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We examine “dynamical similarities” in the Lagrangian framework. These are symmetries of an
intrinsically determined physical system under which observables remain unaffected, but the extraneous
information is changed. We establish three central results in this context: (i) Given a system with such a
symmetry there exists a system of invariants which form a subalgebra of phase space, whose evolution is
autonomous; (ii) this subalgebra of autonomous observables evolves as a contact system, in which the
frictionlike term describes evolution along the direction of similarity; (iii) the contact Hamiltonian and one-
form are invariants, and reproduce the dynamics of the invariants. As the subalgebra of invariants is smaller
than phase space, dynamics is determined only in terms of this smaller space. We show how to obtain the
contact system from the symplectic system, and the embedding which inverts the process. These results are
then illustrated in the case of homogeneous Lagrangians, including flat cosmologies minimally coupled to
matter; the n-body problem and homogeneous, anisotropic cosmology.
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I. INTRODUCTION

“Dynamical similarity” is a term that has come to mean
the intrinsic indistinguishability of solutions in relational
theories [1,2]. In a framework in which the measuring
apparatus (rods and clocks) has to be established in the
same system as the observed physics, there is often a
redundancy that lies in assigning properties to the rods and
clocks that are chosen from within the system. A real world
example is that we declare by fiat that the meter stick in
Paris has a fixed length which is unchanging, and that the
oscillation of a cesium atom has a fixed period. This is often
done for reasons of convenience. In our everyday physics
the ratio of the diameter of the Earth to that of the meter
stick is unchanging, as is the ratio of a the radius of a
hydrogen atom to either of these. Therefore it appears
natural to choose that all these have trivial evolutions in our
models, and use any one of these elements to define an
external parameter against which we evaluate subsystems.
A similar property holds for cesium oscillations, pendulum
clocks and the rotation of the Earth about its axis, and orbit
around the sun. However, it is particularly apparent in
cosmology, for example, that this is not a well motivated
choice everywhere: If we adopt such a notion of length and
time, in the past such systems have no fixed rods or clocks
according to this definition, since the gravitational force
overwhelms the other forces keeping these objects fixed.
Our goal is to describe the reduced space of systems
modulo this freedom to make rescalings, as this should not

affect the physical observables, but map between descrip-
tions according to different choices of rod or clock [3]. In
the current paper we will restrict ourselves to working only
with vector fields on phase space, leaving the couplings
fixed. This is done so that we can establish the mathemati-
cal structure of the theory in a simple setting. In future work
we will expand this to include rescaling also the couplings
in a manner such that the intrinsic physics is unaltered.
Since we are interested in transformations which pre-

serve the dynamics of our theory, these transformations
must preserve the form of conserved quantities. In par-
ticular, level surfaces of the Hamiltonian should be mapped
onto level surfaces, hence H can be rescaled but not
deformed. From the intrinsic perspective, this is to be
expected, as time is not a direct observable of our system,
but rather must be inferred from observations of subsys-
tems which we choose as clocks. A transformation which
both halves a velocity and the rate of the clock with which
progress is measured creates a dynamical similarity
between the two solutions—these have the same evolution,
just with a rescaled time coordinate. A helpful model to
keep in mind (which we will discuss at greater length later)
is that of orbits under a central potential sourcing an inverse
square law. For each orbit with semilatus rectum l, there
exists a similar orbit with semilatus rectum αl. Observers
on each planet would term their orbit times to be one
“year,” locally defined and related by a change of lapse.
The energies and angular momenta of the orbits will rescale
in a similar manner to the orbital period. This retains
symmetry at the level of the action since the initial and final
states s1 and s2 which limit the integral should be functions*david.sloan@physics.ox.ac.uk
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of intrinsic observables—the interval in t over which the
Lagrangian is to be integrated will vary. It is important to
note at this point that the two-body problem will in fact
be insufficient to derive fully relational mechanics: Once
the separation between the two bodies is employed as
a rod, there is no further relational motion in the system.
Furthermore, even given a fixed background, any central
force law will admit circular orbits. To discern the inverse
square law, as per Newton, closed elliptical orbits are key.
Below we show explicitly how this comes to happen.
In the following section we will give a precise definition

of the action of dynamical similarity on phase space.
Then, in Sec. III we show that the dynamics of the reduced
space consisting of the algebra of invariants of the
dynamical similarity behaves as a contact space. Here
we will establish the equivalence between the two frame-
works, and show that the apparently dissipative descrip-
tion in terms of a contact manifold matches with the idea
of an “arrow of time” in the manner introduced by
Barbour et al. This is generalized beyond the informative
examples of the Newtonian n-body problem to any
Hamiltonian theory which exhibits a dynamical similarity.
In Sec. IV we give an example class of Lagrangian
systems, those homogeneous in a configuration variable,
which exhibit this similarity, and show explicitly the
construction of the contact system and the resulting
dissipative dynamics. A particular illustrative example
shows that for a broad class of cosmological models, the
arrow of time introduced points in the direction of the
expansion of space, and the “Janus points” of qualitative
similarity along physical trajectory correspond to points
of bounce or recollapse. In Sec. V we show that the
general n-body system with potential homogeneous in
separation of particles (but of arbitrary power) is dynami-
cally similar under rescaling. From the contact description
of this we form the shape space, and show that there is a
natural extension of the results of Barbour et al. to generic
potentials. The recent results of the continuation of
homogeneous cosmology beyond the big bang singularity
[4] are placed within this context in Sec. VI. Here we do
not reproduce the singularity result, but rather focus on
how dynamical similarity reveals the existence of the
autonomous system which remains well defined. Finally
in Sec. VII we will remark upon the significance of the
results and future directions.

II. GENERATING DYNAMICAL SIMILARITIES

We will begin our analysis with an action, the mini-
mization of which will provide our equations of motion.
This will consist of the integral of a Lagrangian one-form
over a space of configurations q and their velocities _q:

S ¼
Z

s2

s1

L: ð2:1Þ

Throughout this discussion, although wewill use time, t, as a
parametrization of a solution curve, we will only consider
(a subset of) the q and _q to be physically observable. Our
motivation is that we want to describe intrinsic, relational
physics. As such observations are not made directly of time,
but of a clock variable which represents time. In a similar
fashion, we will choose to consider any dimensionful
variable not to be directly observable, but only to be
observable in dimensionless ratios with other variables.
Given a configuration space Q, the phase space, Γ ¼
T�Q, is the cotangent bundle over the configuration space.
A symplectomorphism is a diffeomorphism f∶ Γ → Γ
whose action is to preserve the symplectic structure under
pullback: f�ω ¼ ω. Consider a vector field V consisting of a
flow ϕt generating such diffeomorphisms; its action is to Lie
drag the symplectic structure: LVω ¼ 0. Such a vector field
is called “locally Hamiltonian.” In previous work some
of the basic motivation behind dynamical similarity was
examined as an extension of this to a a nonstrictly canonical
transformation [5,6] f∶ Γ → Γ under which f�ω ¼ aω for
a ∈ R, a is known as the valence of the transformation. The
vector field generating this on phase space is also referred to
as a “Liouville vector field” in the literature [7].1

We will be interested in projecting down under the action
of a continuous symmetry on phase space; we will be
considering symmetries which are generated by flows on
phase space. The Lie derivative along such vector fields is
to propagate the symplectic structure rescaled; LGω ¼ λω.
This is a nonstrictly canonical transformation. Since G is a
vector field, it is linear, and thus without loss of generality
we can fix λ ¼ 1. This is a quite general construction;
consider the flow ϕt such that ϕ�

tω ¼ rðtÞω, for some
strictly positive function rðtÞ. Reparametrizing the flow we
can enforce rðtÞ ¼ expðtÞ and hence arrive at the result. It is
clear from this definition that nonstrictly canonical trans-
formations (like their strict counterparts) comprise a group
under addition. A direct evaluation shows the Lie bracket of
any two such transformations of the same valence is locally
Hamiltonian. Due to Cartan’s identity

LX ¼ d ∘ ιX þ ιX ∘ d ð2:2Þ

and the fact that the symplectic two-form is exact (being the
exterior derivative of the symplectic potential, ω ¼ dθ)
evaluating the action of the symplectic vector field is
simply

LGω ¼ d ∘ ιGω ð2:3Þ

and hence we know that G is a nonstrictly canonical
transformation if ιGω ¼ θ þ dξ for some exact form dξ,
and hence we note that

1In earlier works this was referred to as a “scaled symplecto-
morphism.”
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LGθ¼ d ∘ ιGθþ ιG ∘ dθ¼ d ∘ ιGθþ ιGω¼ θþ dðξþ ιGθÞ:
ð2:4Þ

In this we have made the derivative term, dðξþ ιGθÞ,
explicit to highlight that this only contributes a boundary
term to the Lagrangian under Lie dragging by our sym-
metry generator. Equivalently, this can be surmised from
the commutativity of the Lie and exterior derivatives, which
together with G being locally Hamiltonian implies LGθ ¼
θ þ χ for some exact form χ. In practical circumstances it is
often simpler to verify that the difference between ιGω
and θ is a closed form—i.e., d ∘ ιGω ¼ ω.
Physics in our system is determined by the Hamiltonian

functionHwhichgenerates time evolution.TheHamiltonian
flow is determined by dH ¼ ιXH

ω (note that this is unique
up to a constant due to the fiberwise invertibility of ω,
giving the Poisson structure). Consider now a diffeomor-
phism g∶Γ→Γ whose inverse f both rescales the sym-
plectic structure and the Hamiltonian H alike, and whose
flow consists of a vector field G;

f�ω ¼ λω f�H ¼ aH: ð2:5Þ

As above, the vector field G is nonstrictly canonical, and
acts to rescale the Hamiltonian. We shall call such vector
fields the generators of dynamical similarity for reasons
which will become obvious. Following the normalization
conventions above,

GH ¼ ΛH LGω ¼ ω: ð2:6Þ

Such a transformation acts only to rescale the Hamiltonian
flow:

ιð½XH;G�Þω ¼ ðιXH
LG − LGιXH

Þω ¼ ðΛ − 1ÞdH ð2:7Þ

and hence from the nondegeneracy of ω:

½XH;G� ¼ ðΛ − 1ÞXH: ð2:8Þ

It is important to note here that since G only acts on H
through its action on phase space variables, the trans-
formation is only valid in the case whereH is a function of
phase space variables alone. This follows a light generali-
zation of an argument presented in [5,8]. Note that this will
necessarily change the nonzero energy of the system. This
is not unexpected, indeed transforming reference frames
between solutions (e.g., working in center-of-mass coor-
dinates) alters the energy of the system by a constant. The
role of the Hamiltonian (i.e., the generator of time evolu-
tion)H in this construction is in fact unimportant; we could
have chosen the generator of any Hamiltonian vector field
(generating a conserved quantity of the system). For a
Hamiltonian vector field, there is a conserved quantity C,

defined dC ¼ ιVω. These commute with the Hamiltonian
flow (as they are constant): ½XH;V� ¼ 0. From Jacobi’s
identity,

½G; ½XH;V�� þ ½XH; ½V;G�� þ ½V; ½G;XH�� ¼ 0; ð2:9Þ

we see that the first and third terms are identically zero and
hence ½V;G� is a Hamiltonian vector field. Hence the
action of G is to map conserved quantities onto conserved
quantities.
Given an invariant s of G we are able to determine the

action of G on the one-form dt:

LGdt ¼ LG

�
ds

ιdsXH

�
¼ ð1 − ΛÞιdsXH

ðιdsXHÞ2

¼ ð1 − ΛÞ ds
ιdsXH

¼ ð1 − ΛÞdt: ð2:10Þ

Thus we see that the transformation of the one-form Hdt
is simple: LGHdt ¼ Hdt—it scales in exactly the same
way as the symplectic potential. Therefore we can present a
powerful result: Given a generator of dynamical similarity,
G the Lagrangian L is rescaled by the Lie derivative along
G. This arises directly as an application of the above and
Eq. (2.7), up to boundary terms we see:

LGL ¼ LGðθ −HdtÞ ¼ θ −Hdt ¼ L ð2:11Þ

and hence although the action is rescaled by an overall
constant, the conditions that its minimization places upon
the invariants is unchanged. In other words, the equations
of motion of the invariants ofG are unaffected by the action
of G. The boundary term introduced does not consist of
invariants of G.
A direct corollary of this is the autonomy of invariants of

G: Given a set of invariants of G, the relative evolution of
any two invariants is itself invariant. Evolution relative to
an invariant is given by the scaled evolution along the
Hamiltonian vector field XH:

LG

�
ds1
ds2

�
¼ LG

�
_s1
_s2

�
¼ LG

�
ιds1XH

ιds2XH

�
¼ 0 ð2:12Þ

and thus the relational motion must also be an invariant.
The system’s closure is inherited from the closure of the
dynamics of the Lagrangian. The orbit of the a generator of
dynamical similarity forms a one-dimensional subspace of
the phase space under which invariant dynamics is unaf-
fected. Since the generator of dynamical similarity acts to
rescale the Lagrangian by an overall factor, the equations of
motion of the invariants are unaffected, and these invariants
form a closed system. An observer who had access to all the
invariants of the theory could derive the entire evolution of
the system without ever referencing the noninvariants.
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We note from this that not only does the existence of a
dynamical similarity necessarily imply the existence of an
invariant system, but also informs us as to the form of the
invariant variables themselves. These are functions of the
coordinates and momenta in phase space, fðqi; piÞ such
that LGf ¼ 0. An arbitrary power of an invariant is also
invariant, as any linear combination of invariants. Given
any invariant coordinates (or momenta), the ratio of their
conjugate momenta (coordinates) will also be invariant.
Further, given any two noninvariants basis elements of
phase space, x, y with eigenvalues a, b respectively, the
ratio xb

ya is also invariant. From this and the Leibniz rule, it is
apparent that invariants form an algebra.
Let us here recapitulate the significant results of this

section. We have shown a general form for a nonstrictly
canonical transformation which acts on phase space var-
iables such the Hamiltonian is rescaled. Using this form we
established that there exists an algebra of invariants, whose
evolution is unaffected by the transformation and autono-
mous. Therefore given such a dynamical similarity, an
observer who only had access to relational degrees of
freedom (d.o.f.) could not distinguish where along the orbit
of the symmetry they were. An intrinsic observer would
identify the same physics in each situation.

III. CONTACT FORMS AND SHAPE SPACE

Once we have determined the existence of a dynamical
similarity and identified the algebra of invariants, our goal
is now to describe physics purely in terms of these
invariants. Since these form an autonomous system within
the full symplectic framework, we could express dynamics
in the full framework and project down to the invariants,
using the unobservable directions like Wittgenstein’s lad-
der. However, it is possible that the extended dynamical
system will have points at which the equations become
divergent due to the behavior of the unobservables. This
was shown to be the case in homogeneous cosmology
recently, where it was found that although singularities
exist in the extended framework, there exists an autono-
mous subset of invariant variables whose evolution remains
well defined even at the big bang singularity [4]. Therefore
we are motivated to construct our physical theory directly
on the space of invariants and show that this gives
equivalent evolution for the observables to the symplectic
system where the latter remains well defined. This moti-
vates the introduction of “contact dynamics”—a counter-
part to symplectic dynamics that takes an odd-dimensional
space as the basis for physics [9]. Our goal in this section is
to show the equivalence between a symplectic system with
a dynamical similarity and contact dynamics of the reduced
space of invariants.
We begin with an odd-dimensional manifold, M with

dimension nþ 1. A contact form η on this space is the odd-
dimensional counterpart to the symplectic potential [10].

In particular, η ∧ ðdηÞn=2 is a volume form on M. There
exists universally a set of coordinates A; yi; xi for M,
the “Darboux coordinates,” in which η ¼ −dAþ yidxi.
Primarily, contact geometry is concerned with the kernel of
η, and hence it is normally defined up to an overall scale
[11]. This freedom to rescale η is important when recov-
ering the symplectic system from which the contact
dynamics is derived.
Given a vector field X on M, the contact Hamiltonian,

Hc is ιXη [12]. The relationship with the usual Hamiltonian
on an even dimensional space is that the contact
Hamiltonian together with the contact form generate the
flow. In Darboux coordinates the dynamics of the system
is then given:

_xi ¼ ∂Hc

∂yi _yi ¼ −
∂Hc

∂xi − yi
∂Hc

∂A
_A ¼ yi

∂Hc

∂yi −Hc: ð3:1Þ

It can then be easily shown that _Hc ¼ −Hc ∂Hc

∂A . Here
we see an important distinction from the symplectic
dynamics—the contact Hamiltonian is only conserved
when it is either independent of A (and hence ∂

∂A becomes
a symmetry of the system) or zero explicitly. Hence, the
dynamics of a contact system is similar to that of a
nonconservative flow, and this system will exhibit friction-
like properties.
The relation with our interest in dynamical similarity is

readily apparent. Treated as a manifold, the set of invariants
of a generator of dynamical similarity G form a contact
manifold with contact form η ¼ ιGω

ρ in which ρ is an
eigenfunction of G with eigenvalue 1. Chosen in this
way, η is an invariant of G:

LGη ¼
LGιGω

ρ
−
LGρ

ρ2
ιGω ¼ ιGdη

ρ
− η ¼ 0; ð3:2Þ

wherein we used the facts that ι2D ¼ 0 and dη ¼ ω. Going in
the other direction is also quite simple; the space of contact
forms constitutes a one-dimensional fiber bundle over M,
with contact forms related to one another by multiplication
by a positive real number. Thus we can form the sym-
plectification of our contact system by first expressing the
contact form in (local) Darboux coordinates, and promoting
the choice of scalar to a coordinate. Note that since the
choice of scalar for the contact form is global, we can
unambiguously promote it to a global coordinate over the
contact manifold. Thus expressed, ρη ¼ −ρdAþ ρyidxi.
We further identify coordinates on this even dimensional
manifold: po ¼ A; pi ¼ ρyi; qo ¼ ρ; qi ¼ xi to obtain a
symplectic potential of the usual form up to an exact form:

θ ¼ −qodpo þ pidqi ¼ podqo þ pidqi − dðpoqoÞ ð3:3Þ
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which corresponds to ιDω where ω ¼ dθ is the usual
symplectic structure, and

D ¼ qo
∂
∂qo þ pi ∂

∂pi : ð3:4Þ

The contact Hamiltonian is the restriction of the
Hamiltonian to the invariants in a particular choice of lapse:

Hc ¼ ιηXH ¼ XHðριDωÞ ¼ ρ−1ω−1ðιDω; dHÞ
¼ ρ−1ιDdH ¼ ρ−1LDH ¼ ρ−1ΛH ð3:5Þ

and hence on such systems the dynamics generated by the
contact Hamiltonian will agree exactly with the dynamics
of the invariants of D. Furthermore, a specific choice of
lapse allows us to pick a time coordinate such thatHc ∝ H

ρΛ

in which case we see an important result: the contact
Hamiltonian belongs to the algebra of invariants of D. The
operations of differentiation are closed on the algebra,
hence we see that the derived contact dynamics of this
system will indeed be simply a function of the invariants
alone. Hence, we see that a zero energy Lagrangian system
with a dynamical similarity is equivalent to a contact
system on the invariants of the dynamical similarity, and
vice versa. The symplectification of a contact system results
in a dynamical system with the same equations of motion
on invariants and has a dynamical similarity which can be
used to restore the contact system. We can therefore
translate freely between contact systems and symplectic
systems in this framework. An identical result holds when
the Lagrangian is homogeneous in one of the variables—
see below.
In the majority of cases the condition that H is constant

will allow us to solve for A as a function of the yi and xi,
and the energy of the system. More precisely, if the surface
Hc ¼ 0 is covered in some local chart by A ¼ gðx; yÞ for
some (possibly multivalued) function g, then this require-
ment is just that ∂Hc

∂A restricted to the Hc ¼ 0 surface is
independent of the choice of branch of g. This is not greatly
restrictive and often will amount to a choice of sign for a
square root, for example. In such a system, then, the entire
dynamics will be expressed only in terms of the “shapes” xi
and their velocities yi, with some initial choice of E.
Since time is only determined up a lapse in the system, this
means that the _xi are only required up to scale; a point and
a direction on the shapes is enough to determine an
evolution.
The contact form determines a volume form Vol ¼

η ∧ dηn=2 on the system. In the case where ∂2Hc

∂A∂y ¼ 0 the
evolution of this volume form has a very simple form. Note
that this condition is not particularly restrictive; in terms of
the original symplectic system it amounts to the kinetic
term being diagonalizable in momenta. Since ιηXH ¼ Hc

we see that

LXH
η ¼ −

∂Hc

∂A η: ð3:6Þ

Since the Lie and exterior derivatives commute, we can
thus calculate the action on the volume form, Vol. The Lie
derivative of this along the Hamiltonian flow is then [13]

LXVol ¼ −ðn=2þ 1Þ ∂H
c

∂A Vol ð3:7Þ

which determines the divergence of any flow. This is where
we find the appearance of dissipation (in the sense parallel
to that employed in statistical mechanics) in our dynamical
system—the volume occupied by a set of solutions on this
space is not fixed, but evolves over time. Thus given a
volume of a measured set of microstates compatible with a
macrostate at a time t1, the volume occupied by this set of
microstates at t2, a later time, will differ from that at t1. We
see that this divergence is exactly zero when ∂Hc

∂A ¼ 0—this
is a Janus point, a point along a trajectory where the volume
form would turn around. At this point, the dynamics of the
system is instantaneously equivalent to that of a symplectic
system in which x and y are a conjugate pair evolving under
the contact Hamiltonian with A treated as a constant.
Following the arguments employed by Barbour et al.
[14,15], this is a necessary prerequisite for an arrow of
time to emerge in such systems—it is the direction of
focusing of the contact form. For an intrinsic system, the
notion of time is complex; it requires the formation of
“records”—information about past configurations which is
available to a contemporary observer. As such these are
expected to exist on a lower dimensional subspace of the
space of shapes. This is a subtle issue, with wide-ranging
philosophical implications which is discussed at length in
[16–19]. Furthermore care should be taken to distinguish
between a variable which is to be used as a clock, and one
from which chronology can be established. In general, a
chronology is established to provide an ordering on a set of
events. A clock further can be used to define a unit of time.
As noted in the Introduction, the relevance of using the
rotation of the Earth as a clock is that the periodicity of the
system is (approximately) proportional to the periodicity of
the orbit of the Earth around the sun. The use of a massless
scalar field in cosmological models, however, provides a
chronology but would be of little further use as a clock. In
establishing a chronology for our systems, of particular
import is that the contact version of Liouville’s theorem is
details the behavior of the volume form alone, any measure
expressed in invariants can be used together with this
volume form without qualitatively changing the focusing
result. Note that this apparent direction of time may differ
from the configuration time t which we have used as a
parameter along solution curves. When applied to the
universe as a complete system, this has significant
implications for the “past hypothesis,” which is highly
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contentious [20]. Since the odd-dimensional form of
Liouville’s theorem does not conserve volume forms, the
fact that there is a state of low entropy in our past is no
longer surprising, but in fact a natural consequence of the
dynamics. The usual arguments regarding the past hypoth-
esis are all based in physics with conserved volume forms,
however as our dynamics will break time symmetry as
experienced by an intrinsic observer, such arguments need
to be reconsidered.

IV. HOMOGENEOUS LAGRANGIANS

It is now easy to describe a simple yet interesting class of
Lagrangians—those which are homogeneous in one of the
configuration variables. Under a simple canonical trans-
formationQ ¼ qn we see that the degree of homogeneity is
immaterial as such transformations can be used to always
pick a variable in which the degree is 1, for example. Such
Lagrangians encompass minimally coupled gravitational
systems as example cases (see the attractor papers for the
early work on this). Therefore suppose that a Lagrangian,
Lh, is homogeneous of degree 1 in the configuration
variable x, i.e., for some α ∈ R,

Lðαx; α_x; q⃗; _q⃗Þ ¼ αLðx; _x; q⃗; _q⃗Þ: ð4:1Þ

The Euler-Lagrange equations for the qi are unaffected by
this transformation. Within such a system, x cannot be a
member of any shape space, as the dynamics is insensitive
to the value of x up to this overall choice of scale. A trivial
calculation shows that Px, the momentum conjugate to x is
unaffected by this change, nor is the equation of motion
for Px. However, the momenta conjugate to the qi are
rescaled by α−1. Therefore we see that at the phase space
level, to reproduce this transformation we must rescale
the symplectic potential by the same factor, α. Thus the
dynamical similarity is

F ¼ x
d
dx

þ Pi d
dPi : ð4:2Þ

A simple calculation quickly reveals that this is indeed a
dynamical similarity:

ιFω ¼ Pidqi − xdPx ¼ θ − d ∘ ιFθ
LFHh ¼ Hh: ð4:3Þ

A much more laborious direct calculation reveals that
LFXH ¼ 0. Further, under the action of F, Px is an
invariant, as are the xPi.
In essence this is the reason that the Friedmann equation

in homogeneous, flat cosmology is independent of the
volume v, but does depend on its conjugate momentum,
which is the Hubble parameter.

In these systems, the symplectic form on phase space
naturally induces a contact form on the space of invariants,
η ¼ ιFω

x . Since the Hamiltonian flow is independent of
the position along the orbit of F, we find the contact
Hamiltonian is the usual Hamiltonian,

Hc ¼ XHðηÞ ¼ v−1
�
x
dH
dx

þ Pi dH
dPi

�

¼ v−1LFH ¼ H
v
: ð4:4Þ

The contact form can be expressed in terms of the space of
invariants of F∶ fPx; qi; pi ¼ Pi

x g. In terms of these invar-
iants, η ¼ xðpidqi − dPxÞ and H ¼ xhðPx; qi; piÞ. Thus
any Lagrangian which is homogeneous in one of the
configuration variables, X can be naturally associated with
a contact system on the reduced phase space consisting of
the conjugate momentum to X, the remaining configuration
variables and their conjugate momenta divided by X.
An important subset of these Lagrangians is those describ-

ing the dynamics of flat Robertson-Walker cosmologies
minimally coupled to matter. Such cosmological models
consist of a minisuperspace model in which the only
gravitational d.o.f. corresponds to the volume v of a fiducial
cell. This is usually expressed through the scale factor
a ¼ v1=3. Here we will remain in the volume representation
for two reasons. The first is that in general relativity (GR)
the Hubble parameter is the conjugate momentum to volume.
The second is that in these variables it is readily apparent that
minimal coupling of gravity to matter comprises a homo-
geneous Lagrangian. The line element is then

ds2 ¼ −dt2 þ vðtÞ2=3ðdx2 þ dy2 þ dz2Þ ð4:5Þ

and our phase space consists of the geometrical variables
v; Pv and thematter d.o.f.qipi. The nature of thegravitational
actionwill relate these and provide aHamiltonian fromwhich
dynamics can be determined. Any action based solely on
geometrical quantities (or equivalently, one which does not
introduce an external notion of scale) such as the Ricci tensor
must be homogeneous in v since the theory is independent of
the choice of fiducial cell used to determine v.
These were discussed extensively in [21,22] with the

existence of attractors established within the broader
framework of the symplectic structure [23]. The general
structure of a gravitational action minimally coupled to a
matter Lagrangian Lm with symplectic structure ωm is in
such cases

L ¼ v

�
f

�
_v
v

�
þ Lm½q; _q�

�
ð4:6Þ

and hence the homogeneity of the Lagrangian in v is readily
apparent. From the dynamical similarity of this system we
can form the contact form η ¼ −dPv þ Pidqi wherein Pi
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are the momenta of the matter Lagrangian treated as free
from interaction. Therefore the contact form is the sym-
plectic potential for the uncoupled matter system, added to
the exact form along the remaining orthogonal direction,
η ¼ θm − dPv. The contact Hamiltonian is the Hamiltonian
of the matter component added to a function of the Hubble
parameter which acts as friction:

Hc ¼ FðPvÞ þHm: ð4:7Þ
Note that for example in general relativity, FðPvÞ ∝ Pv2

andH ¼ Pv, in loop quantum cosmology FðPvÞ ∝ sin2ðPv

Δ Þ
[24], etc., We can now find the dynamics of our system in
terms of the positions and momenta of the matter system.
Since the contact form is already in Darboux coordinates
we find

_qi ¼
∂Hm

∂Pi
_Pi ¼ ∂Hm

∂qi − Pi ∂F
∂Pv

_Pv ¼
X

Pi ∂Hm

∂Pi ; ð4:8Þ

from which we see a clear physical parallel for the attractors
of this system. The coupling to gravity makes the matter
system behave as though it were subject to friction terms—
it is a dissipative system on the shape space. The presence
of attractors is therefore unsurprising; the expansion of the
universe removes energy from the matter system. Since F is
a function which is independent of the matter d.o.f., so is its
derivative with respect to H. Up to a possible choice of
branch, F0 can be inverted, and solving the Hamiltonian
constraint will allow us to express the frictional term
encountered as a function of the matter d.o.f. alone.
The volume form is dH ∧ Volm in which Volm ¼ ωn

m is
the volume form on the matter phase space. From Eq. (3.7)
we see that the focusing of the volume form comes from
the expansion of the universe, giving a natural volume
weighting [25]:

Volðt2Þ ¼ Volðt1Þ exp
�Z

Hdt

�
¼ v2

v1
Volðt1Þ: ð4:9Þ

Thus solutions with the greatest expansion are attractors. It
further follows that any point of bounce or recollapse of a
solution is a Janus point, regardless of the specific gravi-
tational theory, and that the arrow of time in the Barbour
sense must point in the direction of the expansion of space.
The space of solutions to the contact Hamiltonian constraint
is finite for any given choice of the Hubble parameter, and
thus evades the serious measure problems inherent in non-
compact spaces [26]. This is a direct result of the dynamical
similarity, which has reduced the space of solution by
identifying those in the symplectic system which are
connected by the orbits of the dynamical similarity. In this
case, the symplectic system is noncompact, as the choice of
volume at any given Hubble parameter is restricted to the

positive real line. However, the contact system is insensitive
to these changes, and thus the space of intrinsically dis-
tinguishable solutions is compact, and hence we avoid
significant topological issues. This was first identified in
[27–29] in the context of inflationary models in loop
quantum cosmology, wherein the dynamics provided a
natural bounce point at which to evaluate this measure.

V. DILATIONS IN THE N-BODY SYSTEM

We will here examine the case of dynamical similarity
within a system defined by a single Lagrangian with fixed
external parameters. For clarity, as we will be using powers
of momenta and coordinates regularly, we will write both
coordinates and momenta with their indices lowered hence-
forth. As we have shown, within such a system if the phase
space is of higher dimension than the space of physical
observables there will be redundancies in the description.
Those redundancies which generate strictly canonical trans-
formations are the usual gauge symmetries, and those which
generate their nonstrict counterparts are the dynamical
similarities. One such example of a system which has such
a dynamical similarity is the shape space of an N-body
system in d dimensions. Intrinsically, we have no access
to a rod with which to measure the separation of any two
particles in this system, therefore we will identify any two
configurations that are related by a rescaling of all the
distances between particles. Thus the generator of dilations
will act to provide the dynamical similarity. In particular,
consider a system described in Cartesian coordinates by

L ¼
_q⃗i
2

2
− Vðq⃗1;…; q⃗NÞ; ð5:1Þ

wherein to potential V is homogeneous of degree γ:
Vðλq⃗Þ ¼ λγVðq⃗Þ, and Galilean invariant: Vðq⃗1 þ x⃗;…;
q⃗N þ x⃗Þ ¼ Vðq⃗1;…; q⃗NÞ, wherein x⃗ is a uniform translation
of all the particle positions (i.e., a change of origin
for our system) and VðMq⃗1;…;Mq⃗nÞ ¼ Vðq⃗1;…; q⃗NÞ,
wherein M ∈ OðdÞ acts on the position vectors of the
particles identically. Potentials, such as the Coulomb poten-
tial, which only depend on particle separations V ¼
VðPi≠jCijjq⃗i − q⃗jjnÞ aremembers of this type. It is immedi-
ately apparent that the generators of these transformations, T
andO are symplectomorphisms, and their associated Nöther
charges (momentum and angular momentum) are often used
to reduce the description to center-of-mass coordinates with
zero net angular momentum.2

2Technically it is the continuous transformations of one of the
two subgroups SOðnÞ that generates angular momentum, and the
Nöther charge relies only on the continuous subgroup. Reflection
is a discrete change and therefore has no associate Nöther current.
Other discrete symmetries such as the interchange of two
particles will be important in defining statistical ensembles
(Fermi vs Bose statistics).
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To form the shape space of this system we need to
identify a (function of a) (subset of the) coordinate(s) to use
as a rod. Ideally this will be done such that the Hamiltonian
flow on phase space is easy to pull back onto the shape
space. For simplicity of exposition we will assume a frame
in which the system has zero net angular momentum, but
the center of mass of the system has position o⃗. At this point
we retain this d.o.f. simply to show the difference between
gauge identifications under the generator of translations of
the system (strictly canonical) and that of dilations (non-
strictly canonical).
The symmetry due to translation of the center of mass

is Δo ¼ d
do, and we can see clearly that this generates a

canonical transformation as ιΔo
ω ¼ dPo which is clearly

exact. Since the Hamiltonian is independent of the
choice of origin of coordinates, LΔo

H ¼ 0. The corre-
sponding freedom of choice frame under changing the
center-of-mass momentum is generated by ΔPo

¼ ∂
∂Po

which is also a symplectomorphism, and acts to shift the
Hamiltonian by a constant. This should be unsurprising
as we are removing energy from the system in trans-
forming to this coordinate basis. Since the change to
the Hamiltonian is a constant, the pullback of the
Hamiltonian flow onto shape space is unaltered. We
can therefore unambiguously project our system onto a
subspace of the original phase space defined by
o ¼ Po ¼ 0, making the obvious pullbacks of the sym-
plectic structure and Hamiltonian (noting that the first
term in θ is trivially zero).
We also need to define a rod. A democratic choice of

such is to define a length scale by R2 ¼ q⃗2. Our choice of
evolution of scale will be such that R is fixed in time, and
typically we will choose R ¼ 1. Thus we find that the shape
space has dimensionDs ¼ 2dðN − 2Þ − 2 and is the sphere
SDs−1. The scaling of the potential is explicit here: V ¼
RnVs wherein Vs, termed the shape potential, only depends
on coordinates on the shape sphere. If n ¼ 2wewould have
a homogeneous Lagrangian, and this would fall into the
category discussed above. If n ¼ −2 the system is con-
formally invariant, and thus dilations are strictly canonical.
The symmetry under dilation is already well understood,
and thus we exclude this from further discussion. For
convenience of making explicit the act of the symmetry
under choice of R we can express the Lagrangian in terms
of this system as

L ¼
_R2

2
þ R2 _T⃗

2

2
− RnVs½T⃗�; ð5:2Þ

wherein we have introduced T½ϕ⃗; ⃗_ϕ� to represent the
trigonometric functions which describe the positions on
the shape sphere corresponding to the particle positions.
These are the functions

Ti ¼ sinðϕ1Þ sinðϕ2Þ � � � cosðϕiÞ i < Ds

TDs
¼ sinðϕ1Þ sinðϕ2Þ � � � sinðϕDs

Þ: ð5:3Þ

Naturally
P

T2
i ¼ 1, and it is trivial, but tedious, to show

the Ti and their derivatives are mutually orthogonal and all
are orthogonal to R. Henceforth we will drop the vector
notation from T⃗ to avoid symbolic clutter. From our setup
we are now ready to perform the usual Legendre trans-
formation and obtain a Hamiltonian form and symplectic
structure:

H ¼ P2
R

2
þ P2

T

2R2
þ RnVsðTÞ

ω ¼ dPR ∧ dRþ dPT ∧ dT; ð5:4Þ

wherein we have obtained ω from the symplectic potential
θ ¼ PRdRþ PTdT. Dilations of our system should map
rescale R, yet leave the dynamics unchanged. The vector
field generating dilations is (up to a choice of scale) thus

D¼ 1

nþ2

�
2R

∂
∂Rþðnþ2ÞPT

∂
∂PT

þnPR
∂

∂PR

�
; ð5:5Þ

which we see has the correct action on interior product with
the symplectic two-form:

ιDω ¼ θ −
2

nþ 2
dðRPRÞ ¼ θ − d ∘ ιDθ ð5:6Þ

and LDH ¼ 2n
nþ2

H.
The boundary states of our system, s1 and s2, will

depend only on the shape variables, Ti. Thus our time
parameter t must be constructed from the orbits of these.
We note that PT ¼ R2 _T and thus we know that

dt ¼ R2

PT
dT ð5:7Þ

for any T chosen from the Ti. Since these are shape
variables, D does not act upon them, and thus we calculate

LDdt ¼ ιD ∘ d
�
R2

PT
dT

�
¼ 2 − n

nþ 2
dt ð5:8Þ

and hence we see that the Hamiltonian as a one-form is Lie
dragged exactly, using Leibniz rule:

LDHdt ¼ 2n
nþ 2

Hdtþ 2 − n
nþ 2

Hdt ¼ Hdt: ð5:9Þ

We will now construct the invariants from which the
autonomous dynamics of the system can be expressed
directly. Since we have not specified V, and have explicitly
chosen D to be orthogonal to the coordinates T, these will
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constitute one of the invariants. We note that ρ ¼ 2
nþ2

R
nþ2
2 is

an eigenfunction ofD with eigenvalue 1, hence can be used
to find the invariants. By focusing on the action of D on R
we then see that a construction of the two remaining
invariants from R and the momenta PR and PT gives us our
compete set:

A ¼ PR

Rn=2 B ¼ ðnþ 2Þ
2

PT

R
nþ2
2

; ð5:10Þ

wherein we have chosen the prefactor of B such that the
invariants are Darboux coordinates for the contact form η:

η ¼ ιDω

ρ
¼ BdT − dA: ð5:11Þ

In this formulation, the contact Hamiltonian is then, up to a
choice of lapse,

Hc ¼ A2

2
þ
�

2

nþ 2

�
2X

i

B2
i

2
þ Vs ð5:12Þ

from which we obtain the contact equations of motion:

A0 ¼
�

2

nþ 2

�
2X

i

B2
i

B0
i ¼ −

∂Vs

∂Ti
− ABi

T 0
i ¼

�
2

nþ 2

�
2

Bi: ð5:13Þ

Let us here point out explicitly that A is monotonically
increasing, and outside a set of measure zero under the
measure induced by the contact form in which Bi ¼ 0 for
all i on constant potentials, there will be a unique point at
which A ¼ 0 on each trajectory. Per our earlier definition,
this is the Janus point of the system, the point where
∂Hc

∂A ¼ 0. From the conservation of the contact Hamiltonian
we can eliminate A from the system, and render the
complete dynamics as a set of second order ordinary
differential equations, one for each angular position Ti:

T̈i þ _Ti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
2Vs þ

�
nþ 2

2

�
2X

_Tj
2

�s

þ
�

2

nþ 2

�
2 ∂Vs

∂Ti

¼ 0 ð5:14Þ

which makes clear that dynamics is determined by a point
and a direction in shape space.
Let us now establish the relationship between the

description here, and the shape space description given

by Barbour et al. In their seminal work, they established
the shape dynamics of an N-body system subject to a
Newtonian potential. In our terminology, this is the case
in which n ¼ −1 and Vs ¼ −

P
a<bðTa − TbÞ−1. In

this case, the Janus point was identified at the point at
which the dilatational momentum vanishes. This dilata-
tional momentum corresponds to A, and we see that the
Janus point that we have identified is exactly that
described; ∂Hc

∂A ¼ 0 → A ¼ 0.
To understand the eventual behavior of our system first

note that since A is monotonically nondecreasing on
solutions, the form of the contact Hamiltonian means that
a solution must be either slowing (

P
T̈i < 0) or heading

down the potential. There exists a stationary configuration:
_Bi ¼ 0 ¼ _Ti wherein the particles are all equidistant from
one another on shape space, and thus ∂Vs∂Ti

¼ 0. The systems
split into two groups depending on the sign of n; if this is
positive the stationary solution is stable. However, if n is
negative then the stationary solution is unstable to small
perturbations. In this case the solution will always seek out
the (infinitely deep) wells of the potential which correspond
to local, isolated, trapped systems.

VI. HOMOGENEOUS COSMOLOGY

In recent work [4] the shape dynamics of a Bianchi IX
system was examined. It was shown that there is an
autonomous subsystem of dynamics that arises in terms
of the shape variables, and that this system remains
deterministic through the singularity. Here we will show
that this is achieved in part due to the dynamical similarity
that is present in such systems; as we have already
established the existence of such a similarity implies the
existence of the autonomous subsystem. One key differ-
ence from the dynamics of general relativity is that the
volume of the universe (and its conjugate momentum, the
Hubble parameter) is not a member of the algebra of
invariants. Therefore in constructing a geometrical repre-
sentation of the theory, further external inputs are required
which play no role in the evolution of the invariants. Thus,
although the geometrical picture breaks down at a singu-
larity, it was found that the dynamics of these invariants
does not, and beyond the point at which GR is singular a
geometrical picture can be redeveloped from the invariants.
A similar phenomenon in the evolution of geodesics
through a Schwarzschild black hole has been recently
discussed [30,31] which is indicative that this may be a
more general property of Einstein’s equations.
In this section we will show how dynamical similarity

leads to an autonomous system in cosmology. The metric
for a homogeneous (but possibly anisotropic) space-time
can be expressed in terms of the translation invariant one-
forms σi on the spatial manifold, Σ,

ds2 ¼ −dt2 þ v
1
3 expðγiÞdσi; ð6:1Þ
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wherein v labels a choice of volume of the Σ, and the γi are
anisotropy parameters. These are constrained such that
their sum is zero, and thus can be spanned by the two
Misner parameters:

γ1 ¼ −q1=
ffiffiffi
6

p
− q2=

ffiffiffi
2

p

γ2 ¼ −q1=
ffiffiffi
6

p
þ q2=

ffiffiffi
2

p

γ3 ¼
ffiffiffi
2

3

r
q2: ð6:2Þ

Matter in the form of a massless scalar field (ϕ; π) is
simple to add to the system through minimal coupling. The
symplectic structure is then

ω ¼ dpi ∧ dqi þ dπ ∧ dϕþ dτ ∧ dv ð6:3Þ

and the ADM Hamiltonian is given:

H ¼ −
3

8
v2τ2 þ p2

1 þ p2
2 þ

π2

2
þ v

4
3Vsðq1; q2Þ; ð6:4Þ

wherein Vs is the shape potential, and v4=3Vs is the Ricci
scalar of Σ, which in turn is determined by the algebra of
commutativity of the σi. In the case of a flat space-time
(Bianchi I), Vs ¼ 0, and the dynamics is quite simple.
However in general the 3-geometry can be more complex,
with topologies of e.g., S3 (Bianchi IX) or S1 × S2

(Kantowski-Sachs), in which case Vs has a more compli-
cated form. Therefore we will restrict our analysis to
vector fields that leave q1 and q2 (and hence Vs) invariant.
A simple direct application shows that

G ¼ pi
∂
∂pi

þ π
∂
∂π −

τ

2

∂
∂τ þ

3v
2

∂
∂v ð6:5Þ

is a dynamical similarity. Hence, there is an autonomous
subsystem of invariants of G. Since we explicitly chose G
to preserve the Misner coordinates, q1 and q2, these are two
of the invariants of G. Similarly, since H is independent of
ϕ (which is an invariant), π is a constant, and the value of ϕ
does not affect dynamics. From the scaling of v, we can
form a set of invariants:

ψ i ¼
pi

v2=3
ψϕ ¼ π

v2=3
Φ ¼ 3

2
τv1=3: ð6:6Þ

Note that these variables differ slightly from those used in
[4]—we have chosen these such that the contact system is
simple to write in Darboux coordinates. Thus we have a
seven-dimensional space of invariants whose dynamics
close. Further, the value of ϕ does not contribute to the
dynamics of the other invariants, as the Hamiltonian is
independent of ϕ, and the Hamiltonian constraint can be
used to eliminate a further invariant, hence a set of five

invariants, independent of ϕ, form a closed dynamical
system. The contact form is then

η ¼ ιGω

v2=3
¼ Ψidqi þ Ψϕdϕ − dΦ ð6:7Þ

and the contact Hamiltonian is

Hc ¼ Ψ2
1 þΨ2

2 þ
Ψ2

ϕ

2
−
Φ2

6
þ Vsðq1; q2Þ: ð6:8Þ

Note that our contact Hamiltonian contains six variables,
however it is a constrained to be exactly zero, and hence
there is only a five-dimensional space of solutions. The
equations of motion for our system in terms of the
invariants are then

_qi ¼ 2Ψi
_ϕ ¼ Ψϕ

_Ψi ¼ −
∂Vs

∂qi − 2ΦΨi

_Ψϕ ¼ −ΦΨϕ
_Φ ¼ 2Ψ2

1 þ 2Ψ2
2 þΨ2

ϕ: ð6:9Þ

Thus we have constructed the autonomous system of
invariants which describes homogeneous cosmology. In
[4] this system is shown to remain predictive beyond the
singularity. The analysis there requires some coordinate
transformations, and a direct investigation of the regularity
of the differential equations to show that they are predictive
at the singularity.

VII. DISCUSSION

In this work, we have established three fundamental facts
about dynamical similarity. These are: the existence of a
vector field on phase space which generate the symmetry,
the closure of the system of invariants, and the relationship
with contact dynamics on the space of invariants.
We have given a prescription for finding the invariant

dynamics of a symplectic system with a dynamical sim-
ilarity. Such symmetries are revealed by the existence
of a nonstrictly canonical transformation that is also
Hamiltonian scaling. The existence of such symmetries
should not in fact be surprising; in many cases they
correspond to simply an arbitrary choice of, for example,
a unit of length within a system. It is therefore to be
expected that altering this choice of unit should not affect
the intrinsic, relational dynamics. Thus there is a redun-
dancy in the phase space description corresponding to this
choice. This is similar in many ways to other symmetries
of such systems. The freedom to choose a reference frame
in particle systems also does not affect intrinsic dynamics.
Likewise, the remaining phase space variables form an
autonomous system; their relational evolution can be
expressed without referring to the choice of frame.
However within the Hamiltonian formalism, such choices
correspond to symplectomorphisms and are strictly canoni-
cal, which in turn contribute boundary terms to the action.
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The key difference for dynamical similarities is that these
also rescale the symplectic structure. Thus we see that such
transformations may alter the conserved quantities of a
system. However, this indicates that to an observer who
only has access to the intrinsic observables of the system
such the changes resulting from such transformations are
not measurable.
A complementary approach to that discussed here is

developed in [32], in which the theory is directly con-
structed taking the intrinsic observables as fundamental.
This begins from two fundamental postulates. The first is
that the phase space of the system consists of the smallest
possible set of geometric parameters required to close an
equation describing a curve through shape space. The
second is that the equation of state of the curve arises
from the (unit) tangent bundle over this phase space. In
such a construction one begins with intrinsic observations
and forms equations of motion directly, arriving at the
contact systems which were discussed in Sec. III. This is
done explicitly in the case of the three-body problem,
which is the simplest system which has nontrivial intrinsic
dynamics. To see this directly, consider that the two-body
problem can be expressed in center-of-mass coordinates,
and reduces to a single body in an external potential. Once
the separation of the two bodies is used to define a rod,
there can be no further dynamics of the system.
In the case of Newtonian gravity, the construction is

made explicit, and it is shown how the experienced space-
time can be reconstructed by an observer who makes
certain necessary choices of scales in order to embed the
relational system within a system with absolute notions of
scale. The emergence of isolated systems (particularly
Kepler pairs) which can be used as de-facto rods and
clocks is shown explicitly. This construction is entirely
compatible with that expressed in this paper, and the
embedding within a symplectic system in essence is the
promotion of the scale to a dynamical variable. Thus by
construction the resultant system will have a dynamical
similarity which corresponds to the choice of such scale,
and the processes outlined here will necessarily recover the
original relational system.
We have shown that dynamical similarity reveals the

underlying structure of a symplectic system, which is a

contact system which yields dynamics in terms of the
invariants of the transformation alone. The expression of
dynamics in these terms was a key part of the continuation
past singularities in [4], and the principle factor behind
showing that there was a physically well determined
volume form on which measures could be based in [25].
The existence of an intrinsically defined arrow of time
necessarily requires some degree of focusing of dynamics
such that records can be formed. The frictionlike terms
which arise in this formalism are central to this realization,
as under the dynamical flow the volume form is not
conserved. Thus dynamical similarity within a symplectic
system provides some of the ingredients from which a full
intrinsic theory can be constructed.
In the present construction we have taken into account

only the dynamical similarities which are generated by
acting on phase space variables. This was done so that the
basic mathematical structure was direct to establish, both
in terms of the vector fields that generate them, and the
contact structure which was found to underlie the intrinsic
dynamics of invariants. However, a more general formu-
lation will also include the effect of altering coupling
coefficients in the systems themselves. In formulating a
Lagrangian, the strengths of couplings must be given
explicitly in the construction of the theory. However, in
practice these values are established by fitting observa-
tions of relational variables. Therefore the values of the
couplings themselves must be determined from intrinsic
physics. In later work we will show how this introduces
further freedom in the formulation of dynamical similar-
ity, and show that there are classes of Lagrangians
which are intrinsically indistinguishable. That is, to an
observer subject to their dynamics and only given
access to relational variables, there are many possible
choices of couplings that give rise to the same observable
physics.
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