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A novel idea is proposed for a natural solution of the dark energy and its cosmic coincidence problem.
The existence of local antigravity sources, associated with astrophysical matter configurations distributed
throughout the Universe, can lead to a recent cosmic acceleration effect. Various physical theories can be
compatible with this idea, but here, in order to test our proposal, we focus on quantum originated
spherically symmetric metrics matched with the cosmological evolution through the simplest Swiss cheese
model. In the context of asymptotically safe gravity, we have explained the observed amount of dark energy
using Newton’s constant, the galaxy or cluster length scales, and dimensionless order-one parameters
predicted by the theory, without fine-tuning or extra unproven energy scales. The interior modified
Schwarzschild–de Sitter metric allows us to approximately interpret this result as that the standard
cosmological constant is a composite quantity made of the above parameters, instead of a fundamental one.
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I. INTRODUCTION

The so-called cosmological constant problem is nothing
more than the simple observation, due to Zeldovich, that
the quantum vacuum energy density should unavoidably
contribute to the energy-momentum of the Einstein equa-
tions in the form of a cosmological constant. The recent
discovery of a Higgs-like particle at the CERN Large
Hadron Collider provides the experimental verification of
the existence of the electroweak vacuum energy, and thus of
the reality of the cosmological constant problem. The
obvious absence of such a huge vacuum energy in the
Universe has led to theoretical and phenomenological
attempts to cancel out this vacuum energy, which are all
so far subject to fine-tuning problems [1–4].
On the other hand, the observational evidence of the

accelerated expansion of the Universe [5–11] has intro-
duced the notion of dark energy. One option is that the dark
energy is due to a cosmological constant Λ in the ΛCDM
model, where in this case the explanation of the huge
discrepancy between this observed Λ and the expected
quantum vacuum energy is rather more pertinent. Even if
the dark energy has nothing to do with the quantum vacuum
energy, but is due to quite different phenomena, the

cosmological constant problem remains as a hard problem
in physics. In any case, the existence of dark energy is
associated with another cosmological puzzle, the so-called
cosmic coincidence problem. The latter refers to the need
for an explanation of the recent passage from a deceleration
era to present acceleration cosmic phase.
The aim of the present work is twofold: First, to propose

a novel idea for a natural solution to the dark energy issue
and its associated cosmic coincidence problem of recent
acceleration. Second, to implement this idea through an
interesting and concrete scenario, among others, which
explains the correct amount of dark energy without the
introduction of new and arbitrary scales or fine-tuning.
The proposed solution is based on the simple idea that

the acceleration/dark energy can be due to infrared mod-
ifications of gravity at intermediate astrophysical scales
which effectively generate local antigravity effects. The
cosmological consequence of all these homogeneously
distributed local antigravity sources is an overall cosmic
acceleration through the matching between the local and
the cosmic patches. Before the appearance of astrophysical
structures (galaxies, clusters of galaxies), such antigravity
effects do not exist, and therefore, the recent emergence
of dark energy is not a coincidence but an outcome of the
recent formation of structure. Before the appearance of
structure and the emergence of sufficient repulsive effects,
the conventional deceleration scenario is expected.
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Various physical theories (alternative gravities, extradi-
mensional gravities, quantum gravities, etc.) can be imple-
mented and be compatible with the previous general idea,
providing intermediate distance infrared modifications
which act as local antigravity sources. It is worth to notice
that when the same physical theories are applied directly at
the far infrared cosmic scales do not necessarily give
comparable or significant cosmological effects. So, a dark
energy of local origin in the Universe is not an equivalent or
alternative description, but can be a necessity in order to
reveal the relevant phenomena at intermediate scales.
Quantum theories of gravity, in particular, provide types
of models where local repulsive effects are naturally
expected (for example, a quantum gravity origin of neg-
ative pressure can be formed in the interior of astrophysical
black holes). Asymptotically safe (AS) gravity [12] is one
of the promising quantum gravity frameworks that we will
elaborate more thoroughly in the following sections in
relation to the previous ideas. We will show in our most
successful scenario that the observed dark energy can be
explained from the Newton’s constant, the galaxy or cluster
length scales, and dimensionless order-one parameters
predicted by AS theory, without fine-tuning or introduction
of new scales. This can approximately be interpreted as that
the observed cosmological constant Λ is not a fundamental
parameter, but it is composite and naturally arises from
other fundamental quantities.
In order to study the effect of all local sources of

antigravity in the cosmic evolution, we adopt in the present
work a simple Swiss cheese model by matching a homo-
geneously and isotropic spacetime with the appropriate
local spherically symmetric metrics [13], and this formu-
lation is presented in Sec. II. As an introductory step to set
up the Swiss cheese evolution equations, we work out in
Sec. III the classical Schwarzschild metric. In Sec. IV, we
provide some general thoughts on the relation between a
possible locally originated dark energy and the coincidence
problem. In Sec. V, the Schwarzschild–de Sitter black hole
is discussed with respect to the above scenario. In Sec. VI,
quantum improved Schwarzschild–de Sitter metrics are
considered; quantum gravity effects may indeed introduce
an explicit or effective cosmological constant which arises
from ultraviolet or infraredmodifications of gravity [14–18].
Finally, Sec. VII is the largest andmost important one, where
the AS theory is applied in the context of our ideas. The first
subsection VII A discusses the running of the cosmological
constant close to theGaussian fixed point of theAS evolution
and the resulting cosmology is practically indistinguishable
from the ΛCDM scenario with the same fine-tuning prob-
lems. The last subsection VII B discusses in detail, for the
running of the cosmological constant close to the infrared
(IR) fixed point of the AS evolution, the quite interesting
emergence of the dark energy out of known physical scales
and parameters predicted by the theory, and provides a
natural explanation to the recent cosmic acceleration without

obvious observational conflicts with internal dynamics of
galaxies or clusters. We finish with the conclusions in
Sec. VIII.
It is worth mentioning that attempts to explain accel-

eration without a dark energy component, or also to
produce dark energy, all due to structure formation, have
already appeared in the literature (e.g., [19,20,21] and
references therein). The existence of structure formation in
the Universe implies a nonlinear local evolution, while the
distribution of the nonlinear regions is homogeneous and
isotropic above a current homogeneity scale of the order
100 Mpc. The apparent recent cosmic acceleration could be
the effect of inhomogeneities and/or anisotropies on the
average expansion rate, broadly referred as backreaction.
This approach can potentially solve the coincidence prob-
lem too. However, it is fair to say that our viewpoint in
the present work is different. In the averaging procedure,
the matter is treated as a usual pressureless ideal fluid in the
context of general relativity, gravity has the standard
attractive behavior inside the structure, and cosmic accel-
eration arises due to the nontrivial complexity of the
considered solution; there are no explicit antigravity forces
and repulsive effects come only through averaging. Here,
on the contrary, the acceleration and the dark energy come
from the existence of antigravity sources related to the
astrophysical structures in a as simple as possible spacetime
and no averaging is performed; in the present work, these
repulsive forces are basically of quantum origin as AS
suggests, although in general, they can be of some other
geometric nature generated by some modified gravity
theory with IR gravity modifications. In our approach,
this simple spacetime is described as a first step by the
homogeneous Swiss cheese model with its known
Schucking matching surface, although a better approxima-
tion would be to use inhomogeneous Swiss cheese models
(e.g., some analogues of Lemaitre-Tolman-Bondi or
Szekeres); averaging processes in this case are expected
to enhance the cosmic acceleration found here. A different
scenario, where structure is responsible for acceleration,
was presented in [22]; in a five-dimensional setup, a brane-
bulk energy exchange in the interior of galactic core black
holes produces a sufficient negative dark pressure to play
the role of dark energy.

II. SWISS CHEESE MODELS

The Swiss cheese cosmological model, first introduced
by Einstein and Strauss [13], is solution of general relativity
that globally respects homogeneity and isotropy, while
locally describes a spherically symmetric solution. Other
more general Swiss cheese models refer to inhomogeneous
solutions. A Swiss cheese model with spherical symmetry
overcomes the difficulty of how to glue a static solution of
the theory at hand within a larger time-dependent homo-
geneous and isotropic spacetime. The idea is to assume a
very large number of local objects homogeneously and
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isotropically distributed in the Universe. The matching of
a spatially homogeneous metric as the exterior spacetime to
a local interior solution has to be realized across a spherical
boundary that stays at a fixed coordinate radius in the
cosmological frame while evolves in the interior frame.
Let us consider a four-dimensional manifold M with

metric gμν and a timelike hypersurface Σ which splits the
spacetime M into two parts. The spacetime coordinates are
denoted by xμ (μ; ν;… are four-dimensional coordinate
indices) and can be different between the two regions. The
coordinates on Σ are denoted by χi (i; j;… are three-
dimensional coordinate indices on Σ). The embedding of Σ
in M is given by some functions xμðχiÞ. The unit normal
vector nμ to Σ points inwards the two regions. The first
relevant quantity characterizing Σ is the induced metric
hμν ¼ gμν − nμnν coming from the spacetime in which it is
embedded. The second quantity is the extrinsic curvature
Kμν ¼ hκμhλνnκ;λ, where a ; denotes covariant differentiation
with respect to gμν. In the adapted frame where xμ, say x̄μ,
contains x̄i with x̄ijΣ ¼ χi and some extra transverse
coordinate, it is hij ¼ gij. However, this quantity can be
expressed in terms of arbitrary spacetime coordinates xμ as

hij ¼ gμν
∂xμ
∂χi

∂xν
∂χj : ð2:1Þ

Similarly, for the extrinsic curvature it isKij ¼ ni;j, and can
be expressed as

Kij ¼
�∂nμ
∂χj − Γλ

μνnλ
∂xν
∂χj

� ∂xμ
∂χi ð2:2Þ

¼ −nλ
� ∂2xλ

∂χi∂χj þ Γλ
μν
∂xμ
∂χi

∂xν
∂χj

�
; ð2:3Þ

where Γκ
μν are the Christoffel symbols of gμν.

Continuity of the spacetime across the hypersurface Σ
implies that hij is continuous on Σ, which means that hij is
the same when computed on either side of Σ. If we consider
Einstein gravity with a regular spacetime matter content
and vanishing distributional energy-momentum tensor on
Σ, then the Israel-Darmois matching conditions [23] imply
that the sum of the two extrinsic curvatures computed on
the two sides of Σ is zero.
The model of Einstein-Strauss refers to the embedding of

a Schwarzschild mass into FRW cosmology. Here, we shall
assume a general static spherically symmetric metric which
matches smoothly to a homogeneous and isotropic cos-
mological metric. In spherical coordinates. the cosmologi-
cal metric takes the form

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − κr2
þ r2ðdθ2 þ sin2θdφ2Þ

�
;

ð2:4Þ

where aðtÞ is the scale factor and κ ¼ 0;�1 characterizes
the spatial curvature. In these coordinates, a “spherical”
boundary is defined to have a fixed coordinate radius
r ¼ rΣ, with rΣ constant. Of course, this boundary is seen
by a cosmological observer to expand, following the
universal expansion. If x̄μ ¼ ðt; r; θ;φÞ are the coordinates
of the metric (2.4), then the hypersurface Σ is determined
by the function f̄ðx̄μÞ ¼ r − rΣ ¼ 0 and the cosmological
metric occurs for r ≥ rΣ. From the coordinates x̄μ one can
parametrize Σ by the coordinates χi ¼ x̄ijΣ ¼ ðt; θ;φÞ, and
therefore, on Σ, it is x̄μðχiÞ ¼ ðt; rΣ; θ;φÞ. The unit normal
vector can be calculated from

n̄μ ¼
f̄;μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jḡκλf̄;κf̄;λj
q ; ð2:5Þ

where a comma means differentiation with respect to x̄μ.
Obviously, the plus sign in (2.5) makes certain that n̄μ is
inward of the cosmological region (to the direction of
increasing r). Thus,

n̄μ ¼
�
0;

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2Σ

p ; 0; 0

�
: ð2:6Þ

Note that n̄μ is spacelike, n̄μn̄μ ¼ 1, as expected.
The interior region r ≤ rΣ is replaced by another metric

which has the following form,

ds2 ¼ −JðRÞFðRÞdT2 þ dR2

FðRÞ þ R2ðdθ2 þ sin2θdφ2Þ;

ð2:7Þ

where J; F > 0. This metric represents a static spherically
symmetric spacetime in Schwarzschild-like coordinates.
The functions FðRÞ and JðRÞ are given by the specific
metric in use. Since the two-dimensional sphere ðθ;φÞ is
the common fiber for both metrics (2.4), (2.7), the position
of Σ in the spacetime described by (2.7) does not depend on
θ;φ and is given by the functions T ¼ TSðtÞ, R ¼ RSðtÞ.
The subscript S refers to Schucking, RS is called Schucking
radius and it is time dependent. Therefore, the spherical
boundary does not remain in constant radial coordinate
distance in the Schwarzschild-like patch as the Universe
expands. The coordinates x̂μ ¼ ðT; R; θ;φÞ of the metric
(2.7) take on Σ the form x̂μðχiÞ ¼ ðTSðtÞ; RSðtÞ; θ;φÞ. The
unit normal vector n̂μ cannot be calculated now directly
from a formula as (2.5), since the function f̂ðx̂μÞ of the
matching surface is now unknown. However, due to the
symmetry, it is expected that n̂θ ¼ n̂φ ¼ 0; therefore,
the orthonormality of n̂μ will provide two conditions for
n̂T , n̂R. Indeed, since the three vectors ∂x̂μ

∂χi are tangent to Σ,
the condition n̂μ ∂x̂μ

∂χi ¼ 0 implies n̂θ ¼ n̂φ ¼ 0 and
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dTS

dt
n̂T þ dRS

dt
n̂R ¼ 0: ð2:8Þ

Furthermore, from n̂μn̂μ ¼ 1, one obtains

1

JF
n̂2T − Fn̂2R ¼ −1; ð2:9Þ

where J, F are located at RS.
So far, we have established the geometrical setting on the

two sides of the boundary hypersurface. The junction of the
two regions on Σ demands h̄ij ¼ ĥij, which provides
through (2.1) the conditions

JF

�
dTS

dt

�
2

−
1

F

�
dRS

dt

�
2

¼ 1 ð2:10Þ

and

RS ¼ arΣ: ð2:11Þ

The two Eqs. (2.10) and (2.11) can also arise more easily
from the two expressions for the induced metric on Σ
coming from (2.4), (2.7):

ds2Σ ¼ −dt2 þ a2r2Σðdθ2 þ sin2θdφ2Þ ð2:12Þ

¼ −
�
JF

�
dTS

dt

�
2

−
1

F

�
dRS

dt

�
2
�
dt2

þ R2
Sðdθ2 þ sin2θdφ2Þ: ð2:13Þ

Solving (2.8), (2.9) for n̂T, n̂R and using (2.10), we find the
normal vector n̂μ from

n̂μ ¼
�
ϵ

ffiffiffi
J

p dRS

dt
;−ϵ

ffiffiffi
J

p dTS

dt
; 0; 0

�
; ð2:14Þ

where ϵ ¼ �1. The demand that n̂μ is inward the central
void (to the direction of decreasing R) implies n̂R < 0.
Additionally, the forms of n̄μ, n̂μ show that the directions
defined by the coordinate axes T, R are different than those
of t, r; however, the centers of the two coordinate systems
coincide.
What remains is the matching of the two extrinsic

curvatures on Σ, i.e., the demand K̄ij þ K̂ij ¼ 0. Due to
the simple form of n̄μ, the extrinsic curvature K̄ij in the
cosmological region can be easily computed from either
Eq. (2.2) or (2.3) as

K̄ij ¼ −n̄rΓ̄r
ij ¼

1

2
n̄rḡrrḡij;r ð2:15Þ

and finally

ðK̄tt; K̄θθ; K̄φφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2Σ

q
arΣð0; 1; sin2θÞ: ð2:16Þ

In the interior region, the computation is more involved
and it is slightly more convenient to use the expression
(2.3) to compute K̂ij. The corresponding nonvanishing
Christoffel symbols are Γ̂R

TT ¼ JF2Γ̂T
TR ¼ F

2
ðJF0 þ FJ0Þ,

Γ̂R
RR ¼ − F0

2F, Γ̂
R
φφ ¼ sin2θΓ̂R

θθ ¼ −RFsin2θ, Γ̂θ
Rθ ¼ Γ̂φ

Rφ ¼ 1
R,

Γ̂θ
φφ ¼ − sin θ cos θ, Γ̂φ

θφ ¼ cot θ, where a prime denotes
differentiation with respect to R. Then, it arises that all
K̂ij ¼ 0 for i ≠ j, while K̂φφ ¼ sin2 θK̂θθ,

K̂θθ ¼ −n̂RΓ̂R
θθ ¼ RSFn̂R ð2:17Þ

K̂tt ¼ −n̂T
d2TS

dt2
− n̂R

d2RS

dt2
− n̂RΓ̂R

TT

�
dTS

dt

�
2

− n̂RΓ̂R
RR

�
dRS

dt

�
2

− 2n̂T Γ̂T
TR

dTS

dt
dRS

dt
: ð2:18Þ

Finally, the condition K̄θθ þ K̂θθ ¼ 0 (or equivalently for φ)
gives the consistency equation

dTS

dt
¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2Σ

p
arΣ

RSF
ffiffiffi
J

p ; ð2:19Þ

which, with the use of (2.11), takes the form

dTS

dt
¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2Σ

p
F

ffiffiffi
J

p : ð2:20Þ

It then follows from (2.10) that

�
dRS

dt

�
2

¼ 1 − κr2Σ − FðRSÞ: ð2:21Þ

Therefore, Eqs. (2.20) and (2.21) determine the position of
Σ in the space ðT; RÞ. From (2.20) it is obvious that indeed
it is n̂R < 0.
The final task is the examination of the matching

condition K̄tt þ K̂tt ¼ 0, i.e., K̂tt ¼ 0. This equation con-
tains the second time derivatives of TS, RS that we need to
calculate. From Eqs. (2.20) and (2.21), it arises

d2TS

dt2
¼ −ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2Σ

q ðF ffiffiffi
J

p Þ0
F2J

dRS

dt
ð2:22Þ

d2RS

dt2
¼ −

F0

2
: ð2:23Þ

Using all the previous expressions in (2.18), it turns out that
J0 ¼ 0, which means J0ðRSÞ ¼ 0. This relation, due to
(2.11), implies in general an algebraic equation for aðtÞ,
which will be inconsistent with Eq. (2.21). There are,
however, various functions JðRÞwhich satisfy this equation.
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For example, a consistent choice is that JðRÞ is constant
throughout (as happens in Schwarzschild metric), and in
this case without loss of generality we can rescale T so that
this constant is one. Another consistent case would be JðRÞ
to be a power series of the form JðRÞ ¼ JðRSÞ þ
c1ðR − RSÞ2 þ….The successful matching has proved that
the choice of the matching surface Σ was the appropriate
one.

III. GENERAL RELATIVITY BLACK HOLES
AND THE ENSUING FRW COSMOLOGY

If the black hole is described by the classical
Schwarzschild solution, i.e.,

FðRÞ ¼ 1 −
2GNM

R
; JðRÞ ¼ 1; ð3:1Þ

Eq. (2.21) provides through (2.11) the cosmic evolution of
the scale factor a. Namely, we take

H2 ¼ _a2

a2
¼ 2GNM

r3Σa
3

−
κ

a2
; ð3:2Þ

where a dot denotes differentiation with respect to cosmic
time t. This equation is qualitatively similar to the standard
FRWevolution with dust (zero pressure) as its cosmic fluid
and a possible curvature term. Of course, in order for this
solution to be physically realistic and represent a spatially
homogeneous universe, not just a single sphere of comov-
ing radius rΣ should be present, but a number of such
spheres are uniformly distributed throughout the space.
Otherwise, there would exist a preferred position in the
Universe. Each such sphere can be physically realized by
an astrophysical object, such as a galaxy (with its extended
spherical halo) or a cluster of galaxies, which we assume
that it has a typical mean mass M. It will be seen that the
Schuching radius lies outside the real border of the
astrophysical object; therefore, FðRSÞ in (2.21) is provided
by the value of the expression (3.1) (otherwise, we would
meet the inconvenient situation to consider an interior
Oppenheimer-Volkof type of solution or some other more
realistic matter profile). This means that for the value
FðRSÞ, which is our only interest in order to make the
matching and derive the cosmological metric, it is like if all
the mass M is gathered at the center of the spherical
symmetry. The same is true for other spherically symmetric
metrics, modifications of Schwarzschild solution, to be
discussed later. Furthermore, Eq. (2.23) gives

ä
a
¼ −

GNM
r3Σa

3
; ð3:3Þ

which indicates a decelerated expansion.
In order for Eqs. (3.2) and (3.3) to describe precisely

a standard matter-dominated universe, the matter dilution

term in (3.2) should be 8πGN
3

ρ, where ρ is the cosmic matter
energy density, and the term in (3.3) should be − 4πGN

3
ρ.

Therefore, we make the standard assumption of Swiss
cheese models that the matching radius rΣ is such that when
its interior region is filled with energy density equal to the
cosmic matter density ρ, the interior energy equals M.
Namely, we set

ρ ¼ M
4π
3
R3
S

¼ 3M
4πr3Σa

3
: ð3:4Þ

This condition can also equivalently be interpreted that the
massM of the object is uniformly stretched up to the radius
rΣ. Since in any case the mass M can be considered that is
located at the center of spherical symmetry, the above
definition of rΣ offers a simple way to determine the
spheres where the matching with the cosmological metric
occurs. Although this definition is certainly ad hoc and uses
the massM of the object and the cosmic density ρ, it has the
merit that it avoids using other details of the structure, such
as the size of the object and the distance between similar
structures. However, still in the Swiss cheese model,
the cosmic evolution remains exactly the same as in the
cosmological picture.
It is now clear that Eqs. (3.2) and (3.3) become

H2 ¼ 8πGN

3
ρ −

κ

a2
ð3:5Þ

ä
a
¼ −

4πGN

3
ρ: ð3:6Þ

If we define the matter density parameter in the conven-
tional way

Ωm ¼ 8πGNρ

3H2
; ð3:7Þ

it is found

rΣ ¼
�

2GNM
Ωm0a30H

2
0

�1
3

; ð3:8Þ

where a subscript 0 denotes the current value.
Let us suppose we want to model a universe consisting

of two types of dust with different densities, ρ1 and ρ2 (e.g.,
dark matter and stars or black holes). In order to avoid
unnecessary technical complexity arising from inhomo-
geneous placement of dusts, it would be a fair approxi-
mation to describe the cosmic evolution assuming that
the Universe is filled with a homogeneous distribution of
spherical configurations that consist of two spherical
objects that have different masses M1 and M2 within
the Schucking radius RS. The quantities ρ1, M1 satisfy
Eq. (3.4) and similarly for the other ingredient. Since the
total cosmic energy density ρ is the sum of the two energy
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densities ρ1, ρ2, it is implied that the matching is performed
as before with the difference that now the mass M of
the central object is the sum of the two masses, i.e.,
M ¼ M1 þM2. In this case, the same Eqs. (3.2) and
(3.3) apply, with M this total mass.
Let us finish with a few numerics. The present value of the

Hubble parameter will be taken asH0 ¼ 0.72 × 10−10 yr−1.
In the present work, we are not going to perform fittings to
real data, where H0 could also be considered as a fitted
parameter. We will use as a typical mass for a galaxy M ¼
1011 M⊙ and for a cluster of galaxies M ¼ 1015 M⊙, (with
M⊙ the solar mass) in order to give some estimates. If we
ignore the term of spatial curvature in (3.5), then Ωm ¼ 1,
and Eq. (3.8) gives for the galaxy rΣ ¼ 0.56 Mpc and for the
cluster rΣ ¼ 12 Mpc (for a realistic Ωm0 these distances
become larger). Since the typical radius of a spiral galaxy
(including its dark matter halo) is Rb ≈ 0.15 Mpc, it is
obvious that rΣ is a few times larger than the galactic radius.
Moreover, the mean distance between galaxies is a fewMpc,
thus, the Schucking radii of two neighboring galaxies do not
overlap. As for clusters, they have radii from Rb ≈ 0.5 Mpc
toRb ≈ 5 Mpc, and therefore, rΣ is again outside the cluster.
If a mean distance between the borders of two adjacent
clusters is something like 20 Mpc, the two Schucking radii
still do not intersect.

IV. A PERSPECTIVE FOR THE
COINCIDENCE PROBLEM

In the ΛCDM model, Λ has been found observationally
to be of the order H2

0 (more precisely, Λ ¼ 3ΩΛ0H2
0,

ΩΛ0 ≈ 0.7). This means that the energy scale defined byffiffiffiffi
Λ

p
is extremely small compared to the Planck mass scale

MPl (which is a typical scale of gravity), and also its
energy density ρΛ ¼ Λ

8πGN
≈ 2.8 × 10−11 eV4 ∼ ð10−3 eVÞ4

is many orders of magnitude smaller than the theoretical
vacuum energy value ρvac estimated by quantum correc-
tions of quantum field theory with any sensible cutoff. This
discrepancy is called the cosmological constant problem,
which is the most severe hierarchy problem in modern
physics. It is also called the fine-tuning problem since
adding a bare cosmological constant of opposite sign in the
action to cancel ρvac, this should be tuned to extreme
accuracy in order to give the effective value 10−3 eV above
(if supersymmetry is restored in the high energy, extreme
and unnatural fine-tuning is still needed). Even if the
present dark energy in the Universe has nothing to do
with a cosmological constant, the question of understand-
ing why the estimated quantum vacuum energy cancels out
and does not contribute, still remains and may need
quantum gravity or other physics to be discovered.
Beyond the previous problem, why Λ is so extraordi-

narily small, there is an extra question named coincidence
problem, related to the specific value of Λ ∼H2

0. Since the
energy density ρ falls like ρ ∼ a−3 starting from a huge

(if not infinite) value, why does it happen today to be
8πGNρ0 ∼ Λ (actually 8πGNρ0 ≈ 0.4Λ), and not a very big
or a very small proportionality factor to be present? Why
are dark matter and dark energy of the same order today,
ρ0 ∼ ρΛ? Moreover, since

ffiffiffiffi
Λ

p
∼H0, the time scale tΛ ∼

1=
ffiffiffiffi
Λ

p
is of the same order as the age of the Universe H−1

0 ,
something that did not need necessarily to be the case.
There are three unrelated quantities ρ0, Λ, GN and there is
no obvious reason why they should be related like that. To
be more precise, the same relation 8πGNρ ∼ Λ holds
recently, for 0 ≤ z≲Oð1Þ, which means for a few billion
years (taking into account the time, it may be thought that
the problem is not so sharp). On the contrary, such a
relation between GNρ and Λ could have happened in the
very past, at even larger redshifts (which is probably
precluded by anthropic arguments), and this implies that
today we would have a universe full of cosmological
constant and negligible matter contribution. Or, finally,
such a relation could occur in the very future, and today we
would observe matter domination with negligible Λ. It is
the same to say that although the Hubble parameter started
in the past from huge values (if not infinite), recently it is
H2 ∼ Λ ∼ 8πGNρ, and not H2 ≈ Λ=3 or H2 ≈ 8πGNρ=3.
To realize better the clear sensitivity of the recent coinci-
dence on the value ofΛ, let us assume that the cosmological
constant was just one hundred times larger than the
observed one. Then its coincidence with the matter would
have occurred at a redshift of almost 5, and today the dark
matter would be less than just one percent of the dark
energy. Or at the other end, if Λ was one hundred times
smaller than the observed value, its coincidence with the
matter would occur at a redshift of almost −0.7, and today
the dark energy would be almost two percent of the dark
matter. Therefore, the coincidence problem appears
because Λ takes a value inside a very narrow range of
the ρ values. In terms of the flatness parameters the
coincidence problem is stated by a relation of the form
Ωm0 ∼ΩΛ0, and not Ωm0 ≪ ΩΛ0 or Ωm0 ≫ ΩΛ0. Ignoring
κ, it holds Ωm ≈ 1, ΩΛ ≈ 0 for a broad range of redshifts in
the past until recently, where it isΩm ∼ΩΛ. In the far future
it will be Ωm ≈ 0, ΩΛ ≈ 1. Acceleration exists as long as
2ΩΛ > Ωm.
In general dark energy models, the coincidence problem

is formulated through the observational current acceleration
along with the relation Ωm0 ∼ΩDE;0, while in the past it is
strongly believed, due to structure formation reasons, that it
wasΩm ≈ 1,ΩDE ≈ 0. The dark energy density ρDE defined
by 8πGNρDE ¼ 3ΩDEH2 obeys ρ0 ∼ ρDE;0. Depending on
the particular dark energy model, the quantity ρDE;0
contains integration constants reflecting initial conditions
of possible fields involved (e.g., ϕ0, _ϕ0 for a scalar field, or
ρ0 itself in a geometrical modification of gravity), dimen-
sionful or dimensionless couplings/parameters of the
theory, and probably other quantities (e.g., of astrophysical
nature). The previous coincidence relation between the
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energy densities provides an equation between all these
quantities which have to be appropriately adjusted. Usually,
in dark energy models the scale defined by Λ is exchanged
by another scale of the same order describing some new
physics. It looks like the coincidence problem is a question
of naturalness between integration constants and other
parameters, and analyzing naturalness is not an issue easily
quantified.
A proposal as a solution of the coincidence problem will

consist of one more dark energy model, which may be more
or less natural, may introduce new physics or not, may
introduce new scales or not, but its verification will come
not out of concept but out of experimental evidence of
the particular model. And finally, when the origin of dark
energy has been apprehended, it will become obvious what
the independent scales and initial conditions created by
nature are. Even a model which contains new scales, that at
present are unrelated from the rest of physics, may be very
close to reality. This is why analyzing a dark energy model,
the values of Ωm0, ΩDE;0, as well as the rest of the
parameters/initial conditions, are in general extracted after
fittings to the observational data and there is no special
concern about a deeper understanding which would mean
to express these values in terms of other more fundamental
ones. Of course, if such an explanation for the recent
emergence of dark energy through the coincidence relation
ρ ∼ ρDE can be provided in terms of quantities that already
play a role in nature and/or other quantities theoretically
predicted in the context of a theory, this would possess
extra naturalness and might render the particular dark
energy model promising (this is the case for one of the
models to be presented in the present work). Another idea
that alleviates the coincidence problem comes through the
realization of the current state of the Universe close to a
global fixed point (saddle or preferably attractor) of the
cosmic evolution, since then, the coincidence problem
becomes an issue of only the parameters of the model and
not also of the initial conditions [24]. In order for this to be
possible with the present acceleration and a scaling behavior
between Ωm, ΩDE, the violation of the standard energy-
momentum conservation of the matter is necessary [25].
The proposal introduced in the present paper is that the

dark energy observed recently in the Universe may be the
result of local gravity effects occurring in the interior of
astrophysical objects, such as massive structures (galaxies,
clusters) or even black holes, and these effects will directly
determine the cosmic evolution. These local effects can
arise from an arbitrary gravitational theory (alternative/
modified gravity, extradimensional gravity, quantum grav-
ity, etc.). The main point is that the specific gravitational
theory is not applied directly to cosmology in the conven-
tional way, with the matter described as a usual perfect
fluid, in order to obtain time-dependent differential equa-
tions for the geometry (e.g., scale factor) and the other
ingredients; the reason for this is that it is not clear how the

cosmic effective energy-momentum tensor can be quanti-
fied taking into account the extra contributions of local
origin. So, even if the theory is managed to be applied
directly to cosmology, the result will in general be different
that the one arising from the process described here
because, depending on the scales of the theory, the dark
energy can be suppressed in one of the two derived
cosmologies and be considerable in the other. Thus, if a
gravity effect becomes substantial only at an intermediate
infrared scale (astrophysical one), it cannot be revealed at
the far infrared cosmological scale. In addition, integration
constants emanating from possible integrations (due to
extra fields or geometrical effects) in the local metric will
be of quite different nature than the cosmological ones;
these constants might be specified or at least estimated from
quantities characterizing the astrophysical object itself or
from regularity arguments at the center of the structure,
contrary to the specification of the integration constants of a
cosmological quantity which needs a quite different treat-
ment. Applying the gravitational theory first inside the
structure means to find the gravitational and the other
possible fields in the interior of the object. Because the
astrophysical structures are not point-like but they are
extended (the galaxies have a luminous profile which is
surrounded by the dark matter halo and the clusters contain
a distribution of galaxies and dark matter) or may be
described by a collapsing phase, this task can be compli-
cated. However, depending on the ansatz for the local and
the cosmological metrics and how these are interrelated, it
may be enough to find the static spherically symmetric
solution of the theory (as happens in the Swiss cheese
model described previously), or other more complete
solutions may be needed to describe an inhomogeneous
universe with more realistic structures. In the present work
the Swiss cheese model will be adopted as the simplest but
not necessarily the most realistic construction, and there-
fore, the ensuing cosmologies will arise through the
matching of the interior metric with the exterior FRW
metric on the Schucking surface. It is obvious that such a
local gravity effect should not contradict with observations
at the relevant astrophysical scale.
In the context where the dark energy owes its origin to

the presence of structure, either due to the reasons elab-
orated here or due to averaging process (as e.g., in [19–21]),
since the various structures are formed during the cosmic
evolution recently at small redshifts, dark energy also
appears recently not as a coincidence but as an emerging
effect of the structure. With this in mind, that the coinci-
dence problem can be a guiding line for studying cosmol-
ogy, it becomes tempting to see what are the new scales and
integration constants introduced by some gravitational
theory in the above context, so that the corresponding
cosmology confronts (if possible) with the acceleration and
other data, and especially with the relation ρ ∼ ρDE. In the
following sections, we will implement the previous ideas
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to derive a few dark energy models, where in the last
subsection our most promising model will appear.

V. BLACK HOLES WITH COSMOLOGICAL
CONSTANT

When a constant cosmological term is added to the
Schwarzschild metric, the well-known Schwarzschild–de
Sitter metric arises

ds2 ¼ −
�
1 −

2GNM
R

−
1

3
ΛR2

�
dT2 þ dR2

1 − 2GNM
R − 1

3
ΛR2

þ R2ðdθ2 þ sin2θdφ2Þ: ð5:1Þ

It is apparent that it is JðRÞ ¼ 1. Equation (2.21) provides
through (2.11) the cosmic evolution of the scale factor

_a2

a2
þ κ

a2
¼ 2GNM

r3Σa
3

þ Λ
3
: ð5:2Þ

Furthermore, Eq. (2.23) gives

ä
a
¼ −

GNM
r3Σa

3
þ Λ

3
; ð5:3Þ

which indicates the well-known late-times accelerated
expansion when the two terms on the rhs of (5.2) become
comparable. Using the Swiss cheese condition (3.4),
Eqs. (5.2) and (5.3) are also written as

H2 þ κ

a2
¼ 8πGN

3
ρþ Λ

3
ð5:4Þ

ä
a
¼ −

4πGN

3
ρþ Λ

3
: ð5:5Þ

Since Ωm0 is close to 0.30 according to the most recent
constraints [26], Eq. (3.8) gives for a galaxy with M ¼
1011 M⊙ that rΣ ¼ 0.83 Mpc and for a cluster with M ¼
1015 M⊙ that rΣ ¼ 18 Mpc.
Equations (5.4) and (5.5) are the standard cosmological

equations of ΛCDM model. In this model, the cosmologi-
cal constant Λ is considered as a universal constant related
to the vacuum energy. However, in the context of the
present work, Λ arises from the interior black hole solution
(5.1) and has a quite different origin and meaning. This Λ is
of astrophysical origin and is the total cosmological
constant coming from the sum of all antigravity sources
inside the Schucking radius of the galaxy or cluster. It is
expected that, through some concrete quantum gravity
theory, matter is related to the generation of an explicit
or effective cosmological constant. For example, in the
centers of astrophysical black holes, the avoidance of
singularity could be achieved due to the presence of
a repulsive pressure of quantum origin balancing the

attraction of gravity. Another important difference with
this Λ is that since, according to our proposal, the
antigravity sources are connected to either massive struc-
tures (galaxies, clusters) or astrophysical black holes;
therefore, before the appearance of all these objects, the
total Λ is zero. As a result, this Λ becomes a function of
cosmic time, suppressed at larger redshifts where the
antigravity effect is weaker. A constant Λ is expected to
be only an approximation at late times.
The metric (5.1) contains the Newtonian term 2GNM

R and
the cosmological constant term 1

3
ΛR2. For distances R

close to the border with coordinate distance Rb, the matter
can be considered as being gathered at the origin, as
mentioned above. We will give an estimate of the corre-
sponding values of the potential and the force due to the
cosmological constant. In the weak field limit the force
corresponding to the Newtonian term is − GNM

R2 , while the
cosmological constant force is 1

3
ΛR and is repulsive. The

ratio of the magnitudes of the cosmological constant force
to the Newtonian force is 2ΩΛ0

Ωm0
ðRrΣÞ3; therefore, the signifi-

cance of the cosmological constant increases with distance.
At the border of a typical galaxy with mass 1011 M⊙ and
radius 0.15 Mpc the Newtonian term has a value approx-
imately 6 × 10−8, while the cosmological constant term is
almost 9 × 10−10, which is therefore 2 orders of magnitude
smaller than the former term. Of course, the two potentials
at the Schucking radius are of the same order since dark
matter and dark energy today are of the same order.
Similarly, the repulsive force at the border is also almost
2 orders of magnitude smaller that the Newtonian force.
Therefore, the Λ term is ignorable at the galaxy level and
the galaxy dynamics is not disturbed by this antigravity
effect.
For the clusters there is a larger variability of the range of

their radii and the corresponding masses. At the Schucking
radius still the two potentials are of the same order. For a
mass 1015 M⊙ and radius 0.5 Mpc the Newtonian term is
2 × 10−4 at the border, while the cosmological constant
term is 10−8. As a result, the repulsive force is 4 orders of
magnitude smaller that the attractive force. For a radius of
5 Mpc, the Λ force is still smaller than the Newtonian force,
but just 1 order of magnitude. For a mass 1014 M⊙ and
radius 5 Mpc, the two forces become equal in magnitude. If
the cosmological constant is indeed generated at the cluster
scales, then this constant should be present in all clusters.
Therefore, more investigation is needed at particular
clusters that could show off some abnormal dynamics
and if this can be explained through a constant Λ.
The previous discussion shows thatΛ could be generated

inside astrophysical objects, either without affecting their
dynamics or signaling some observable deviations in this
dynamics, and at the same time to create the standard
ΛCDM cosmology. Of course, this constant Λ does not
offer any alleviation to the coincidence puzzle.
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VI. BLACK HOLES WITH VARYING
COSMOLOGICAL CONSTANT OF

QUANTUM ORIGIN

The Schwarzschild–de Sitter metric can be progressed to
a quantum improved Schwarzschild–de Sitter metric
describing the astrophysical object. This metric has the
form

ds2 ¼ −
�
1 −

2GkM
R

−
1

3
ΛkR2

�
dT2 þ dR2

1 − 2GkM
R − 1

3
ΛkR2

þ R2ðdθ2 þ sin2θdφ2Þ; ð6:1Þ

where the quantities Gk, Λk are functions of a characteristic
energy scale k and FðRÞ ¼ 1 − 2GkM

R − 1
3
ΛkR2. The func-

tional behavior of Gk, Λk is determined by the underlying
quantum theory of gravity. This energy scale k is related to
the distance from the center of the object and the exact
dependence arises from the particular quantum corrections.
Therefore, Gk, Λk are also related to the distance. In the
Swiss cheese analysis, however, only the front value RS of
the distance at the matching surface influences the cosmic
evolution, thus only the corresponding energy value kS will
be relevant. As mentioned before, in a real galaxy or cluster
the total mass consists of either stars, dark matter, or black
holes (classical or quantum modified) that we collectively
denote M. Although the various objects are distributed
throughout, in our approach it is sufficient to consider that
these materials are gathered together at the center of
spherical symmetry.
As is known, the Israel matching conditions are only

applicable in Einstein gravity with some regular energy-
momentum tensor. In an alternative/modified gravity, either
containing extra fields or not, the corresponding matching
conditions are in general modified. One might wonder if the
Israel conditions are still applicable in our case, with a
metric of the form (6.1). The answer is positive and we will
explain this in the following. A quantum originated spheri-
cally symmetric metric, as the one described above, does
not in general arise as a solution of some classical field
equations for the metric, but is obtained by considering
some quantum corrections beyond the classical Einstein
term. For example, in AS gravity, the solution of the
renormalization group (RG) flow equations gives Gk, Λk.
Therefore, a metric, such as (6.1), is quite reasonable and
necessary for our Swiss cheese approach to be interpreted
as a solution of a coupled gravity-matter system satisfying

Einstein equations Gμν ¼ 8πGNT
ðtotÞ
μν . This TðtotÞ

μν ¼ Tμν þ
TðeffÞ
μν contains, apart from a possible real matter energy-

momentum tensor Tμν (which for us is zero since the mass
is just an integration constant), an effective energy-momen-

tum tensor TðeffÞ
μν of gravitational origin which takes into

account the quantum corrections (for an interpretation of

such a TðeffÞ
μν in terms of fluid variables see [27]). Since (6.1)

expresses the quantum corrections of the classical

Schwarzschild metric, the tensor TðeffÞ
μν appears as the

correction beyond the Einstein equations of motion and
not beyond some other modified classical equations of

motion. To find this TðeffÞ
μν , we need to compute the Einstein

tensor Gμν of the metric (6.1). This could lead to a
nontrivial situation, where the Israel matching conditions
are satisfied or not, depending on the form of this effective
energy-momentum tensor. However, for the whole analysis
of the present paper, just the Israel conditions arise. Indeed,
the Einstein tensor Gμ

ν which is constructed from the metric
(6.1) has the following nonvanishing components:

GT
T ¼ GR

R ¼ 1

R2
ðRF0 þ F − 1Þ;

Gθ
θ ¼ Gφ

φ ¼ 1

2R
ðRF00 þ 2F0Þ: ð6:2Þ

Since the Schwarzschild metric with FSch ¼ 1 − 2GNM
R

satisfies the vacuum Einstein equations, we get

GT
T ¼ GR

R ¼ 1

R2
ðRQ0 þQÞ; Gθ

θ ¼ Gφ
φ ¼ 1

2R
ðRQ00 þ 2Q0Þ;

ð6:3Þ

where the quantity

Q ¼ 2ðGN − GkÞM
R

−
1

3
ΛkR2 ð6:4Þ

is defined byQ≡ F − ð1 − 2GNM
R Þ; i.e., it is the deviation of

the metric component F from 1 − 2GNM
R . The quantity Q

will be seen that is well defined, depending on the
assumptions of the quantum theory. Therefore, in the
interior regime with the metric (6.1), the Einstein equations

Gμ
ν ¼ 8πGNT

μðeffÞ
ν acquire a well-defined TμðeffÞ

ν , which is
given by the right-hand sides of (6.3) and parametrized by
the quantity Q,

TTðeffÞ
T ¼ TRðeffÞ

R ¼ 1

8πGNR2
ðRQ0 þQÞ;

TθðeffÞ
θ ¼ TφðeffÞ

φ ¼ 1

16πGNR
ðRQ00 þ 2Q0Þ: ð6:5Þ

Moreover, equating the right-hand sides of the expressions
(6.2), (6.3), we find the ordinary differential equations of F,

RF0 þ F − 1 ¼ RQ0 þQ; RF00 þ 2F0 ¼ RQ00 þ 2Q0:

ð6:6Þ
Differentiating the first equation of (6.6), we get the second
equation. We are not particularly interested in the precise
function FðRÞ since for cosmology the most important is
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only the value of F at the Schucking radius. We discern
now the following cases.
If Gk, Λk are functions of R in an explicit algebraic form

(as happens in the subsection VII B 1), then the metric

component F, the quantity Q of (6.4) and TμðeffÞ
ν of (6.5)

become also such functions of R. The second (as well as the
first) derivatives of the metric component F in the Einstein
equations (6.6) are contained only on their left-hand sides,
which come from Gμ

ν , while the Q terms on the right-hand

sides, which come from TμðeffÞ
ν , act as a sort of given

potentials that modify FðRÞ from the Schwarzschild metric.
Although, this picture is rather trivial due to that the
evaluation is performed on-shell, on the explicit metric
component FðRÞ; however, it is still meaningful since the
function FðRÞ still satisfies the differential equations (6.6).
As is well known, the matching conditions are extracted

from the Einstein equations Gμ
ν ¼ 8πGNT

μðeffÞ
ν focusing

only to the second derivatives of the metric components.
Since these derivatives are only inside the Einstein tensor

Gμ
ν and not inside TμðeffÞ

ν , the Israel matching conditions
naturally arise in this case.
In the subsections VII A and VII B 2, we will discuss

another situation, which is nontrivial in the sense that F is
not a known function of R. At the same time, this situation
is actually more promising in its cosmological results and
also more favorable theoretically. Here,Λk is not an explicit
function of R, but it contains an integral of FðRÞ. Since
FðRÞ is not known, but is the metric component to be found
by solving (6.6), this integral cannot be performed. This
means that the quantity Q contains an independent geo-
metrical field DðRÞ with its own equation of motion. The
important point is that this equation of motion is only of
first order; i.e., it contains D0 and not D00, and therefore,
there is no discontinuity ofD0 at the matching surface. As a

result, TμðeffÞ
ν in (6.5) becomes a function of R, D, F, F0,

while no F00 is present in TμðeffÞ
ν . Therefore, again F00 is only

contained in the tensor Gμ
ν of the Einstein equations Gμ

ν ¼
8πGNT

μðeffÞ
ν and the Israel conditions remain intact. We will

provide more precise explanations about this issue at
the appropriate point later. The metric component FðRÞ
can be found by solving for F, D the coupled system of
the first equation in (6.6), i.e., equation RF0 þ F − 1 ¼
RQ0ðR;D; FÞ þQðR;DÞ, together with the first-order
differential equation for D.
Finally, if we assume, merely as a mathematical exten-

sion of the above, the more complicated situation whereGk,
Λk contain double integrations of F, F0, this implies that the
equation of motion of theD field is of second order. Then, a
discontinuity ofD0 could be present at the matching surface
and the Israel matching conditions might be modified. We
only mention such a possibility, without regarding it in our
analysis, to show how the Israel conditions could be
violated in extreme and artificial situations, where no clear
physical motivation justifies such constructions.

To summarize, we have proved that the Israel matching
conditions are still applicable for the metric (6.1) in the
context of our analysis. Therefore, in the Swiss cheese
approach, Eqs. (2.21) and (2.23) can be used to derive the
cosmological evolution.
If Gk has the constant observed value GN and the

underlying theory provides only ultraviolet (UV) correc-
tions to Λ, it is not possible to get cosmic acceleration since
Λ is suppressed at large distances and ΛðRSÞ almost
vanishes. Therefore, infrared corrections of Λ are neces-
sary. For example, a well-known phenomenological
description of a quantum corrected nonsingular black hole
is provided by the Hayward metric [15] where

FðRÞ¼ 1−
2GNMR2

R3þ2GNML2

¼ 1−
2GNM

R
−2GNM

�
1

R3þ2GNML2
−

1

R3

�
R2:

ð6:7Þ

The length scale L controls the ultraviolet correction close
to the origin and smoothes out the singularity. In this
metric the effective cosmological constant becomes a
function of R, namely ΛðRÞ ¼ 6GNMð 1

R3þ2GNML2 − 1
R3Þ.

At distances where the Newtonian potential is very weak
and R≳ L, it arises that the potential of this cosmological
“constant” is negligible compared to the Newtonian
potential and its corresponding weak-field force (which
is repulsive) is well suppressed compared to the Newtonian
force. Equation (2.23) for the acceleration gives

ä
a
¼ GNM

4GNML2 − r3Σa
3

ð2GNML2 þ r3Σa
3Þ2 : ð6:8Þ

This metric does not provide a recent cosmic acceleration
since at late times deceleration emerges. Similarly, the
solution presented in [14] fails for the same reason.

VII. THE CASE OF ASYMPTOTICALLY
SAFE GRAVITY

A concrete realization of the functions Gk, Λk is
provided by the asymptotically safe scenario of quantum
gravity. In Appendix A, we present a few basic elements of
the theory and of its application in cosmology. According
to the AS program, both Newton’s constant Gk and
cosmological constant Λk are energy dependent, Gk ¼
GðkÞ ¼ gkk−2, Λk ¼ ΛðkÞ ¼ λkk2, where k is an energy
measure of the system and gk, λk are the dimensionless
running couplings governed by some RG flow equations.
The exact RG flow of the couplings from the Planck regime
down to the present epoch is not yet known. So, it is not
clear what is the real trajectory in the space gk, λk followed
by the Universe and how the classical general relativity
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regime with a constant GN and negligible Λ can be
obtained. However, even if it was possible to predict the
flow of the decrease of Λk all the way down to the current
cold cosmic energy scale and a very small value of Λ could
be realized, the coincidence problem, having to do with the
precise order of magnitude of Λ, would still be manifest
and profound. Furthermore, in the picture with a constantG
and a Λk monotonically decreasing with time, a recent
passage from a deceleration to an acceleration phase would
not be possible. The far infrared limit of gk, λk certainly
covers the late-times cosmological scales. However, even if
a late-times behavior with an increasing G does exists, it
will describe the future and not the present Universe which
possesses rather an antiscreening instead of a screening
behavior. Additionally, there is the possibility that the far
infrared corrections of the cosmological constant at cosmic
scales are too small to affect the present Universe evolution
and drive into acceleration.
Anyway, the cosmic scale corrections of G, Λ are not of

interest in our approach. Our interest is focused on the
intermediate infrared corrections occurring at the astro-
physical structures scales. The hope is that these inter-
mediate scale quantum corrections will be significant
enough to have direct influence on the current cosmology
and on the observed dark energy component, but at the
same time they will not conflict in an obvious way with the
local dynamics. Indeed, we will show until the end of
the paper that the recent cosmic acceleration can be the
result of such quantum corrections of the cosmological
constant at the galactic or cluster of galaxies scale.
As before, the Universe will be described by the Swiss

cheese model and the matching will take place on the
surface between a cosmological metric and a quantum
modified spherically symmetric metric. Several interesting
approaches of RG improved black hole metrics appear in
literature. In our analysis, we will work with the quantum
improved Schwarzschild–de Sitter metric (6.1), as e.g.,
presented in [28]. Of course, the precise form of the metric
will arise from the forms adopted for Gk, Λk, as these are
predicted or motivated by AS. A different treatment would
be to substitute the functions Gk, Λk inside some consistent
quantum corrected gravitational equations of motion or
inside some consistent action, and derive first the quantum
corrected spherically symmetric solution. As mentioned,
here we will follow for simplicity the method of obtaining a
quantum corrected metric by starting from a classical
solution and promoting GN , Λ to energy-dependent quan-
tities according to the AS program.
In order to proceed further, the energy measure k has to

be connected with a length scale L, i.e., k ¼ ξ=L, where ξ is
a dimensionless parameter which is expected to be of order
one. As we approach the center of spherical symmetry, the
mean energy increases and k is a measure of the energy
scale that is encoded in renormalization group approaches
to quantum gravity. A simple option is to set as L the

coordinate distance R of the spherically symmetric metric.
Then, the value of the cosmological constant Λk, which
provides a value for the local vacuum energy density,
depends explicitly on the distance from the center, Λk ¼
ΛðRÞ. The same is true for Gk ¼ GðRÞ, and so, the metric
component F of the metric (6.1) becomes an explicit
function of R, F ¼ FðRÞ. Let us remind that the function
FðRÞ is precise when the massM is located at the origin. In
our approach, where we want to describe real astrophysical
objects with a mass profile, FðRÞ in the interior should be
treated with caution.
A more natural option is to set as L the proper distance

D > 0 [29]. This case is more involved physically and
technically. Following a radial curve defined by dT ¼
dθ ¼ dφ ¼ 0 to reach a point with coordinate R, we have

DðRÞ ¼
Z

R

R1

dRffiffiffiffiffiffiffiffiffiffiffiffi
FðRÞp : ð7:1Þ

This is a formal expression until one realizes what is its
meaning and the meaning of R1. Now, the function F is
not an explicit function of R since D is also contained
in F by construction, so FðRÞ in (7.1) basically means
FðR; DðRÞÞ. So, (7.1) is not a simple integral but it is an
integral equation which can be converted to the more useful
differential equation

D0ðRÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
FðRÞp : ð7:2Þ

This is a well-defined, but complicated, differential equa-
tion for D since F contains again DðRÞ (or in different
words, F is given by (6.6)). Integration of Eq. (7.2) will
provide an integration constant σ, so the solution of (7.2) is
DðR; σÞ. Plugging this D in F will provide FðR; σÞ. For a
specific σ, a value R1ðσÞ should exist that makes Eq. (7.1)
meaningful for R > R1. The positiveness of D may also
provide some restrictions on R. Even if a minimum horizon
distance RH exists where FðRH; σÞ ¼ 0, R1 does not
necessarily coincide with RH, since after DðR; σÞ has been
found, it is possible that the arising function 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðR; σÞp

is
nonintegrable around RH. So, the variable DðRÞ is a proper
distance, but not in the conventional sense of an integration
in a prefixed background. It can rather be considered as a
new dynamical field of geometrical nature with its own
equation of motion (7.2), where the spacetime metric is
determined throughDðR; σÞ. The role of the functionDðRÞ
will be crucial in our analysis. The integration constant σ
could be determined by some assumption, for example if
RH exists, it could be set DH ¼ 0 or DH ¼ RH. In our case
of Swiss cheese models, σ will be determined from the
demand of having the correct amount of dark energy today.
However, the interesting thing, especially in relation to the
coincidence problem, is that the corresponding DðRÞ will
have throughout natural values of the order of the length of
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the astrophysical object, while at the same time it will
provide the correct estimate of dark energy.
Let us now complete the discussion started in Sec. VI

about the validity of the Israel matching conditions when
the choice (7.1) is made. The cosmological constant
becomes a function of D; i.e., it is Λk ¼ ΛkðDÞ. If Gk ¼
GN (as we will assume in our analysis), the quantity Q in
(6.4) becomes Q ¼ − 1

3
ΛkR2, so it is a function of R, D,

i.e., Q ¼ QðR;DÞ. Making use of (7.2), we can easily

compute Q0 ¼ − 2
3
ΛkRþ ξR2

3D2
ffiffiffi
F

p ∂Λk∂k ¼ Q0ðR;D;FÞ, Q00 ¼
− 2

3
Λk þ ξR

6D3F3=2 ð8DF − 4R
ffiffiffiffi
F

p
− RDF0Þ ∂Λk∂k − ξ2R2

3D4F
∂2Λk
∂k2 ¼

Q00ðR;D; F; F0Þ. It is now clear, as also mentioned above,
that the right-hand sides of the Einstein equations (6.6), i.e.,

the components of TμðeffÞ
ν , are only functions of R, D, F, F0

and not of F00. Since F00 is only contained in Gμ
ν on the left-

hand sides of (6.6), and the evolution of D is governed by
the first-order differential equation (7.2), the Israel match-
ing conditions arise.
In our Swiss cheese approach of cosmology, the match-

ing between the interior and the exterior metric occurs at
the Schucking radius which only enters the cosmological
evolution. The front value kS at the Schucking radius is
inversely proportional to a characteristic length of the
metric. For the choice L ¼ R, we get

kS ¼
ξ

RS
: ð7:3Þ

For L ¼ D, it is

kS ¼
ξ

DS
; ð7:4Þ

where

DS ¼
Z

RS

R1

dRffiffiffiffiffiffiffiffiffiffiffi
FðRÞp ð7:5Þ

is the proper distance of the Schucking radius. Therefore,
the front values ΛðRSÞ, GðRSÞ at the Schucking radius are
the ones where the matching occurs and determine the
cosmological evolution from (2.21), (2.11) as

_a2

a2
þ κ

a2
¼ 2GðRSÞM

r3Σa
3

þ 1

3
ΛðRSÞ: ð7:6Þ

We finish with a comment which doesn’t have a special
significance. The dependence ofΛ,G on the distance inside
the object does not seem to affect our cosmology. However,
there is an indirect influence which affects the parameters.
Indeed, the total cosmic energy of the cosmological portion
that is excised from the Swiss cheese should be equal to
the energy provided by the various masses inside the
astrophysical object plus the vacuum energy due to the

cosmological constant. Since the vacuum energy of a
cosmological constant is Λ

8πG, we have approximately the
equation

4π

3
R3
Sρtot ¼ M þ

Z
RS

0

ΛðRÞ
8πGðRÞ 4πR

2dR; ð7:7Þ

where ρtot ¼ ρþ ρDE is the total cosmic energy density
(dark matter plus dark energy) [30]. Equation (7.7) evalu-
ated at today’s values, according to (2.11), sets a restriction
between the various parameters. Unfortunately, however,
we cannot make use of this equation since we do not know
the precise functions ΛðkÞ, GðkÞ from the UV with k ¼ ∞
up to kS ∼ R−1

S . The difficulty is rather basically due to
ΛðkÞ since GðkÞ rapidly evolves to its constant value GN .
So, we will have one more parameter left free in our
analysis.

A. First RG flow behavior: Close to the
Gaussian fixed point

There is a fixed point of the RG flow equations, the
Gaussian fixed point (GFP) [31], which is saddle and is
located at g ¼ λ ¼ 0. A appropriate class of trajectories in
the Einstein-Hilbert truncation of the RG flow can be
linearized about the GFP, where the dimensionless cou-
plings are pretty small. These trajectories possess interest-
ing qualitative properties such as a long classical regime
(long ln k “time” due to the vanishing of beta functions) and
a small positive cosmological constant in the infrared,
features that seem relevant to the description of gravita-
tional phenomena in the real Universe. The analysis is
fairly clear and in the vicinity of the GFP it arises that Λ has
a running k4 and G has an approximately constant value
which is interpreted as GN . Therefore,

Gk ¼ GN; Λk ¼ αþ βk4; ð7:8Þ
where α, β are positive constants. Moreover it is β ¼ νGN ,
where ν ¼ Oð1Þ. In terms of the dimensionless couplings it
is λk ¼ αk−2 þ βk2, gk ¼ GNk2. These equations are valid
if λk ≪ 1, gk ≪ 1. While the above segment which lies
inside the linear regime of the GFP can be continued with
the flow equation into the UV fixed point, this approxi-
mation breaks down in the IR where λk approaches the
value 1=2. Therefore, as our first choice, we will assume
that within a certain range of k-values encountered in an
astrophysical object, the RG trajectory is approximated
by (7.8).
For the choice (7.4), Eq. (7.6) provides the cosmic

evolution of the scale factor a as

_a2

a2
þ κ

a2
¼ 2GNM

r3Σa
3

þ α

3
þ βξ4

3D4
S
: ð7:9Þ

The choice (7.3) is not interesting, since the last term in
Eq. (7.9) would be a radiation term a−4, and (7.9) would
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lead to ΛCDM model with a radiation term. From (7.5), it
can be easily found that the time evolution of DS is given
by the equation

_DS ¼
rΣaHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2GNM
rΣa

− α
3
r2Σa

2 − βξ4r2Σa
2

3D4
S

r : ð7:10Þ

Equations (7.9) and (7.10) form a system of two coupled
differential equations for a,DS. We can bring this system in
a more standard form defining

χ ¼ α

3
þ βξ4

3D4
S
; ð7:11Þ

and then

_a2

a2
þ κ

a2
¼ 2GNM

r3Σa
3

þ χ ð7:12Þ

_χ ¼ −
4 · 3

1
4rΣaHðχ − α

3
Þ54

ξβ
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GNM

rΣa
− r2Σa

2χ
q : ð7:13Þ

Note, from (7.11), that χ − α
3
> 0. From (7.12), it is seen

that the quantity χ plays the role of dark energy. Namely,
it is

H2 þ κ

a2
¼ 8πGN

3
ðρþ ρDEÞ; ð7:14Þ

where ρ is given by (3.4) and ρDE ¼ 3
8πGN

χ.
Note in passing that Eq. (7.9), combined with Eq. (7.14),

gives

4π

3
R3
Sρtot ¼ M þ ΛðRSÞR3

S

6GN
: ð7:15Þ

Comparing this equation with (7.7), it arises that the total
energy due to the cosmological constant is given by two
expressions, first by the integral in (7.7) and second by the
last term in (7.15). There is no contradiction with that, since
the equality of these two expressions at the current values
simply provides the additional constraint on the parameters
mentioned above.
The density parameters are defined in the standard way:

Ωm ¼ 8πGNρ

3H2
; ΩDE ¼ 8πGNρDE

3H2
: ð7:16Þ

From the first of Eq. (7.16), using the current values of the
variables, a relation between the parameters M and rΣ can
be found

rΣ ¼
�

2GNM
Ωm0a30H

2
0

�1
3

: ð7:17Þ

For the typical masses we use, it was found above that
rΣ ¼ 0.83 Mpc for a galaxy, and rΣ ¼ 18 Mpc for a cluster
of galaxies.
It is more convenient to work with the redshift

z ¼ a0
a − 1, where the current value a0 of the scale factor

can be set to unity. From (7.13), (7.17), the evolution of
χðzÞ is found from

dχ
dz

¼ 4 ·3
1
4ðχ− α

3
Þ54

ξβ
1
4ð1þ zÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2Σa
2
0

−Ωm0H2
0ð1þ zÞ− χ

ð1þzÞ2
q : ð7:18Þ

After having solved (7.18), the evolution of the Hubble
parameter as a function of z is given by the expression

H2 ¼ Ωm0H2
0ð1þ zÞ3 þ χ −

κ

a20
ð1þ zÞ2: ð7:19Þ

Using (7.14), (7.17), the quantityΩm can also be found as a
function of the redshift

Ωm ¼
�
1þ 1

Ωm0H2
0

χ

ð1þ zÞ3−
κ

a20Ωm0H2
0

1

1þ z

�
−1
: ð7:20Þ

For the numerical investigation of the system, we will
need the current value χ0 of χ. From (7.12) or (7.19), we
find

χ0 ¼ ΩDE;0H2
0: ð7:21Þ

The differential equation (7.18) contains the parameters
ξ; β ¼ νGN; rΣ;α. The parameters ξ and ν are of order
unity. The parameter rΣ was found from (7.17). Finally, the
parameter α is free in order to try to achieve the correct
phenomenology. With these parameters and χ0 given in
(7.21), we can solve numerically (7.18) and find χðzÞ. Then
we can plot ΩmðzÞ from (7.20).
From (7.12), (7.13) one can obtain a Raychaudhuri type

of equation. Differentiating (7.12), and using (7.13) and
(7.12) itself, we get

ä
a
¼ −

1

2
Ωm0H2

0ð1þ zÞ3

þ χ −
2 · 3

1
4ðχ − α

3
Þ54

ξβ
1
4ð1þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2Σa
2
0

− Ωm0H2
0ð1þ zÞ − χ

ð1þzÞ2
q :

ð7:22Þ

The same equation also arises from (2.23). The deceleration
parameter is given by q ¼ −H−2 ä

a. From (7.22), for κ ¼ 0,
and using (7.21), the condition for acceleration today,
äj0 > 0, is written as
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1

r2Σa
2
0H

2
0

>
4 ·

ffiffiffi
3

p

ξ2
ffiffiffi
ν

p
ð1 −Ωm0 − α

3H2
0

Þ52
ð1 − 3

2
Ωm0Þ2

1

H0

ffiffiffiffiffiffiffi
GN

p þ 1; ð7:23Þ

which is approximated by

0< 1−Ωm0−
α

3H2
0

<

�
ξ2

ffiffiffi
ν

p

4
ffiffiffi
3

p
�2

5

�
1−

3

2
Ωm0

�4
5

�
H0

ffiffiffiffiffiffiffi
GN

p
r2Σa

2
0H

2
0

�2
5

:

ð7:24Þ

It is found from (7.24) that 1 − Ωm0 − α
3H2

0

≲ 10−22, from

where it is obvious that α > 0. For such values of α, the
conditions λk ≪ 1, gk ≪ 1 are seen from (7.11), (7.24) that
are easily satisfied. Of course, such values form an extreme
fine tuning for α since α has to be extremely close to the
value 3ð1 − Ωm0ÞH2

0, which is also the value of the
cosmological constant. Additionally, for such values of α
it can be seen that _Ωmj0 < 0, which assures a local increase
of Ωm in the past. There is also the option that 1−Ωm0− α

3H2
0

is of order unity, and then from (7.24), it turns out that
ν > 10106; however, such values are not predicted by the
quantum theory.
Finally, since the pressure of the matter component

vanishes, p ¼ 0, Eq. (7.22) can be brought into the form

2 _H þ 3H2 þ κ

a2
¼ −8πGNðpþ pDEÞ; ð7:25Þ

where the dark energy pressure is given by

− 8πGNpDE

¼ 3χ −
4 · 3

1
4ðχ − α

3
Þ54

ξβ
1
4ð1þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2Σa
2
0

− Ωm0H2
0ð1þ zÞ − χ

ð1þzÞ2
q :

ð7:26Þ

A significant parameter for the study of the late-times
cosmology is the equation-of-state parameter for the
effective dark energy sector wDE ¼ pDE

ρDE
, which is found

from (7.26) to be

wDE ¼ −1þ 4 · 3−
3
4ðχ − α

3
Þ54

ξβ
1
4ð1þ zÞχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2Σa
2
0

−Ωm0H2
0ð1þ zÞ − χ

ð1þzÞ2
q :

ð7:27Þ

Therefore, wDE cannot take phantom values smaller
than −1. Its current value becomes for κ ¼ 0

wDE;0≈−1þ 4 ·3−
3
4

ξν
1
4ð1−Ωm0Þ

�
1−Ωm0−

α

3H2
0

�5
4

�
r2Σa

2
0H

2
0

H0

ffiffiffiffiffiffiffi
GN

p
�1

2

ð7:28Þ

and, according to (7.24), it can take any value −1 <
wDE;0 < −1þ ð2

3
− Ωm0Þð1 −Ωm0Þ−1 ≈ −0.48.

Because of the above extreme fine-tuning in α, numerical
study of the equations is not possible and we need to
perform an analytical study in order to understand the
behavior of the system. This analysis is shown in the
Appendix B for κ ¼ 0. We summarize here the results of
this analysis. Concerning the evolution of the Hubble
parameter and the parameter Ωm, the ΛCDM behavior
arises practically in all the regime of applicability of the
model all the way down to the present epoch, with an
exception in the very first steps of the AS evolution. As for
the deceleration parameter and the dark energy equation-of-
state parameter, there are intervals where these parameters
have a behavior different from that of ΛCDM. This
discrepancy between the behavior of the parameters
HðzÞ, ΩmðzÞ and the behavior of the parameters äðzÞ,
wDEðzÞ is peculiar and is due to the presence of the higher
time derivatives contained in the acceleration, which can
lead to significant contribution from terms which are
negligible in H, Ωm. However, for the numerical values
of the various constants of astrophysical and cosmological
origin describing our model, the final result is that in all
physically interesting cases the acceleration properties of
the model cannot be practically discerned from the ΛCDM
scenario; therefore, our model is indistinguishable from
ΛCDM. There is a possibility, as always in cosmology, that
the perturbations of the model evolve in a distinct way from
ΛCDM; however, the previous analysis of the background,
with the particular values encountered, leaves little hope for
observational evidence of the deviations from ΛCDM.

B. Second RG flow behavior: Close to the infrared

There are encouraging indications that for k → 0 the
cosmological constant runs proportional to k2, so Λk ¼
λIR� k2, where λIR� > 0 is the infrared fixed point of the
λ-evolution. At the same time, it seems that Gk increases a
lot, for example gk could converge to an IR value gIR� > 0
or even diverge. This postulated fixed point [32] can be
considered as the IR counterpart of the UV non-Gaussian
fixed point (NGFP) [33]. This nontrivial IR running can be
assumed that is due to quantum fluctuations with very small
momenta, corresponding to distances larger than the largest
localized structures in the Universe. Since we are interested
in generating the dark energy at astrophysical scales, the
exact realization of the above IR fixed point at cosmologi-
cal scales is not our purpose. There are works, not
concerning cosmology, which consider the possibility that
such a fixed point can act already at astrophysical scales
[34,35]. Our approach will be different. We will consider,
as it is pretty reasonable, that the above IR fixed point has
not yet been reached at the intermediate astrophysical
scales, and therefore, some deviations from the above
functions Gk, Λk should be present inside the objects of
our interest.
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Concerning the gravitational constant Gk, since at mod-
erate scales, well beyond the NGFP, Gk is approximately
constant, we will assume that it has the constant value GN
over a broad range of scales ranging from the submillimeter
up to the galaxy or cluster scale. Actually, we will not make
use of the submillimeter lower bound, so we can just restrict
ourselves above some observable macroscopic distances.
There is the possibility that at large astrophysical scales, G
acquires an IR correction beyond GN ; however, we will not
be concerned about this in our introductory treatment here,
since we do not want to assume arbitrary functional forms.
Already the relatively successful explanation of the galactic
or cluster dynamics using the standard Newton’s law makes
our adoption Gk ¼ GN legal enough.
We will be restricted on the single effect of the variability

of the cosmological constant Λk. Since the functional form
of the deviation of Λk from its IR form k2 is not known, we
will assume that the running of Λk is described by a power
law dependence on the energy, Λk ∼ kb. Of course, this is a
simple ad hoc parametrization, and the analysis will show
how far one can go with the single parameter b. However, if
Λk differs slightly from its IR form k2, what is actually not
unexpected since astrophysical structures are already
“large” enough, then b will be close to the value 2 and
the power-law dependence kb will be a very good approxi-
mation of the running behavior. Moreover, moving with the
deformed law kb from the IR cosmological law k2 down to
the astrophysical scales, it seems more probable for b to be
slightly larger than 2, instead of smaller than 2. This is due
to that since k increases at smaller length scales, the
parameterb should also increase in order to have a significant
astrophysicalΛk; otherwise, kb would be neutralized andΛk
would be suppressed.
We summarize by writing our ansatz,

Gk ¼ GN; Λk ¼ γkb; ð7:29Þ

where γ > 0; b are constants. The parameter γ has dimen-
sions mass to the power 2 − b and will be parametrized as

γ ¼ γ̃G
b
2
−1
N with γ̃ dimensionless. If an order Oð1Þ value for

γ̃ arises, this will mean that no new mass scale is needed (no
new physics is needed for the explanation of dark energy
other than AS gravity and the knowledge of structure) and
the coincidence problem might be resolved from already
controllable physics without fine-tuning or new scales.
Indeed, it will be shown that in the most faithful case,
discussed in the last subsection VII B 2, it turns out that b is
a little higher than 2 and γ̃ ¼ Oð1Þ, which means that our
model with the dark energy originated from IR quantum
corrections of the cosmological constant at the astrophysi-
cal level can be pretty successful. With the assumption
(7.29), the metric (6.1) contains the Newtonian term 2GNM

R
and the nontrivial cosmological constant term 1

3
ΛkR2 which

becomes ξb γ̃
3
ðRLÞbð

ffiffiffiffiffi
GN

p
R Þb−2.

For L ¼ R we will see that current acceleration requires
that b < 1.57 (actually b should be smaller than 1 in order
to have a reasonable wDE today); therefore, we cannot be in
the most interesting IR range of b a little larger than 2 and
the law kb loses its theoretical significance. Then, it will
arise that γ̃ has to be various decades of orders of magnitude
smaller than unity in order to arrange the amount of dark
energy, which means that new scales are introduced
through γ̃. All this situation, which will be examined in
the next subsection VII B 1, although not an obvious fail,
certainly it cannot be considered as a big success in relation
to the coincidence problem. If such values are acceptable,
then the internal dynamics presents some measurable
deviations from the standard Newtonian dynamics which
need more investigation to check their consistency with
observations. As for the force corresponding to the new

cosmological constant term, this is γ̃ξbð2−bÞ
6
ffiffiffiffiffi
GN

p ð
ffiffiffiffiffi
GN

p
R Þb−1, and

therefore it is repulsive. The ratio of the new cosmological
constant term to the Newtonian term turns out to be
ΩDE;0

Ωm0
ðRrΣÞ3−b, while the corresponding ratio of the forces

gets an extra factor b − 2. Thus, for large clusters these
ratios at the border are larger than 0.1 for any b and the
ratios can reach up to 0.35 for the largest b. For small
clusters the ratios are suppressed to less than one per cent.
Finally, for galaxies the ratios are almost 0.2 for the largest
b and decrease considerable for smaller b. Certainly, inside
the structures, the matter profiles have to be taken into
account to obtain accurate results.
What it will turn out to be themost exciting case isL ¼ D,

which will be examined in the last subsection VII B 2. In this
case, the dark energy, along with its acceleration, will be
explained with b a little larger than 2 and γ̃ some number of
order unity. More precisely, the quantityD at the Schucking
radius today,DS;0, which can be considered as the integration
constant of the differential equation for DðRÞ, has to be
arranged to provide the correct amount of dark energy. This
implies thatDS;0 is of order of rΣ, and more generally it will
be shown numerically that thewhole functionDðRÞ turns out
to be of order of rΣ. This is an extra naturalness for ourmodel,
since D, which has some meaning of proper distance, is of
the length of the astrophysical object, and DS;0 does not
introduce a new scale. Therefore, the new cosmological

constant term becomes 1
3
ΛkR2 ¼ ξb γ̃

3
½ 1
GN

ð
ffiffiffiffiffi
GN

p
rΣ

Þb�ðrΣDÞbR2,
where we can set D ∼ rΣ in order to make an estimate. Of
course, the deviations of the new cosmological constant term
from the R2 law and the precise functional form ofDðRÞ are
very important andwill provide a cosmologydistinctive from
ΛCDM. However, we already observe that the quantity
1
GN

ð
ffiffiffiffiffi
GN

p
rΣ

Þb has dimensions of cosmological constant, and for
b close to 2.1 it is very close to the order of magnitude of
the standard cosmological constant Λ ¼ 4.7 × 10−84 GeV2

ofΛCDM.The factor ðrΣDÞb offers a small distance-dependent
deformation of the constant, which however, as mentioned,
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is important for the derived cosmology. Therefore, ourmodel
will provide a natural deformation of the ΛCDM model,
without introducing arbitrary scales or fine-tuning. Similarly,
the constant prefactor ξbγ̃ can contribute to 1 order of
magnitude. As a result, beyond the general idea, motivated
by the coincidence problem, of generating the dark energy
from local antigravity sources, the most important thing to
emerge from the present work is the introduction of the
quantity

1

GN

� ffiffiffiffiffiffiffi
GN

p
rΣ

�
b
; ð7:30Þ

which arises in the context of infrared AS gravity and
plays a role similar to the standard cosmological constant
Λ. This quantity, with b a little larger (for galaxies) or a
little smaller (for clusters) than 2.1, has the quite
interesting property that it has the same order of magni-
tude as the standard Λ. For example, for galaxies with
b ¼ 2.13 the quantity (7.30) is 2.1 × 10−84 GeV2, while
for clusters with b ¼ 2.08 it becomes 2.6 × 10−84 GeV2.
It remains to AS gravity to confirm or not if such values
of b are predicted at the astrophysical scales. Therefore,
in some loose rephrasing, it can be said that the standard
cosmological constant is not any longer an arbitrary
independent quantity, as in ΛCDM, but it is constructed
out of GN , rΣ, b.
As a direct consequence of the above discussion for

L ¼ D, the new cosmological constant term itself, 1
3
ΛkR2,

becomes at the matching surface R ¼ rΣ of the order of

ð
ffiffiffiffiffi
GN

p
rΣ

Þb−2. For galaxies with b ¼ 2.13 and typical mass

M ¼ 1011 M⊙, this term is 4 × 10−8, while the Newtonian
term is 10−8. For clusters with b ¼ 2.08 and mass
M ¼ 1015 M⊙, this term is 2 × 10−5, while the
Newtonian term is 5 × 10−6. Therefore, the two gravita-
tional potentials are comparabe at the Schucking radius. We
can see that approximately a change in b less than five per
cent from the above values, gives a change in this
cosmological constant term less than 1 order of magnitude.
This shows clearly a sensitivity on the value of b, which
however cannot be considered as fine-tuning or at least
extreme fine-tuning. Additionally, the fact that b acquires
smaller values at cluster scales relatively to galaxy scales is
consistent with the IR value b ¼ 2 at cosmological scales or
beyond. At an extreme limit of the solar scale, a even larger
value of b is expected. For a solar distance R ¼ 1 A:U. the
quantity

ffiffiffiffiffiffiffi
GN

p
=R takes the value 10−46, while the

Newtonian potential of the sun at this distance is 10−8.

Already for b ¼ 2.25 the quantity ð
ffiffiffiffiffi
GN

p
R Þb−2, which gives an

estimation of the new term, becomes 3 orders of magnitude
smaller than the Newtonian potential and this discrepancy
becomes huge for larger b. Therefore, it is reasonable to
assume that the stringent solar-system, as well as the
laboratory tests of gravity, remain unaffected by the new

term. Finally, as for the force of the new term, this is
ξb γ̃
6
ð2−b R

D
ffiffiffi
F

p Þ½ 1
GN
ð
ffiffiffiffiffi
GN

p
rΣ

Þb�ðrΣDÞbR, where FðRÞ¼1−2GNM
R −

1
3
ΛkR2. The study of the new potential and its force at
the border and inside the object is more complicated due to
the presence of DðRÞ, so in order to get relatively reliable
results, we will need a more detailed treatment. A prelimi-
nary analysis is given in the last subsection, where the result
is that there is no obvious inconsistency with the internal
dynamics.
We continue with the implication in cosmology of the

previous new cosmological constant term for L ¼ D. While
the Newtonian term is certainly responsible for the dust
term Ωm0H2

0=a
3 on the right-hand side of (7.6), the above

running cosmological constant term is responsible for the

dark energy term ξb γ̃
3

1
GN

ð
ffiffiffiffiffi
GN

p
DS

Þb. Therefore, ΩDE;0 is equal to
ξb γ̃
3
ð rΣ
DS;0

Þb 1
GNH2

0

ð
ffiffiffiffiffi
GN

p
rΣ

Þb. Since DS;0 ∼ rΣ and γ̃ is taken to be

of order one, it is implied from the discussion on the value
of the quantity (7.30) that ΩDE;0 ∼ 1. This can be consid-
ered as a natural explanation of the coincidence problem.
The hard coincidence of the value of the standard cosmo-
logical constant Λ ∼H2

0 is exchanged to a mild coincidence
of the index b close to 2.1, which happens to satisfy

1

GN

� ffiffiffiffiffiffiffi
GN

p
rΣ

�
b
∼H2

0: ð7:31Þ

Strictly speaking, it is the current value ΛðRS;0Þ of the time-
dependent function ΛðRSÞ that has a value of the order
of H2

0.
As discussed in Sec. IV, the form (7.29) for the running

cosmological constant can be applied directly at conven-
tional cosmologies without the Swiss cheese description to
define a different cosmological evolution. In this cosmol-

ogy, the dark energy term is ξb γ̃
3

1
GN

ð
ffiffiffiffiffi
GN

p
L Þb. The quantity L is

a cosmological distance scale instead of an astrophysical
one used in the previous paragraph and this creates a huge
difference. It is a common and sensible approach to assume
L ¼ H−1 in this case, and the current dark energy term

becomes γ̃ξb

3
ð ffiffiffiffiffiffiffi

GN
p

H0Þb−2H2
0. This quantity acquires the

correct order of magnitude, H2
0, if jb − 2j < 0.01, which

means that b should be very close to the IR value 2. It is not
that the two approaches, the one defined by (7.31) and the
one discussed here, differ only quantitatively. They can also
differ qualitatively, in the sense that one approach can be
relevant for the explanation of dark energy and the other
not. For example, if AS predicts for the index b at the
current cosmological scales the value 2.04, this automati-
cally means that the cosmological interpretation of (7.29) is
irrelevant today, and the IR value of b approximately 2 will
be useful for the future Universe evolution. In our work, we
consider the values of b which imply the satisfaction
of Eq. (7.31).
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1. Energy-coordinate distance scale relation

We first choose the simpler case where the energy scale k
is inversely proportional to the coordinate radius R; there-
fore, for the front value of k at the Schucking radius, we
have the relation (7.3). From Eq. (7.6), the Hubble equation
becomes

_a2

a2
þ κ

a2
¼ 2GNM

r3Σa
3

þ γξb

3rbΣa
b : ð7:32Þ

This is a simple equation for the evolution of the scale
factor, which is also written as

H2 þ κ

a2
¼ 8πGN

3
ðρþ ρDEÞ; ð7:33Þ

where ρ is given by (3.4) and ρDE ¼ γξb

8πGNrbΣa
b.

The density parameters are defined as in (7.16) and the
value of rΣ for a galaxy or a cluster is found from (7.17) as
before. The evolution of the Hubble parameter as a function
of z is

H2 ¼ Ωm0H2
0ð1þ zÞ3 þ γξb

3rbΣa
b
0

ð1þ zÞb − κ

a20
ð1þ zÞ2;

ð7:34Þ

where a0 is set to unity. Similarly, the matter density
abundance Ωm becomes

Ωm ¼
�
1þ γξb

3rbΣa
b
0Ωm0H2

0

1

ð1þ zÞ3−b −
κ

a20Ωm0H2
0

1

1þ z

�
−1
:

ð7:35Þ

These equations contain the parameters ξ (which is of order
one), rΣ (which is known from (7.17) for the typical masses
we use), and γ, b. For κ ¼ 0, in order to have Ωm an
increasing function of z in agreement with observations, it
should be b < 3.
Now, from (7.35) we take the condition for the correct

amount of current dark energy,

ξbγ̃ ¼ 3ΩDE;0GNH2
0

�
rΣa0ffiffiffiffiffiffiffi
GN

p
�

b
: ð7:36Þ

Equation (7.36) is analogous to the relation Λ ¼ 3ΩΛ0H2
0.

As was also explained above, here it is the varying
cosmological constant that creates the dark energy based
on the parameters γ̃, b characterizing Λk, and the astro-
physical scale rΣ. For arbitrary values of b, the parameter γ̃
will be very large or very small, introducing in this way a

new massive scale γ ¼ γ̃G
b
2
−1
N . The cosmological constant

Λk ¼ γkb should be generated inside the structure due to
quantum corrections, so the parameters γ̃, b should be given

by the AS theory at the astrophysical scales. Therefore,
Eq. (7.36), as an equation between orders of magnitude,
forms a coincidence similar to that of Λ (actually it can be
considered as increased coincidence) among these two
parameters γ̃, b, the astrophysical value rΣ and the
cosmological parameter H0. What we find particularly
interesting in relation to the coincidence problem is the
situation with γ̃ ∼ 1, because then, no new scale is
introduced for the explanation of dark energy, other than
the astrophysical scale. In this favorite case of ours, the
relation (7.31) is valid with the index b having values close
to 2.1 as explained before, and the hard coincidence of
(7.36) reduces and is just rendered to the mild coincidence
of the value of b. Unfortunately, we will see below that such
b are not allowed here due to acceleration reasons. We
should note additionally that the situation with Eq. (7.36) is
different than the picture where the dark energy is due to
some extra field having its own equation of motion. In that
case, the corresponding of Eq. (7.36) would form a
coincidence relation of dark matter-dark energy where
some integration constants of the extra field would be
involved, while the parameters of the theory would remain
free to accommodate some other observation. This will
actually be the case of the next subsection.
The acceleration is found to be

ä
a
¼ −

1

2
Ωm0H2

0ð1þ zÞ3 þ ð2 − bÞγξb
6rbΣa

b
0

ð1þ zÞb: ð7:37Þ

The condition for current acceleration, äj0 > 0, becomes

ð2 − bÞγξb
3rbΣa

b
0Ωm0H2

0

> 1; ð7:38Þ

which implies that a necessary condition is b < 2.
Equation (7.37) implies that we have the correct behavior
with a past deceleration and a current acceleration. Due to
(7.36), the inequality (7.38) takes the form

b < 2 −
Ωm0

ΩDE;0
; ð7:39Þ

which means that b < 1.57. Then, it arises from (7.36) that
γ̃ ≲ 10−30 (and even smaller for galaxies), so γ̃ is various
decades of orders of magnitude smaller than unity, and
finally, no alleviation is offered to the coincidence problem.
We continue in the following with a little more inves-
tigation of the present case, but it has already become

obvious that the new massive scale γ ¼ γ̃G
b
2
−1
N , very differ-

ent than the one provided by G
b
2
−1
N , is necessarily intro-

duced. And this is due to the values of b implied by the
subtle issue of acceleration. Note that, for the standard Λ, it
is Λ ¼ 3.1 × 10−122G−1

N .
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We have also to assure that the transition point from
deceleration to acceleration is recent. Combining
Eqs. (7.35) and (7.37), we find that this transition occurs
at redshift zt which satisfies the equation

ð1þ ztÞ3−b
2 − b

¼ 1

Ωm0

− 1þ κ

a20Ωm0H2
0

: ð7:40Þ

So, zt is basically determined from the parameter b (for
example, for the value zt ≈ 0.5 it is b ≈ 1). Ignoring κ, it is
found from (7.40) that zt ≲ 0.67. The condition (7.39) is
equivalent to zt > 0. The deceleration parameter becomes
today,

q0 ¼
1

2
Ωm0 −

2 − b
2

ΩDE;0: ð7:41Þ

So, depending on b, it is −0.55 < q0 < 0. The lowest value
q0 ¼ −0.55 characterizes the ΛCDM model and here is
attached to b → 0 with zt ¼ 0.67. The upper value q0 ¼ 0
is associated to the maximum value b ¼ 1.57 with zt → 0
(for the intermediate example with b ≈ 1 it is q0 ≈ −0.2). If
we are to insist to be close to the familiar value q0 ¼ −0.55,
then b should be close to zero and the model is just a slight
variation of the ΛCDM model, since there are no extra
parameters to create some degeneracy. For such b close to
zero, the dark energy term has a slow evolution instead of
the constancy of the standard Λ and it is something like
γ̃ ≲ 10−100. We finish with writing the pressure of dark
energy for a general b as

8πGNpDE ¼ −
ð3 − bÞγξb
3rbΣa

b
0

ð1þ zÞb; ð7:42Þ

where the equation of state of dark energy is

wDE ¼ −1þ b
3
; ð7:43Þ

which is constant and is not compatible with a seemingly
varying wDE.

We present in Fig. 1 the cosmological evolution as a
function of z for a spatially flat universe, with the quantum
cosmological constant originated at the cluster level with
M ¼ 1015 M⊙, Ωm0 ¼ 0.3, and for the parameter choice
b ¼ 1.06, ξ ¼ 1, γ̃ ¼ 2.8 × 10−60, which provide zt ¼ 0.5.
We depict in the left graph the evolution of the dark energy
density parameter ΩDE from Eq. (7.35), where it appears a
typical decreasing behavior for larger redshifts. In the
middle graph the evolution of the deceleration parameter
q is shown, where a passage from deceleration to accel-
eration at late times can be seen. The dark energy equation-
of-state parameter wDE remains constant in the right graph.
It is obvious that in order to have a wDE;0 close to -1,
according to observations, the value of the parameter b has
to be close to zero, and thus, the model is finally very close
to the ΛCDM model.
Although the present model is not taken seriously as it is

not theoretically favorable in relation to the coincidence
problem, and also it should be very close to the ΛCDM
model (by choosing b close to zero) in order to have some
compatibility with simple observational tests, we find
interesting to leave it a little space to breath by noticing
two points. First, the parameter b is not exactly constant,
but more accurately, it is z dependent since at different
cosmic epochs the running couplings move at different
points of the AS renormalization group phase portrait.
Therefore, in general, wDE becomes time dependent. This
point is also related to the specific model of structure
growth one has to assume for a typical galaxy or cluster in
order to make a more realistic implementation of the model.
Since, during the collapsing phase of a structure (larger
length scales), the index b is expected to be smaller than the
current value of the formed object, the mean value of b is
smaller, and thus the real wDE is reduced. Second, in view
of the inhomogeneous/anisotropic models discussed in the
Introduction ([19–21]), the description of a inhomogeneous
universe with more realistic structures would provide
through averaging processes enhancement of cosmic accel-
eration, and therefore, wDE would become even smaller. In
any case, the scenario discussed here will be improved in
various aspects in the next subsection where the energy
scale will be determined from the length scale L ¼ D.

FIG. 1. The late-times cosmological evolution for a spatially flat universe, for the parameter choice b ¼ 1.06, ξ ¼ 1, γ̃ ¼ 2.8 × 10−60,
M ¼ 1015 M⊙ andΩm0 ¼ 0.3. In the left graph we depict the evolution of the dark energy density parameter as a function of the redshift
z. In the middle graph, we present the evolution of the deceleration parameter. Finally, the dark energy equation-of-state parameter is
depicted in the right graph.
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2. Energy-proper distance scale relation

Here we use the proper distance as measure of the energy
scale, which seems to be more realistic, so we assume the
law (7.4). From Eq. (7.6), the Hubble evolution is given by

_a2

a2
þ κ

a2
¼ 2GNM

r3Σa
3

þ γξb

3Db
S

; ð7:44Þ

where

_DS ¼
rΣaHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2GNM
rΣa

− γξbr2Σa
2

3Db
S

r : ð7:45Þ

The quantityDS, which expresses the proper distance of the
matching surface, acts as a new cosmological field of
geometrical nature with its own equation of motion (7.45).
Equations (7.44) and (7.45) form a system of two coupled
differential equations for a, DS. Defining

ψ ¼ γξb

3Db
S

; ð7:46Þ

which should be positive, we bring the system to the more
standard form,

_a2

a2
þ κ

a2
¼ 2GNM

r3Σa
3

þ ψ ð7:47Þ

_ψ ¼ −
3

1
bbrΣaHψ1þ1

b

ξγ
1
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GNM

rΣa
− r2Σa

2ψ
q ; ð7:48Þ

where ψ plays the role of dark energy. We also have

H2 þ κ

a2
¼ 8πGN

3
ðρþ ρDEÞ; ð7:49Þ

where ρ is given by (3.4) and ρDE ¼ 3
8πGN

ψ .
The density parameters are defined as in (7.16) and the

value of rΣ for a galaxy or a cluster is found from (7.17) as
before. It is more convenient to work with the redshift z and
the evolution of ψðzÞ is given by

dψ
dz

¼ 3
1
bbψ1þ1

b

ξγ
1
bð1þ zÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2Σa
2
0

−Ωm0H2
0ð1þ zÞ − ψ

ð1þzÞ2
q : ð7:50Þ

After having solved (7.50), the evolution of the Hubble
parameter as a function of z is

H2 ¼ Ωm0H2
0ð1þ zÞ3 þ ψ −

κ

a20
ð1þ zÞ2; ð7:51Þ

while, the matter density abundance Ωm becomes

Ωm ¼
�
1þ 1

Ωm0H2
0

ψ

ð1þ zÞ3 −
κ

a20Ωm0H2
0

1

1þ z

�
−1
: ð7:52Þ

For the numerical investigation of the system, we will
need the current value ψ0 of ψ . In terms of the other
parameters, it is

ψ0 ¼ ΩDE;0H2
0: ð7:53Þ

The differential equation (7.50) contains the parameters ξ
(which is of order one), rΣ (which is known from (7.17) for
the typical masses we use), and γ, b. With these parameters
and ψ0 given in (7.53), we can solve numerically (7.50) and
find ψðzÞ. Then, we can plot ΩmðzÞ from (7.52).
It is illuminating to define the variable ψ̃ ¼ ψ=H2

0, and
then, Eqs. (7.50)–(7.52) become, respectively,

dψ̃
dz

¼ 3
1
bbðGNH2

0Þ
1
b−

1
2ψ̃1þ1

b

ξγ̃
1
bð1þ zÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2Σa
2
0
H2

0

−Ωm0ð1þ zÞ − ψ̃
ð1þzÞ2

q ð7:54Þ

H2

H2
0

¼ Ωm0ð1þ zÞ3 þ ψ̃ þΩκ0ð1þ zÞ2 ð7:55Þ

Ωm ¼
�
1þ 1

Ωm0

ψ̃

ð1þ zÞ3 þ
Ωκ0

Ωm0

1

1þ z

�
−1
; ð7:56Þ

where ψ̃0 ¼ ΩDE;0 and Ωκ0 ¼ −κ=ða20H2
0Þ. Since Ωκ0 ≪ 1,

Ωm0 ≈ 0.3 and Ωm should basically increase in the past, it
arises from (7.56) that for recent redshifts, where our
scenario makes sense, it should be ψ̃=ð1þ zÞ3 ≲ 1; other-
wise, Ωm would drop to unacceptably small values in the
past. As a result, ψ̃=ð1þ zÞ2 ≲ 10, which is actually even
smaller. On the other hand, the quantity 1=ðr2ΣH2

0Þ in the
square root of (7.54) is approximately 2 × 107 for a galaxy
and 5 × 104 for a cluster; thus, only this term remains in the
square root to very high accuracy (better than 0.02% for
clusters and better than 0.00005% for galaxies). Therefore,
the differential equation (7.54) for any practical reason is
approximated by the simple equation

dψ̃
dz

¼ 3
1
bb

ξγ̃
1
b

ðGNH2
0Þ

1
b
rΣa0ffiffiffiffiffiffiffi
GN

p ψ̃1þ1
b

ð1þ zÞ2 : ð7:57Þ

Integration of (7.57) gives

ψ̃ ¼
�
3

1
b

ξγ̃
1
b

ðGNH2
0Þ

1
b
rΣa0ffiffiffiffiffiffiffi
GN

p 1

1þ z
þ c

�
−b
; ð7:58Þ

where c is the integration constant. From the value of ψ̃0,
we find c, and finally we have for the evolution of dark
energy,
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ψ̃ ¼
�
Ω−1

b
DE;0 −

3
1
b

ξγ̃
1
b

ðGNH2
0Þ

1
b
rΣa0ffiffiffiffiffiffiffi
GN

p z
1þ z

�
−b
: ð7:59Þ

The positiveness of ψ implies that

z−1 >

�
3ΩDE;0

ξbγ̃

�1
bðGNH2

0Þ
1
b
rΣa0ffiffiffiffiffiffiffi
GN

p − 1: ð7:60Þ

As a result of the inequality (7.60), we get that

ξbγ̃ >
3ΩDE;0

ð1þ z−1maxÞb
GNH2

0

�
rΣa0ffiffiffiffiffiffiffi
GN

p
�

b
; ð7:61Þ

where zmax ¼ Oð1Þ is a redshift such that in the interval
ð0; zmaxÞ the model should definitely make sense.
For concreteness, we write explicitly the Hubble evolu-

tion HðzÞ,

H2

H2
0

¼Ωm0ð1þ zÞ3 þ
�
Ω−1

b
DE;0 −

3
1
b

ξγ̃
1
b

ðGNH2
0Þ

1
b
rΣa0ffiffiffiffiffiffiffi
GN

p z
1þ z

�
−b

þΩκ0ð1þ zÞ2; ð7:62Þ

which is extremely accurate for all relevant recent redshifts
where our model is applicable. The only unknown quan-
tities in Eq. (7.62) are ξbγ̃ and b. Equation (7.62) is a new
Hubble evolution which can be tested against observations
at the background level. We note that the dark energy term
in (7.62) is quite different than the one of Eq. (7.34). It is
obvious from (7.62) that Ωm0 þΩDE;0 þ Ωκ0 ¼ 1. When
ξbγ̃ is much larger than the right-hand side of (7.61), the
dark energy of Eq. (7.62) is approximately a cosmological
constant. The most interesting case is certainly when
ξbγ̃ ∼ GNH2

0ð rΣffiffiffiffiffi
GN

p Þb, and then, all the terms in (7.62)—with

the exception of the spatial curvature Ωκ—are equally
important and give a nontrivial dark energy evolution. In
this case, various combinations of γ̃, b are allowed such that
(7.61) is satisfied, introducing in general new scales.
Moreover, due to the presence of the integration constant
c which arranges ΩDE;0, the terse relation (7.36) has now
been replaced by the loose inequality (7.61), and therefore,
the precise value of the quantity ξbγ̃ can be used in order to
accommodate some other observation, e.g., the acceler-
ation. For a general b, although the dark energy may
sufficiently be attributed to the varying cosmological
constant, the coincidence problem is not particularly
alleviated. However, what we find particularly interesting
for the explanation of the coincidence problem, as was
discussed above, is the situation with γ̃ ∼ 1, because then,
no new mass scale is introduced for the explanation of the
dark energy, other than the astrophysical scales. This is our
favorite case, where the relation (7.31) is valid with the
index b having values close to 2.1, as explained. Such
values of b are also theoretically interesting since they are
close to the IR fixed-point value b ¼ 2 of AS theory and it

remains to AS to find if such values are predicted at
the astrophysical scales. For example, for a galaxy with
b ¼ 2.13, inequality (7.61) provides that ξbγ̃ > 2.2
ð1þ z−1maxÞ−b, while for a cluster with b ¼ 2.08 it is
ξbγ̃ > 1.8ð1þ z−1maxÞ−b, relations which can easily be sat-
isfied with suitable γ̃ ∼ 1.
Combining Eqs. (7.46) and (7.53), we obtain

GNH2
0

�
DS;0ffiffiffiffiffiffiffi
GN

p
�

b
¼ ξbγ̃

3ΩDE;0
: ð7:63Þ

For γ̃ such that inequality (7.61) is saturated, which means
that the dark energy in (7.62) is nontrivial (different than a
cosmological constant), we conclude from (7.63) that the
value of D at the current Schucking surface is DS;0 ∼ rΣ.
This is true, either for our favorite b or more generally. Note
that DS;0 is of the order of rΣ and not approximately equal
to rΣ, as might be guessed initially. It is obvious that the
relation (7.36) between the parameters has now disap-
peared in (7.63) due to the freedom introduced by the
presence of DS;0. The precise value of DS;0 is given by
(7.63) and depends on ΩDE;0. The quantity DS acts as an
extra independent cosmological field in the system (7.44),
(7.45), whose initial condition DS;0 is set today in agree-
ment with the amount of measured dark energy. This initial
condition measures the proper distance of the current
matching surface of the Swiss cheese model and the extra
interesting thing, which also sheds light to the coincidence
problem, is that it is of the order of the radius of the
astrophysical structure. If it was not, then it would be just
the integration constant of an extra field that should be
selected appropriately to create the measured dark energy,
and therefore, introduce another scale. We can also find
from (7.46), (7.59) the expression of DSðzÞ to high
accuracy

DS

rΣa0
¼ ξγ̃

1
b

3
1
bΩ

1
b
DE;0

1

ðGNH2
0Þ

1
b

ffiffiffiffiffiffiffi
GN

p
rΣa0

−
z

1þ z
: ð7:64Þ

Equation (7.64) reduced to (7.63) for z ¼ 0. For a nontrivial
dark energy evolution in (7.62), the functionDS remains for
all relevant z of the order of rΣ.
In the interior of the object, the proper distance D is a

function of the position R; i.e., it is DðRÞ, and the equation
governing this evolution is (7.2). Since DS;0 is known, the
initial condition of Eq. (7.2) is set at R ¼ RS;0 ¼ rΣ as
DðrΣÞ ¼ DS;0. In terms of the normalized variables D̂ ¼
D=rΣ and R̂ ¼ R=rΣ, we have

dD̂

dR̂
¼

�
1 −

ξbγ̃

3

� ffiffiffiffiffiffiffi
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p
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�
b−2 1

D̂b
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2 ð7:65Þ
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with the initial condition set at R̂ ¼ 1 as D̂ ¼ D̂S;0 ¼
ð ξb γ̃
3ΩDE;0

Þ1bðGNH2
0Þ−

1
b

ffiffiffiffiffi
GN

p
rΣ

. We note that the fact that DS

changes in time does not mean that the interior solution
is time dependent. The interior solution is static and simply
D̂S;0 is used as initial condition for the integration of (7.65),
since this is known from the current amount of dark
energy. Since for our favorite values of γ̃, b which validate

Eq. (7.31), the factor ð
ffiffiffiffiffi
GN

p
rΣ

Þb−2 is various orders of

magnitude smaller than one and D̂S;0 ∼ 1, the initial value

of dD̂
dR̂

at the Schucking surface is one to high accuracy.
Therefore, close to rΣ, the function DðRÞ − R remains
constant. We will see numerically that this is approximately
true more generally and find the integration constant.
Concerning the acceleration we find
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In terms of ψ̃ we have
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which is very well approximated, as before, by
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or explicitly in terms of z as
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The transition redshift zt from deceleration to acceleration
is found from (7.69) setting ä ¼ 0. The current deceleration
parameter takes the following very accurate expression if
we use Eq. (7.69),
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and therefore, q0 takes values larger than the ΛCDM value
−0.55. From (7.66) or (7.67), the condition äj0 > 0 is
written as

ξbγ >
3bbΩ1þb
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and is very well approximated by
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which also arises from (7.70). The inequality (7.72) can be
seen that is sufficient in order to have the significant
condition _Ωmj0 < 0. For our favorite values of γ̃, b which
validate Eq. (7.31), the right-hand side of (7.72) is of order
one and ξbγ̃ should be chosen accordingly, still being of
order unity. For example, for galaxies with b ¼ 2.13 we
take from (7.72) that ξbγ̃ > 4.2, while for clusters with b ¼
2.08 it should be ξbγ̃ > 3.2. These conditions are stronger
that those implied by (7.61) for any zmax, so (7.61) can be
forgotten. For these values of b we provide now some
indicative numerical results for q0 from Eq. (7.70) and zt.
For galaxies with b ¼ 2.13, we have the following: for
ξ ¼ 9, γ̃ ¼ 5 it is zt ¼ 0.68 and q0 ¼ −0.49; for ξ ¼ 3,
γ̃ ¼ 2 it is zt ¼ 0.69 and q0 ¼ −0.29; for ξ ¼ 1, γ̃ ¼ 6 it is
zt ¼ 0.51 and q0 ¼ −0.09. For clusters with b ¼ 2.08,
we have the following: for ξ ¼ 9, γ̃ ¼ 5 it is zt ¼ 0.68
and q0 ¼ −0.50; for ξ ¼ 3, γ̃ ¼ 2 it is zt ¼ 0.69 and
q0 ¼ −0.32; for ξ ¼ 1, γ̃ ¼ 6 it is zt ¼ 0.60 and
q0 ¼ −0.14. In all these cases, the inequality (7.60) does
not provide any restriction on z. If b increases more than
2% relative to the above indicative values, then the quantity
ξbγ̃ moves to higher orders of magnitude to assure accel-
eration, while if b gets values smaller than the above
indicative, the inequality (7.72) is easily satisfied since its
right-hand side becomes suppressed.
Finally, the dark energy pressure and its equation-of-

state parameter are

8πGNpDE
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1
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wDE ¼ −1þ 3
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In terms of ψ̃ ; we have
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which are very well approximated, as before, by
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or explicitly in terms of z as
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The present-day dark energy equation-of-state parameter
takes the following very accurate expression if we use
Eq. (7.80),
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rΣa0ffiffiffiffiffiffiffi
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and therefore, wDE;0 takes values larger than the ΛCDM
value −1 (phantom values smaller than −1 can only be
obtained if b < 0). According to (7.72), it can take any
value wDE;0 < − 1

3
ð1þ Ωm0

ΩDE;0
Þ ≈ −0.48. In our typical exam-

ple, using b ¼ 2.13 at a galaxy structure, for ξ ¼ 9, γ̃ ¼ 5 it
is wDE;0 ¼ −0.95, for ξ ¼ 3, γ̃ ¼ 2 it is wDE;0 ¼ −0.75,
while for ξ ¼ 1, γ̃ ¼ 6 it is wDE;0 ¼ −0.56. Similarly, using
b ¼ 2.08 at a cluster structure, for ξ ¼ 9, γ̃ ¼ 5 it is
wDE;0 ¼ −0.95, for ξ ¼ 3, γ̃ ¼ 2 it is wDE;0 ¼ −0.78, while
for ξ ¼ 1, γ̃ ¼ 6 it is wDE;0 ¼ −0.61.
To capture the results of this case, we present in Fig. 2

the cosmological evolution as a function of z for a spatially
flat universe, with the quantum cosmological constant
originated at the cluster level with M ¼ 1015 M⊙,
Ωm0 ¼ 0.3, and for the parameter choice b ¼ 2.06,
ξ ¼ 5, γ̃ ¼ 5, which provide zt ¼ 0.67, q0 ¼ −0.52,
wDE;0 ¼ −0.978. Of course, these are just indicative values
of the parameters, which however look successful at least at
first glance (in a forthcoming paper [36], we will perform a
numerical analysis at the background level with data from
SNIa, HðzÞ measurements, BAO, etc., where we can say in
advance that the fittings show excellent accuracy). We
depict in the left graph the evolution of the dark energy
density parameter ΩDE from Eq. (7.56), where a typical
decreasing behavior for larger redshifts is shown. In the
middle graph the evolution of the deceleration parameter q
is shown, where the passage from deceleration to accel-
eration at late times can be seen. The dark energy equation-
of-state parameter wDE in the right graph shows a
nonconstant evolution with a current value wDE;0 close
to -1. We also note that if we solve numerically the
differential equation (7.50), instead of using the analytical
expression (7.59), the results are exactly the same due to the
high degree of accuracy of our analytical expressions.
Notice that the two reasons mentioned in the end of
subsection VII B 1, about the time variability of b and
the further decrease of wDE, are also valid here. Namely, a
more realistic study of the RG flow inside the structure,

FIG. 2. The late-times cosmological evolution for a spatially flat universe, for the parameter choice b ¼ 2.06, ξ ¼ 5, γ̃ ¼ 5, M ¼
1015 M⊙ and Ωm0 ¼ 0.3. In the left graph we depict the evolution of the dark energy density parameter as a function of the redshift z. In
the middle graph we present the evolution of the deceleration parameter. Finally, the dark energy equation-of-state parameter is depicted
in the right graph.
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together with a model of structure formation on one side,
and the study of more realistic inhomogeneous/anisotropic
cosmological models through averaging processes on the
other side, would reduce wDE, possibly even to phantom
values.
Because we are taking our scenario seriously, we would

like to finish with an estimate of the potentials and the
forces inside and at the border of an astrophysical object.
As for the border, the situation is clear and precise. Since
the mass of the structure can be considered as being
gathered at the origin, the Schwarzschild term is exact
and provides the Newtonian force at the border. If this force
and its potential are dominant compared to the new
cosmological constant term at the border (which will
indeed be the case), this will already be an indication that
inside the object the interior dynamics will also not be
severely disturbed. More precisely, in the interior of the
object, either galaxy or cluster, there is a profile of the
matter distribution (luminous, gas, dark matter) which will
give some deviations from the central 1=R potential. We
will first study what is the situation in Milky Way, which is
a well-studied galaxy. A very good fit of dark matter halo
profile (which is the dominant matter component) to
available data for Milky Way is performed [37] using
the Universal Rotation Curve (Burkert) profile with matter
density ϱðRÞ ¼ ϱcð1þ R

Rc
Þ−1½1þ ð RRc

Þ2�−1, where the den-

sity scale ϱc ∼ 4 × 107 M⊙=kpc3 and the radius scale
Rc ∼ 10 kpc. The use of a matter profile is necessary in
order to get precise values of the Newtonian forces and
velocities inside the galaxy (R < Rb). It can be easily seen
that in the inner regions of the galaxy (R≲ 0.4Rb), the real
amount of matter is much larger than the matter predicted
by a constant energy density profile, so this constant profile
gives a poor underestimation of the Newtonian force. On
the other hand, an interesting result is that away from the
very center of the galaxy (R≳ 0.1Rb) the real Newtonian
force is of the same order as the Newtonian force due to the
idealized picture with all the galaxy mass gathered at the
origin. This result of Milky Way indicates that, although we
will not enter the complicated discussion to study the
precise Newtonian force inside other galaxies or clusters,
this force will be estimated by the central 1=R2 force. This
way, we will be in position to compare the varying
cosmological constant force relatively to the Newtonian
force, and see how long the new force does not give
obvious inconsistencies with internal dynamics. Of course,
a more detailed study and comparison to existing or
upcoming data is necessary.
With the explanations of the previous paragraph, we

assume that the gravitational field given by the modified
Schwarzschild metric (6.1) in the interior of the object
(far from its very center, e.g., for R≳ 0.1Rb) provides a
sufficient estimate to anticipate what are the interior
Newtonian and cosmological constant forces. We use
the indicative parameters b ¼ 2.08, ξ ¼ 1, γ̃ ¼ 6 to

numerically integrate Eq. (7.65). The solution of this
equation gives the function DðRÞ, which turns out to be
an increasing function of R, as it should be. The first
observation is that the function DðRÞ in all the relevant
distances, throughout the interior of the astrophysical
object up to the current Schucking radius RS;0 ¼ rΣ, has
values of the order of rΣ. Therefore, not onlyDSðzÞ remains
of order rΣ, but also the whole DðRÞ is so, and provides a
variable with values natural to the dimension of the object,
without acquiring unnatural very large or very small values.
In general, at distances up to a few decades of rΣ, a reliable
approximation for the solution, as it is seen numerically, is
D̂ ≈ R̂þ 0.79, thus D has approximately a constant differ-
ence from R. Of course, this expression of D̂ can be used to
obtain some intuition, but the detailed structure of D̂ could
also be significant elsewhere. The next important thing is to
study the ratio of the potential term due to the varying
cosmological constant to the Newtonian potential, as they
arise from Eq. (7.65). For small clusters, this ratio is less
than 1% either at the border or inside. For the largest
possible clusters, the ratio becomes 15% at the border and
less inside. Therefore, for the latest clusters, we have a non-
negligible contribution to the pure Newtonian potential
with possible observable signatures, still without an
obvious inconsistency. Since the Newtonian potential is
negligible relatively to unity for R≳ 0.1Rb up to the border,
thus both potentials are very weak and F is approximately
one to high accuracy. For all clusters, with any diameter, the
two potentials become of the same order at the Schucking
radius and this was the reason above for the successful
explanation of dark energy. At even larger distances
(R≳ 3rΣ) the cosmological constant becomes the dominant
term (although in the Swiss-cheese model, at such distances
the cosmological patch is present instead of the static one).
Finally, the ratio of the cosmological constant force to the

Newtonian force is ΩDE;0

a3
0
Ωm0

ðb R̂
D̂

ffiffiffi
F

p − 2ÞðD̂S;0

D̂
ÞbR̂3. It turns out

that this ratio is negative, which means that the new force is
repulsive, as expected. For small clusters, this ratio is again
less than 1% either at the border or inside. For the largest
possible clusters, the ratio becomes 20% at the border and
less inside. Again, for such clusters, a non-negligible
contribution to the Newtonian force arises, which should
be studied more thoroughly in comparison with real data.
Similar results with all the above occur for clusters with
different values of the parameters ξ, γ̃, where most usually
the extra force and potential are further suppressed. As for
galaxies, it can be seen that the force or the potential of the
extra term is always restricted to a contribution of a few
percent, independently of the parameters.
Some remarks are in order about what may happen with

the formation of large scale structures of the Universe in the
context of our model. It is well known that modifications of
gravity that are almost ΛCDM at the background level may
have very different evolution of structures. In our present
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understanding of the theory, we cannot analyze the whole
structure evolution because the scenario starts somehow
suddenly with the appearance of the structures. The present
work provides a study only at small redshifts. If in the future
we manage to understand better the behavior of the RG flow
at different energies and scales, wewill able to quantify more
accurately the antigravity effects during the formation and
the evolution of structures. This knowledgewill require from
AS theory the correct RG flow of gravity with matter at the
infrared energy scales and also the exact relation of the
amount of energy/mass that is associated with the value of
the varying cosmological constant. However, we foresee that
general relativity will be preserved somehow accurately
during structure formation because, in the initial clouds that
collapse, the antigravity quantum effects are not expected to
be very important and they become significant recently
where structures are denser and smaller. But this, of course,
must be studied with an exact RG flow.

VIII. DISCUSSION AND CONCLUSIONS

We have proposed that the dark energy and the recent
cosmic acceleration can be the result of the existence of local
antigravity sources associated with astrophysical matter
configurations distributed throughout the Universe. This is
a tempting proposal in relation to the coincidence problem
since in that case the dark energy naturally emanates from the
recent formation of structure.
The cosmic evolution can arise through some interrelation

between the local and the cosmic patches. In the presentwork
we have assumed a Swiss cheese model to derive the
cosmological equations, where the interior spherically sym-
metric metric matches smoothly to an FRWexterior across a
spherical boundary. This Schucking surface has a fixed
coordinate radius in the cosmic frame, but expands with
time in the local frame.
Various gravitational theories can be implemented in the

above context and see if the corresponding intermediate
distance infrared phenomena can provide the necessary
cosmic acceleration. This is not always an easy task since
the appropriate spherically symmetric solutions should be
used along with the correct matching conditions. Our main
concern in this work, in order to test our proposal, is to
consider quantum modified spherically symmetric metrics,
and more precisely, quantum improved Schwarzschild–de
Sitter metrics, which are used for modeling the metric of
galaxies or clusters of galaxies.
Asymptotically safe (AS) gravity provides specific forms

for the quantum corrections of the cosmological and
Newton’s constants depending on the energy scale. In
the far infrared (IR) regime of AS evolution, which
certainly corresponds to the cosmological scales, there
are encouraging indications for the existence of a fixed
point of a specific form. In the intermediate infrared scales
of our astrophysical objects, it is therefore quite reasonable

that some small deviations from this IR law occur, and on
this behavior our most successful model was built con-
taining the appropriate antigravity effect. This model uses
dimensionless order-one parameters of AS, the Newton’s
constant and the astrophysical length scale (which enters
through the Schucking radius of matching) and provides a
recent dark energy comparable to dark matter. At the same
time, sufficient cosmic acceleration emerges at small red-
shifts, while the freedom of the order one parameters has to
be constrained by observational data in the future. To the
best of our knowledge, this is the first solution of the dark
energy problem without using fine-tuning or introducing
add-hoc energy scales. Although this cosmology, given by
Eq. (7.62), has a quite different functional form than the
ΛCDM cosmology, the modified Schwarzschild–de Sitter
interior metric allows us to interpret the encountered
quantity (7.30) as giving approximately the correct order
of magnitude of the standard cosmological constant Λ,
which can thus be considered as a composite quantity.
As a more technical point concerning the above cosmol-

ogy, there appears, from the relation of the AS energy scale
with a length scale, a coupled geometrical field with its
own equation of motion, which is identified as the proper
distance. The integration constant of this field, which is
the proper distance at the current Schucking radius, arranges
the precise amount of dark energy, and since its value is of the
order of the length of the astrophysical object, yet no new
scale is introduced from this stage. Finally, we have
presented a crude estimation of the antigravity effects in
the interior of the structure and it appears that they stay at
sufficiently small values, so that not to create obvious
conflicts with the local dynamics of the object. This is an
interesting issue that deserves amore thorough investigation.
As a future work, it is worth investigating the same

scenario with inhomogeneous/anisotropic Swiss cheese
models. The present work uses the simplest Swiss cheese
model as a first simple approach. It is necessary to beginwith
it in order to isolate themagnitude of the effects of antigravity
sources. Inhomogeneous Swiss cheese type models are
certainlymore realistic, andwe expect that theywill enhance
the produced effective amount of acceleration.Moreover, the
evolution of structure will add a more refined picture of the
passage from the deceleration to the acceleration regime.
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APPENDIX A: ASYMPTOTICALLY
SAFE GRAVITY

1. General theory

The elusive theory of quantum gravity is associated not
only with mathematical challenges but also with many
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conceptual problems, including a measurements scheme and
several epistemological issues. This is something expected
sincequantumgravitywillmost probably provide theTheory
of Everything, a model that most certainly will include
revolutionary new mathematical and physical concepts.
Nevertheless, some part of the scientific community last
decades has been focused, as a first, on attempts to propose
solutions to thewell-known result that the quantization of the
Einstein-Hilbert action leads to a quantum field theorywhich
is perturbatively nonrenormalizable [38].
In general, a mathematical modeling of a system is

greatly simplified if one allows for more parameters, more
dimensions or more symmetries. Remarkably, there is one
serious attempt of quantum gravity that works in four
dimensions using only the symmetries of conventional
quantum field theory and of general relativity. An effective
quantum field theory of general relativity can give answers
about the calculations of amplitudes at energy scales below
the Planck scale. This is a result of the fact that higher-
derivative terms are suppressed by powers of the Planck
mass. However, for energies close to or larger than
Planckian scales, the effective theory requires a fixing of
an infinite number of free coupling constants from exper-
imental input. This equivalently means that at every loop
more experiments must be performed and this finally leads
to loss of predictability.
Asymptotic safety (AS) exists in the space of theories

that includes the corresponding effective field theory. The
AS program recovers “predictivity” by imposing the
demand/principle that the physically accepted quantum
theory is located within the ultraviolet (UV) critical hyper-
surface of a renormalization group (RG) fixed point that is
called the non-Gaussian fixed point (NGFP). The existence
of the latter point guarantees that the UV description of the
theory furnishes all dimensionless coupling constants to be
finite. Now, determining the trajectory uniquely (which
means to pick up a specific universe RG flow) requires a
number of experimental input parameters equal to the
dimensionality of the hypersurface. This has been proved,
under some simplified approximations, that it is indeed
possible and there is the NGFP where a trajectory begins
and generates general relativity at low energy [39–45].
Approximations of the gravitational RG flow can be carried
out with the help of the functional renormalization group
equation (FRGE) [39]

∂kΓk½g; ḡ� ¼
1

2
Tr½ðΓð2Þ

k þRkÞ−1∂kRk�; ðA1Þ

regarding the effective average gravity action Γk, where

Γð2Þ
k , ḡμν and Rk are defined in the context of the back-

ground field formalism. This methodology splits the metric
gμν into a fixed background ḡμν and fluctuations hμν. The

quantity Γð2Þ
k is the second order functional derivative of

Γk with respect to the fluctuation field hμν and Rk gives a

scale-dependent mass term for fluctuations with momenta
p2 ≪ k2, where the RG scale k is constructed from the
background metric. This RG equation implements Wilson’s
idea which suggests integrating out momenta p2 ≪ k2, i.e.,
small fluctuations. In this way, Γk provides an effective
description of the system for scales k2. Remarkably, this is a
background independent method [46].
The simplest estimation of the RG flow, concerning

gravity field, arises after projecting the FRGE onto the
gravity action approximated by the following Γk

Γk ¼
1

16πGk

Z
d4x

ffiffiffiffiffi
jgj

p
ð−Rþ 2ΛkÞ; ðA2Þ

where gauge fixing and ghost terms are of course included.
This approximation includes two energy-dependent cou-
plings, the Newton’s constant Gk and the cosmological
constant Λk. For convenience, we define their dimension-
less counterparts

gk ≡ k2Gk; λk ≡ k−2Λk; ðA3Þ

which should respect the beta functions.
In the absence of knowledge of the real functional scale

dependence of gk, λk, it is not clear what is the correct
trajectory in the space of gk, λk that was followed by the
Universe. In other words, we do not really know yet the
detailed path along which the classical general relativity
regime at the present-day epoch with a constant GN and
negligible Λ can be obtained. In the trans-Planckian regime
the NGFP is present [33] and the behavior of the couplings
near this point is given by constant values, gk ¼ g�,
λk ¼ λ�, so in the deep ultraviolet (k → ∞), G approaches
zero and Λ diverges. There is another fixed point, the
Gaussian fixed point (GFP) [31], which is saddle and is
located at g ¼ λ ¼ 0. In the linear regime of the GFP, where
the dimensionless couplings are pretty small, the analysis
predicts that G is approximately constant, while Λ displays
a running proportional to k4. To the other edge of the far
infrared limit (k → 0) [32], the behavior of the RG flow
trajectories with positive G, Λ is not so well understood
since the approximation breaks down (divergence of beta
functions) when λk approaches 1=2 at a nonzero k, where
an unbounded growth of G appears together with a
vanishingly small Λ (interestingly enough, this happens
near k ¼ H0). The exact value of the current Λ is unknown
due to this break down.

2. Cosmology

The framework of AS in principle describes a modified
gravitational force at all length scales, something that
makes the cosmological model building feasible [29,32],
[47–67] (see also review [45]). Consequently, phenomeno-
logical studies that use cosmological data can constraint
the various free parameters appearing in AS, including the

SOLUTION OF THE DARK ENERGY AND ITS … PHYS. REV. D 97, 123542 (2018)

123542-25



values of the cosmological constant and Newton’s constant.
The various research studies that appear in the literature
incorporate the AS property of energy-dependent couplings
in two ways.
In the first approach, the scale laws of the couplings are

taken from the rigor RG computation of AS close to the
NGFP or GFP, or at some infrared range. Then, either these
laws are incorporated in general relativity solutions or they
are included in properly modified Einstein equations that
respect Bianchi identities. In this approach, there is the
advantage of using rigorous and trusted results from RG
studies of AS. However, this approach is supposed to
concentrate on the study of a relatively restricted energy
scale range, i.e., for the big bang regime or the infrared
regime, and typically is not used for the description of the
whole cosmological evolution.
In the second approach, RG improved techniques are

used either in the equations of motion or in the machinery
of the effective average action. The models are not
implemented at the same level of rigor as the full RG flow
studies forming the core of AS. However, they allow for the
construction of interesting cosmological scenarios with
extended cosmological evolution.
It is common in the AS literature to set G and Λ as

functions of the energy k in the existing solutions of
Einstein equations in order to improve their behavior.
The simple input of GðkÞ and ΛðkÞ into the classical
vacuum equations results to violation of the Bianchi
identities, while this same input into a classical solution
creates a metric which is not solution of a well-defined
theory. In [68], the formalism of obtaining RG improved
solutions that respect Bianchi identities was presented at
the action level. In [69], an alternative and mathematically
more solvable approach was developed at the level of
equations of motion, consistent with Bianchi identities,
where the appropriate covariant kinetic terms that support
an arbitrary source field ΛðkÞ was included without any
symmetry assumption.
Many AS cosmological studies have analyzed the early

cosmological evolution or the dark energy problem and it
was even possible to propose solutions to the cosmic entropy
issue [67]. Of particular interest are studies where “RG
improved” cosmologies admit exponential or power-law

inflationary solutions [70]. The initial vacuum state of
cosmos is characterized by an energy-dependent cosmologi-
cal constant, and subsequently, Einstein equations, modified
according to AS, include a nonzero matter energy-
momentum tensor with an energy-dependent Newton’s
constant (matter is expected to appear due to energy transfer
fromvacuum tomatter fields). Both theseΛ andG respect the
energy dependence that is predicted in the context of AS at
the NGFP. In [71], extending the formalism presented in [69]
beyond the vacuum case to also include matter, quantum
gravity inspired modified Einstein equations were realized,
capable to describe both absence of matter cases and
configurations with matter contributions. There are also
studies discussing the singularity problem [72] or the
assumption that the Universe had a quantum vacuum
birth [69].
An important question is the association of the RG scale

parameter k to the cosmological time or proper length, in
order for the model to be reasonable. First works have
chosen the RG scale to be inversely proportional to
cosmological time [29], while later, the more popular
connection with the Hubble scale was developed. In some
other works, the RG scale is linked with the plasma
temperature or with the fourth root of the energy density
[73], the cosmological event/particle horizons [74], or
curvature invariants like Ricci scalar [63–65].

APPENDIX B: ANALYSIS CLOSE TO THE
GAUSSIAN FIXED POINT

Here we perform an analytical study of Sec. VII A
concerning the Gaussian fixed point. Because of the
extreme fine-tuning in α, numerical study of the equations
of Sec. VII A is not possible. For κ ¼ 0, we define the
quantities

χ̃ ¼ χ − ð1 −Ωm0ÞH2
0

ð1 −Ωm0ÞH2
0 − α

3

; α̃ ¼ α

H2
0

> 0: ðB1Þ

Note that χ̃ þ 1 > 0. From (7.24), the dimensionless
quantity α̃

3
is fine-tuned very close to 1 −Ωm0, i.e.,

0 < 1 − Ωm0 − α̃
3
≲ 10−22. From (7.21) it is χ̃0 ¼ 0, while

Eq. (7.18) becomes

dχ̃
dz

¼ 4ζðχ̃ þ 1Þ54

ð1þ zÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½α̃

3
þ Ωm0ð1þ zÞ3 þ ð1 −Ωm0 − α̃

3
Þðχ̃ þ 1Þ� r2Σa20H2

0

ð1þzÞ2

r ; ðB2Þ

where

ζ ≡ 3
1
4

ξν
1
4

�
r2Σa

2
0H

2
0

H0

ffiffiffiffiffiffiffi
GN

p
�1

2

�
1 −Ωm0 −

α̃

3

�1
4

: ðB3Þ

Due to (7.24), it is ζ ≲ 1023.
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Equation (7.20) takes the form

Ωm ¼ Ωm0ð1þ zÞ3
α̃
3
þΩm0ð1þ zÞ3 þ ð1 −Ωm0 − α̃

3
Þð χ̃ þ 1Þ ; ðB4Þ

where the first α̃
3
in the denominator can be practically

replaced by 1 −Ωm0. Then, since χ̃0 ¼ 0, Eq. (B4) is
consistent today. For a recent range of redsifts z it is
ð1−Ωm0− α̃

3
Þð χ̃þ1Þ≪105. This condition actually defines

this recent range of z. This is a very weak condition which
is also physically reasonable. Indeed, in the opposite
case, Ωm from (B4) would become extremely small for
recent z, which is unacceptable, since the Universe would
be practically empty of matter. Therefore, this condition
is expected to be valid for all relevant recent z. Thus, it
arises that ð1 − Ωm0 − α̃

3
Þr2Σa20H2

0ð χ̃ þ 1Þ ≪ 1 and (B2) is
well approximated by

dχ̃
dz

¼ 4ζð χ̃ þ 1Þ54
ð1þ zÞ2 ; ðB5Þ

with general solution

χ̃ ¼
�
c̃þ ζ

1þ z

�
−4

− 1; ðB6Þ

where c̃ is integration constant. From the integration of
(B5), it arises that it should be c̃þ ζ

1þz > 0. Since χ̃0 ¼ 0,
the solution takes the form

χ̃ ¼
�

1þ z
1 − ðζ − 1Þz

�
4

− 1; ðB7Þ

under the condition ðζ − 1Þz < 1.
For ζ ≤ 1 the condition ðζ − 1Þz < 1 is satisfied for

any z. From (B7) it arises that χ̃ þ 1 ¼ Oð1Þ, thus
ð1 −Ωm0 − α̃

3
Þð χ̃ þ 1Þ≲ 10−22. Therefore, the previous

inequality ð1 −Ωm0 − α̃
3
Þð χ̃ þ 1Þ ≪ 105 is indeed satisfied,

and moreover, (B4) takes the form

Ωm ¼ Ωm0ð1þ zÞ3
1 −Ωm0 þ Ωm0ð1þ zÞ3 ; ðB8Þ

which is the ΛCDM behavior. Therefore, in this case, the
behavior of ΩmðzÞ cannot be discerned from the ΛCDM
behavior.

For ζ > 1, the condition ðζ − 1Þz < 1 is satisfied for
z < zζ, where zζ ¼ ðζ − 1Þ−1. Therefore, for ζ > 1, the
model is valid only for z < zζ. It is obvious that as ζ
increases, zζ decreases and z is only meaningful for a short
range around z ¼ 0. Thus, physically the only reasonable
values of ζ are those which are of order one. Furthermore,
for any ζ > 1, the redshift z should not be extremely close
to zζ; otherwise, χ̃ þ 1 would become very large, and as
stated above, Ωm would become extremely suppressed,
which is not acceptable. To be more precise, let us define
the quantity

ε ¼
�
1 −Ωm0 −

α̃

3

�1
4

; ðB9Þ

where ε≲ 10−5.5. Thus, it should be z≲ ð1 − εÞzζ, which is
the regime of applicability of the model, and then
ð1 −Ωm0 − α̃

3
Þð χ̃ þ 1Þ≲ 1. This means that very close to

the higher value of z, i.e., very close to ð1 − εÞzζ, there is a
deviation from ΛCDM, while shortly later, as z reduces, the
Ωm behavior is not discerned from that of ΛCDM. When
we say shortly later, we mean that for z≲ ð1 − 5εÞzζ
ΛCDM is established. In the initial era ð1 − 5εÞzζ ≲ z≲
ð1 − εÞzζ the full Eq. (B4) is valid.
The evolution of the Hubble parameter is found from

(7.19) to be

H2

H2
0

¼ α̃

3
þ Ωm0ð1þ zÞ3 þ

�
1 −Ωm0 −

α̃

3

�
ð χ̃ þ 1Þ:

ðB10Þ

The first term α̃
3
on the rhs of (B10) can be practically

replaced by 1 −Ωm0. As above, for ζ ≤ 1 the ΛCDM
expression arises

H2

H2
0

¼ 1 − Ωm0 þΩm0ð1þ zÞ3; ðB11Þ

while for ζ > 1 the full expression (B10) is kept, which
however reduces to (B11) when z≲ ð1 − 5εÞzζ.
In order to study the acceleration properties of the model,

Eq. (7.22) is written as

ä
H2

0a
¼ α̃

3
−
Ωm0

2
ð1þ zÞ3 þ

�
1 −Ωm0 −

α̃

3

�
ð χ̃ þ 1Þ

2
641 − 2ζð χ̃ þ 1Þ14

ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½α̃

3
þΩm0ð1þ zÞ3 þ ð1 −Ωm0 − α̃

3
Þð χ̃ þ 1Þ� r2Σa20H2

0

ð1þzÞ2

r
3
75;

ðB12Þ
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while Eq. (7.27) becomes

wDE ¼ −1þ 4ζð1 − Ωm0 − α̃
3
Þð χ̃ þ 1Þ54

3ð1þ zÞ½α̃
3
þ ð1 −Ωm0 − α̃

3
Þð χ̃ þ 1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½α̃

3
þ Ωm0ð1þ zÞ3 þ ð1 −Ωm0 − α̃

3
Þð χ̃ þ 1Þ� r2Σa20H2

0

ð1þzÞ2

r : ðB13Þ

According to the previous results, the long square root in
(B12) can be set to unity, while the term α̃

3
in the beginning

of the rhs can be replaced by 1 −Ωm0. Similar simplifica-
tions occur also in (B13). If we define for convenience the
quantity

μ ¼ 3
1
4

ξν
1
4

�
r2Σa

2
0H

2
0

H0

ffiffiffiffiffiffiffi
GN

p
�1

2

; ðB14Þ

then ζ ¼ με. For galaxies it is μ ∼ 1027, while for clusters
μ ∼ 1028.
For ζ ≤ 1 ⇔ ε < 10−28, Eq. (B12) obtains the ΛCDM

behavior

ä
H2

0a
¼ 1 −Ωm0 −

Ωm0

2
ð1þ zÞ3: ðB15Þ

Additionally, Eq. (B13) gives wDE ¼ −1. Therefore, for
ζ ≤ 1 the acceleration properties of the model coincide with
those of ΛCDM.
For ζ > 1 ⇔ ε > 10−28, Eqs. (B12) and (B13) become

ä
H2

0a
¼ 1 − Ωm0 −

Ωm0

2
ð1þ zÞ3 þ ε4ðχ̃ þ 1Þ

×

�
1 −

2μεðχ̃ þ 1Þ14
1þ z

�
; ðB16Þ

wDE ¼ −1þ 4με5ðχ̃ þ 1Þ54
3ð1þ zÞ½1 −Ωm0 þ ε4ðχ̃ þ 1Þ� : ðB17Þ

In these equations, there are some characteristic intervals
of z with the following hierarchy: ð1−μ1

5εÞzζ<
ð1−0.5μ1

5εÞzζ<ð1−5εÞzζ<ð1−εÞzζ. In the initial regime
ð1 − 0.5μ

1
5εÞzζ ≲ z≲ ð1 − εÞzζ, Eqs. (B16) and (B17) can

well be approximated by only their very last terms, which
means that in this regime a deceleration is present. Especially
for ð1 − 5εÞzζ ≲ z≲ ð1 − εÞzζ this deceleration is large and
is basically controlled by the parameter μ. Progressively, as z
reduces towards the value ð1 − μ

1
5εÞzζ, these last terms

become smaller, towards some values of order one, and
thus, these terms are comparable to the conventionalΛCDM
terms of (B16), (B17). Therefore, in the redshift interval
around z ¼ ð1 − μ

1
5εÞzζ, wDE gets a positive, order one

correction of the ΛCDM value −1. As we can see, for the
astrophysical and cosmological values encountered in our
model, the term with the unit 1 in the bracket of (B16) can
always be omitted and also the quantity ε4ð χ̃ þ 1Þ in the
denominator of (B17) is only significant for z ∼ ð1 − εÞzζ.
Finally, for z ¼ 0 we get ä0

H2
0
a0
¼ 1− 3

2
Ωm0−2με5, wDE;0 ¼

−1þ 4με5

3ð1−Ωm0Þ. Depending on the numerical value of the

quantity με5, the values ä0, wDE;0 coincide or not with the
ΛCDMones.Of course, in order to have acceleration today, it

should be 4με5

3ð1−Ωm0Þ < 1. Therefore, from the beginning of the

AS effect, the functions äðzÞ,wDEðzÞ evolve in a non-ΛCDM
way up to z ∼ ð1 − μ

1
5εÞzζ or up to z ¼ 0, while on the

contrary, as seen above, the functions HðzÞ, ΩðzÞ have
already passed into the ΛCDM behavior for z≲ ð1 − 5εÞzζ.
This peculiar phenomenon is due to the presence of the
higher time derivatives contained in the acceleration, which
can lead to significant contribution from terms which are
negligible inH,Ωm. For themost interesting casewith ζ ∼ 1,
the current values of ä0, wDE;0 are the same with the
ΛCDM ones, which means that after passing the era with
z ∼ ð1 − μ

1
5εÞzζ the model reduces toΛCDM. Therefore, the

behavior in the evolution of the model around the passage
from deceleration to acceleration differs from the ΛCDM
one and could in principle be discerned using precise
observational data. However, this is not the case since it is
μ

1
5ε ¼ ζμ−

4
5 ≪ 1 for the numerical values of the astrophysical

and cosmological quantities we are interested in. Only in the
case that the quantity ν is (B14) is substantially enlarged,
which is not predicted by the theory, could μ be reduced
essentially. Therefore, the previous eras of deviation from
ΛCDM cannot be observed and the model is practically
identical to ΛCDM in all the range of its validity. For
1 ≪ ζ ≪ 1022, it is still μ

1
5ε ¼ ζμ−

4
5 ≪ 1, which means that

the model is indistinguishable from ΛCDM, beyond the fact
that zζ is already unphysically small. Finally, for ζ ∼ 1022,

which means ε ∼ 10−5, it is μ
1
5ε ¼ ζμ−

4
5 ∼ 1. Therefore, in

this case, the current value of wDE is different from −1, and
the model is always different from ΛCDM. However, the
model in this case is meaningless since zζ in extraordinarily
small. As a result, we can summarize saying that in the
physically meaningful case with ζ ∼ 1, the acceleration
properties of the model cannot be discerned from ΛCDM.
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