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In this paper, the ghost-freeness of the higher derivative theory proposed by Hassan et al. in [Universe 1,
92 (2015)] is investigated. Hassan et al. believed the ghost-freeness of the higher derivative theory based on
the analysis in the linear approximation. However, in order to obtain the complete correspondence, we have
to analyze the model without any approximations. In this paper, we analyze the two-scalar model proposed
in [Universe 1, 92 (2015)] with arbitrary nonderivative interaction terms. In any order with respect to
perturbative parameters, we prove that we can eliminate the ghost for the model with any nonderivative
interaction terms.
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I. INTRODUCTION

The question whether the gravity could have the small
mass or not has been argued from long time ago. In 1939,
M. Fierz and W. Pauli derived the wave equations describ-
ing the second-order tensor corresponding to massive spin-
two fields, which is called the Fierz-Pauli (FP) model [1].
Although their works were purely based on field theoretical
motivations, some questions began with a negative obser-
vation by discovering the vDVZ discontinuity in 1970 [2].
The vDVZ discontinuity means that some observables
calculated by the Fierz-Pauli theory do not coincide with
those of the massless theory in the massless limit. From
the fact, it seems that the possibility of the nonvanishing
graviton mass had been excluded. On the other hand, in
1972, A. I. Vainshtein considered the gravitational model
where the FP mass terms are added to the Einstein action
[3]. He found that the spherical symmetric solution of
the model does not have the discontinuity in the massless
limit. Then, it had been obvious that, because the vDVZ
discontinuity relies on the linear approximation, the dis-
continuity could be avoided by considering the nonlinear
model. This mechanism is called the Vainshtein mecha-
nism. In 1974, however, D. G. Boulware and S. Deser have
pointed out that the large class of the massive spin-two
models with nonlinear terms, which include the model
considered by Vainshtein, has a scalar mode in addition to
the massive spin-two modes [4]. This scalar mode has the
kinetic term with the negative signature, so called the BD
ghost. Then, it has become clear that the model is no longer
unitary due to the BD ghost. The model satisfying both the
Vainshtein mechanism and the BD ghost-freeness had not
been constructed for a long time.

The situations changed in 2010. C. de Rham and
G. Gabadadze considered the consistency of the nonlinear
model in the high energy limit, so called the decoupling
limit. By tuning the parameters of the interaction terms
without any derivative, they have obtained the lower-order
terms which make the theory ghost-free in the decoupling
limit [5]. After that, they and A. J. Tolley have obtained the
full nonlinear completion of the nonderivative interaction
terms [6]. Now, this model is called the dRGT model.
Although they had not completed the proof of the absence
of the BD ghost in the full nonlinear level, S. F. Hassan
and R. A. Rosen gave the complete proof by using the
Hamiltonian analysis [7,8]. On the other hand, although
the dRGT model includes a fixed metric ημν in addition
to the dynamical metric gμν due to the violation of the
diffeomorphism, the extension of the flat metric ημν to the
general reference metric fμν was investigated. S. F. Hassan
et al. have proved the BD ghost-freeness of the dRGT
model with the general reference metric in [9]. In addition
to the proof, S. F. Hassan and R. A. Rosen have considered
a model where the reference metric fμν becomes dynamical
by adding kinetic terms

ffiffiffiffiffiffi
−f

p
RðfÞ to the dRGT action,

which is called bigravity model. Then, two metrics in this
theory have already been interacted with each other. They
have proved the BD ghost-freeness of the bigravity model,
and they also showed that the bigravity includes one
massless spin-two mode and one massive spin-two
mode [8,10].
On the other hand, the theory which includes the modes

identical with the modes in the bigravity has been also
known in the context of the higher curvature theories.
According to [11], the action where the general second-
order terms, with respect to the curvature, are added to the
Einstein-Hilbert action includes one scalar mode and one
massive spin-two mode in addition to the massless spin-two*s_akagi1108@yahoo.co.jp
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mode. The scalar mode could be eliminated by tuning the
parameters. We call the model where the scalar mode is
eliminated as “the R-squared gravity”, in this paper.
Although the R-squared gravity has the modes similar to
the bigravity, there is an essential difference between both of
theories. Although the bigravity theory does not include any
ghost, the signatures between the kinetic terms of the two
modes in the R-squared gravity are opposite with each other.
Therefore, the R-squared gravity violate the unitarity of the S
matrix. The only exception is given in the three-dimensional
spacetime. E. A. Bergshoeff, O. Hohm and P. K. Townsend
proposed the R-squared gravity by tuning the parameters so
that the massive spin-two mode has healthy propagation.
The obtained model is called the “new massive gravity”
(NMG) [12]. Although the signature of the kinetic term for
the massless spin-two mode is negative, the massless mode
does not propagate in the three-dimensional spacetime.
Then, there is some parameter region which makes the
theory perturbatively ghost-free. Furthermore, the NMG
theory does not include the BD ghost, i.e., the NMG theory
has 2 degrees of freedom in nonlinear level. For example, the
proof using the Stükelberg trick was given in [13]. In this
sense, the NMG theory can be regarded as a higher
derivative gravity model conserving the unitarity of the S
matrix. However, in the context of the AdS=CFT corre-
spondence, it is well known that there is no parameter region
which keep both the unitarity of the NMG theory, with
negative cosmological constant, and the positivity of the
central charge of its CFT dual [14]. The negativity of the
central charge means the violation of the unitarity in
the theory. Hence the bulk unitarity and the boundary
unitarity are incompatible with each other.
In these backgrounds, the relationship between the

bigravity and the R-squared gravity has been investigated
after the discovery of the bigravity. In particular, M. F.
Paulos and A. J. Tolley showed the equivalence between
the bigravity in some limits of parameters and the
R-squared gravity [13]. They also obtained some general-
izations of the NMG theory without any BD ghosts.
Moreover, S. F. Hassan, A. Schmidt-May and M. von
Strauss tried to investigate the correspondence between
the bigravity and the R-squared gravity without any limits
of parameters. They proposed a higher derivative theory
describing the same dynamics as bigravity under appro-
priate conditions. They have also shown that the higher
derivative theory coincides with the R-squared gravity in
small curvature approximation. In this way, they have
concluded that the higher derivative theory is a ghost-free
completion of the R-squared gravity. This analysis has been
extended to a higher order in the context of the correspon-
dence between the Weyl gravity and the partially massless
gravity [15].
The reason why they believed the ghost-freeness of the

higher derivative theory was based on the analysis in the
linear approximation with respect to the fields, as given in

the Appendix of [16]. However, in order to obtain the
complete correspondence, we have to analyze the model
without any approximations.
In this paper, we analyze the scalar model proposed in [16]

with arbitrary nonderivative interaction terms, and investigate
the possibility of the elimination of the ghost. As a result,
we prove it for any nonderivative interaction terms, and any
order with respect to the perturbative parameter.

II. PREVIOUS RESEARCH

In this section, we briefly review the analysis given in
[16]. The action of the bigravity model [10] is given by

S½g; f� ¼ MD−2
g

Z
dDx

� ffiffiffiffiffiffi
−g

p
RðgÞ þ αD−2

ffiffiffiffiffiffi
−f

p
RðfÞ

− 2m2 ffiffiffiffiffiffi
−g

p XD
n¼0

βnenðSÞ
�
;

enðSÞ≡ 1

n!
δμ1 μ2…μn

ν1 ν2…νnS
ν1
μ1S

ν2
μ2…Sνnμn ;

Sμν ≡
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
μ

ν
; SμνSνv ¼ gμνfνρ: ð1Þ

Here, D is the spacetime dimension,Mg is the Planck mass
for the metric g, α≡Mf=Mg (Mf is the Planck mass for
the metric f.) is the ratio of the Planck masses, βn are free
parameters without dimension, and m2 is the mass param-
eter, which is introduced in order to make βn dimension-
less. The tensor δμ1 μ2…μn

ν1 ν2…νn is defined as follows,

δμ1 μ2…μn
ν1 ν2…νn ≡ −1

ðD−nÞ!ϵ
μ1μ2…μnσnþ1…σDϵν1ν2…νnσnþ1…σD: ð2Þ

Here the tensor ϵμ1…μD is the Levi-Civita anti-symmetric
tensor, one of whose components is given by ϵ012…D−1 ¼ 1.
In the action (1), two metrics gμν and fμν interact with each
other through the nonderivative interaction terms. Then the
equation of motion given by the variation of gμν does not
include any derivative of the metric fμν,

δS½g; f�
δgμν

¼ 0: ð3Þ

Therefore, we can algebraically solve this equation with
respect to fμν.
The obtained solution depends on the metric gμν and the

curvature RðgÞ. Although there are generally D − 1 solu-
tions in Eq. (3), we choose one of them and denote as fμν½g�.1

1In [16], this difference of the solutions is expressed by a
parameter “a”, which is a solution of D − 1-dimensional poly-
nomial equation. In later argument by using scalar fields, we
adopt the specific solution. At present, however, we do not restrict
the solution. The arguments after Eq. (5) are correct for any
solution.
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By substituting this solution, fμν ¼ fμν½g�, to the equation of
motion obtained by variation with respect to fμν,�

δS½g; f�
δfμν

�
¼ 0; ð4Þ

we obtain �
δS½g; f�
δfμν

�
f¼f½g�

¼ 0: ð5Þ

This equation of motion (5) has the following properties: The
algebraic solution fμν½g� in (3) includes the second-order
derivatives of g, and Eq. (4) is a second-order derivative
equation. Then we find that the equation obtained by
substituting the solution fμν½g� in (3) into (4) is the fourth-
order Eq. (5). Moreover, the solutions of Eq. (5) are also the
solutions of the original Eqs. (3) and (4), so that the dynamics
described by Eq. (5) are stable despite being the fourth order.
In [16], Hassan et al. proposed the higher derivative

model obtained by substituting the algebraic solution fμν½g�
into the original action (1),

S0½g�≡ S½g; f½g��: ð6Þ

The dynamics described by this action S0½g� do not
completely coincide with the dynamics described by the
original action S½g; f�. Indeed, by the variation of the action
(6), we obtain

δS0½g�
δgμνðxÞ

¼
�
δS½g; f�
δgμνðxÞ

����
f

�
f¼f½g�

þ
Z

dDy
δfρσ½gðyÞ�
δgμνðxÞ

�
δS½g; f�
δfρσðyÞ

����
g

�
f¼f½g�

¼
Z

dDy
δfρσ½gðyÞ�
δgμνðxÞ

�
δS½g; f�
δfρσðyÞ

����
g

�
f¼f½g�

: ð7Þ

In the second line, we use the fact that the first term in
the first line identically vanishes due to the fact that the
algebraic solution f½g� satisfies the equation of motion (3).
Here, if we define

δfρσ½gðyÞ�
δgμνðxÞ

≡Oμν
ρσδðx − yÞ; ð8Þ

the operator O becomes the second-order derivative oper-
ator because the function f½g� contains RðgÞ. As a result, the
equation of motion of the theory with the action S0½g� in (6)
is given by

Oμν
ρσ

�
δS½g; f�
δfρσðxÞ

����
g

�
f¼f½g�

¼ 0: ð9Þ

Because the second-order differential operator O acts
on the lhs of the original Eqs. (5), and (5) is the fourth
order with respect to derivatives, we obtain the sixth-order
differential equation (9). By introducing the auxiliary field
λρσ, Eq. (9) could be decomposed as follows,

Oμν
ρσλ

ρσ ¼ 0;

�
δS½g; f�
δfρσðxÞ

����
g

�
f¼f½g�

¼ λρσ: ð10Þ

These equations express the system where the field λρσ

described by the second-order differential equation and the
field gμν described by the fourth-order differential equation
interact with each other. In order that the solution described
by Eq. (10) is equivalent to the solution described by the
original Eq. (5), it is necessary to be λρσ ¼ 0 by choosing
the initial conditions and/or the boundary conditions
for λρσ.
When we obtain the action (6), we need to solve Eq. (3)

for fμν explicitly. It is not, however, so easy to solve Eq. (3)
because Eq. (3) is nonlinear matrix equation. Then, Hassan
et al. have solved this equation perturbatively by expanding
this equation with respect to 1=m2. As a result, by
substituting the obtained solution into the original action
(1), they have shown

S½g; fðgÞ� ¼ MD−2
g

Z
dDx

ffiffiffiffiffiffi
−g

p �
Λþ cRRðgÞ

−
cRR
m2

�
RμνRμν −

D
4ðD − 1ÞR

2

��
þO

�
1

m4

�
:

ð11Þ

Here, although the coefficients Λ; cR; cRR are defined by
the parameters in the bigravity α; βn in (1), because the
explicit forms are a little bit complicated, we do not give
these forms now. By neglecting the higher-order terms
Oð 1

m4Þ, the remaining terms are those in the R-squared
gravity, which contains the healthy massless spin-two mode
and the ghostlike massive spin-two mode [for example, see
[11–13]]. Hassan et al. have conjectured that, although
the truncated model, which contains the R-squared gravity,
includes the ghost, but the complete form of this higher
derivative theory could be ghost-free.
The reason why they believed that the higher derivative

theory could be ghost-free is based on the analysis in the
linear approximation with respect to the fields, as given in
the Appendix of [16]. For avoiding the complication of our
argument, we do not use their argument now. Their argu-
ments are given in the Appendix, which we should read
after the argument in Sec. IVA.
In order to obtain the complete correspondence, we have

to analyze the theory without any approximations. Then,
we consider the two-scalar model proposed in [16], keeping
the interaction terms not equal to zero,
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S0½ϕ;ψ � ¼
Z

dDx

�
1

2
ϕ□ϕþ 1

2
ψ□ψ

−
m2

2
ðϕþ ψÞ2 − kVðϕ;ψÞ

�
; ð12Þ

and we investigate the possibility of eliminating the ghost.
We define the function ψ ½ϕ� as an algebraic solution with
respect to ψ of the equation of motion obtained by variation
with respect to ϕ. We consider the higher derivative model
obtained by substituting the solution ψ ¼ ψ ½ϕ� to the
original action S0½ϕ;ψ � in (12),

S0½ϕ�≡ S0½ϕ;ψ ½ϕ��: ð13Þ

We show that the amplitudes described by S0½ϕ�, by
choosing the appropriate physical space, coincide with
the amplitudes of the original theory.

III. MODEL OF SCALAR FIELDS

In this section, we give the fundamental properties of the
model proposed in this paper. Because most of the analysis
is focused on the linear level, the obtained results are not
so different from those obtained by Hassan et al. [16] but
the spectrum is obtained by using the formulations different
from those in [16].

A. Model of scalar fields

Although the model proposed in this paper has two
modes with positive kinetic terms, the corresponding
higher derivative model contains an additional mode. In
this section, we explain this fact by focusing our analysis to
the linear terms of fields. Let us consider the model of two
scalar fields interacting with each other by a mass mixing,

S0½ϕ;ψ � ¼
Z

dDx

�
1

2
ϕ□ϕþ 1

2
ψ□ψ

−
m2

2
ðϕþ ψÞ2 − kVðϕ;ψÞ

�
: ð14Þ

In the analogy with the linearization of the bigravity action
(1) which includes the mass mixing terms (see [10]), we
add the mass mixing term. We assume that Vðϕ;ψÞ is the
interaction term including the third order or higher powers
of fields without derivatives. This assumption is based on
not only the analogy of the nonderivative interaction terms
in bigravity, but also the necessity of expressing ψ as
an algebraic function of ϕ, ψ ¼ ψ ½ϕ�. More generally,
although we should add some self-interaction terms with
some derivatives of ϕ and ψ to the action (14), we do not
include them just for simplicity.

Under the field redefinition,

ϕ ¼ 1ffiffiffi
2

p ðξþ ηÞ; ψ ¼ 1ffiffiffi
2

p ðξ − ηÞ; ð15Þ

the linear terms of the action (14) are diagonalized as
follows,

S0½ϕðξ;ηÞ;ψðξ;ηÞ�jlinear ¼
Z

dDx

�
1

2
ξð□−2m2Þξþ1

2
η□η

�
:

ð16Þ

From the above expression, we find this model includes
two scalar fields with mass 0 and 2m2.
By the variation of the action (14) with respect to ϕ, we

obtain

δS0
δϕ

¼ ð□ −m2Þϕ −m2ψ − k
∂Vðϕ;ψÞ

∂ϕ ¼ 0: ð17Þ

Because this equation does not include any derivatives
of ψ , we can solve (17) with respect to ψ algebraically.
Because Eq. (17) is the polynomial with respect to ψ , the
solution is not unique and the number of the solutions
depends on the exponent of the highest power terms of ψ .
Nevertheless, the solution corresponding to the vacuum
ϕ ¼ 0 ¼ ψ is uniquely determined, due to the existence
of the mass mixing term. Then, just for simplicity, we
adopt ψ ½ϕ� which is the algebraic solution satisfying
ψ ½ϕ ¼ 0� ¼ 0.2 Through all of the later arguments in this
paper, we adopt this class of solution. In this assumption,
the linear part of ψ ½ϕ� is expressed as follows,

m2ψ ½ϕ� ¼ ð□ −m2ÞϕþOðϕ2Þ: ð18Þ

The higher derivative theory derived by Hassan et al.
[16] corresponds to the new action S0½ϕ;ψ ½ϕ�� obtained
by substituting the algebraic solution (18) into the original
action (14). Then the linear terms in the action are
expressed as follows,

2In this paper, we analyze the scattering amplitudes in order to
argue the ghost-freeness of the higher derivative theory (13).
When we calculate the perturbative scattering amplitude, we have
to choose the vacuum. As will be discussed later, the amplitudes
of the higher derivative theory with the assumption ψ ½ϕ ¼ 0� ¼ 0
correspond to those of the original theory calculated around the
vacuum ϕ ¼ 0 ¼ ψ . On the other hand, another algebraic
solution corresponds to the perturbative theories around another
vacuum. We can extend our discussion to including another
vacuum by replacing the mass terms m2ðϕþ ψÞ2 in the action
(14) with more general terms m2

ϕϕ
2 þ 2m2

ϕψϕψ þm2
ψψ

2 (and
regarding the replaced action as the action which have already
been expanded around the interested vacuum). In the argument
under the replaced action, the assumption ψ ½ϕ ¼ 0� ¼ 0 is no
longer the specific case. But, just for simplicity, we do not extend
the discussion in this paper.
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S0½ϕ;ψ ½ϕ�� ¼
Z

dDx

�
1

2m4
ϕ□ð□ − 2m2Þð□ −m2Þϕ

þOðϕ3Þ
�
: ð19Þ

From the action (19), we find that there are the mass
spectrum 0, 2m2, and an additional spectrum m2. In the
next part, we investigate whether each of the modes is
ghost or not.

B. Spectrum

We have found the higher derivative model, whose linear
parts are given in (19), contain an additional field with mass
squared m2. Now, in order to check whether the additional
spectrum and original modes are ghost or not, we decom-
pose the action (19) by introducing the Lagrange multiplier
field λ,

S0½ϕ;ψ ½ϕ��→S½ϕ;ψ ;λ�≡S0½ϕ;ψ �þm2

Z
dDxλðψ−ψ ½ϕ�Þ:

ð20Þ

Here, in order to simplify the later arguments, we put the
coefficientm2 in front of λ. Indeed, this coefficient does not
affect the dynamics, no matter how we choose it. By using
Eq. (18), the linear part of S½ϕ;ψ ; λ� can be rewritten as
follows,

S½ϕ;ψ ; λ�jlinear ¼
Z

dDx

�
1

2
ϕ□ϕþ 1

2
ψ□ψ −

m2

2
ðϕþψÞ2

þ λðm2ψ − ð□−m2ÞϕÞ
�

¼ S0½ϕ;ψ �jlinear −
Z

dDxλðxÞδS0½ϕ;ψ �jlinear
δϕðxÞ :

ð21Þ

From the last line of the above equations, it is obvious that
the Lagrange multiplier terms could be eliminated by the
field redefinition ϕ → ϕþ λ,

S½ϕþ λ;ψ ; λ�jlinear ¼
Z

dDx

�
1

2
ϕ□ϕþ 1

2
ψ□ψ

−
m2

2
ðϕþ ψÞ2 − 1

2
λð□ −m2Þλ

�
:

ð22Þ

Then we find that λ has the kinetic term with a negative
signature; therefore, λ is a ghost with mass m2. On the
other hand, we also find that the terms of ϕ and ψ
correspond to the linear terms of the original theory (14);
therefore, ϕ and ψ are healthy fields. Indeed, under the
field redefinitions,

ϕ ¼ 1ffiffiffi
2

p ðξþ ηÞ; ψ ¼ 1ffiffiffi
2

p ðξ − ηÞ; ð23Þ

we obtain following diagonal expression,

S̄½ξ; η; λ�jlinear ¼
Z

dDx

�
1

2
ξð□ − 2m2Þξþ 1

2
η□η

−
1

2
λð□ −m2Þλ

�
;

S̄½ξ; η; λ�≡ S½ϕðξ; ηÞ þ λ;ψðξ; ηÞ; λ�: ð24Þ

This action (24) has the healthy modes ξ and η, and the
extra ghost mode λ. In other words, although the fields
included in the original action S0½ϕ;ψ � (14) are healthy,
the new ghost field has appeared by the procedure of
substitution. In the following sections, we would like to
call ðξ; ηÞ in the action (24) or ðϕ;ψÞ in the action (22)
“physical fields.”

IV. CONJECTURE AND SAMPLE CALCULATION

The purpose of this section is to conjecture the
correspondence between the original theory S0½ϕ;ψ �
(14) and the corresponding higher derivative theory
S0½ϕ;ψ ½ϕ�� (19). For this purpose, we consider specific
interaction terms and calculate the tree-level amplitudes
of the higher derivative theory described by the action
S0½ϕ;ψ ½ϕ�� (19).

A. The conjecture

As a result, “physical amplitudes” of the higher derivative
theory coincide with the scattering amplitudes of
the original theory. Here, “physical amplitudes” mean the
scattering amplitudes where all external lines are taken to
physical fields ξ and η in (23). In other words, the conjecture
is expressed as the realization of the correspondence,

hξðk⃗1Þ…ξðk⃗nÞηðk⃗nþ1Þ…ηðk⃗nþmÞ; outjξðp⃗1Þ…ξðp⃗NÞηðp⃗Nþ1Þ…ηðp⃗NþMÞ; iniOriginal
¼ hξðk⃗1Þ…ξðk⃗nÞηðk⃗nþ1Þ…ηðk⃗nþmÞ; outjξðp⃗1Þ…ξðp⃗NÞηðp⃗Nþ1Þ…ηðp⃗NþMÞ; iniHD; ð25Þ
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in the tree level. As will be discussed later, because the
Green functions of both theories are not identical with each
other, we express the correspondence by using the S matrix
elements. This means that the correspondence is only valid
under the on-shell conditions. The reason why we find this
conjecture and the proof for the specific case are given in
the Appendix.

B. A sample calculation

In this part, in order to confirm the validity of the
conjecture (25), we investigate the structure of the
Feynman diagrams of the higher derivative theory for
given interaction terms. As a result, we find the interesting
structure of the diagrams. Now, we consider the third-order
interaction term with respect to the massive field ξ,

S½ξ; η� ¼
Z

dDx

�
1

2
ξð□ − 2m2Þξþ 1

2
η□η − μ

ffiffiffi
2

p

3
ξ3
�

¼
Z

dDx

�
1

2
ϕ□ϕþ 1

2
ψ□ψ −

m2

2
ðϕþ ψÞ2

−
μ

3!
ðϕþ ψÞ3

�
: ð26Þ

We start with deriving the corresponding higher derivative
theory. The equation of motion obtained by the variation
of the action (26) with respect to ϕ,

δS
δϕ

¼ ð□ −m2Þϕ −m2ψ −
μ

2
ðϕþ ψÞ2 ¼ 0; ð27Þ

could be solved for ψ as follows:

ψ ½ϕ� ¼ ϕ −
m2

μ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

μ2
þ 2

μ
□ϕ

s
: ð28Þ

We find that there are two solutions because the equation of
motion (27) is quadratic with respect to ψ . Now we restrict
our arguments to the unique solution with the vacuum
ϕ ¼ 0 ¼ ψ . The signature satisfying this condition is “þ”
in (28). Under this selection, Eq. (28) can be expanded with
respect to μ as follows,

m2ψ ½ϕ� ¼ ð□−m2Þϕ−
μ

2m4
ð□ϕÞ2 þ μ2

2m8
ð□ϕÞ3 þOðμ3Þ:

ð29Þ

By replacing ψ in the original action S0½ϕ;ψ � with ψ ½ϕ�, we
obtain the higher derivative theory. However, for the
simplicity of the analysis, we do not consider the higher
derivative form. Instead of this, we analyze the action (24)
expressed by ξ, η, and λ. Now, we expand the action with
respect to μ,

S½ϕðξ; ηÞ þ λ;ψðξ; ηÞ; λ�≡X∞
n¼0

S̄ðnÞ½ξ; η; λ�: ð30Þ

Here S̄ðnÞ½ξ; η; λ� are the nth-order terms with respect to μ.
By using this notation, the lower-order terms of S̄ðnÞ½ξ; η; λ�
corresponding to the algebraic solution (29) are given by

S̄ð0Þ½ξ; η; λ� ¼
Z

dDx

�
1

2
ξð□ − 2m2Þξþ 1

2
η□η −

1

2
λð□ −m2Þλ

�
;

S̄ð1Þ½ξ; η; λ� ¼
Z

dDx

�
−

ffiffiffi
2

p

3
μξ3 þ μ

4m2
λfð□ξÞ2 − 4m4ξ2g þ μffiffiffi

2
p λf□ξ□λ −m4ξλg

þ μ

4m4
λf2□ξþ□ηþ 2

ffiffiffi
2

p
□λg□η −

μ

3!
λ3 þ μ

2m4
λð□λÞ2

�
;

S̄ð2Þ½ξ; η; λ� ¼
Z

dDx

�
−

μ2

2m8

�
λ

�
1

2
ffiffiffi
2

p ð□ξþ□ηÞ3 þ 3

2
ð□ξþ□ηÞ2□λþ 3ffiffiffi

2
p ð□ξþ□ηÞð□λÞ2 þ ð□λÞ3

�
: ð31Þ

The lowest terms in S̄ð0Þ coincide with those in (24). The
Feynman diagrams of the third-order terms are summarized
in Fig. 1. Now let us investigate the sufficient condition for
the realization of the conjecture given in (25). We should
note again that the following arguments are only in the case
of tree level.
In the first-order terms with respect to μ, S̄ð1Þ, the first

term, which is represented as ① in Fig. 1, coincides with
the interaction term of the original action (26). For the
realization of the conjecture (25), it is enough to show that
the amplitudes including the vertexes except the vertex ①

do not contribute to the physical amplitudes. Moreover,
because the terms S̄ðnÞ; n ≥ 2, include the Lagrange multi-
plier field λ, we find that all terms except ① always include
the ghost λ. Then, if any contribution from some vertexes
except ① exists, there must be the ghost in the internal line.
Therefore, for the realization of (25), it is enough to show
that the diagrams including the ghost in internal line do not
contribute to the physical amplitudes.
In order to confirm the sufficient condition above, it is

enough to show there are no vertexes which could decrease
the number of ghosts. The reason and the more exact
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meaning of this statement may be obvious by the following
consideration: Let us consider any vertex which contains
the some physical fields and some ghost fields, in the left-
hand side of Fig. 2. Here, the solid lines represent the
physical fields, and the broken lines represent the ghost. If
we try to construct the physical amplitudes from this vertex,
we must decrease the number of ghosts by acting some
vertexes, as in the right-hand side of Fig. 2. The vertex
which could decrease the number of the ghosts are only the
first-order terms with respect to ghost. Then, if the action
does not contain the first-order terms with respect to the
ghost, we cannot construct the diagrams contributing to the
physical amplitude from the vertex in the left-hand side
of Fig. 2.
Although the action (31) seems to contain the first-order

terms with respect to the ghost [that is, the vertexes ②, ④,
and ⑤ in Fig. 1], these terms effectively do not contribute to
the physical amplitudes. The vertex ② obtained from
following terms,

μ

4m2
λfð□ξÞ2 − 4m4ξ2g; ð32Þ

vanishes if both of the physical fields ξ are taken to external
line. Indeed, the on-shell condition is given by □ → 2m2,
then the terms (32) obviously vanish. Similarly, we find that
the contributions from ④ and ⑤ vanish again under the on-
shell condition of η. In order to emphasize this fact, we put
some points on the diagrams represented in Fig. 1. The
lines which connect the two points with the same color
vanish by taking all the lines with the points to the external

lines simultaneously. From this property, it is impossible to
construct the nonvanishing physical amplitude by using the
terms (32) at least lower than the six-points diagrams. The
nontriviality appears in the six-points diagrams. Because
we can construct the nonvanishing diagrams like (a) of
Fig. 3 with an on-shell condition for the physical fields,
without the on-shell condition of λ, the six-points diagram
like (f) of Fig. 4 could survive under the on-shell condition.
So that, we afraid if this diagram could contribute to the
physical amplitudes. In this order, however, we cannot
ignore the contributions from the higher-order terms,

�
−

μ2

2m8

�
λ

1

2
ffiffiffi
2

p ð□ξÞ3; ð33Þ

in S̄ð2Þ. Surprisingly, the summation of the diagrams (a)
and (b) with the on-shell condition of the physical fields,
without the on-shell condition of λ, becomes equal to zero.
So we could regard the summation of these diagrams as
the diagram (c) of Fig. 3. Therefore, under the on-shell
condition, the summation of the nonvanishing amplitudes
represented in Fig. 4 becomes equal to zero. In this way, we
predict that the nonvanishing diagrams constructed from
the lower-order terms could be eliminated by the diagrams
constructed from the higher-order terms. In the following

FIG. 2. The operation decreasing the number of ghost.

FIG. 3. The sums of the nonvanishing diagrams.

FIG. 1. Interaction terms in the third order.

FIG. 4. The contribution of the nonvanishing diagrams to the
physical amplitudes.

TOWARDS CONSTRUCTION OF GHOST-FREE HIGHER … PHYS. REV. D 97, 124001 (2018)

124001-7



sections, we would like to prove this conjecture for general
nonderivative interaction terms in any order.

V. GENERAL PROOF

In the previous sections, we specified the modes of the
theory described by the action S0½ϕ;ψ ½ϕ��, and obtained
the conjecture for the correspondence between the higher
derivative theory S0½ϕ;ψ ½ϕ�� and the original theory
S0½ϕ;ψ �. In this section, we would like to argue general
nonderivative interaction terms Vðϕ;ψÞ and prove the
conjecture in any order with respect to the perturbative
parameter k.

A. General algebraic solution

First, in this section, we derive the lower-order terms
with respect to k in ψ ½ϕ�. The full-order solution will be
derived in a later section.
Let us consider the action (14) with general nonderiva-

tive interaction terms,

S0 ¼
Z

dDx

�
1

2
ϕ□ϕþ 1

2
ψ□ψ −

m2

2
ðϕþψÞ2 − kVðϕ;ψÞ

�
:

ð34Þ

Here, Vðϕ;ψÞ consists of the general nonderivative inter-
action terms including third- or higher-order terms of fields.
The equation of motion derived by the variation with
respect to ϕ,

δS0
δϕ

¼ ð□ −m2Þϕ −m2ψ − kV1;0ðϕ;ψÞ ¼ 0;

Vn;mðϕ;ψÞ≡ ∂nþmVðϕ;ψÞ
∂nϕ∂mψ

; ð35Þ

could be solved with respect to ψ around the vacuum
ϕ ¼ 0 ¼ ψ for any Vðϕ;ψÞ. We assume a perturbative
solution expanded with respect to k in the following form,

m2ψ ½ϕ� ¼ m2ψ0½ϕ� þ F½ϕ�; m2ψ0½ϕ�≡ ð□ −m2Þϕ;

F½ϕ�≡X∞
n¼1

knFðnÞ½ϕ�; ð36Þ

and determine the F½ϕ�. By substituting (36) into (35), and
expanding the obtained expression in powers of k, we find

−
1

k
F½ϕ� ¼ V1;0

�
ϕ;ψ0½ϕ� þ

1

m2
F½ϕ�

�

¼
X∞
n¼0

V1;nðϕ;ψ0½ϕ�Þ
n!

�
F½ϕ�
m2

�
n

¼
X∞
n¼0

1

m2n

V1;nðϕ;ψ0½ϕ�Þ
n!

X∞
k1¼1

…
X∞
kn¼1

Fðk1Þ½ϕ�…FðknÞ½ϕ�kk1þ���þkn

¼
X∞
n¼0

1

m2n

V1;nðϕ;ψ0½ϕ�Þ
n!

X∞
N¼1

kN
X

1≤k1;…;kn≤N−nþ1

Fðk1Þ½ϕ�…FðknÞ½ϕ�δk1þ…kn;N

¼ V1;0ðϕ;ψ0Þ þ
X∞
N¼1

kN
XN
n¼1

1

m2n

V1;nðϕ;ψ0½ϕ�Þ
n!

XN−nþ1

s1¼1

Fðs1Þ½ϕ�
XN−nþ1−s1

s2¼1

Fðs2Þ½ϕ�…

XN−n−s1−s2−…−sn−2

sn−1¼1

Fðsn−1Þ½ϕ�FðN−nþ1−s1−s2−…−sn−1Þ½ϕ�

¼ V1;0ðϕ;ψ0½ϕ�Þ þ
X∞
N¼1

kN
XN
n¼1

1

m2n

V1;nðϕ;ψ0½ϕ�Þ
n!

×

�
Πn−1

i¼1

XN−nþ1−Σi−1
k¼1

sk

si¼1

FðsiÞ½ϕ�
�
FðN−nþ1−Σn−1

k¼1
skÞ½ϕ�: ð37Þ

By using the last expression for F½ϕ� in (36) and by comparing both sides in (37) order by order in k, we obtain the
following recursion relations,
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Fð1Þ ¼ −V1;0ðϕ;ψ0½ϕ�Þ;

FðNþ1Þ ¼ −
XN
n¼1

1

m2n

V1;nðϕ;ψ0½ϕ�Þ
n!

×

�
Πn−1

i¼1

XN−nþ1−Σi−1
k¼1

sk

si¼1

FðsiÞ½ϕ�
�
FðN−nþ1−Σn−1

k¼1
skÞ½ϕ�:

ð38Þ

Solving the recursion relations for lower-order terms, we
find

Fð1Þ½ϕ�¼−V1;0
0 ;

Fð2Þ½ϕ�¼ 1

m2
V1;0
0 V1;1

0 ;

Fð3Þ½ϕ�¼−
1

m4
V1;0
0

�
ðV1;1

0 Þ2þ1

2
V1;2
0 V1;0

0

�
;

Fð4Þ½ϕ�¼ 1

m6
V1;0
0

�
ðV1;1

0 Þ3þ3

2
V1;0
0 V1;1

0 V1;2
0 þ1

6
ðV1;0

0 Þ2V1;3
0

�
:

ð39Þ

Here, we express Vn;mðϕ;ψ0½ϕ�Þ as Vn;mðϕ;ψ0½ϕ�Þ≡ Vn;m
0

for simplicity.

B. Validity of conjecture

In this section, we confirm the conjecture (25) for any
nonderivative interaction terms, Vðϕ;ψÞ, in lower-order
perturbations. As we have seen in Sec. IV, a sufficient
condition realizing the conjecture (25) is that the action of
the higher derivative theory does not include the first-order
terms with respect to λ. Then we consider eliminating
the first-order terms with respect to λ by some field
redefinitions.
According to the Kamefuchi-O’Raifeartaigh-Salam’s

theorem [17], the S matrix elements are invariant, under
the fields redefinitions expressed as follows,

ϕ0 ¼ cϕþ u½ϕ;ψ ; λ�; ð40Þ

where c must be a nonvanishing constant, and u½ϕ;ψ ; λ�
must be second- or higher-order terms with respect to
fields or some derivatives of these fields. Then, it is
enough to confirm that all field redefinitions [except for
later (42)] satisfy the expression (40), in order to realize the
conjecture (25).
Let us consider the action obtained by substituting the

algebraic solution (36) into the action decomposed by the
Lagrange multiplier field λ (20),

S1½ϕ1;ψ ; λ�≡
Z

dDx

�
1

2
ϕ1□ϕ1 þ

1

2
ψ□ψ −

m2

2
ðϕ1 þ ψÞ2 − kVðϕ1;ψÞ þ λðm2ψ −m2ψ0½ϕ1� − F½ϕ1�Þ

�

¼ S0½ϕ1;ψ � þ
Z

dDx½λðm2ψ −m2ψ0½ϕ1� − F½ϕ1�Þ�: ð41Þ

Here, in order to regard the successive redefinitions of the action and ϕ in the following as some arithmetic progressions,
we put the number “1” as a suffix on them. As we have seen in Sec. III B, the first-order terms with respect to λ, in the zero
order of k, could be eliminated by the field redefinition,

ϕ1 ¼ ϕ2 þ λ: ð42Þ

Under the redefinition (42), the action (41) is transformed as follows,

S2½ϕ2;ψ ; λ�≡ S1½ϕ1;ψ ; λ� ¼ S0½ϕ2;ψ � þ
Z

dDxλ½−kV1;0ðϕ2;ψÞ þ F½ϕ2�� þOðλ2Þ

¼ S0½ϕ2;ψ � þ
Z

dDxλ

�
−kðV1;0ðϕ2;ψÞ þ Fð1Þ½ϕ2�Þ −

X∞
n¼2

knFðnÞ½ϕ2�
�
þOðλ2Þ: ð43Þ

Because we are not interested in second- or higher-order
terms with respect to λ, we could ignore these terms.
Now, the terms independent of k have vanished and new

terms proportional to k have appeared. The new terms are
expressed by the second term of the first line in (43),
−kλV1;0ðϕ2;ψÞ, that is, the contribution from S0. Then, in
the second line of (43), we pick up the first-order terms with
respect to k. We could show that these terms vanish under

the on-shell condition. By the result in (39), the first-order
terms with respect to k are expressed as follows,

−kλðV1;0ðϕ2;ψÞ − V1;0ðϕ2;ψ0½ϕ2�ÞÞ: ð44Þ

The only difference between the two terms is that the
arguments are either ψ or ψ0½ϕ2�. Now, because the linear
terms have already been diagonalized, the condition,
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m2ψ ¼ m2ψ0½ϕ2�≡ ð□ −m2Þϕ2, is the linear parts of the
solution of the EoM obtained by the variation of the
action respect to ϕ2, i.e., the on-shell condition. Hence,
the contributions from the vertexes (44) to the scattering
amplitudes vanish when all the physical fields ϕ2;ψ are
taken to the external lines. These terms just correspond to
the terms which vanish under the on-shell condition in the
ξ3-model,

μ

4m2
λfð□ξÞ2 − 4m4ξ2g: ð45Þ

Now, because we have assumed that V1;0ðϕ;ψÞ includes
third- or higher-order terms of fields, we have verified that
the diagrams, less than six points, including some internal
lines of ghost, do not contribute to the physical amplitudes
for general nonderivative interaction terms.
Moreover, the terms (44) could be eliminated by addi-

tional field redefinition. The fact that the terms (44) become
equal to zero under the on-shell condition ψ ¼ ψ0½ϕ2�,
means that the terms (44) could be factored by
ðψ − ψ0½ϕ2�Þ. Indeed, by expanding V1;0ðϕ2;ψÞ around
ψ ¼ ψ0½ϕ2�, because the leading terms are canceled each
other out, the terms (44) could obviously be factored by
ðψ − ψ0½ϕ2�Þ. Because the terms ðψ − ψ0½ϕ2�Þ are the
linear part of EoM, we could eliminate these terms by
some field redefinition. Indeed, under the field redefinition,

ϕ2 ¼ ϕ3 þ λu½ϕ3;ψ �; ð46Þ

the contributions from S0 are given by

S0½ϕ2 ¼ ϕ3 þ λu½ϕ3;ψ �;ψ � − S0½ϕ3;ψ �

¼ −
Z

dDx½m2ðψ − ψ0½ϕ3�Þ þ kV1;0ðϕ3;ψÞ�λuðϕ3;ψÞ

þOðλ2Þ: ð47Þ

The contributions from the other terms could be included in
Oðλ2Þ. Then (44) could be eliminated, if we choose the
term u½ϕ3;ψ � as follows,

u½ϕ3;ψ � ¼ −
k
m2

ΔV1;0ðϕ3;ψÞ
Δψ

;

ΔV1;0ðϕ3;ψÞ≡ V1;0ðϕ3;ψÞ − V1;0ðϕ3;ψ0½ϕ3�Þ;
Δψ ≡ ψ − ψ0½ϕ3�: ð48Þ

We should note that, although the representation (48) seems
to be defined as a division of Δψ , because ΔV proportional
to Δψ , it is in fact some polynomial of the fields. So that,
the field redefinition (46) satisfies the expression (40),
and the S matrix elements are invariant under this field
redefinition.
For the convenience of later arguments, we now define

the operator Δ for any function fðψÞ of ψ as follows,

ΔfðψÞ≡ fðψÞ − lim
ψ→ψ0

fðψÞ: ð49Þ

We should note that ΔV1;0ðϕ;ψÞ and Δψ in (48) surely
satisfy this definition. Here, for the field redefinitions later,
the argument ϕ of the limiting value ψ0½ϕ� is defined as the
adopted variable ϕn for each frame. In other words, more
correctly, we should define the operator Δn as follows,

ΔnfðψÞ≡ fðψÞ − lim
ψ→ψ0½ϕn�

fðψÞ; ð50Þ

but we ignore the index n just for simplicity. Indeed,
the difference of each index n could be included into
the ignored term Oðλ2Þ in all of the following relevant
equations.
After the field redefinition (46), the action could be

expressed as follows,

S3½ϕ3;ψ ; λ�
≡ S2½ϕ2 ¼ ϕ3 þ λu½ϕ3;ψ �;ψ ; λ�

¼ S0½ϕ3;ψ � þ
Z

dDx

�
λk2

m2

�
V1;0ðϕ3;ψÞ

ΔV1;0ðϕ3;ψÞ
Δψ

−m2Fð2Þ½ϕ3�
�
− λ

X∞
n¼3

knFðnÞ½ϕ3� þOðλ2Þ
�
: ð51Þ

From the result of the previous part, m2Fð2Þ½ϕ3� ¼
V1;0ðϕ3;ψ0½ϕ3�ÞV1;1ðϕ3;ψ0½ϕ3�Þ, we find the terms propor-
tional to second powers of k are given by

λk2

m2

�
V1;0ðϕ3;ψÞ

ΔV1;0ðϕ3;ψÞ
Δψ

− V1;0ðϕ3;ψ0½ϕ3�ÞV1;1ðϕ3;ψ0½ϕ3�Þ
�
: ð52Þ

We should note the following important fact: By taking
the on-shell limit, ψ → ψ0½ϕ3�, because the component
ΔV1;0ðϕ3;ψÞ=Δψ in the first term goes to the differential
coefficient V1;1ðϕ3;ψ0½ϕ3�Þ, the terms (52) cancel each
other out. So that, now, we have verified that the diagrams,
less than eight points, including some internal lines of
ghost, are not contributing to the physical amplitudes.
Moreover, because the second term in (52) is the on-shell

limit of the first term, these terms could be expressed by
using Δ defined in (49), i.e.,

�
V1;0ðϕ3;ψÞ

ΔV1;0ðϕ3;ψÞ
Δψ

− V1;0ðϕ3;ψ0½ϕ3�ÞV1;1ðϕ3;ψ0½ϕ3�Þ
�

¼ Δ
�
V1;0ðϕ3;ψÞ

ΔV1;0ðϕ3;ψÞ
Δψ

�
: ð53Þ
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We should note that the operation of the overall Δ also acts

on Δψ . On the other hand, Δ in the numerator of ΔV1;0ðϕ3;ψÞ
Δψ

should only be operated to V1;0. Hence, more correctly,
ΔV1;0ðϕ3;ψÞ

Δψ is the term divided by Δψ after operating the Δ to

V1;0; i.e., we should represent it as follows,

rhs ¼ Δ
�
V1;0ðϕ3;ψÞ

1

Δψ
ΔV1;0ðϕ3;ψÞ

�
: ð54Þ

Now, we find that the terms proportional to k2 are
also equal to zero under the on-shell condition, and find
also that these terms are proportional to Δψ . So that,
these terms could also be eliminated by new field
redefinition satisfying the expression (40). We could
easily predict the appearance of the terms proportional
to k3 which are also equal to zero under the on-shell

condition after the field redefinition. Therefore, we
could predict the realization of this mechanism in
any order of k. In the next part, we prove the realization
of the mechanism.

C. General proof

In the previous part, in lower orders of k, we saw that the
first-order terms with respect to λ could be eliminated by
the field redefinitions conserving the S matrix elements
invariant. In this part, we prove the possibility of the
eliminations of the first-order terms with respect to λ in any
order of k. Then, by mathematical induction, the proof is
performed for some general terms of the actions, the field
redefinitions, and the FðnÞ, given by the analogy of the
previous part. The general terms given by the analogy in the
previous part are expressed as

Sn½ϕn;ψ ; λ� ¼ S0½ϕn;ψ � þ
Z

dDx

�
ð−1Þnþ1

kn−1

m2n−4 λΔ
�
V1;0ðϕn;ψÞ

1

Δψ
Δ
�

n−2
V1;0ðϕn;ψÞ − λ

X∞
m¼n

kmFðmÞ½ϕn�
�
þOðλ2Þ;

ðn ≥ 2Þ; ð55Þ

ϕn ¼ ϕnþ1 þ
ð−1Þnþ1kn−1

m2n−2 λ
1

Δψ
Δ
�
V1;0ðϕnþ1;ψÞ

1

Δψ
Δ
�

n−2
V1;0ðϕnþ1;ψÞ; ðn ≥ 2Þ; ð56Þ

FðnÞ½ϕ� ¼ lim
ψ→ψ0

ð−1Þn
m2n−2

�
V1;0ðϕ;ψÞ 1

Δψ
Δ
�

n−1
V1;0ðϕ;ψÞ:ðn ≥ 1Þ ð57Þ

The operator Δ is defined as acting on all the functions in the right-hand side of Δ. An example is given by�
V1;0ðϕ;ψÞ 1

Δψ
Δ
�

2

V1;0ðϕ;ψÞ ¼ V1;0ðϕ;ψÞ 1

Δψ
ΔV1;0ðϕ;ψÞ 1

Δψ
ΔV1;0ðϕ;ψÞ

¼ V1;0ðϕ;ψÞ 1

Δψ
ΔV1;0ðϕ;ψÞ 1

Δψ
ðV1;0ðϕ;ψÞ − V1;0ðϕ;ψ0½ϕ�ÞÞ

¼ V1;0ðϕ;ψÞ 1

Δψ

�
V1;0ðϕ;ψÞ 1

Δψ
ðV1;0ðϕ;ψÞ − V1;0ðϕ;ψ0½ϕ�ÞÞ

− V1;0ðϕ;ψ0½ϕ�ÞV1;1ðϕ;ψ0½ϕ�Þ
�
: ð58Þ

We should also note that the second- or higher-order terms with respect to the operator ð1=ΔψÞΔ are NOTasymptotic to the
one just replaced the operator ð1=ΔψÞΔ to normal derivative d=dψ in the limit of the on-shell condition. The nth-order
derivative of the function fðψÞ is asymptotic to the following term,

lim
ψ→ψ0

�
1

Δψ
Δ
�

n
fðψÞ ¼ 1

n!

�
dnfðψÞ
dψn

�
ψ¼ψ0

: ð59Þ

There is a difference by the factor 1=n!. Furthermore, the Leibniz rule is normally given by

1

Δψ
ΔðfðψÞgðψÞÞ ¼

�
1

Δψ
ΔfðψÞ

�
ð lim
ψ→ψ0

gðψÞÞ þ ð lim
ψ→ψ0

fðψÞÞ
�

1

Δψ
ΔgðψÞ

�
: ð60Þ

By using (59) and (60), we can check Eqs. (55)–(57) straightforwardly.
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Now, let us prove Eqs. (55)–(57). First of all, we should
note that the recursion equations (56) for ϕn are not the
proposition that should be proved, but the given redefini-
tions which define the functional forms of the actions Sn. In
other words, the functional Sn½ϕn;ψ ; λ� is defined by the
recursions Sn−1½ϕn−1½ϕn�;ψ ; λ� ¼ Sn½ϕn;ψ ; λ� with the ini-
tial term (43). In order to verify the correctness of the
actions (55), it is necessary to verify the correctness of
Eq. (57) in advance.

Let us verify the correctness of Eq. (57). For this purpose,
we again solve Eq. (36), which F½ϕ�≡P∞

n¼1 k
nFðnÞ½ϕ�

should satisfy, by using the operatorΔ. The form of Eq. (36)
is now given by

F½ϕ� þ kV1;0

�
ϕ;ψ0½ϕ� þ

F½ϕ�
m2

�
¼ 0: ð61Þ

By decomposing the termV1;0ðϕ;ψ0½ϕ� þ 1
m2 FÞ in the terms

which do not include any k and the other terms, we obtain

F½ϕ� ¼ −k
�
V1;0ðϕ;ψ0½ϕ�Þ þ ΔV1;0

�
ϕ;ψ0½ϕ� þ

F½ϕ�
m2

��
;

ΔV1;0

�
ϕ;ψ0½ϕ� þ

F½ϕ�
m2

�
≡ V1;0

�
ϕ;ψ0½ϕ� þ

F½ϕ�
m2

�
− lim

F⟶0
V1;0

�
ϕ;ψ0½ϕ� þ

F½ϕ�
m2

�
: ð62Þ

Here, the definition of operator Δ is identical with the one used in (49) or (50) in the previous section. Now, the first
term V1;0ðϕ;ψ0½ϕ�Þ becomes independent of k, and the second term ΔV1;0 includes the first- or higher-order terms with
respect to k. Then, the first-order term Fð1Þ½ϕ� has been decided. In this way, we can pick up the lowest-order terms with
respect to k by using the operator Δ.
Moreover, the terms ΔV1;0 could be decomposed as follows,

ΔV1;0

�
ϕ;ψ0 þ

F
m2

�
¼ F

m2

1

F=m2
ΔV1;0

�
ϕ;ψ0 þ

F
m2

�

¼ −
k
m2

V1;0

�
ϕ;ψ0 þ

F
m2

�
1

F=m2
ΔV1;0

�
ϕ;ψ0 þ

F
m2

�

¼ −
k
m2

�
lim
F→0

V1;0

�
ϕ;ψ0 þ

F
m2

�
1

F=m2
ΔV1;0

�
ϕ;ψ0 þ

F
m2

�

þ ΔV1;0

�
ϕ;ψ0 þ

F
m2

�
1

F=m2
ΔV1;0

�
ϕ;ψ0 þ

F
m2

��
: ð63Þ

Here, just for simplicity, we omit the dependence ½ϕ� in the expressions of ψ0 and F. In the second line, we substitute
Eq. (61) into the component F in the numerator. In the third line, the first term becomes the lowest-order term with respect to
k, and the second term includes the higher terms. Then the second-order term Fð2Þ has been decided.
In this way, the term FðnÞ½ϕ� could be decided order by order, by using Eq. (61) and Δ. In the same way as the above

procedure, we obtain the general recursion equations,

Δ
�
V1;0

�
ϕ;ψ0 þ

F
m2

�
1

F=m2
Δ
	

n
V1;0

�
ϕ;ψ0 þ

F
m2

�

¼ −
k
m2

V1;0

�
ϕ;ψ0 þ

F
m2

�
1

F=m2
Δ
�
V1;0

�
ϕ;ψ0 þ

F
m2

�
1

F=m2
Δ
	

n
V1;0

�
ϕ;ψ0 þ

F
m2

�

¼ −
k
m2

�
lim
F→0

�
V1;0

�
ϕ;ψ0 þ

F
m2

�
1

F=m2
Δ
	

nþ1

V1;0

�
ϕ;ψ0 þ

F
m2

�

þ Δ
�
V1;0

�
ϕ;ψ0 þ

F
m2

�
1

F=m2
Δ
	

nþ1

V1;0

�
ϕ;ψ0 þ

F
m2

��
: ð64Þ

By substituting the recursion equations into Eq. (62) order by order, we obviously obtain the complete form of F as follows,
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F ¼
X∞
n¼1

lim
F→0

ð−kÞn
m2n−2

�
V1;0

�
ϕ;ψ0 þ

F
m2

�
1

F=m2
Δ
�

n−1
V1;0

�
ϕ;ψ0 þ

F
m2

�

¼
X∞
n¼1

lim
ψ→ψ0

ð−kÞn
m2n−2

�
V1;0ðϕ;ψÞ 1

Δψ
Δ
�

n−1
V1;0ðϕ;ψÞ: ð65Þ

Therefore, we have verified Eq. (57).
Finally, let us complete our proof by confirming the correctness of general terms of the action (55) by the mathematical

induction. In the case of n ¼ 2, it is obvious that the action (55) coincide with (43). Now, for the fixed n, we assume that
Eq. (55) is correct. Under the field redefinition (56), it is obvious from Eq. (47) that the original action S0½ϕn;ψ � of Eq. (55)
transforms as follows,

S0½ϕn;ψ � − S0½ϕnþ1;ψ � ¼ −
Z

dDx½m2Δψ þ kV1;0ðϕnþ1;ψÞ�

×
ð−1Þnþ1kn−1

m2n−2 λ
1

Δψ
Δ
�
V1;0ðϕnþ1;ψÞ

1

Δψ
Δ
�

n−2
V1;0ðϕnþ1;ψÞ þOðλ2Þ

¼
Z

dDx

�
−
ð−1Þnþ1kn−1

m2n−4 λΔ
�
V1;0ðϕnþ1;ψÞ

1

Δψ
Δ
�

n−2
V1;0ðϕnþ1;ψÞ

þ ð−1Þnþ2kn

m2n−2 λ

�
V1;0ðϕnþ1;ψÞ

1

Δψ
Δ
�

n−1
V1;0ðϕnþ1;ψÞ

�
þOðλ2Þ: ð66Þ

Then the (n − 1)th-order terms with respect to k have been eliminated as follows,

Snþ1½ϕnþ1;ψ �≡ Sn½ϕn½ϕnþ1�;ψ �

¼ S0½ϕnþ1;ψ � þ
Z

dDx

�ð−1Þnþ2kn

m2n−2 λ

�
V1;0ðϕnþ1;ψÞ

1

Δψ
Δ
�

n−1
V1;0ðϕnþ1;ψÞ

− λknFðnÞ½ϕnþ1� − λ
X∞

m¼nþ1

kmFðmÞ½ϕnþ1�
�
þOðλ2Þ: ð67Þ

By using Eq. (57) which has already been proved, the nth-order terms with respect to k are expressed as follows,

ð−1Þnþ2kn

m2n−2 λ

��
V1;0ðϕnþ1;ψÞ

1

Δψ
Δ
�

n−1
V1;0ðϕnþ1;ψÞ − lim

ψ→ψ0

�
V1;0ðϕnþ1;ψÞ

1

Δψ
Δ
�

n−1
V1;0ðϕnþ1;ψÞ

�

¼ ð−1Þnþ2kn

m2n−2 λΔ
�
V1;0ðϕnþ1;ψÞ

1

Δψ
Δ
�

n−1
V1;0ðϕnþ1;ψÞ: ð68Þ

Finally, we obtain the (nþ 1)th action,

Snþ1½ϕnþ1;ψ � ¼ S0½ϕnþ1;ψ � þ
Z

dDx

�ð−1Þnþ2kn

m2n−2 λΔ
�
V1;0ðϕnþ1;ψÞ

1

Δψ
Δ
�

n−1
V1;0ðϕnþ1;ψÞ

− λ
X∞

m¼nþ1

kmFðmÞ½ϕnþ1�
�
þOðλ2Þ: ð69Þ

Therefore, we have completed the proof by using the mathematical induction.
Because the above proof has been a little bit complicated, we now summarize how the conjecture have been proved. By

using Eq. (55), in the limit n → ∞, we obtain the following expression,

S∞½ϕ∞;ψ ; λ� ¼ S0½ϕ∞;ψ � þOðλ2Þ: ð70Þ

From the argument of Sec. IV B, the terms Oðλ2Þ could not contribute to any physical amplitude. The interaction terms
which contribute to the physical amplitudes are only given by the original interaction term Vðϕ;ψÞ. Therefore, in this frame,
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it is obvious that the physical amplitudes of the higher
derivative theory coincide with the corresponding ampli-
tudes of the original theory.
Moreover, this frame is related with the initial frame

obtained by (43) through the field redefinitions (56).
Because the field redefinitions (56) satisfy the expression
)40 ), any scattering amplitudes calculated in the initial

frame (43) coincide with the amplitudes of the asymptotic
frame (70).
So that, through the asymptotic frame, the physical

amplitudes calculated in the initial frame coincide with
the corresponding amplitudes in original theory. Because
the conjecture (25) is given in the initial frame (43), [that is,
(24) in Sec. III B], the conjecture has been proved.

VI. SUMMARY

In this paper, we have investigated the possibility of the
elimination of the ghost in the higher derivative theory
proposed in [16]. Although the possibility of the elimina-
tion of the ghost in the linear level had been argued by
Hassan et al. [16], it is not so trivial to check whether the
ghost could be eliminated in the nonlinear level or not. We
have considered the model with two scalar fields interacting
by a mass mixing (14), which was proposed in [16], but in
the analysis of [16], the nonlinear interaction terms were
neglected. We have analyzed the model without neglecting
the interaction terms. In Sec. III, although there are many
algebraic solutions, we have adopted the unique solution
ψ ½ϕ� which satisfy the condition ψ ½ϕ ¼ 0� ¼ 0. Under this
assumption, we have found that in the higher derivative
theory, there appears a ghost mode in addition to two
healthy modes corresponding to the modes in the original
theory. We have called these healthy modes as “physical
fields.” In Sec. IV, we have defined “physical amplitudes”
as the amplitudes where all the external lines are taken to
“physical fields.” We have also proposed the conjecture
(25), where “physical amplitudes” of the higher derivative
theory coincide with the amplitudes of the original theory.
In this setup, we have proved the conjecture (25) without
any additional assumption besides the ones given in Sec. V.
It could be straightforward to extend the analyses given

in this paper to the bigravity theory. There is, however, one
concern. In order to apply the arguments in this paper to the
bigravity theory, we need to pay more attentions to the
commutativity between the substitution of the algebraic
solution and the procedure of the gauge fixing. Because,
as argued in the Appendix, the procedure of the derivation
of the higher derivative theory could be regarded as the
equivalent rewriting of the path integral. In the path integral
formulation, we integrate out the field ϕ first. In the case of
the gauge theory, we cannot perform the integral without
the gauge fixing. Then we should fix the gauge first of all.
Therefore, it could be necessary to investigate the commu-
tativity between the substitution of the algebraic solution
and the procedure of the gauge fixing.

In order to investigate this problem if the commutativity,
it could be also better to investigate some toy model first.
There is a candidate of the toy model: The pseudolinear
model [18] is the massive spin-two model which has the
nonderivative interaction terms in addition to the linear
terms in the Fierz-Pauli model. Moreover, by Hinterbicher
in [18], it has been proved that the BD ghost does not
appear in this model. The curved space extension of the
proof has been given in [19–21]. By using the pseudolinear
model and the linearized Einstein-Hilbert action, we easily
construct the model with mass mixing such as the bigravity.
This theory has the structure very similar to that in the
ξ3-model which have used in Sec. IV B. By this future
work, we may investigate the commutativity between the
substitution of the algebraic solution and the procedure of
the gauge fixing.

APPENDIX: PATH INTEGRAL

In order to show the correspondence between the higher
derivative theory and the original theory, we consider how
the higher derivative theory is obtained by the equivalent
transformations of the generating function of the original
theory. Let us consider the path integral with the external
sources Jϕ; Jψ ,

Z½Jϕ; Jψ � ¼
Z

DϕDψ exp

�
iS0½ϕ;ψ �

þ i
Z

dDxðϕJϕ þ ψJψ Þ
�
: ðA1Þ

By integrating out ϕ, we obtain

Z½Jϕ; Jψ � ¼
Z

Dψ exp

�
iS0½ϕ½ψ ; Jϕ�;ψ �

þ i
Z

dDxðϕ½ψ ; Jϕ�Jϕ þ ψJψÞ
�
: ðA2Þ

Here, in the tree level, ϕ½ψ ; Jϕ� is defined as the perturba-
tive solution of the equations of motion,

δS0½ϕ;ψ �
δϕ

þ Jϕ ¼ 0; ðA3Þ

with respect to ϕ around the vacuum ϕ ¼ 0 ¼ ψ . Around
this vacuum, the unique inverse function ψ ½ϕ; Jϕ�, which is
the algebraic solution of Eq. (A3) with respect to ψ with the
condition ψ ½ϕ ¼ 0; Jϕ ¼ 0� ¼ 0, exists. Under the field
redefinition ψ ¼ ψ ½ϕ; Jϕ�, because the inverse function
ψ ½ϕ; Jϕ� satisfies the identity ϕ½ψ ½ϕ; Jϕ�; Jϕ� ¼ ϕ, we
obtain

SATOSHI AKAGI PHYS. REV. D 97, 124001 (2018)

124001-14



Z½Jϕ; Jψ � ¼
Z

DϕDet

�
δψ ½ϕ; Jϕ�

δϕ

�
exp

�
iS0½ϕ;ψ ½ϕ; Jϕ��

þ i
Z

dDxðϕJϕ þ ψ ½ϕ; Jϕ�JψÞ
�
: ðA4Þ

By introducing the Lagrange multiplier field λ and the
FP-ghosts C, C̄, we obtain

Z½Jϕ; Jψ � ¼
Z

DϕDψDλDCDC̄ exp

�
iS0½ϕ;ψ �

þ i
Z

dDx

�
m2λðψ − ψ ½ϕ; Jϕ�Þ

þ iC̄
δψ ½ϕ; Jϕ�

δϕ
Cþ ϕJϕ þ ψJψ

��
: ðA5Þ

Here, we omit an integral for the FP-ghosts. The exponent
of this expression is similar to that in (20) with source terms
for ϕ and ψ . The different parts are the terms ψ ½ϕ; Jϕ� in the
Lagrange multiplier terms and the FP-ghosts terms.

Now, we consider the specific case where two fields
interacted with each other only through the mass mixing
term, i.e., Vðϕ;ψÞ ¼ VϕðϕÞ þ Vψ ðψÞ. In this case, the
solution of Eq. (A3) is expressed as follows:

m2ψ ½ϕ; Jϕ� ¼ m2ψ ½ϕ� þ Jϕ; ψ ½ϕ�≡ ψ ½ϕ; 0�: ðA6Þ

By substituting this expression into the path integral (A5),
we obtain

Z½Jϕ; Jψ � ¼
Z

DϕDψDλDCDC̄ exp

�
iS0½ϕ;ψ �

þ i
Z

dDx

�
m2λðψ − ψ ½ϕ�Þ

þ iC̄
δψ ½ϕ�
δϕ

Cþ ðϕ − λÞJϕ þ ψJψ

��
: ðA7Þ

In the tree level, we could ignore the FP-ghost terms. Under
the field redefinition ϕ → ϕþ λ, we obtain

Z½Jϕ; Jψ � ≈
Z

DϕDψDλ exp

�
iS0½ϕþ λ;ψ � þ i

Z
dDxðm2λðψ − ψ ½ϕþ λ�Þ þ ϕJϕ þ ψJψÞ

�

¼
Z

DϕDψDλ exp

�
iS½ϕþ λ;ψ ; λ� þ i

Z
dDxðϕJϕ þ ψJψ Þ

�
: ðA8Þ

Here, the equal “≈” means the equivalence up to the FP-ghost terms, the action S½ϕþ λ;ψ ; λ� is defined in (20), and the
linear part of S½ϕþ λ;ψ ; λ� is given in (22). By the fields redefinition (15), we obtain the correspondence between the
Green functions,

Z
DξDη exp

�
iS0½ϕðξ; ηÞ;ψðξ; ηÞ� þ i

Z
dDxðξJξ þ ηJηÞ

�
≈
Z

DξDηDλ exp

�
iS̄½ξ; η; λ� þ i

Z
dDxðξJξ þ ηJηÞ

�
;

Jξ ≡ 1ffiffiffi
2

p ðJϕ þ JψÞ; Jη ≡ 1ffiffiffi
2

p ðJϕ − JψÞ: ðA9Þ

Here, the S̄½ξ; η; λ� is given in Eq. (24). Therefore, in the
case of Vðϕ;ψÞ ¼ VϕðϕÞ þ VψðψÞ, the conjecture (25) can
be trivially shown.
In the case of Vðϕ;ψÞ ≠ VϕðϕÞ þ VψðψÞ, however,

the correspondence is not so trivial, due to the non-
linear dependence of Jϕ in Eq. (A5). These terms
contribute to the Green functions as some composite
fields. In order to confirm the conjecture (25), we
should show that the diagrams with such composite
fields vanish under the on-shell condition. We do not,
however, continue the further analysis by using the path
integral but we prove the conjecture in another way in
this paper.
Now, let us compare the above argument with the

argument by Hassan et al. in [16]. They also considered

the model with the source terms (A1), but they did not
argue by using the integration as given above. Their
arguments were more straightforward. First, they straight-
forwardly calculated the algebraic solution of Eq. (A3) in
the case of Vðϕ;ψÞ ¼ 0, and substituted the solution to the
original action (A1), which coincides with Eq. (A4) with-
out using the Jacobian. After that, by integrating out the
obtained higher derivative theory, they obtained the gen-
erating function identical with the original theory. They
also commented on the extension to the case of
Vðϕ;ψÞ ¼ VϕðϕÞ þ Vψ ðψÞ. They claimed the equivalence
of both theories based on the above arguments, so they
have not shown the correspondence in the case of
Vðϕ;ψÞ ≠ VϕðϕÞ þ VψðψÞ. This is our motivation for
considering the nonlinear case.
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