��
; ðA8Þ

σ̃22¼B2r2
�
−
_Γð1þΓ2v22Þ

3
þΓ2v2ðΓv2Þ:þ

Γ2v1v2
B

ðΓv2Þ0

þð1þΓ2v22Þ
3B

�
−ðΓv1Þ0 þΓv1

�
2

r
−
R0

R

��

þ1þΓ2v22
3Br

�
2ðΓv2Þ;θ−

Γv2R;θ

R

��
; ðA9Þ

σ̃33 ¼
B2R2

3

�
− _Γ −

1

B

�
ðΓv1Þ0 þ Γv1

�
1

r
−
2R0

R

��

þ 1

Br

�
−ðΓv2Þ;θ þ

2Γv2R;θ

R

��
: ðA10Þ

APPENDIX B: RELATIONSHIPS BETWEEN
TILTED AND NONTILTED PHYSICAL

VARIABLES

Proceeding as indicated in Sec. IV, we get for the tilted
variables:

μ̃ ¼ Γ2

�
μþ Pv2 þ Π

�
v2

3
þ 2v1v2

��
; ðB1Þ

P̃ ¼ Pþ Γ2

3

�
ðμþ PÞv2 þ Π

�
v2

3
þ 2v1v2

��
; ðB2Þ

Π̃I ¼ Πþ Γ2

�
μþ Pþ Π

3

�
ð3v21 − v2Þ þ 2ΠðΓ − 1Þv1v2

v2

×

�
2 − Γþ 3ðΓ − 1Þv21

v2

�
; ðB3Þ

Π̃II ¼ΠþΓ2

�
μþPþΠ

3

�
ð3v22−v2Þþ2ΠðΓ−1Þv1v2

v2

×
�
2−Γþ3ðΓ−1Þv22

v2

�
; ðB4Þ

Π̃KL ¼Γ2v1v2ðμþPÞþΠ
�
ΓþΓ2v1v2

3
þ2ðΓ−1Þ2v21v22

v4

�
;

ðB5Þ

−q̃ð1Þ ¼Γ2v1ðμþPÞþΠΓv1
�
Γ
3
þ2ðΓ−1Þv1v2

v2

�
þΠΓv2;

ðB6Þ

−q̃ð2Þ ¼Γ2v2ðμþPÞþΠΓv2
�
Γ
3
þ2ðΓ−1Þv1v2

v2

�
þΠΓv1:

ðB7Þ

Obviously, if in the above we put v ¼ v1 ¼ v2 ¼ 0,
Γ ¼ 1, we obtain at once μ̃ ¼ μ; P̃ ¼ P; Π̃I ¼ Π̃II ¼
Π̃KL ¼ Π, and q̃ð1Þ ¼ q̃ð2Þ ¼ 0, as it must be.
Inversely, we may obtain by the same way, expressions

for the physical variables associated to comoving observ-
ers, in terms of the variables corresponding to tilted
observers, thus we find:

μΓ ¼ μ̃Γþ q̃ð1ÞΓv1 þ q̃ð2ÞΓv2; ðB8Þ

3P ¼ μ̃Γ2v2 þ P̃ð3þ Γ2v2Þ þ 2q̃ð1ÞΓ2v1 þ 2q̃ð2ÞΓ2v2

þ Π̃IΓ2v21
3

þ Π̃IIΓ2v22
3

þ 2Π̃KLΓ2v1v2; ðB9Þ
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Π ¼ Γ2ðμ̃þ P̃Þðv2 − v1v2Þ þ
Π̃I

3

�
3þ Γ2v21 −

ðΓ − 1Þv1v2
v2

�
1þ ðΓ − 1Þv21

v2

��

þ Π̃II

3

�
3þ Γ2v22 −

ðΓ − 1Þv1v2
v2

�
1þ ðΓ − 1Þv22

v2

��
þ Π̃KL

�
−Γþ 2Γ2v1v2 þ

2ðΓ2 − 1Þv21v22
v4

�

þ q̃ð1Þ

�
2Γ2v1 − Γv2

�
1þ 2ðΓ − 1Þv21

v2

��
þ q̃ð2Þ

�
2Γ2v2 − Γv1

�
1þ 2ðΓ − 1Þv22

v2

��
: ðB10Þ

In the limit when v → 0 the above equations become
identities.

APPENDIX C: THE MAGNETIC AND THE
ELECTRIC PARTS OF THE WEYL TENSOR

FOR THE TILTED CONGRUENCE

Using MAPLE we have calculated the nonvanishing
components of the electric and magnetic part of the
Weyl tensor. For the former we found:

Ẽ00 ¼
1

6B2r2Rðv2 − 1Þ ½v
2
1ðR00r2 − 2R0r − 2R;θθÞ

þ v22ð−2R00r2 þ R0rþ R;θθÞ
þ 6v1v2ðR0

;θr − R;θÞ�; ðC1Þ

Ẽ01 ¼ −
1

6Br2Rðv2 − 1Þ ½v1ðR
00r2 − 2R0r − 2R;θθÞ

þ 3v2ðR0
;θr − R;θÞ�; ðC2Þ

Ẽ02 ¼ −
1

6BrRðv2 − 1Þ ½v2ð−2R
00r2 þ R0rþ R;θθÞ

þ 3v1ðR0
;θr − R;θÞ�; ðC3Þ

Ẽ11 ¼ −
1

6r2Rðv2 − 1Þ ½v
2
2ðR00r2 þ R0rþ R;θθÞ

þ ð−R00r2 þ 2R0rþ 2R;θθÞ�; ðC4Þ

Ẽ12 ¼
1

6rRðv2 − 1Þ ½v1v2ðR
00r2 þ R0rþ R;θθÞ

þ 3ðR0
;θr − R;θÞ�; ðC5Þ

Ẽ22 ¼ −
1

6Rðv2 − 1Þ ½v
2
1ðR00r2 þ R0rþ R;θθÞ

þ ð2R00r2 − R0r − R;θθÞ�; ðC6Þ

Ẽ33 ¼
R

6r2ðv2 − 1Þ ½v
2
1ð2R00r2 − R0r − R;θθÞ

þ v22ð−R00r2 þ 2R0rþ 2R;θθÞ
þ 6v1v2ðR0

;θr − R;θÞ þ R00r2 þ R0rþ R;θθ�: ðC7Þ

These seven components are related by the following
four relationships, which allow us to write the electric part
of the Weyl tensor in terms of three independent scalar
functions:

BrẼ00 þ rẼ01v1 þ Ẽ02v2 ¼ 0; ðC8Þ

B2r2Ẽ00 −
r2

R2
Ẽ33 − r2Ẽ11 − Ẽ22 ¼ 0; ðC9Þ

r2

R2
Ẽ33 þ Br2Ẽ01v1 þ BrẼ02v2 þ r2Ẽ11 þ Ẽ22 ¼ 0;

ðC10Þ

v1v2ðr2Ẽ11 þ Ẽ22Þ þ BrðrẼ01v2 þ Ẽ02v1Þ þ rẼ12v2 ¼ 0:

ðC11Þ

Thus we may express the electric part of the Weyl tensor,
in terms of the three scalars EI; EII; EKL, given by:

2ẼI þ ẼII

3
¼ Γ2v21Ẽ00 þ

Ẽ11

B2

�
1þ ðΓ − 1Þv21

v2

�
2

þ ðΓ − 1Þ2v21v22Ẽ22

B2r2v4
−

Ẽ33

B2R2
þ 2Γv1Ẽ01

B

�
1þ ðΓ − 1Þv21

v2

�

þ 2Γv21v2ðΓ − 1ÞẼ02

Brv2
þ 2ðΓ − 1Þv1v2Ẽ12

B2v2r

�
1þ ðΓ − 1Þv21

v2

�
; ðC12Þ

2ẼII þ ẼI

3
¼ Γ2v22Ẽ00 þ

Ẽ22

B2r2

�
1þ ðΓ − 1Þv22

v2

�
2

þ ðΓ − 1Þ2v21v22Ẽ11

B2v4
−

Ẽ33

B2R2
þ 2ΓðΓ − 1Þv22v1Ẽ01

Bv2

þ 2Γv2Ẽ02

Br

�
1þ ðΓ − 1Þv22

v2

�
þ 2ðΓ − 1Þv1v2Ẽ12

B2v2r

�
1þ ðΓ − 1Þv22

v2

�
; ðC13Þ
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ẼKL ¼ Γ2v1v2Ẽ00 þ
Ẽ22ðΓ − 1Þv1v2

B2r2v2

�
1þ ðΓ − 1Þv22

v2

�
þ ðΓ − 1Þv1v2Ẽ11

B2v2

�
1þ ðΓ − 1Þv21

v2

�

þ Ẽ01

�
ΓðΓ − 1Þv2v21

Bv2
þ Γv2

B

�
1þ ðΓ − 1Þv21

v2

��
þ Ẽ02

�
ΓðΓ − 1Þv22v1

Brv2
þ Γv1

Br

�
1þ ðΓ − 1Þv22

v2

��

þ Ẽ12

�ðΓ − 1Þ2v22v21
B2rv4

þ 1

B2r

�
1þ ðΓ − 1Þv22

v2

��
1þ ðΓ − 1Þv21

v2

��
: ðC14Þ

Whereas for the magnetic part we obtain the following
expressions:

H̃03 ¼
1

2Br2ðv2 − 1Þ ½v1v2ðR
00r2 − R0r − R;θθÞ

þðv22 − v21ÞðR0
;θr − R;θÞ�; ðC15Þ

H̃13 ¼
1

2r2ðv2 − 1Þ ½v1ðR
0
;θr − R;θÞ þ v2ðR;θθ þ R0rÞ�;

ðC16Þ

H̃23 ¼ −
1

2rðv2 − 1Þ ½v1R
00r2 þ v2ðR0

;θr − R;θ�: ðC17Þ

These three components are not independent since they
satisfy the relationship:

H̃03 ¼ −
H̃13v1
B

−
H̃23v2
Br

: ðC18Þ

Thus we may express the magnetic part of the Weyl
tensor in terms of the two scalars ðH̃1; H̃2Þ, given by:

H̃1 ¼
H̃03ðΓ − 1Þv1

ΓBRv2
þ H̃13

B2R
; ðC19Þ

H̃2 ¼
H̃03ðΓ − 1Þv2

ΓBRv2
þ H̃23

B2Rr
: ðC20Þ

As is obvious from the above expressions, the magnetic
part of the Weyl tensor vanishes if we put v ¼ 0, as it
should be since for the comoving congruence the field is
purely electric.
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