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The lensing convergence measurable with future CMB surveys like CMB-S4 will be highly correlated
with the clustering observed by deep photometric large scale structure (LSS) surveys such as the LSST,
with cross-correlation coefficient as high as 95%. This will enable use of sample variance cancellation
techniques to determine cosmological parameters, and use of cross-correlation measurements to break
parameter degeneracies. Assuming large sky overlap between CMB-S4 and LSST, we show that a joint
analysis of CMB-S4 lensing and LSST clustering can yield very tight constraints on the matter amplitude
σ8ðzÞ, halo bias, and fNL, competitive with the best stage IV experiment predictions, but using
complementary methods, which may carry different and possibly lower systematics. Having no sky
overlap between experiments degrades the precision of σ8ðzÞ by a factor of 20, and that of fNL by a factor of
1.5 to 2. Without CMB lensing, the precision always degrades by an order of magnitude or more, showing
that a joint analysis is critical. Our results also suggest that CMB lensing in combination with LSS
photometric surveys is a competitive probe of the evolution of structure in the redshift range z ≃ 1–7,
probing a regime that is not well tested observationally. We explore predictions against other surveys and
experiment configurations, finding that wide patches with maximal sky overlap between CMB and LSS
surveys are most powerful for σ8ðzÞ and fNL.
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I. INTRODUCTION

Deep imaging surveys like the Large Synoptic Survey
Telescope LSST [1,2] will transform the quality of large-
scale structure (LSS) observations by cataloging positions
and redshifts of billions of galaxies in the next decade. With
LSST we can hope to measure more than 10 photometric
redshifts per arcmin2 at redshift 0 ≤ z ≤ 2, and more than
0.1 per arcmin2 at redshift 2 ≤ z ≤ 4 [3]. By reconstructing
weak gravitational lensing of the cosmic microwave back-
ground (CMB) radiation, CMB experiments will also probe
these large-scale structures in projection along the line
of sight. Future LSST galaxy catalogs and CMB lensing
maps are thus expected to be highly correlated. The
moderate accuracy of photometric redshifts is sufficient
for this particular type of cross-correlation analysis because
the CMB lensing kernel is very broad in redshift.
The science case of cross-correlations between clustering

and CMB lensing can inform the design of planned CMB
experiments such as the Simons Observatory [4] and CMB-
S4 [5], which can provide CMB lensing measurements
that are signal dominated on scales l≲ 1000. To take
advantage of cross-correlations with imaging surveys, these

CMB experiments need to maximize the overlap of their
footprint with LSS surveys such as LSST. This allows to
cancel part of the sample variance that usually limits
parameter constraints [6]. LSST is particularly suited for
this because it has a high number density out to high
redshift, tracing the structures responsible for lensing of the
CMB with relatively low stochasticity. Using Fisher fore-
casts we will show that large sky overlap between LSS and
CMB lensing observations can indeed improve sensitivity
to certain parameters.
We will discuss three applications of CMB-lensing–

clustering cross-correlations: Measuring the amplitude
of matter fluctuations σ8 as a function of redshift, meas-
uring local primordial non-Gaussianity fNL using scale-
dependent galaxy bias [7], and measuring neutrino mass
from a small scale-dependent bias effect due to a difference
of transfer functions relevant for lensing and clustering
[8–11] (see Appendix B for a review of these scale-
dependent bias effects). Using cross-correlations for these
applications does not only offer a way to cancel part of
the cosmic variance, but it can also reduce parameter
degeneracies and may be more robust to systematics than
auto-correlation measurements. An additional advantage of
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measuring neutrino mass with cross-correlations based on
scale-dependent bias is that the transfer function difference
is a pure low-redshift effect that is not limited by our
knowledge of the optical depth τ to the CMB, which limits
most other techniques to measure neutrino mass from LSS
[12], although the effect we are after is very weak. As one
might expect, the success of the three applications depends
on the noise of the galaxy catalogs and CMB lensing, the
overlap of galaxy samples with the CMB lensing redshift
kernel, the scales that are probed, and the overlap and size
of sky footprints.
Throughout this paper we take a rather optimistic point

of view in terms of systematics and modeling, using only a
simple linear bias model for the signal and its covariance.
The reason for this is that we want to explore new
opportunities with CMB-S4 and LSST and see how
promising these opportunities can in principle be. This
can provide motivation for joint analyses of future CMB
lensing and galaxy redshift surveys, and helps to under-
stand what directions are useful to pursue further. Given the
optimistic nature of our analysis, it will be important to
scrutinize and improve our forecasts by adding systematics
and improving models.
Several groups have successfully measured the cross-

correlation of CMB lensing and LSS clustering. The first
detections cross-correlated WMAP CMB lensing measure-
ments with the NRAO VLA Sky Survey [13], and addi-
tionally with SDSS LRGs and quasars [14]. These were
also the first detections of the effect of CMB lensing itself.
More recent CMB-lensing–clustering cross-correlation
measurements include Refs. [15–26]. Thanks to the large
number of CMB and LSS surveys that are planned in the
near future, the number of possible cross-correlation
analyses will continue to grow rapidly. Recent forecasts
for cross-correlations between CMB-S4 and LSST showed
promising results for calibrating multiplicative shear bias
[27], as well as measuring the matter amplitude σ8 [28],
dark energy, and neutrino mass [29].
Our paper is organized as follows. We first motivate

why cross-correlation analyses are particularly useful for the
three applications that we consider. We then proceed in
Sec. III by specifying the assumptions we make about future
CMB and LSS experiments, and discussing their redshift
overlap and cross-correlation coefficient. In Sec. IV we
present power spectra and their expected signal-to-noise
ratios, as well as the signals expected from scale-dependent
bias. Section V provides analytical estimates of the expected
gain from sample variance cancellation. In Sec. VI we set up
a more complete numerical Fisher analysis. The resulting
forecasts are presented in Sec. VII, where we also identify
the main drivers and explore the impact of changing
experimental configurations. In Sec. VIII we study the
impact of catastrophic redshift errors on the forecasts within
a simple toy model. We conclude and discuss possible future
directions in Sec. IX. In appendices we describe 3-D to 2-D

projections, provide background on the scale-dependent bias
effects from primordial non-Gaussianity and neutrino mass,
discuss the sampling variance error of cross-spectra, and
discuss how observations may be compressed to smaller data
vectors to simplify analyses.

II. MOTIVATION FOR CROSS-CORRELATION
MEASUREMENTS

Let us start by motivating in more detail why cross-
correlating CMB-lensing and galaxy clustering is particu-
larly well-suited to measure σ8ðzÞ and constrain primordial
non-Gaussianity and neutrino mass using their scale-
dependent bias effect.

A. Measuring σ8ðzÞ and the distribution
of dark matter in 3-D

Lensing observations are only sensitive to the cumulative
matter distribution along the line of sight, collapsing the
redshift dimension of the 3-D dark matter distribution.
Galaxy surveys, in contrast, measure that redshift dimen-
sion and are therefore 3-D, but they observe biased tracers
of the dark matter and are therefore only sensitive to the
parameter combination b1ðzÞσ8ðzÞ, where b1 is a bias factor
that is typically not well known, and σ8ðzÞ is the rms of the
matter density in a sphere of radius 8h−1 Mpc at redshift z.
Lensing observations or galaxy surveys alone can therefore
not provide accurate measurements of σ8ðzÞ or the 3-D
matter distribution.
As is well known, cross-correlating lensing and cluster-

ing observations can break the above b1 − σ8 degeneracy
and determine the galaxy bias as a function of redshift,
e.g., using b1 ≃ Cgg=Cκg, b21 ≃ Cgg=Cκκ, or b1 ≃ Cκg=Cκκ.
We can then obtain the 3-D matter distribution by dividing
the observed galaxy density by the estimated bias,
δmðk; zÞ ¼ δgðk; zÞ=b1ðzÞ. From that we can compute the
matter power spectrum as a function of redshift, and its
amplitude, σ8ðzÞ. Even if bias is treated as a scale-
dependent function, b1ðk; zÞ, cross-correlating lensing
and clustering can significantly improve the uncertainty
of the matter power spectrum as a function of redshift if the
cross-correlation coefficient between lensing and clustering
is high [30]. Maybe more futuristically, a better under-
standing of galaxy formation might predict the relation
between dark matter and galaxies without requiring a
general bias expansion. In that case, lensing-clustering
cross-correlations could help inform parameters of the
galaxy formation models and thus improve the inferred
3-D dark matter maps.
Measuring the 3-D distribution of dark matter offers a

direct way to test the growth of structure and expansion of
the Universe as a function of time. Both depend on the
cosmological model, e.g., on the time evolution of the dark
energy equation of state or the sum of neutrino masses. At
low redshift, z≲ 0.5, the motivation is to improve over

MARCEL SCHMITTFULL and UROŠ SELJAK PHYS. REV. D 97, 123540 (2018)

123540-2



current constraints. At higher redshift, only little is known
observationally about growth and expansion, so that enter-
ing this regime has significant discovery potential, espe-
cially if we can measure the matter amplitude σ8ðzÞ with
sub-percent-level precision. Such high-precision measure-
ments of σ8ðzÞ over a wide range of redshifts provide a
promising tool to constrain the sum of neutrino masses
through their imprint on the growth function, possibly even
without calibrating against the amplitude of the CMB
which is limited by the optical depth τ to the CMB [31].
Mapping the cosmic growth history with such high
precision also constrains a possible time dependence of
the equation of state of dark energy.
Sample variance cancellation can help to improve con-

straints on galaxy bias parameters, because they enter only
the galaxy density but not the CMB lensing convergence,
which are both due to the same underlying 3-D Fourier
modes at redshifts where they overlap. Improved bias
constraints can then improve the precision of the 3-D
matter distribution.
For simplicity we will only quote the precision of σ8 and

b1 assuming all other cosmological parameters are fixed. If
other cosmological parameters are allowed to be free, the
cross-correlation measurements constrain certain combina-
tions of them, for example roughly σ8Ωm at low redshift
[32]. Our forecasts should therefore be interpreted as
constraints on such parameter combinations.

B. Motivation for fNL from cross-correlations

Primordial non-Gaussianity of the local type, parame-
terized by the amplitude fNL, induces a scale-dependent
galaxy bias that scales as fNLk−2 on large scales [7]. We
review this effect and the motivation to measure it in
Appendix B 1. Since the effect is largest on large scales, the
precision of fNL is limited by the number of large-scale
Fourier modes in the volume of the galaxy survey. This
cosmic variance noise can be partially cancelled by
observing unbiased and biased tracers of LSS and search-
ing for a scale-dependent difference in their power spectra
[6]. Figure 1 illustrates this idea for an idealized toy model
where CMB lensing (an unbiased tracer) and galaxy
number counts (a biased tracer) are assumed to originate
from the exact same Fourier modes. The prospect of sample
variance cancellation is an important motivation for
searching for fNL in CMB-lensing–galaxy-clustering cross-
correlations rather than in galaxy auto-spectra.
The second motivation for measuring fNL from cross-

correlations is its potential superiority over galaxy auto-
spectra in terms of systematics (e.g., [18,33]). On the
large scales where the k−2 scale-dependent bias is largest,
systematics like stellar contamination can add galaxy auto-
power and thus mimic an fNL signal. This has been a major
concern for recent fNL analyses, e.g., [34,35], although not
for one QSO sample in the earliest data analysis of this
effect [36]. Another important large-scale systematic is

depth variation. While known systematics can of course
be subtracted, it is difficult to establish ahead of time that
there are no unknown or poorly understood systematics that
could lead to an enhanced galaxy auto power spectrum on
large scales (it is easier to establish an upper limit, since
absence of power on very large scales can only be explained
by absence of both systematics and primordial non-
Gaussianity). Cross-correlations can be helpful in this
regard because they are unaffected by many (additive)
observational systematics: Only systematics that contribute
in a correlated way to CMB lensing and galaxy counts can
change the cross-correlation power spectrum.
The large fNL signal in cross-correlations between CMB

lensing and high-redshift galaxies has already been pointed
out in [37] as a promising route to search for fNL.

C. Motivation for neutrino mass
from cross-correlations

The third application of cross-correlations that we
consider is measuring the sum of neutrino masses mν

using a subtle scale-dependent bias effect between lensing
and clustering [8–11]. Gravitational lensing is sensitive to

FIG. 1. Illustration of the primordial non-Gaussianity signal
from scale-dependent galaxy bias [7], in an idealized toy example
where galaxies (blue) perfectly trace the matter fluctuations
observed by CMB lensing (black), Ĉgg

l ¼ b2Ĉκκ
l . The signal

for fNL ¼ 1 is smaller than cosmic variance (shaded regions), but
the ratio of the observed galaxy and lensing power spectrum
realizations has no cosmic variance, so that the non-Gaussianity
amplitude fNL can be measured with infinite precision from a
single Fourier mode [6]. In practice, this is limited by nonzero
stochasticity between the observed CMB lensing convergence
and galaxy density.
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all matter, so it is computed using the total matter transfer
function Tcbν, involving cold dark matter c, baryons c, and
neutrinos ν. Galaxies, however, form in regions where cold
dark matter and baryons have gravitationally collapsed, so
their overdensity is computed using the transfer function
Tcb, without being sensitive to the neutrino overdensity. As
shown in Fig. 2, the transfer functions, TcbνðkÞ for lensing
and TcbðkÞ for clustering, are slightly different, because
neutrinos free-stream on small scales and thus suppress
small-scale clustering while still contributing to the energy
budget responsible for the expansion of the Universe [38].
The different transfer functions lead to a small scale-
dependent bias between lensing and clustering. That can
be used to measure neutrino mass without making any
assumption about the shape of the underlying total matter
power spectrum, thus providing a clean probe of neutrino
mass that relies only on linear physics. We describe this
scale-dependent bias effect more quantitatively in
Appendix B 2.
Unfortunately, the effect is very small, leading a

relative power spectrum suppression of at most fν ≡Ων=
ðΩm þ ΩνÞ; for example, the power spectrum is suppressed
by only 0.1% for mν ¼ 13 meV. This is so small that
forecasts for determining neutrino mass using only this
effect with galaxy lensing shear and galaxy clustering do
not seem promising for realistic shear shape noise and
galaxy number densities [11]. We study here whether the
same conclusion holds for CMB-S4 CMB lensing cross-
correlated with LSST galaxy clustering.
A neutrino mass constraint from scale-dependent bias

would be independent from the conventional measurement

of neutrino mass that measures the suppression of small-
scale low-redshift power (e.g., in CMB lensing or galaxy
clustering) relative to that expected from extrapolating the
CMB to low redshift. In particular, neutrino mass from
scale-dependent bias is not limited by the precision of the
optical depth τ to the CMB, which is a major limitation
for the precision of the primordial scalar amplitude and
conventional cosmological neutrino mass measurements
[5,12]. Another promising avenue to measure neutrino
mass without τ information, which will be explored in
[31], is to search for a small change in the cosmic growth
history caused by nonzero neutrino mass using the mea-
surements of σ8ðzÞ described above.

III. EXPERIMENTS

To determine how well the above effects can be
measured in the future, we study a combination of CMB
and LSS experiments that we describe in this section. We
will focus on CMB-S4 CMB lensing and LSST clustering
because of their low noise and significant redshift overlap,
but we will also include some additional LSS samples.
At the end of the section we compute the expected cross-
correlation coefficient between the CMB lensing and
clustering measurements.

A. CMB-S4 CMB lensing specifications

For CMB lensing, we work with a possible CMB-S4
configuration assuming a 1 arcmin beam and ΔT ¼
1 μK arcmin noise [5]. We assume that the lensing
reconstruction can be performed with CMB polarization
modes up to lE;B

max ¼ 5000, and with CMB temperature
modes up to lT

max ¼ 3000, reflecting the difficulty to clean
temperature foregrounds at l > 3000 using groundbased
experiments.
Figure 3 shows the expected CMB lensing signal and

Gaussian noise, which is essentially given by the number of
signal-dominated background CMB modes. The CMB
lensing measurement is signal-dominated for l≲ 1000.
On large scales, l ∼ 30, the signal-to-noise per mode
reaches more than 70. This high signal-to-noise measure-
ment of individual CMB lensing modes is important to
reduce stochasticity between the CMB lensing map and
maps of biased tracers. The minimum-variance combina-
tion of the lensing estimators is dominated by the EB lens
reconstruction, especially after including the factor 2.5
improvement due to iterative reconstruction over quadratic
reconstruction expected for CMB-S4 (see caption
of Fig. 3).

B. LSST clustering specifications

For LSST clustering measurements, we assume a num-
ber density of galaxies that can be achieved by selecting
with an i < 27magnitude cut with S=N > 5 in at least the i
band for three years of observations, based on Fig. 7 in

FIG. 2. On scales smaller than the neutrino free-streaming scale,
massive neutrinos suppress the auto-power spectrum of the total
matter density (“cbν”) relative to its cross-spectrum with the cold-
dark-matter–baryon density (“cb”). Since lensing is sensitive to the
total matter density while galaxies form at peaks of the cold-dark-
matter–baryon density, these spectra determine the observable
lensing-lensing autopower and the lensing-galaxy cross-power,
respectively. The suppression is 0.1% for mν ¼ 13 meV, and
scales roughly linearly with mν.
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Ref. [3]. The resulting galaxy number density is shown in
Fig. 4. It peaks at about 50 arcmin−2 at z ≃ 0.6. This is
approximately two times larger than the maximum number
density of the LSST gold sample after 3 years of obser-
vation. Although these galaxies might not be suitable for
measuring galaxy lensing shear, their angular positions can
still be used for measuring clustering and cross-correlation

with the broad-kernel CMB lensing convergence, which is
all we use here. For some applications it may also be
sufficient to use the measured cross-correlation coefficient
between galaxies and CMB lensing convergence even if the
underlying redshift distribution or other properties of the
galaxies are unknown (similarly to delensing the CMBwith
the cosmic infrared background CIB [43], or combining
clustering and galaxy-galaxy-lensing to reconstruct the
dark matter correlation function [44,45]).
At higher redshift, z > 4, imaging surveys with broad

bands in the optical/near infrared can identify Lyman break
galaxies (LBGs) using the dropout technique; see [46] for a
review. This technique identifies the Lyman break in galaxy
spectra caused by neutral hydrogen absorption of rest-
frame UV continuum emission, by looking for galaxies that
are visible in short-wavelength bands but disappear in long-
wavelength bands. Recently, the Great Optically Luminous
Dropout Research Using Subaru HSC (GOLDRUSH)
program used this technique to identify 579 565 dropout
candidates at z ≃ 4–7 using 100 deg2 of Hyper Suprime-
Cam observations [47]. The sample was split into 540 011,
38 944, and 537 LBGs at z ∼ 4, 5, and 6, respectively,
to measure angular clustering of these galaxies [48].
Repeating these HSC observations on 18 000 deg2 would
yield 180 times more galaxies, leading to 100 million
dropout galaxies z ¼ 4–7. To the extent that LSST filters
and magnitude limits are comparable to those of HSC,
which is approximately the case, we therefore expect
roughly 100 million dropout galaxies at z ¼ 4–7 from
LSST. To include such a possible high-redshift LSST
dropout sample in our forecast, we extrapolate the LSST
redshift distribution from z ≤ 4 to the redshift range
4 ≤ z ≤ 5 as shown in Fig. 4. At higher redshift, we
assume dn=dz ¼ 0.14 arcmin−2 at 5 ≤ z ≤ 6, and dn=dz ¼
0.014 arcmin−2 at 6 ≤ z ≤ 7. This corresponds to 43 mil-
lion dropout galaxies at z ¼ 4–7, which is about two times
less than the 100 million galaxies estimated above.
We split the LSST galaxies into six broad tomographic

redshift bins, z ¼ 0–0.5; 0.5 − 1; 1 − 2; 2 − 3; 3 − 4, and
z ¼ 4–7. There is no need for finer redshift bins to study
the effects we are after, which all have rather broad redshift
kernels, but it is important to use more than one redshift
bin to be able to weight the redshift bins to match the
CMB lensing kernel, and we find that parameter contraints
improve somewhat when choosing finer redshifts bins,
likely because the kernels are not perfectly constant within
the broad redshift bins above. Should one be looking at
features that are narrow in redshift, a finer redshift binning
would become more important. In the main forecasts, we
do not account for photometric redshift uncertainties,
noting that redshifts should be sufficiently accurate to
correctly assign them to the broad redshift bins defined
above; we will revisit this assumption in Sec. VIII. For a
survey area of 18 000 deg2, the total number of galaxies in
each redshift bin is Ntot¼9.3×108;1.55×109;1.40×109;

FIG. 3. CMB lensing power spectrum signal Cκκ
l (dashed) and

expected Gaussian noise, Nð0Þ;κκ
l , from the minimum variance

combination (solid black) of five individual CMB lensing
estimators (solid colored). This assumes a possible CMB-S4
experiment with 1 arcmin beam, ΔT ¼ 1μK arcmin noise,
lT
max ¼ 3000 and lE;B

max ¼ 5000. All noise curves were computed
with quicklens [39,40] assuming quadratic estimator lens
reconstruction on the full sky. The EB noise is divided by a factor
of 2.5 to approximately match the expected improvement from
iterative lens reconstruction [41,42] for CMB-S4 (this factor was
obtained by matching Fig. 46 of [5]). The signal is computed
exactly at l ≤ 50 and using the Limber approximation at l > 50.

FIG. 4. Number density of tomographic LSST redshift bins,
and one low-redshift bin from DESI. For comparison, we also
show the CMB lensing kernel (solid black), corresponding to the
number density dn=dz that would yield Cκκ

l if integrated over,
with arbitrary normalization. It peaks around z ¼ 2 and drops
at lower and higher redshift (this is somewhat difficult to see
because of the logarithmic vertical axis).
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2.4×108;9.4×107, and 4.3 × 107, corresponding to about
one billion objects in each of the low-redshift bins,
and more than 40 million objects at z ¼ 4–7 (see discussion
above). We assume a fiducial linear galaxy bias of
bðzÞ ¼ 1þ z [2].

C. Other LSS surveys

In our default forecasts, we also include number counts
from SDSS [49], BOSS [50] and DESI [51].
For SDSS, we assume the number density of r < 22

photometric redshifts obtained in Ref. [52] using the
clustering redshift technique [53–55]. We split the sample
in two tomographic redshift bins, one at 0 ≤ z ≤ 0.5 and
one at 0.5 ≤ z ≤ 0.8. For a survey area of 4 800 deg2, this
gives Ntot ¼ 1.1 × 108 objects in each bin. We assume the
bias to be bðzÞ ¼ 1 for z < 0.1 and bðzÞ ¼ 1þ ðz − 0.1Þ
for z ≥ 0.1.
For BOSS, we use spectroscopic redshifts of luminous

red galaxies (LRGs) with the same number density as in
Table II of Ref. [56]. We use a single redshift bin
0 ≤ z ≤ 0.9. On a sky area of 9; 329 deg2 this would give
1.3×106 galaxies. Splitting the sample into multiple red-
shift bins does not improve our forecasts because we cross-
correlate against CMB lensing, so that redshift accuracy is
much less important than number density. We assume a bias
of bðzÞ ¼ 1.7D̄−1ðzÞ where D̄ðz ¼ 0Þ ¼ 1.
For DESI, we use five redshift samples, with number

densities from Table 2.3 in Ref. [57]: The low-redshift BGS
sample at 0 ≤ z ≤ 0.5 with 9.6 × 106 objects and bias
bðzÞ ¼ 1.34D̄−1ðzÞ, the LRG sample at 0.6 ≤ z ≤ 1.2 with
3.9 × 106 objects and bias bðzÞ ¼ 1.7D̄−1ðzÞ, one ELG
sample at 0.6 ≤ z ≤ 0.8 with 3.5 × 106 objects and bias
bðzÞ ¼ 0.84D̄−1ðzÞ, a second ELG sample at 0.8 ≤ z ≤ 1.7
with 1.3 × 107 objects and the same bias, and a QSO
sample at 0.6 ≤ z ≤ 1.9 with 1.4 × 106 objects and bias
1.2D̄−1ðzÞ. In each case, the number of objects refers to a
survey area of 14 000 deg2.

D. CMB lensing–LSS correlation coefficient

The performance of the cross-correlation analyses
depends on the cross-correlation coefficient

rl ¼ Cκg
lffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ĉκκ
l Ĉ

gg
l

q ð1Þ

between the measured CMB lensing convergence κ and
the observed galaxy density δg, where the power spectra Ĉ
include lensing reconstruction noise and shot noise.
Figure 5 shows the correlation coefficient of tomographic
LSST redshift bins with lensing measurements expected
from CMB-S4.
The correlation of the low-redshift LSST bin at z ¼

0–0.5 with CMB lensing peaks at 70% on very large scales,

l ¼ 3, and drops on smaller scales. The LSST samples at
higher redshift reach their maximum correlation with
CMB lensing at higher l, corresponding approximately
to the peak of the 3-D power spectrum at kpeak ∼
2 × 10−2 hMpc−1, which is mapped to higher l for higher
redshift (lpeak¼kpeakχðzÞ where χ ranges from χðz¼0.1Þ∼
400 h−1Mpc to χðz ¼ 7Þ ∼ 9 h−1Gpc). The low-redshift
DESI BGS sample also has a substantial correlation with
CMB lensing, reaching up to 60% at low l.
The tomographic redshift bins can be combined into a

single joint LSS sample, with redshift bins weighted to
match the CMB lensing kernel. Choosing these weights
such that they maximize the correlation coefficient between
the joint LSS sample and CMB lensing [58] gives the
correlation coefficient shown in black in Fig. 5. The
combined LSS sample is more than 92% correlated with
the CMB-S4 lensing measurement at l≲ 40, reaching a
maximal correlation of r ¼ 94.6% at l ≃ 10. This is

FIG. 5. Expected correlation coefficient rl ¼ Cκg
l ðĈκκ

l Ĉ
gg
l Þ−1=2

of CMB-S4 lensing measurements with six tomographic LSST
samples (orange), with the low-redshift DESI BGS sample (green
dashed), and with the optimal combination of these LSS tracers
(black), as a function of wave number l. The level of correlation
is determined by the redshift overlap between CMB lensing and
LSS samples and by their noise levels. The plot includes CMB-S4
lensing noise and galaxy shot noise given by the number density
in Fig. 4. The Limber approximation would wrongly predict the
low-l correlation of individual redshift bins to be 5 to 10% higher
than the exact result shown here.
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combining all LSST redshift bins and the DESI BGS
sample. Additionally including SDSS and all other DESI
samples described above increases the maximal correlation
only mildly, to r ¼ 94.8%. The high correlation coefficient
motivates exploring sample variance cancellation tech-
niques for these experiments. On smaller scales, the
cross-correlation drops, but is still 60% for the combined
LSS sample at l ¼ 1000.
It may be surprising that the cross-correlation coefficient

of the combined LSS sample can be as high as 95% despite
the CMB lensing kernel being very broad (Fig. 4) and
extending all the way to z ∼ 1100. The reason is that at
low l the scales at cosmological distances χ (typically a
few h−1 Gpc) correspond to a very low k (k ¼ l=χ, so
for l ¼ 10 typically k ∼ 10−2 hMpc−1). Since this k is
lower than the peak of the power spectrum at kpeak ∼
2 × 10−2 hMpc−1, the power spectrum has more power on
smaller scales, so the projection integral picks most of the
power from low values of χ and thus from low z. At higher
l we move to scales smaller than the peak of the power
spectrum and the contribution from z > 4 LSS becomes
more and more important. Moreover, even though LSST
has some sources at z > 4 they are sparse and the
corresponding shot noise reduces the cross-correlation
coefficient.
One can also rephrase the above sample variance

cancellation argument using delensing: The more the
tracers are correlated with the true CMB lensing, the better
they delens the CMB modes; the delensed B mode power
follows by replacing Cκκ → Cκκð1 − ρ2Þ, where ρ is the
cross-correlation coefficient of optimally combined tracers

with the true CMB lensing convergence without lens
reconstruction noise [58]. Thus, the more one can delens
by combining multiple tracers, the more noise one removes
from the cross-correlation of those tracers with CMB
lensing. It is important to emphasize that the tracers need
to cover as much redshift range as possible.

IV. POWER SPECTRA

Assuming the above experiment specifications, we can
compute angular power spectra, their expected statistical
uncertainties, and how they change in presence of scale-
dependent bias caused by fNL or neutrino mass.

A. Angular power spectra and noise

In the left panel of Fig. 6 we show angular auto-power
spectra of CMB-S4 lensing and LSST clustering. The
shaded regions show the expected uncertainty

σðCXX
l Þ ¼

�
2

fskyð2lþ 1Þ ðĈ
XX
l Þ2

�
1=2

ð2Þ

due to sampling variance, CMB lensing reconstruction
noise, and shot noise (included in ĈXX). The spectra are
signal-dominated up to at least l ¼ 1000 thanks to the low
CMB lensing noise and high LSST number density. The
overall shape of the angular power spectra is similar to the
3-D matter power spectrum, with the peak at the physical
scale k−1peak mapped to smaller angular scales (higher l) for
increasing redshift.

FIG. 6. Left panel: Angular auto-power spectra of CMB-S4 lensing convergence κ (black) and LSST galaxy density (colored). Solid
lines show the signal power (not including lensing noise or shot noise), and shaded regions show 1σ error bars assuming the Gaussian
covariance (14), fsky ¼ 0.5, minimum variance lensing noise expected for CMB-S4, and LSST number density shown in Fig. 4. Dashed
lines show lensing reconstruction noise (black) and shot noise (colored). Right panel: Angular cross-spectra between CMB lensing and
LSST galaxy density.
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In Table I we show the total signal-to-noise ratio

SNR ¼
� Xlmax

l¼lmin

�
CXX
l

σðCXX
l Þ

�
2
�1=2

ð3Þ

of these auto-power spectra. The CMB-S4 lensing auto-
power spectrum has a signal-to-noise of 406 for
lmax ¼ 1000. For lmax ¼ 2000 this improves only mod-
erately to a signal-to-noise of 539 because CMB lensing
noise becomes relevant at lensing scales l > 1000. The

tomographic LSS redshift bins have comparable signal-to-
noise for lmax ¼ 1000; for example the photometric red-
shift samples of SDSS, the DESI BGS low-redshift sample,
and each of the 6 LSST redshift bins have a total signal-to-
noise of ∼400. Going to lmax ¼ 2000 improves the signal-
to-noise of most of these samples to ∼900.
The cross-spectra between CMB lensing and galaxy

clustering can also be measured very accurately. This is
shown in the right panel of Fig. 6 and in Table II. The total
signal-to-noise of those cross-spectra reaches more than
200 for lmax ¼ 1000, and up to 400 for lmax ¼ 2000 in the
case of the LSST redshift bin at z ¼ 1–2 where the CMB
lensing kernel peaks. Even though the overall error is larger
than for auto-power, at low l the two errors share the
sampling variance term, and upon taking the ratio of the
two measurements this error cancels out. This is the basis of
the sampling variance cancellation method.

B. fNL signal and signal-to-noise

Figure 7 shows the fractional fNL signal from scale-
dependent bias for galaxy auto-spectra Cgg (solid), and for
CMB lensing–galaxy clustering cross-spectra Cκg (dashed).
For galaxy auto-spectra, fNL ¼ 1 can change the signal

by more than 10% on large scales at high redshift (l≲ 5,

TABLE I. Total signal-to-noise of auto-power spectra CXX
l of

CMB lensing convergence and galaxy density in tomographic
redshift bins. We assume fsky ¼ 0.5, lmin ¼ 2, and lmax ∈
f500; 1000; 2000g in different columns. The noise includes
CMB-S4 lensing reconstruction noise and shot noise.

lmax

SNR of CXX 500 1000 2000

κCMB 233 406 539
BOSS LRG z ¼ 0–0.9 140 187 230
SDSS r < 22 z ¼ 0–0.5 247 487 936
SDSS r < 22 z ¼ 0.5–0.8 247 487 936
DESI BGS z ¼ 0–0.5 230 417 665
DESI ELG z ¼ 0.6–0.8 158 210 256
DESI ELG z ¼ 0.8–1.7 150 194 225
DESI LRG z ¼ 0.6–1.2 184 267 349
DESI QSO z ¼ 0.6–1.9 44.8 48.8 50.8
LSST i < 27 (3 yr) z ¼ 0–0.5 250 496 982
LSST i < 27 (3 yr) z ¼ 0.5–1 250 496 979
LSST i < 27 (3 yr) z ¼ 1–2 249 492 956
LSST i < 27 (3 yr) z ¼ 2–3 245 469 830
LSST i < 27 (3 yr) z ¼ 3–4 239 444 724
LSST i < 27 (3 yr) z ¼ 4–7 224 387 555

TABLE II. Like Table I but for CMB-lensing–clustering cross-
spectra Cκg

l .

lmax

SNR of CκCMBX 500 1000 2000

BOSS LRG z ¼ 0–0.9 77.3 117 159
SDSS r < 22 z ¼ 0–0.5 88.3 167 284
SDSS r < 22 z ¼ 0.5–0.8 88.3 167 284
DESI BGS z ¼ 0–0.5 50.1 93.5 144
DESI ELG z ¼ 0.6–0.8 50.7 73.5 97
DESI ELG z ¼ 0.8–1.7 103 148 185
DESI LRG z ¼ 0.6–1.2 86.7 133 182
DESI QSO z ¼ 0.6–1.9 74.9 94.5 108
LSST i < 27 (3 yr) z ¼ 0–0.5 78.1 150 258
LSST i < 27 (3 yr) z ¼ 0.5–1 112 202 338
LSST i < 27 (3 yr) z ¼ 1–2 144 259 406
LSST i < 27 (3 yr) z ¼ 2–3 121 219 324
LSST i < 27 (3 yr) z ¼ 3–4 101 182 261
LSST i < 27 (3 yr) z ¼ 4–7 94 167 229

FIG. 7. Upper panel: Fractional fNL signal ð∂Cl=∂fNLÞ=Ĉl
from scale-dependent bias as described in Appendix B 1, for Cgg

l
(solid) and Cκg

l (dashed). Lower panel: fNL signal divided by
cosmic variance noise and shot noise, ð∂Cl=∂fNLÞ=σðĈlÞ. Most
of the fNL signal-to-noise comes from large scales and high
redshift, as expected. By cancelling part of the cosmic variance, a
joint analysis can yield tighter constraints than naively expected
by adding up the shown signal-to-noise in quadrature.
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z≳ 2). At l ¼ 20 the signal is still 5% at high redshift, but
less than a percent at low redshift. The lower panel of Fig. 7
compares these signals against the cosmic variance of each
spectrum, without combining any measurements or exploit-
ing sample variance cancellation. This shows that the fNL
signal-to-noise can be larger than 0.1σ per mode at l≲ 30
for high-redshift tracers. For lower-redshift tracers this is
significantly smaller; for example, the fNL signal-to-noise
of the z ¼ 0.5–1 bin is 0.05σ per mode at l ¼ 2, and 0.01σ
per mode at l ¼ 20.
For κg cross-spectra, fNL ¼ 1 changes the signal at

l ¼ 10 by up to 20% for the highest-redshift galaxies, and
by several percent for galaxies at lower redshifts. This is
comparable to [37] who found a 4% change for fNL ¼ 1 at
l ¼ 10. The κg cross-spectra have a larger fractional fNL
signal than gg auto-spectra on large scales (if beyond-
Limber corrections are included). However, the fNL signal-
to-noise of each κg is always less than the corresponding gg
auto-spectrum. The reason for this is that the cross-
correlation coefficient rl between CMB lensing and each
individual tomographic redshift bin, shown in Fig. 5 above,
is relatively small, which adds noise to the κg cross-
spectrum that is not present in gg spectra. This can be
seen explicitly by writing the fractional uncertainty of Cκg

l
in terms of the correlation coefficient rl [also see Eq. (C3)
below]:

σðCκg
l Þ

Cκg
l

¼
�

1þ r−2l
ð2lþ 1Þfsky

�
1=2

: ð4Þ

The trends of the fNL signal and signal-to-noise with
redshift and wave number are easily understood. Both
signal and signal-to-noise are larger at lower l and higher
redshift (brighter colors), because the signal scales as
1þ fNLβ, where β ∝ ðb − 1Þ=b=k2 is the fractional bias
change for fNL ¼ 1 [defined in Eq. (B2)], and the Gaussian
bias b increases with redshift. In the regime where the
Limber approximation holds, l≳ 30, the fractional fNL
signal of gg spectra is about twice that of κg spectra,
because the former scale as ð1þ fNLβÞ2 ≈ 1þ 2fNLβ
whereas the latter scale as 1þ fNLβ.
If all experiments observe mutually independent patches

of the sky, the total signal-to-noise would be given by adding
the individual significances in quadrature. If all experiments
observe the same patch, however, the spectra can be
correlated so that the total uncertainty can be smaller than
the uncertainty expected from the naive estimates of the
signal relative to the cosmic variance of each spectrum [6].
We will discuss this improvement from sample variance
cancellation more quantitatively later using Fisher forecasts.

C. Neutrino mass signal and signal-to-noise

In Fig. 8 we show the fractional signal of the scale-
dependent neutrino mass bias caused by the different
transfer functions relevant for angular gg and κg power

spectra, assuming a very large neutrino mass ofmν ¼ 1 eV.
The scale-dependent transition shown for the 3-D power
spectrum in Fig. 2 is mapped to angular wave numbers
10≲ l ≲ 300 in 2-D. The gg spectra have about twice
the signal than κg spectra, and even more signal-to-noise.
The signal-to-noise rises steeply with wave number l,
although we effectively exclude the signal at very high l by
marginalizing over galaxy bias parameters, so that most of
the constraining power comes from l∼ few hundred. These
scales are sufficiently small that we will assume the Limber
approximation on all scales for neutrino mass forecasts.

V. ANALYTICAL ESTIMATE

Before presenting detailed numerical forecasts based on
the above scale-dependent bias signals, we estimate ana-
lytically what precision we might expect for the fractional
error of a generic scale-dependent bias amplitude α, which
can be α ¼ fNL or α ¼ mν depending on the application.

FIG. 8. Upper panel: Fractional neutrino mass signal
ð∂Cl=∂mνÞ=Ĉl from scale-dependent bias as described in
Appendix B 2 for some Cgg (solid) and Cκg (dashed) power
spectra. Lower panel: Neutrino mass signal divided by cosmic
variance and shot noise, ð∂Cl=∂mνÞ=σðĈlÞ, for mν ¼ 1 eV. In
both panels, gg spectra drop at high l because we include shot
noise in all Cl’s. To include only the signal from differences in
lensing and clustering, we will marginalize over galaxy bias and a
fake parameter mfake

ν that rescales κκ, κg and gg spectra in the
same way (with a shape matched to the scale-dependent bias). In
the upper panel, the signal of high-redshift samples starts to rise at
higher l than for low-redshift samples; this is because high-
redshift samples have more power at higher l because of the 3-D
to 2-D mapping.
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For simplicity we will not marginalize over any parameters
in this section.
Let us assume that all LSS tracers are optimally

combined to a single tracer g ¼ P
iδgi. We then compute

the Fisher information of α if the data vector is given by the
CMB lensing convergence map and the combined tracer
map, ðκ; gÞ. The Fisher information at the field level is
given by

Fαα ¼
X
l

ð2lþ 1ÞðFααÞl; ð5Þ

where the Fisher matrix per l is

ðFααÞl ¼ 1

2

X
abcd∈fκ;gg

∂Cab
l

∂α ðĈ−1Þbcl
∂Ccd

l

∂α ðĈ−1Þdal : ð6Þ

Here,

Ĉ−1 ¼ 1

ĈκκĈggð1 − r2lÞ

�
Ĉgg −Cκg

−Cκg Ĉκκ

�
: ð7Þ

is the inverse of the covariance matrix

Ĉ ¼
�
Ĉκκ Cκg

Cκg Ĉgg

�
ð8Þ

of the data vector ðκ; gÞ. Recall that Ĉκκ includes lensing
reconstruction noise and Ĉgg includes shot noise, while
Ĉκg ¼ Cκg is just the signal. Using the notation
∂Cl=∂α ¼ Cl;α, and noting that Cκκ

l;α ¼ 0, a lengthy but
straightforward calculation gives

ðFααÞl ¼ 1

2ð1 − r2lÞ2
��

Cgg
l;α

Ĉgg
l

�
2

− 4r2l
Cgg
l;α

Ĉgg
l

Cκg
l;α

Cκg
l

þ 2r2l ð1þ r2lÞ
�
Cκg
l;α

Cκg
l

�
2
�
: ð9Þ

The result depends only on the signal-to-noise ratio of the α
signal in κg and gg power spectra, and the cross-correlation
coefficient rl ¼ CκgðĈκκĈggÞ−1=2 between κ and g.
Completing the square,

ðFααÞl ¼ 1

2ð1 − r2lÞ2
��

Cgg
l;α

Ĉgg
l

− 2r2l
Cκg
l;α

Cκg
l

�
2

þ 2r2lð1 − r2lÞ
�
Cκg
l;α

Cκg
l

�
2
�
: ð10Þ

This result for the Fisher information of a generic scale-
dependent bias amplitude α is exact if κ and g are Gaussian
fields.
We can simplify Eq. (10) by making some approxima-

tions. We expect the gg 3-D power to be roughly twice as

sensitive to scale-dependent bias than the 3-D κg power,
because bias enters quadratically in Pgg ∝ ð1þ αβÞ2≈
1þ 2αβ but only linearly in Pκg ∝ 1þ αβ. Projecting on
the 2-D sky, this is still true if the redshift kernels of g and κ
match, i.e., WgðzÞ ≈WκðzÞ, and if the fiducial galaxy
bias is independent of redshift. In this idealized limit we
thus have

Cgg
l;α

Ĉgg
l

≈ 2
Cκg
l;α

Cκg
l

: ð11Þ

The Fisher information then simplifies to

ðFααÞl ¼ 2 − r2l
1 − r2l

�
Cκg
l;α

Cκg
l

�
2

: ð12Þ

Eq. (12) can be interpreted as the signal-to-noise-squared
for detecting α ¼ 1 from a single l. If the correlation
approaches rl → 1, the signal-to-noise-squared becomes
arbitrarily large, scaling as ð1 − r2lÞ−1. This is precisely the
scaling expected from sampling variance cancellation
[6,59]. For example, if rl ¼ ð0.9; 0.95; 0.99; 0.999Þ, the
improvement factor of the signal-to-noise is ð1 − r2lÞ−1=2 ¼
ð2.3; 3.2; 7.1; 22Þ.
We can use Eq. (12) to compute a rough estimate for

the uncertainty of α ¼ fNL based on the cross-correlation
coefficient between tracers and CMB lensing. Noting
that there are fskyð2lþ 1Þ modes per multipole l, the
error per l is

ðσfNLÞl ¼
�
fskyð2lþ 1Þ 2 − r2l

1 − r2l

�
Cκg
l;α

Cκg
l

�
2
�−1=2

: ð13Þ

The fNL signal-to-noise Cκg
l;α=C

κg
l dominates at low l as

shown in Fig. 7 above. For example, assuming optimally
combined DESI and LSST tracers correlated with CMB-S4
lensing and using only power spectra at l ¼ 2, we have
Cκg
l;α=C

κg
l jl¼2 ≃ 0.2 from Fig. 7 and rl¼2 ≃ 0.92 from

Fig. 5, so that the simple expression in Eq. (13) gives
ðσfNLÞl¼2 ≃ 1.1 for fsky ¼ 0.5. At higher l, the signal-to-
noise per l from Eq. (13) is ðσfNLÞl¼5 ≃ 1.4, ðσfNLÞl¼10 ≃
1.6 and ðσfNLÞl¼20 ≃ 2.4. This shows that combining these
low multipoles can yield σðfNLÞ ∼ 1. This includes the
improvement factor from sample variance cancellation,
which is approximately ð1 − r2lÞ−1=2 ≃ 3.1 for the maxi-
mum correlation of rl¼10 ¼ 0.946, and ð1 − r2lÞ−1=2 ≃ 2.6
for rl ¼ 0.92 which holds at l≲ 40.
The simple analytical estimates above suggest that

sample variance cancellation can improve fNL constraints
by a factor of 2 to 3 for CMB-S4 and LSST, thus achieving
σðfNLÞ ∼ 1. In the fully numerical Fisher analysis pre-
sented in the next sections we will find comparable
improvement factors, although the final fNL precision will
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turn out somewhat better than suggested by the analytical
estimates here. One possible reason for this (other than
possible inaccuracies of the analytical estimates) is that the
full Fisher analysis takes into account all possible power
spectra and their scale- and redshift dependence rather
than combining LSS tracers before measuring spectra as
assumed for the analytical estimates above.
For Gaussian initial conditions fNL ¼ 0, the sample

variance cancellation technique can improve measurements
of galaxy bias, because the bias enters linearly in κg and
quadratically in gg power spectra. Indeed, we can just
replace fNL → b in all equations above to get the precision
of bias measurements, with the same improvement factor of
ð1 − r2lÞ−1=2, if we assume that σ8 is perfectly known. If we
marginalize over σ8, the sample variance cancellation for
bias still works in the low-noise limit but not in general
[59]. We confirmed this using the full Fisher analysis
described in the next section, finding that in absence of
noise (setting lensing noise and shot noise to zero and
adding a biased tracer with number density matched to the
CMB lensing kernel) the bias error becomes extremely
small even when we marginalize over σ8. However for
realisitic noise levels the marginalization over σ8 does
matter, which makes it difficult in practice to exploit sample
variance cancellation for bias when marginalizing over σ8.
Note that while the sample variance cancellation technique
can in principle improve bias it cannot directly improve σ8,
which enters κg and gg power spectra in the same way.

VI. FISHER ANALYSIS SETUP

The above analytical calculations are only rough esti-
mates because we did not include all power spectra and we
did not marginalize over parameters that could be degen-
erate with the effects we are looking for. We improve this
using a numerical Fisher analysis that we describe in this
section. The results will be discussed in Sec. VII.
In the baseline analysis, we include all auto- and cross-

spectra of the CMB-S4 lensing convergence and the 14
tomographic LSS redshift bins defined in Sec. III.
With these N ¼ 15 fields, we have 15 auto-spectra and
NðN − 1Þ=2 ¼ 105 cross-spectra, obtaining 120 power
spectra in total.1 Some of the most relevant spectra are
listed in Tables I and II. The power spectra would capture
all cosmological information if the observed lensing con-
vergence and galaxy density were Gaussian random fields.

For simplicity we will assume this throughout, ignoring
information from higher-order statistics.
We compute 3D power spectra assuming a nonlinear

halofit [60–63] matter power spectrum with linear galaxy
bias and project it to 2D using the Limber approximation at
l > 50 and including beyond-Limber corrections at l ≤ 50
(see Appendix A). The linear galaxy bias follows a fiducial
redshift evolution within each tomographic redshift bin,
and we marginalize over its amplitude in each bin.
We assume Gaussian covariances for all power spectra,

covðĈij
l ; Ĉ

i0j0
l0 Þ ¼

δll0

fskyð2lþ 1Þ ðĈ
ii0
l Ĉ

jj0
l þ Ĉij0

l Ĉji0
l Þ: ð14Þ

This ignores non-Gaussian corrections to the CMB
lensing covariance [64–66], the LSS clustering covariance
(e.g., [67–69] and references therein), and their cross-
covariance. Ĉ are power spectra that would be observed
without any noise bias subtraction, i.e., they are the sum of
signal and noise. The upper indices i; j; i0; j0 ∈ fκCMB;
δLSSTz¼0–0.5; δ

LSST
z¼0.5−1;…g label the observable fields.

To speed up covariance inversion, we define a large one-
dimensional data vector that starts with all spectra at lmin,
continues with all spectra at lmin þ 1, etc:

d ¼ ðdlmin
;dlminþ1;…;dlmax

Þ: ð15Þ

At each l,

dl ¼ ðC11
l ; C12

l ;…; CNN
l Þ ð16Þ

contains NðN þ 1Þ=2 spectra Cij
l with j ≥ i. Assuming

Eq. (14), the covariance covðd;dÞ is then a block-diagonal
matrix with lmax − lmin þ 1 blocks of size NðN þ 1Þ=2×
NðN þ 1Þ=2, which is easily inverted if the number of
fields is N ≲ 100. The Fisher matrix at the power spectrum
level is then

Fab ¼
Xlmax

l¼lmin

∂dl

∂θa ½covðdl;dlÞ�−1
∂dl

∂θb : ð17Þ

We evaluate this without binning in l.2

The above analysis assumes that all experiments observe
the same patch of sky, because it includes cross-spectra
between all observed fields in the data vector and covari-
ance. The forecast therefore includes (a) sample variance
cancellation from observing the same modes multiple
times, and (b) breaking of parameter degeneracies using
κg cross-spectra. Both effects can only be exploited in a
joint analysis of CMB-S4 MB lensing and LSS clustering
on the same patch of sky. To determine how much these

1While the large number of power spectra is not a problem
for Fisher forecasts with Gaussian covariances, this may be
more challenging for actual data analyses. In that case one may
want to compress the observations before forming power spectra
(see Appendix D). Although many of the cross-spectra have
zero signal in the Limber approximation because they correlate
nonoverlapping redshift bins, the Fisher matrix can benefit
from including them, because they can be correlated with other
measured spectra, for example with κg cross-spectra
(covðCij; CκiÞ ∝ CiiCjκ ≠ 0).

2Binning is less accurate and does not speed up our imple-
mentation because binning the covariance is slow.
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effects contribute to the forecasted parameter precisions, we
will compare against a modified forecast, where we assume
that each observed field (CMB lensing map or galaxy
redshift bin) is on an independent patch of the sky. In that
case there is no sky overlap between any two observed
fields so that all fields are independent from each other and
neither (a) nor (b) are used. We implement this by dropping
all cross-spectra between two different fields from the
data vector and setting all cross-spectra to zero in cova-
riances, i.e.,

No sky overlap∶ dl ¼ ðC11
l ; C22

l ;…; CNN
l Þ;

covðCii
l ; C

jj
l Þ ¼ δij

2

2lþ 1
ðCii

lÞ2; ð18Þ

excluding, e.g., hgLSSTz¼0–0.5; κCMBi and hgLSSTz¼0–0.5; g
DESI
BGS i from

the data vector and covariance.3

To marginalize over linear galaxy bias, we will rescale
the fiducial galaxy bias bðzÞ of each tomographic redshift
bin by a redshift-independent amplitude, bðzÞ → BibðzÞ,
and marginalize over the bias amplitudes Bi of all tomo-
graphic redshift bins. This implicitly assumes that the
redshift-dependence within each tomographic redshift
bin is known.
As a basic validation of our implementation of the Fisher

matrix in Eq. (17) we checked that if all power spectra are
included it numerically agrees with the Fisher matrix at the
field level given by Eqs. (5) and (6) above. Below we will
only use the Fisher analysis at the power spectrum level
Eq. (17) because it allows to exclude individual power
spectra from the analysis and analyze their importance.

VII. FISHER ANALYSIS RESULTS

Based on the experiments, signals, and Fisher analysis
setup described above, we now present forecasts for σ8ðzÞ,
primordial non-Gaussianity fNL, and neutrino mass. The
forecasts use all power spectra ðCκκ; Cκgi ; CgigjÞ of CMB-S4
lensing convergence and tomographic LSS redshift bins
of SDSS, DESI and LSST clustering as described in the
previous section.

A. Amplitude of matter fluctuations σ8ðzÞ
1. Setup

As motivated in Sec. II A, the amplitude of matter
fluctuations as a function of redshift σ8ðzÞ carries important
information about the growth of structure and the expan-
sion of the Universe. To forecast the expected precision of
σ8ðzÞ, we rescale the fiducial amplitude of matter fluctua-
tions in broad redshift bins,

Pmmðk; zÞ →
X
i

ð1þ siÞ2ViðzÞPmmðk; zÞ ð19Þ

where si ≡ σ8;i=σ8;fid − 1 is the fractional change of σ8 in
the ith redshift bin. We work with seven broad redshift bins
for σ8, defined by z ¼ 0–0.5; 0.5 − 1; 1 − 2; 2 − 3; 3 − 4;
4 − 7; 7 − 100, and treat the amplitude si in each bin as a
parameter in the Fisher analysis. The redshift binning
function is ViðzÞ¼1 for zi;min≤ z<zi;max and ViðzÞ ¼ 0

otherwise. We marginalize over linear galaxy bias ampli-
tude parameters Bi as described at the end of Sec. VI [also
see, e.g., Eq. (22) below].

2. Baseline results

Figure 9 shows the forecasted precision of σ8ðzÞ bins as a
function of the highest wavenumber lmax included in the
analysis. Using modes 20 ≤ l ≤ 200 on half the sky, σ8ðzÞ
can be determined to ∼1% for all redshift bins. Including
smaller scales, 20 ≤ l ≤ 1000, improves the precision to

FIG. 9. Fractional statistical uncertainty of the amplitude of
matter fluctuations, σ8, defined in broad redshift bins, z ¼ 0–0.5;
0.5 − 1; 1 − 2; 2 − 3; 3 − 4; 4 − 7; 7 − 100, as a function of lmax.
The forecast uses all power spectra of CMB-S4 lensing and
SDSS, DESI and LSST (i < 27, 3 yr, z < 7) clustering, and
assumes lmin ¼ 20 and fsky ¼ 0.5. Solid lines assume all
observations are on the same patch of sky, while dashed lines
assume all fields are observed on independent nonoverlapping
patches (see end of Sec. VI). As in all other σ8 forecasts we
marginalize over one linear galaxy bias parameter in each redshift
bin, but ignore nonlinear galaxy bias that can degrade the
precision for high lmax (see Sec. VII A 5 for discussion).

3A potential concern of the forecasts with no sky overlap is that
the independent patches probe a larger total volume, increasing
the number of independent Fourier modes that are measured. For
example, for two samples, working on two independent patches
increases the total number of Fourier modes by a factor two,
which should reduce sample variance error bars by a factor

ffiffiffi
2

p
.

This can unintentionally improve parameter precisions, for
example when constraining σ8 assuming fixed bias parameters.
The analysis with no sky overlap might therefore be better than it
should be, so that we might underestimate the true improvement
factors caused by sample variance cancellation and breaking of
parameter degeneracies using κg spectra. A practical argument
for comparing analyses with and without sky overlap is that this
can inform observing strategies of experiments, quantifying how
much gain there is if the surveys are on the same rather than
independent patches.
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0.2% to 0.3% in each redshift bin. This subpercent-level
precision on σ8ðzÞ can lead to impressive constraints on
dark energy and neutrino mass, which should be quantified
in more detail in the future.

3. Driving factors

What drives the σ8 forecast? One key driver is to include
small scales, because the precision of σ8 in Fig. 9 roughly
scales as σðσ8Þ ∝ l−1

max. This is as expected: Since σ8 affects
power spectra at all l, its precision is determined by the
number of modes: σðσ8Þ ∝ N−1=2

modes ∝ f−1=2sky l−1
max. At high

lmax, the scaling becomes somewhat weaker because
lensing noise and shot noise become relevant. In practice,
the maximum lmax should be set by the smallest scale
where we can still model the observations.
To achieve subpercent-level σ8ðzÞ precision it is also

critical that CMB lensing and LSS clustering are observed
on the same patch of sky so that cross-spectra can be
measured: Without sky overlap (dashed in Fig. 9) the σ8
precision degrades by more than a factor of 20. This is
caused by the galaxy bias-σ8 degeneracy that can only be
broken with κg cross-spectra on the same patch. Restricting
the data to CMB lensing alone or galaxy clustering alone
yields even lower precision than the dashed curves in Fig. 9
(which combine κκ and gg), emphasizing even more the
importance of a joint analysis of CMB lensing and galaxy
clustering.
To check in more detail where most of the constraining

power comes from, Fig. 10 shows the impact of different
measured power spectra on the σ8 precision. The precision
degrades by a factor of 10 ore more if κg spectra are
dropped (dashed in Fig. 10) or if gg spectra are dropped
(dotted in Fig. 10). In contrast, dropping κκ has no impact
on σ8 constraints at z < 7 where LSS tracers are available
and κg and gg spectra have nonzero signal. This shows that
the combination of κg and gg spectra determines σ8 at all
redshifts where we observe tracers. These spectra also
determine the galaxy bias parameters that we marginal-
ize over.
The κκ auto-power spectrum is only useful to measure σ8

at z > 7, because it is the only spectrum sensitive to such
high redshift in our forecasts, which assume vanishing
galaxy number density at z > 7 for all surveys.4

4. Optimizing experiments

To see how the CMB lensing experiment can be
optimized to measure σ8ðzÞ, Fig. 11 shows σ8ðzÞ forecasts
as a function of the signal-to-noise-ratio (SNR) of the
reconstructed CMB lensing power spectrum at l ¼ 100,
with SNR ∼ 0.5 corresponding to Planck and SNR ¼ 50
corresponding to CMB-S4. While the σ8 precision

FIG. 10. Impact of different measured spectra on σ8 precision.
Solid assumes we observe all spectra, κκ, κg and gg; dashed
assumes we cannot measure κg; dotted assumes we cannot
measure gg. If we cannot measure κκ, the precision of σ8 bins
at z < 7 is the same as the solid lines, but σ8 at z > 7 cannot be
constrained at all.

FIG. 11. Fractional statistical uncertainty of σ8 as a function of
CMB lensing signal-to-noise. We rescale the lensing noise by
an l-independent factor and quote on the horizontal axis the
CMB lensing signal-to-noise ratio at l ¼ 100, defined as

SNR ¼ Cκκ
l¼100=N

ð0Þ
l¼100. CMB-S4 with iterative lensing

reconstruction corresponds to SNR ¼ 50 on the horizontal axis;
see [5] and Fig. 3. Planck corresponds roughly to SNR ∼ 0.5 [40].
The forecast uses modes 20 ≤ l ≤ 1000 of all power spectra that
can be formed between CMB lensing and SDSS, DESI and LSST
(i < 27, 3 yr, z < 7) galaxy clustering.

4One might wonder why σ8ðz=7-100) is determined with
similar precision as the σ8 bins at lower redshift, although we do
not incude any LSS tracers at z > 7. We have checked that high-
redshift amplitudes in narrower bins, for example σ8ðz ¼ 7–8Þ or
σ8ðz ¼ 8–9Þ, cannot be constrained nearly as well. The tight
constraint of σ8ðz ¼ 7–100Þ thus comes from an integral con-
straint on the κκ spectrum over many l, with z < 7 contributions
calibrated using σ8 at z < 7 and bias measured from the cross-
correlations with tracers at those redshifts z < 7. The precision of
that calibration then also limits the precision of σ8ðz ¼ 7–100Þ
measured from κκ.
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improves from Planck to CMB-S4 by a factor of 2 or more,
there is not much improvement beyond CMB-S4, at least
for our assumed version of LSST.
Figure 12 shows how the shot noise level of the LSS

surveys affects the σ8 precision. It degrades somewhat if
shot noise is higher than for LSST, but it does not improve
much if the shot noise falls below LSST levels, at least
assuming CMB-S4 like CMB lensing measurements and
lmax ¼ 1000 as in Fig. 12. If we can push models to higher
lmax, lower shot noise levels will likely be more useful.
These results suggest that CMB-S4 and LSST lie at a

sweet spot for constraining σ8ðzÞ, and one would have to
improve both experiments rather than any one of them to
improve σ8ðzÞ, at least assuming lmax ¼ 1000. This can be
understood from Table I above which showed that CMB-S4
lensing and LSST power spectra have roughly the same
total signal-to-noise for lmax ¼ 1000. If we only improve
CMB-S4 but not LSST, the noise in LSST will limit σ8,
and vice versa.
Figure 13 shows the σ8 precision as a function of sky

fraction fsky. While varying the sky fraction, we keep the
CMB observation time approximately constant by lowering
the lensing noise when decreasing fsky. Small fsky thus
corresponds to a small deep patch, whereas large fsky
corresponds to a wide shallow patch. Specifically, we keep

Nð0Þf−1=2sky ¼ Nð0Þ
S4 0.5

−1=2 constant while varying fsky. This

corresponds to constant CMB observation time if the
lensing noise decreases linearly with observation time
and if observing a larger sky fraction is quadratic in
observation time. As shown in Fig. 13, the σ8 precision
strongly improves with larger sky fraction, scaling like
σðσ8Þ ∝ f−1=2sky . As mentioned before, this is precisely the
scaling expected just from increasing the number of
modes, which means that there is no degradation from
the larger lensing noise that we assume for wider patches
(assuming CMB-S4 lensing noise at fsky ¼ 0.5). For
CMB-S4 this means that we should aim for a wide
shallow patch rather than a small deep patch when trying
to measure σ8.

5. Caveats and discussion

An important caveat of our forecast is that we ignore
nonlinear corrections to the bias relation between gal-
axies and dark matter. These corrections become impor-
tant on scales corresponding to the Lagrangian size of
halos, which is independent of redshift. At high redshift,
z≳ 2, nonlinear corrections to the bias relation can thus
be more relevant than nonlinear corrections to the DM
density [28]. The cross-correlation of high-redshift gal-
axies with CMB lensing, and the auto power spectra of
those galaxies, are thus more affected by nonlinear
biasing than one might naively expect given the nonlinear
scale of the DM density at those redshifts. Indeed, as
shown recently [28], marginalizing over nonlinear bias
parameters can degrade σ8 forecasts like ours by a factor

FIG. 12. Fractional statistical uncertainty of σ8 as a function of
the shot noise level of galaxy surveys. The fiducial SDSS, DESI
and LSST (i < 27, 3 yr, z < 7) number densities correspond to a
rescaling factor of 1 on the horizontal axis. The forecast uses
20 ≤ l ≤ 1000 and marginalizes over one bias amplitude param-
eter in each tomographic redshift bin. Lower shot noise relative to
the fiducial case gives only small improvements because the
uncertainty is dominated by cosmic variance at the smallest scale,
l ¼ 1000, rather than shot noise. Increasing the shot noise by
factors of 10 or more relative to the fiducial case makes shot noise
important, so that constraints degrade. Overall the dependence on
shot noise is rather mild.

FIG. 13. σ8 precision as a function of the sky fraction of all
experiments. We assume approximately fixed CMB observation
time by lowering the lensing noise for smaller fsky, keeping

Nð0Þf−1=2sky ¼ Nð0Þ
S4 0.5

−1=2 constant. Results are marginalized over
bias parameters, and assume CMB-S4 lensing and clustering
from SDSS, DESI and LSST. As in the previous plots, solid
curves assume all observations are on the same patch, while
dashed curves assume mutually independent patches.

MARCEL SCHMITTFULL and UROŠ SELJAK PHYS. REV. D 97, 123540 (2018)

123540-14



of up to 5.5 Our forecasts assuming linear bias may thus
be overly optimistic, especially for high lmax.
On the other hand, one might argue that treating all

nonlinear galaxy bias parameters as completely free
parameters may be overly pessimistic, because by the time
we get data from CMB-S4 and LSST we might be able to
describe the galaxy-matter relation with more restrictive
models than now. For example, it may be feasible to
parameterize nonlinear halo bias parameters as functions of
linear bias or halo mass (e.g., [70–72]). That would reduce
the number of free parameters in the model and thus lead to
tighter σ8 constraints than if all nonlinear bias parameters
are free and marginalized over. Realistically, such relation-
ships between bias parameters may never be perfect, but
even broad priors on nonlinear bias parameters may help;
for example 1%–10% priors on nonlinear bias parameters
may be sufficient [73].
Additionally to theoretical progress, it is possible to

obtain observational priors on bias parameters by measur-
ing the anisotropic power spectrum in redshift space or
higher-order N-point functions. For example, measure-
ments of the bispectrum [74] and 3-point correlation
function [75] of spectroscopic SDSS BOSS galaxies con-
strained the allowed value of the quadratic bias of these
galaxies (also see, e.g., [76] for DESI and [77] for
SPHEREx forecasts). These nonlinear bias constraints
could be used as a prior when modeling cross-correlations
with CMB lensing. Achieving our σ8 forecasts that are
based on just a single degree of freedom to model the
galaxy-matter connection might still be optimistic, but there
is hope that they could come within reach if nonlinear
galaxy bias can be better modeled or observationally
constrained in the future.
Another potential caveat is super-sample variance (e.g.,

[78]), which we ignored. This should be added to the error
bars of σ8, especially at low redshift where the observed
volume is relatively small. It would be interesting to
calculate the impact of super-sample variance on our type
of forecasts, but this is beyond the scope of this paper.

6. Measuring galaxy bias

Rather than marginalizing over galaxy bias and deter-
mining the matter amplitude σ8 as above, we can use

lensing-clustering cross-correlation measurements to deter-
mine galaxy bias parameters while marginalizing over σ8.
We show the expected precision of linear bias parameters
for marginalized σ8 in Fig. 14, finding that the bias can be
measured rather accurately. For example, the modes 20 ≤
l ≤ 200 can determine linear LSST bias parameters to about
1% precision, assuming fsky ¼ 0.5 and ignoring nonlinear
bias. If smaller scales are included, 20 ≤ l ≤ 1000, the bias
amplitudes can be measured with 0.2 to 0.4% precision
(except DESI QSO which is slightly worse).
If we instead assume σ8 to be perfectly known, the bias

constraints improve by up to a factor of 5 for high lmax,
showing that the degeneracy between σ8 and bias plays an
important role for our noise levels. This also explains why
the precision of σ8 and bias are similar when we measure
one and marginalize over the other. If we decrease noise
sufficiently, and cover the CMB lensing kernel with enough
galaxies out to high redshift, this situation will change at
some point and bias can benefit from sampling variance
cancellation, so in principle it could be determined much
more accurately than σ8 which is always limited by
sampling variance [59] (also see end of Sec. V above).
Our forecasts suggest that this may require experiments
beyond CMB-S4 and LSST, but we leave a more detailed
investigation for future work.

B. Local primordial non-Gaussianity

1. Setup

We continue with forecasts for local primordial non-
Gaussianity from its scale-dependent bias effect. To allow

FIG. 14. Fractional precision of linear bias parameters margin-
alized over the matter amplitude σ8 in broad redshift bins,
z ¼ 0–0.5; 0.5–1; 1–2; 2–3; 3–4; 4–7, and 7–100. We assume
lmin ¼ 20 and fsky ¼ 0.5. Without sky overlap (dashed), or
without gg spectra (dotted), the constraints degrade by an order
of magnitude. If σ8 was perfectly known (not shown), most
constraints for full sky overlap would improve by a factor of
∼4–5 for high lmax.

5Even assuming only linear bias, the constraints of [28] are
about 2-3 times weaker than the ones we find. Reasons for this
may be that Ref. [28] assumes lower number density for LSST
(they use the LSST i < 25 gold sample whereas we use the
i < 27 3-year sample), they use no SDSS or DESI observations,
and their CMB-S4 lensing noise does not include improve-
ments from the iterative EB estimator, making their lensing
noise a few times higher than ours. We also choose broader
tomographic redshift bins at z > 1 as described in Sec. III,
which decreases the uncertainty of σ8 in those bins. Additional
differences may be due to different models of the κg signal,
noting that [28] employs a more accurate model than the
linearly biased halofit used here.
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some freedom of the shape of the matter power spectrum,
we marginalize over a “fake” parameter ffakeNL that rescales
the matter power spectrum using the same scale- and
redshift-dependence as the scale-dependent bias:

Cκκ
l ¼

Z
z
W2

κðzÞ½1þ ffakeNL βðk; z ¼ 1Þ�2Pmmðk; zÞ; ð20Þ

Cκgi
l ¼

Z
z
WκðzÞWgiðzÞBibiðzÞ½1þ fNLβðk; zÞ�

× ½1þ ffakeNL βðk; z ¼ 1Þ�2Pmmðk; zÞ; ð21Þ

and

C
gigj
l ¼

Z
z
WgiðzÞWgjðzÞBibiðzÞBjbjðzÞPmmðk; zÞ

× ½1þ fNLβðk; zÞ�2½1þ ffakeNL βðk; z ¼ 1Þ�2
þ δKijN

gigi
l : ð22Þ

Here, βðk; zÞ ∝ k−2 is the fractional change of the bias for
fNL ¼ 1 as defined in Eq. (B2). The equations assume the
Limber approximation with k ¼ l=χðzÞ, but we include
beyond-Limber corrections on large scales l ≤ 50 as
described in Appendix A, where we also define the redshift
kernels W and the shot noise Ngg. The redshift integrals
include a conversion factor given by Eq. (A9). A more
complete analysis would marginalize over all changes of
the matter power spectrum due to changes in cosmological
parameters within some priors, but we expect that mar-
ginalizing over ffakeNL captures the worst possible case
because its shape is perfectly degenerate with that of the
true fNL.
We also marginalize over linear galaxy bias by margin-

alizing over the bias amplitude parameters Bi of each
tomographic redshift bin, assuming that the redshift evo-
lution of the bias within each redshift bin is known, and
assuming no priors for the amplitudes Bi.

2. Baseline results

In Fig. 15 we show the expected fNL precision as a
function of the largest scale or minimum wave number lmin
included in the analysis. A joint analysis of CMB-S4
lensing with 3-year i < 27 LSST clustering measurements
at z ¼ 0–7 is able to reach σðfNLÞ ¼ 0.4 for lmin ¼ 2,
σðfNLÞ ¼ 0.7 for lmin ¼ 10, and σðfNLÞ ¼ 1 for
lmin ¼ 20. This is twelve to five times stronger than the
best current constraint, σðfNLÞ ¼ 5.0 [79]. Combining
CMB lensing with LSS clustering on large scales thus
offers an intriguing method to test if fNL is larger or smaller
than one, which is very exciting because a detection of
fNL > Oð1Þ would rule out single-field inflation in a
model-independent way (see Appendix B 1).

3. Driving factors

The baseline fNL forecast is driven by several factors that
we discuss next.
First, as already indicated above and shown in Fig. 15,

the fNL precision improves rather strongly with the largest
scale (lowest l) of CMB lensing and galaxy clustering
included in the analysis. This is of course expected because
the k−2 bias is largest on large scales. At very low l,
however, the improvement is somewhat less strong than
naively expected; for example the improvement from
lmin ¼ 2 relative to lmin ¼ 10 is less than a factor of 2.
This is a consequence of computing line-of-sight integrals
exactly rather than using the Limber approximation (we
will get back to this in Sec. VII B 6 below).
A second important aspect is that CMB-S4 and LSST

should observe the same patch of sky: For lmin ¼ 2, perfect
sky overlap improves the fNL precision by about a factor of
2 relative to observing on independent patches (solid vs
dashed in Fig. 15). For lmin ¼ 20 the improvement due to
sky overlap is somewhat smaller but still a factor of 1.5.
The improvements are due to sample variance cancellation
and the breaking of degeneracies between fNL and ffakeNL
using κg spectra that are only available on overlapping
patches. The improvement due to sky overlap is larger for
better versions of LSST because they have a higher cross-
correlation coefficient with CMB lensing.
Third, it is important to include galaxies at very high

redshift: Including the high-redshift LSST dropout galaxies

FIG. 15. Forecasted precision of the amplitude of local
primordial non-Gaussianity fNL as a function of minimum
wave number lmin of CMB lensing κ and galaxy overdensities,
for different LSS surveys (colors), assuming lmax ¼ 500 and
fsky ¼ 0.5. Solid curves assume all experiments observe the
same patch of sky, whereas dashed curves assume mutually
independent patches with no sky overlap. We marginalize over
galaxy bias and over ffakeNL defined in Eqs. (20)–(22) to
marginalize over changes in the matter power spectrum that
mimic the effect of fNL. Integrations along the line of sight are
computed exactly for l ≤ 50 and with the Limber approxima-
tion for l > 50.
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at z ¼ 4–7 improves the fNL precision by almost a factor of
2; see the dark orange curves in Fig. 15. The reason for
this is that the size of the scale-dependent fNL bias in
Eq. (B2) increases with increasing redshift:Δb=b∝ðb−1Þ=
½bDðzÞ�∝ðb−1Þ∼z, if the Gaussian bias evolves with
redshift as bðzÞ ∝ D−1ðzÞ where DðzÞ is the growth
function. Despite the improvement from including high
redshifts, the more conservative LSST i < 25 sample at
z ≤ 4 is at most a factor of 2 to 2.5 worse than the
more optimistic i < 27, z ≤ 7 sample, and can still reach
σðfNLÞ ∼ 1 if very large scales can be measured.
In contrast, dropping LSST entirely and using only
CMB-S4, SDSS and DESI degrades the fNL precision
by a factor of 10, showing that it is crucial to include a deep
galaxy survey like LSST to achieve σðfNLÞ ∼ 1.
Figure 16 shows that it is also critical to include CMB

lensing measurements. The fNL precision with CMB
lensing is 18 times stronger than without any CMB lensing
measurement if we assume the most optimistic LSST
scenario, and about 8 times stronger if we assume the
least optimistic LSST scenario. Without CMB lensing
(dashed) we get σðfNLÞ ¼ 6 at best. Thus, only the addition
of CMB lensing makes it possible to achieve σðfNLÞ < 1,
by improving σðfNLÞ by an order of magnitude.
Figure 17 shows in more detail which power spectra

are most important to observe, assuming all experiments
observe the same patch of sky. Observing no κg spectra and
using only κκ and gg degrades the fNL precision by at most
20% relative to using all spectra (dashed vs solid). In many
cases the degradation is smaller, i.e., it is not important to
measure κg. Notice however that the nonzero κg correlation
is still exploited in the analysis because the covariance
between measured κκ and gg spectra involves ðCκgÞ2 (if Cκg

is nulled in the covariance, the precision degrades more;
see dashed curves in Fig. 15).

In contrast, gg power spectra are very important for fNL:
Without them, using only κκ and κg spectra, the fNL
precision degrades by up to a factor 4 relative to using all
spectra (dotted vs solid in Fig. 17). Part of this is caused by
the fact that gg ∝ b2 is more sensitive to fNL than κg ∝ b,
but the full improvement from gg is somewhat larger than
the expected factor of 2. Without measuring gg, using only
κκ and κg, we can reach σðfNLÞ ¼ 1 only if lmin ¼ 2,
which is rather challenging, especially from the ground. It
may thus be more promising to control gg systematics like
stellar contamination in the galactic plane, e.g., using mode
projection [34,35,80–83], and then use the large-scale gg
power spectra.
Rather than hoping to project out large-scale gg system-

atics, a more aggressive approach to avoid such systematics
would be to drop all measured gg spectra on large scales
and use those measurements only on smaller scales where
we believe systematics to be sufficiently small. This is
illustrated in Fig. 18 where we drop all gg auto- and cross-
spectra at l < 18 but include them at higher l. In that case
the fNL precision degrades roughly by a factor of 2 to 3
relative to using gg spectra at all l. Still, it is possible to
reach σðfNLÞ ¼ 0.7 for fsky ¼ 0.5. This shows that very
good fNL precision is possible even if large-scale gg power
spectra are excluded due to potential systematics.

4. Optimizing experiments

In Fig. 19 we show how the fNL precision depends on the
shot noise of the LSS surveys. If the shot noise is larger
than in our default survey specifications, the fNL precision
degrades in all cases. Similarly, lower shot noise improves
the precision for SDSS, DESI, and the conservative i < 25,

FIG. 16. fNL precision if only gg spectra are used without any
CMB lensing (dashed). The precision is not competitive in that
case, showing that CMB lensing is crucial. Note that the yellow
dashed line is barely visible because it overlaps with brown
dashed.

FIG. 17. Impact of different observed power spectra on the fNL
precision. Solid assumes we observe all spectra, κκ, κg and gg;
dashed assumes we only observe κκ and gg but not κg; dotted
assumes we only observe κκ and κg but not gg. We only truncate
the data vector in the Fisher analysis and do not modify any of the
covariances, i.e., all curves assume perfect sky overlap between
all observed fields.
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z ≤ 4 LSST sample. But lower shot noise does not improve
fNL for the optimistic i < 27, z ≤ 7 LSST scenario. A
possible reason for that saturation could be that tracers at
redshift z > 7 might be needed to increase the correlation
coefficient with CMB lensing further, or CMB lensing
noise might become the limiting factor if shot noise is
very low.
How can the CMB lensing experiment be optimized for

fNL? We find that reducing the CMB lensing noise by a
factor of 5 relative to CMB-S4 does not visibly change
the fNL precision if we assume the fiducial LSS survey
specifications (not shown). The fNL precision is thus not
limited by CMB lensing noise and does not improve by
improving CMB-S4 beyond our assumed 1 arcmin beam
and ΔT ¼ 1μK arcmin noise, at least not before LSS
surveys improve over LSST. To optimize CMB-S4 for
fNL thus means to push to as low lensing-l as possible.
Note that this low lensing-l comes from high CMB

multipoles (for example lensing-l ¼ 10 can be obtained
from the correlation of lCMB ¼ 3000 and lCMB ¼ 3010).
One foreseeable challenge of such measurements is that the
lensing measurement would have to be consistent over a
wide sky area, which poses challenges for example for
accurate mean field characterization across the entire patch.
As in the previous section, we can also ask how the fNL

precision depends on the sky fraction of the CMB lensing
experiment if we assume approximately constant CMB
observation time. Since very low l modes cannot be
measured for too small fsky, we also assume lmin ¼
maxð2; f−1=2sky Þ. Figure 20 shows the resulting fNL precision
as a function of fsky. This shows that even for constant
CMB observing time, the fNL precision strongly improves
when increasing the sky fraction, preferring a wide shallow
over a small deep CMB-S4 patch. This makes sense
because larger sky fraction reduces sample variance and
enables measurements on larger scales where the fNL signal
is maximal. The lower lensing noise that would be
achievable with a small deep CMB patch does not improve
the fNL precision, which is consistent with the finding
above that lensing noise does not limit fNL in the regime
studied here.
In conclusion, the above results suggest that LSS surveys

can be optimized for fNL by pushing to large scales and
observing a high number density of tracers out to high
redshift (like LSST), with maximal sky overlap with a wide
shallow patch used to measure CMB lensing.

5. Impact of marginalizations

For the above fNL forecasts we marginalized over
changes in the matter power spectrum parametrized by

FIG. 18. Same as Fig. 20, but the solid curves exclude galaxy-
galaxy spectra C

IiIj
l at l < 18.

FIG. 19. fNL precision when multiplying the shot noise
component of each power spectrum by a global rescaling factor
that is varied on the horizontal axis, with 1 corresponding to the
fiducial LSS survey specifications.

FIG. 20. σðfNLÞ precision as a function of sky fraction fsky
for approximately constant CMB observation time (keeping
Nð0Þf−1=2sky ¼ const). We use lmin ¼ maxð2; f−1=2sky Þ). Solid lines
use κκ, κg and gg spectra assuming perfect sky overlap between
all fields. Dashed lines assume no sky overlap between any two
fields. Dotted lines exclude gg spectra from the data vector but
assume perfect sky overlap.
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the ffakeNL parameter, and over linear galaxy bias. We briefly
discuss the impact of these marginalizations.
First, to determine the relevance of the shape of the

matter power spectrum, Fig. 21 shows the same forecast as
Fig. 15 but without marginalizing over ffakeNL . In that case,
the improvement from having perfect sky overlap relative
to having independent patches is about a factor 1.5 for
lmin ¼ 2 and a factor 1.1 for lmin ¼ 20 (dashed vs solid in
Fig. 21). Comparing with the corresponding improvement
factors of 2 and 1.5 due to sky overlap in Fig. 15 that
marginalized over ffakeNL , this suggests that sample variance
cancellation and breaking of degeneracies between fNL and
ffakeNL using κg both contribute significantly for lmin ¼ 2, but
breaking of parameter degeneracies is the dominant effect
for lmin ¼ 20. The main point is still that a joint analysis
of CMB-S4 and LSS clustering on the same patch can
improve the fNL precision by a factor of 2 to 1.5.
Second, to determine the impact of marginalizing over

the fiducial galaxy bias, Fig. 22 shows the same forecasts as
Fig. 15 but without marginalizing over galaxy bias. This
improves the fNL precision somewhat for lmin ≳ 10. For
example, we obtain σðfNLÞ ¼ 0.9 for lmin ¼ 20 for the
most optimistic LSST version. If we can measure galaxy
bias better, e.g., using redshift space distortions and
statistics beyond power spectra, we could achieve this
somewhat higher precision. Note that for very low
lmin ¼ 2, knowing the galaxy bias does not improve over
the σðfNLÞ ¼ 0.4 precision we obtained before.

6. Exact integration vs Limber approximation

Figure 23 shows the fNL precision when wrongly
assuming the Limber approximation on all scales. In that

case the precision looks a few times better than for exact
line-of-sight integrals (see [37] for similar results). The
reason for this is that power spectra, especially galaxy-
galaxy autospectra, are larger when computed exactly
rather than with Limber, while derivatives with respect
to fNL are smaller. The fractional change of galaxy
autospectra due to nonzero fNL is thus much smaller in
the exact calculation than if the Limber approximation was
assumed. This reduction in fNL sensitivity relative to
Limber-approximated power spectra is partially compen-
sated because the exact integration adds a nonzero signal in
cross-spectra between nonoverlapping redshift bins, but
these spectra are very small and their signal is much smaller
than the sensitivity lost in the galaxy autopower spectra.
This shows that it is important to use exact line-of-sight
integrals at l ≤ 50 when forecasting fNL to avoid overly
optimistic forecasts.

FIG. 21. fNL precision marginalized over galaxy bias but not
over ffakeNL . The precision is the same as for marginalized ffakeNL if
patches overlap perfectly on the sky (solid). For independent,
nonoverlapping patches (dashed) the fNL precision is somewhat
better than for the marginalized ffakeNL case which suffers from
the degeneracy between fNL and ffakeNL that cannot be broken if
patches do not overlap.

FIG. 22. fNL precision marginalized over ffakeNL but not over
galaxy bias. This has no effect for lmin ¼ 2, but it improves the
precision somewhat for lmin ≳ 10.

FIG. 23. fNL precision as a function of lmin as in Fig. 15, but
using the Limber approximation at all wave numbers l. For low
lmin, the Limber approximation would wrongly suggest σðfNLÞ
to be a few times smaller than the exact result of Fig. 15.
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C. Neutrino mass from scale-dependent bias

1. Setup

As motivated above and discussed in more detail in
Appendix B 2, we can probe the sum of neutrino masses by
trying to observe the small scale-dependent difference in
the transfer functions relevant for CMB lensing and galaxy
clustering. To forecast how well this works with CMB-S4
lensing and LSST clustering, we marginalize over linear
galaxy bias like in the last sections. Additionally we
marginalize over a parameter mfake

ν that rescales the total
matter power spectrum in a way that mimics the scale-
dependence of the true neutrino mass bias as described in
Eq. (B6), analogeously to the ffakeNL parameter used in the
last section. This effectively marginalizes over uncertainties
in the shape of the total power spectrum. We do not include
any information from the primary CMB.

2. Results

Figure 24 shows the expected neutrino mass precision
from the scale-dependent bias effect. In the most optimistic
scenario we obtain σðmνÞ ≃ 90 meV. Unfortunately, this is
not competitive with the conventional method to measure
neutrino mass from the suppression of small-scale cluster-
ing power at low redshift relative to the power of the
primary CMB at high redshift: Using that method, a joint
analysis of DESI galaxy power spectrum, DESI BAO, and
Planck can achieve σðmνÞ ≃ 20 meV (see Table 2.11 in

[57]), with comparable precision also expected from
CMB-S4 lensing, DESI BAO and an external τ prior [5].
We can ask what impact marginalizing over mfake

ν and
galaxy bias has. We find that not marginalizing over
mfake

ν has virtually no impact on the precision of mν.
Uncertainties in the shape of the underlying total matter
power spectrum do therefore not limit the neutrino forecast.
In contrast, Fig. 25 shows that if we do not marginalize

over galaxy bias, the neutrino mass precision improves by a
factor of 10, reaching σðmνÞ ¼ 10 meV in the best case.
This shows that galaxy bias is the key limitation for the
neutrino forecasts. Improved bias measurements or model-
ing could thus lead to interesting neutrino constraints from
the scale-depedent bias effect. 2-point cross-correlations
between CMB lensing and galaxy clustering alone are not
able to provide such accurate bias measurements even if we
only assume linear bias (otherwise this would have shown
up in forecasts marginalizing over galaxy bias in Fig. 24).
But measurements of higher-order N-point functions or
redshift space distortions should be able to determine
galaxy bias more accurately. This could push the neutrino
mass precision closer to the case without marginalizing
over galaxy bias, although this requires more detailed
studies that include statistics beyond the power spectrum
and nonlinear galaxy bias.
In conclusion, measuring the sum of neutrino masses

using scale-dependent bias between lensing and clustering
alone is likely not competitive with other methods. This is
consistent with similar findings for correlating galaxy weak
lensing shear and galaxy clustering [11]. Nevertheless, if
neutrino mass is sufficiently large to be detectable using
this scale-dependent bias effect, it may serve as a useful
cross-check that would be independent from other cosmo-
logical neutrino mass measurements and independent of τ.
Future improvements may be possible if bias parameters
can be measured better, e.g., using redshift space distor-
tions and higher-order N-point functions, or if we can

FIG. 24. Expected precision for the sum of neutrino masses
from scale-dependent bias between CMB-S4 lensing and
galaxy clustering, as a function of sky fraction, assuming
approximately constant CMB observation time (keeping
Nð0Þf−1=2sky fixed), and using multipoles 20 ≤ l ≤ 1000. We
marginalize over one scale-independent linear bias parameter
per LSS redshift bin, and over the mfake

ν parameter that rescales
Ptot with the same signature as the scale-dependent difference
between the total power spectrum (based on Tcbν) and the
matter-only power spectrum (based on Tcb).

FIG. 25. Neutrino mass precision marginalized over mfake
ν but

not over galaxy bias. In that case the precision is much better.
Notice the different scale of the vertical axis.
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improve models for the measured power spectra involving
fewer bias parameters while reaching smaller scales.

VIII. REDSHIFT ERRORS

A. Types of errors

The above forecasts ignored redshift errors throughout.
This is an important caveat because dense imaging surveys
rely on photometric redshifts that are subject to two types of
redshift errors.
First, there are noncatastrophic errors that smear out the

true redshifts. They can be described by adding to the true
redshifts Gaussian random noise, with a typical rms of
dz=ð1þ zÞ ∼ 0.05 for LSST. This error is smaller than
our broad tomographic redshift bins which satisfy
Δz=ð1þ zÞ > 0.2 in all cases. We therefore continue to
ignore these errors.
Second, there are catastrophic redshift errors, where

galaxies are attributed to completely wrong redshifts. This
can severely bias angular power spectra. For example, if
low-redshift galaxies (say z ¼ 0.1) are wrongly attributed
to high-redshift tomographic bins (say z ¼ 3–4), this adds
spurious power to high-redshift tomographic bins. This can
then be confused with an fNL signal or high σ8 at high
redshift. Projection effects make this systematic error scale-
dependent. It may be possible to identify and remove some
of the catastrophic outliers by comparing with spectro-
scopic surveys like DESI, which would reduce the cata-
strophic error rate, but presumably not perfectly.

B. A simple model for catastrophic redshift errors

Due to their complicated nature a fully realistic treatment
of catastrophic redshift errors would be beyond the scope of
this paper. To still get a sense of their impact, we introduce
an idealized but simple analytical model: We reshuffle
galaxy redshifts such that some fraction of galaxies is
assigned to the correct tomographic redshift bin, while the
remaining galaxies are outliers that are assigned to other
redshift bins. Each tomographic redshift bin will then
consist of galaxies with correctly assigned redshifts and
outlier galaxies whose true redshift is outside the red-
shift bin.
To compute the overdensity δgðθÞ of the ith observed

tomographic redshift bin, we therefore integrate over the
modified number density

dn
dz

����
i;obs

ðzÞ ¼
( ð1 − fioutÞ dndz ðzÞ if z ∈ ith bin;

ni
ntot−ni

fiout
dn
dz ðzÞ else;

ð23Þ

where the first line comes from galaxies with correct
redshifts and the second line is due to outliers. We
introduced the outlier fraction fiout as the probability that
a galaxy assigned to the ith tomographic redshift bin (e.g.,
z ¼ 3–4) actually resides at a redshift outside that bin (e.g.,

z ¼ 0.1). dndz ðzÞ is the fiducial angular number density of the
survey, i.e., our best estimate of the true redshift distribu-
tion that would be obtained if the survey had no redshift
errors; ni ≡

R
z∈bini dz

dn
dz ðzÞ is the number of objects per

steradian in the ith tomographic bin if there were no
outliers; and ntot ≡ R

dz dn
dz ðzÞ is the total number of

observed objects per steradian if we integrate over all
redshifts where dn

dz ðzÞ is nonzero (0 ≤ z ≤ 7 in our case).
The normalization in Eq. (23) ensures that the total number
of galaxies per tomographic bin is conserved when chang-
ing the outlier fraction fiout.
The angular cross-power spectra between CMB lensing

and observed galaxy redshift bins are then

Cκg
l ¼ ð1 − foutÞCκc

l þ foutCκo
l ; ð24Þ

where Cκc is due to galaxies assigned to the correct
tomographic redshift bin and Cκo is due to redshift outliers.
Similarly, the auto-power spectra of clustering in observed
redshift bins are

Cgg
l ¼ ð1 − foutÞ2Ccc

l þ 2ð1 − foutÞfoutCco
l þ f2outCoo

l ;

ð25Þ

which have contributions from the auto-correlation Ccc of
correctly assigned redshifts, from the cross-correlation Cco

between correct and outlier redshifts, which is only nonzero
if beyond-Limber corrections are included, and from the
autocorrelation Coo of outliers.6

To study the impact of redshift outliers on forecasts, we
will marginalize over the outlier rate. The fractional
response of Cκg to a fractional change in the outlier rate is

fout
Cκg
l

∂Cκg
l

∂fout ¼ −η
Cκc
l − Cκo

l

Cκc
l þ ηCκo

l
; ð26Þ

where

η≡ fout
1 − fout

ð27Þ

6A similar expression holds for the cross-correlation between
two different redshift bins if beyond-Limber corrections are
included. Also notice that the Cl on the right hand side of
(24) and (25) are independent of the fiducial value of fout and are
determined by the fiducial global number density dn=dz of the
survey. To compute the shot noise of auto-power spectra with
Eq. (A16) we integrate over Eq. (23). Since outliers are just
redistributed between redshift bins and each galaxy still contrib-
utes only to a single redshift bin, cross-spectra between different
redshift bins still have no shot noise. If the fiducial fout is
nonzero, each fiducial angular κg and gg power spectrum depends
on galaxy bias amplitudes Bi at all redshifts, which we will
include in forecasts, but the dependence on bias parameters
outside the nominal redshift bin is suppressed for small outlier
fractions.
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is small for small outlier fractions. The response (26) is
shown in Fig. 26. A 10% (100%) change in the outlier rate
changes Cκg by at most 6% (60%). The fractional response
is largest at l≲ 100 and for high-redshift bins, because
low-redshift galaxies with large clustering power are
wrongly assigned to high-redshift tomographic bins where
the true clustering power is small.
The fractional response of galaxy auto-power spectra to a

fractional change in the outlier rate is

fout
Cgg
l

∂Cgg
l

∂fout ¼ −2η
Ccc
l − ð1 − ηÞCco

l − ηCoo
l

Ccc þ 2ηCco þ η2Coo ≈ −2η; ð28Þ

where the approximation in the last step is valid for small
fiducial outlier fractions, fout ≲ 0.1, because in that case
η≲ 0.1 and Cco ≪ Ccc. Figure 27 shows the response (28).
Indeed, it is close to −2η for all l and redshift bins.
Thus, κg spectra respond to the outlier rate on large

scales l≲ 100 but not on smaller scales, whereas the
response of gg spectra is approximately independent of
scale and redshift. The outlier rate can therefore be
determined by measuring both κg and gg spectra, as we
discuss next.

C. Impact on forecasts

We perform a Fisher analysis that includes one outlier
rate parameter fiout for each of our six tomographic redshift
bins, assuming a fiducial outlier rate of fiout ¼ 0.1 without

any priors. We marginalize over one linear bias parameter
per redshift bin, fNL, and ffakeNL , and use all power spectra of
CMB-S4 lensing and LSST clustering up to lmax ¼ 500
(including beyond-Limber corrections at l ≤ 50). We find
that the uncertainty of fNL degrades by only 3% if we
marginalize over the outlier fraction compared to assuming
perfectly known redshifts. The reason for this is that the
outlier fraction can be measured from its distinct imprint on
observable κg and gg power spectra described above.
Indeed, the outlier rate in each tomographic redshift bin
can be determined with uncertainty σðfioutÞ ∼ 0.004, i.e.,
with subpercent level precision, similarly to the precision of
bias parameters in this forecast. For a fiducial outlier rate of
fiout ¼ 0.3, the degradation of σðfNLÞ from marginalizing
over fout is 6%, which is still negligible; for a fiducial
outlier rate of fiout ¼ 0.8, which is unrealistically large, the
degradation becomes a factor of a few.
As long as the fraction of catastrophic errors is less than

30%, catastrophic redshift errors modeled by the above
idealized model have therefore almost no impact on
measuring fNL.
An important caveat is that we assumed a simple model

of catastrophic redshift errors and it is not clear how well it
describes actual catastrophic redshift errors. It would be
interesting to check if the above results are also valid for
more realistic models of catastrophic redshift errors, for
example derived from simulated galaxy spectra. We also
emphasize that our simple model assumes the true global
number density dn=dz as a function of redshift to be
perfectly known. While one could calibrate this global
dn=dz by correlating with spectroscopic data or using
clustering redshifts [53–55], such a calibration would never
be perfect in practice, but exploring this is beyond the scope

FIG. 26. Fractional response (26) of CMB-lensing galaxy-
clustering cross-spectra Cκg to a fractional change in the redshift
outlier rate fout. At low l and for the lowest redshift bin, the
contribution from correct redshifts Cκc dominates over the
contribution Cκo from outliers so that the response (26) becomes
−η ¼ −0.11. For tomographic bins at higher redshift, the outlier
term Cκo dominates over the correct-redshift term Cκc, and low-z
galaxies that are incorrectly assigned to high-z bins contaminate
the high-z bins. This leads to a large low-l response of high-
redshift bins to the outlier fraction. At l≳ 100 the response (26)
vanishes because Cκc ≈ Cκo.

FIG. 27. Fractional response (28) of galaxy auto-power spectra
to a fractional change in the redshift outlier rate. The response is
approximately −2η ¼ −0.22, because in Eq. (28) the contribution
Ccc from the auto-correlation of correctly assigned redshifts
dominates over the outlier contributions ð1 − ηÞCco and ηCoo for
the assumed fiducial outlier rate fout ¼ 0.1.
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of this paper. Another potential worry is that outlier
galaxies might correspond to a different galaxy popoluation
than galaxies whose redshift is determined correctly, so that
they might require independent bias parameters. Still,
the small degradation of fNL constraining power for the
idealized catastrophic redshift errors above gives us hope
that more realistic catastrophic redshift errors can also be
handled as long as their imprint on angular power spectra
can be modeled.

IX. CONCLUSIONS

Cross-correlating future CMB lensing measurements
from surveys like CMB-S4 with future clustering mea-
surements from deep photometric redshift surveys like
LSST promises great potential. The significant redshift
overlap, low lensing noise, and high galaxy number density
enable 150σ to 260σ measurements of cross-spectra
between CMB-S4 lensing and individual tomographic
LSST redshift bins of width Δz ¼ 0.5 at z < 1 and Δz ¼
1 at z > 1, assuming the experiments observe the same half
of the sky. Combining these tomographic LSST redshift
bins with weights that match the CMB lensing kernel
results in a combined tracer map that is more than 94%
correlated with CMB-S4 lensing on large scales. On
smaller scales the correlation drops but remains greater
than 60% up to l ¼ 1000.
This CMB-lensing–clustering cross-correlation signal

can be used to break parameter degeneracies and partially
cancel cosmic variance when combining with auto-power
spectrum measurements. We study this using Fisher fore-
casts that combine all auto- and cross-power spectra of
CMB-S4 CMB lensing and SDSS, DESI and LSST
clustering measurements, focusing on three applications.
First, we find that the matter amplitude σ8ðzÞ in redshift

bins z ¼ 0–0.5; 0.5 − 1; 1–2; 2–3; 3–4; 4–7, and 7–100 can
be determined to 1% for lmax ¼ 100 and to 0.2% for
lmax ¼ 1000. This assumes a sky fraction of fsky ¼ 0.5 and
marginalizes over linear galaxy bias, assuming all other
cosmological parameters to be fixed (more generally, the
constraints should be interpreted as constraints on param-
eter combinations like Ωmσ8 that are probed by the
measured spectra). Such high precision measurements of
σ8ðzÞ out to high redshift probe the growth of structure and
the expansion of the Universe in a redshift range where the
standard ΛCDM model has not been tested well observa-
tionally, offering significant discovery potential. It would
be interesting to project these σ8ðzÞ forecasts forward to
concrete models of accelerating expansion that differ from
the standard cosmological constant, noting that one may
want to define a new figure of merit to capture potential
discovery potential at high redshift better than the conven-
tionally used figure of merit and w0 − wa parametrization.
The σ8ðzÞ measurements also carry information on the sum

of neutrino masses when comparing with the amplitude of
the primary CMB.
The error bars of σ8ðzÞ are limited by the number of

modes and therefore scale approximately as f−1=2sky l−1
max,

improving with larger sky area and with the smallest scale
included in the analysis, which is limited by our ability to
model nonlinear galaxy bias. Without sky overlap between
CMB-S4 and LSST, the σ8 precision degrades by more than
a factor of 20 because of the bias-σ8 degeneracy. Without
any CMB lensing measurements, our forecast would not
give any constraint on σ8 because of its degeneracy with b1.
A joint analysis of CMB-lensing and LSS clustering on a
large overlapping patch of sky is therefore critical for high-
precision σ8ðzÞ measurements.
Similarly, we find that the linear galaxy bias of tomo-

graphic LSST redshift bins can be measured with sub-
percent-level precision even if we marginalize over σ8ðzÞ.
This could be used to obtain a 3-Dmap of the dark matter in
the Universe by dividing the galaxy density by its bias in
each redshift bin [30].
A second application is to measure the amplitude of local

primordial non-Gaussianity fNL using the scale-dependent
bias it induces between lensing and clustering on large
scales. A joint analysis of CMB-S4 CMB lensing and LSST
clustering can reach σðfNLÞ ¼ 0.4 if they observe the same
half of the sky and if CMB lensing and clustering power
spectra can be measured down to lmin ¼ 2. Measuring such
large scales is observationally challenging but not impos-
sible. More conservatively, a minimum multipole of lmin ¼
20 gives σðfNLÞ ¼ 1, which is still five times more precise
than the best current Planck measurement [79]. This
improves slightly to σðfNLÞ ¼ 0.7 if we exclude only
large-scale galaxy-galaxy power spectra at l ≤ 18 (where
systematics should be most problematic) but include CMB-
lensing–clustering cross-spectra and CMB lensing auto-
spectra down to l ¼ 2, assuming again fsky ¼ 0.5. If more
detailed forecasts confirm the sensitivity to fNL ≲ 1, this
would open the exciting possibility to rule out single-field
inflation in a model-independent way with CMB-S4 and
LSST. More precise and robust constraints may be possible
when combining with the proposed SPHEREx experiment,
which can reach σðfNLÞ < 1 using clustering measure-
ments alone [77].
Without CMB lensing the fNL precision degrades by an

order of magnitude, showing that it is critical to include
CMB lensing. The fNL forecast also benefits from observ-
ing as large scales as possible, which requires CMB-S4 and
LSST to observe a wide patch of sky. If CMB-S4 and LSST
observe on the same patch rather than independent patches,
this improves the fNL precision by a factor of 1.5 to 2 due to
partially cancelling cosmic variance and breaking degen-
eracies with the shape of the matter power spectrum.
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Including LSST galaxies at high redshift z ¼ 4–7 improves

the precision by another factor of 2.
The third application is to measure the sum of neutrino

masses from the small scale-dependent bias they induce
between lensing and clustering. This is a rather clean
signature that only involves linear theory and is not limited
by the optical depth τ to the CMB that is a limiting factor
for conventional cosmological neutrino mass measureme-
ments from the suppression of power relative to the primary
CMB [12]. In the most optimistic scenario we find σðmνÞ ≃
90 meV using only the scale-dependent bias effect, where
we marginalized over linear galaxy bias. Unfortunately,
this is not competitive with other future experiments. The
precision could potentially be improved by improving the
precision of galaxy bias parameters; for perfectly known
bias one may reach σðmνÞ ∼ 10 meV. It would be interest-
ing to study this further using redshift space distortions and
statistics beyond power spectra. Another method to mea-
sure neutrino mass without τ information would be to use
the precise measurements of σ8ðzÞ and look for the small
change in the cosmic growth function induced by nonzero
neutrino mass (see Yu et al. [31]).
For our LSST forecasts we always included earlier

observations from SDSS and DESI, but this is not actually
required because LSST has the highest number density.
Indeed, if we observe CMB-S4 lensing and LSST cluster-
ing on the same patch, dropping SDSS and DESI degrades
low-z σ8 and bias constraints by less than 50%,7 and has a
negligible effect on σ8 and bias at z ≥ 1 as well as fNL and
mν. Even with their lower number densities, SDSS and
DESI spectroscopy should be very useful to calibrate LSST
redshifts and reduce catastrophic redshift errors.
Catastrophic redshift errors represent a possible source

of confusion for fNL measurements because clustering of
low-redshift galaxies may be confused with an fNL signal
at high redshift. Under the simplifying assumption that
catastrophic redshift errors occur uniformly across the
fiducial global galaxy number density, we found that this
potential concern does not affect our fNL forecasts (mar-
ginalizing over one catastrophic error rate in each tomo-
graphic redshift bin has a negligible effect on σðfNLÞ as
long as the fiducial catastrophic redshift error rate is not
greater than ∼30%; see Sec. VIII). We argue that this is the
case because there are enough observable power spectra to
disentangle the effect of catastrophic errors from the fNL
signature so that we can measure both at the same time. This
conclusion holds only for the simple toy model that we
assumed about the nature of catastrophic redshift errors,
warranting a more detailed study of the impact of more
realistic, nonuniformly occuring catastrophic redshift errors.

There are a number of ways how one could improve the
robustness and accuracy of our forecasts. For example, one
should properly marginalize over cosmological parameters
within some priors rather than using the simplified param-
eterizations of the matter power spectrum that we margin-
alized over. A more complete analysis would also include
uncertainties in the true number density dn=dz of observed
galaxies, and account for photometric redshift errors that
we ignored on the basis of using broad redshift bins and
cross-correlating only with CMB lensing which has a broad
redshift kernel. Improving the modeling of nonlinear
galaxy bias at high redshift should become a major priority
if we want to measure σ8ðzÞ at the subpercent level using
cross-correlations (see [28] and main text). For fNL, it is
critical to understand better how well we can hope to deal
with large-scale systematics and what minimum multipole
lmin can be reached with future experiments. Other cor-
rections that may affect the forecasts are non-Gaussian
covariance contributions, redshift space distortions, mag-
nification bias, general relativistic corrections, higher-order
CMB lensing biases, and differences between Monte-Carlo
forecasts and Fisher forecasts. Given the promise of our
idealized forecasts it is important to scrutinize their robust-
ness against such corrections in the future.
There are also a number of ways to extend the forecasts

by including additional measurements. For example, it
would be interesting to add shear measurements from
galaxy weak lensing, which probe lower redshift than
CMB lensing and might thus have better redshift overlap
with clustering measurements (e.g., see [27] for such
forecasts to calibrate multiplicative shear bias). There are
also a number of other LSS experiments that could lead to
significant improvements, for example Hyper Suprime-
Cam [84], HETDEX [85], Euclid [86–88], WFIRST
[89–91], and SPHEREx [77,92]. Intensity mapping surveys
may also be helpful because they can add high redshift
information (e.g., see [93] for fNL). On the CMB side, it
would be interesting to study how close the Simons
Observatory [4] in combination with pre-LSST LSS sur-
veys can get to the CMB-S4/LSST forecasts presented
here. An additional route to add information would be to
include 3-point statistics or other summary statistics
beyond the power spectrum. A lot of such statistics are
possible, e.g., κκκ, κκg, κgg, and ggg bispectra, all of which
should improve the forecasts. For example, we know that
for surveys with high number density these statistics
constrain nonlinear galaxy bias rather well, which should
improve the precision of σ8ðzÞ. In the context of fNL,
galaxy bispectra alone are already rather promising [77,94],
which should improve when adding CMB lensing. These
points deserve detailed future investigation given the
promise of the forecasts presented here.
In summary, we find that cross-correlations of future

CMB lensing surveys like CMB-S4 and photometric red-
shift surveys like LSST promise to be an exciting

7This degradation is mostly caused by SDSS photometric
redshifts whose number density we assumed to be optimistically
high.
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opportunity to measure the growth of cosmic structure and
primordial non-Gaussianity with unprecedented precision,
improving by an order of magnitude over the precision that
can be obtained with any one of these surveys alone.
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APPENDIX A: 3-D FOURIER TO 2-D
ANGULAR PROJECTION

In this Appendix we summarize how we compute the
2-D angular power spectra used in the main text.

1. Fields

Our observables are the CMB lensing convergence
XðθÞ ¼ κðθÞ and galaxy number density contrast XðθÞ ¼
gðθÞ on the 2-D sky. They are line-of-sight projections of
the 3-D density contrast δX,

XðθÞ ¼
Z

∞

0

dzWXðzÞbXðzÞδXðχðzÞθ; zÞ; ðA1Þ

where θ denotes angular position on the sky, χðzÞ is the
comoving distance to redshift z,WXðzÞ is a redshift kernel,
and bXðzÞ is the fiducial linear tracer bias.8

The CMB lensing convergence κCMB is an unbiased
tracer of the total matter density contrast δcbν, including
cold dark matter “c,” baryons “b,” and neutrinos “ν,”
because gravitational lensing is sensitive to all matter.
We thus have

bκCMB
¼ 1;

δκCMB
ðxÞ ¼ δcbνðxÞ;

Wκcmb
ðzÞ ¼ 3

2
Ωm;0H2

0

ð1þ zÞ
HðzÞ χðzÞ χðzsÞ − χðzÞ

χðzsÞ
; ðA2Þ

where Ωm;0 is the fractional matter density today, and a
spatially flat universe is assumed. The lensing kernel is
evaluated for source photons emitted at the CMB last
scattering surface at zs ≃ 1090. This kernel peaks roughly
half way to the source plane, which is 6–7 Gpc away from
us, corresponding to z ≃ 2, but it is extended over a wide
range of redshifts.
Biased LSS tracers like galaxies are expected to form

where dark matter and baryons gravitationally collapse,
without being sensitive to the neutrino overdensity. The
fractional number density contrast gðθÞ on the sky thus
follows from

bgðzÞ∶ tracer-dependent;

δgðxÞ ¼ δcbðxÞ;

WgðzÞ ¼
1

ntot

dN
dzdθ2

; ðA3Þ

where δcb is the CDM-baryon density contrast. The redshift
kernel is determined by the redshift distribution
dN=ðdzdθ2Þ of the observed objects, and by the total
number density of objects per steradian (e.g., [56])

ntot ¼
Z

∞

0

dz
dN

dzdθ2
: ðA4Þ

We assume that the linear tracer bias bg depends on redshift
but not on scale. This ignores higher-order scale-dependent
bias corrections as discussed in the main text.

2. Angular power spectra

To compute angular power spectra of the above fields, we
first expand in spherical harmonics, XðθÞ ¼ XlmYlmðθÞ,
with

Xlm ¼ 4πil
Z

∞

0

dzWXðzÞbXðzÞ

×
Z

d3k
ð2πÞ3 jlðkχðzÞÞY

�
lmðk̂ÞδXðk; zÞ: ðA5Þ

This follows by expanding the plane wave eik·x in spherical
harmonics. The angular power spectrum hXlmðX0

l0m0 Þ�i ¼
δll0δmm0CXX0

l is then

8Equivalently, the integral over redshift can be written as an
integral over comoving distance using dχ ¼ −dz=HðzÞ, which
follows from χðaÞ ¼ R

1
a dã=½ã2HðãÞ� and a ¼ ð1þ zÞ−1.
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CXX0
l ¼ 2

π

Z
∞

0

dzWXðzÞbXðzÞ
Z

∞

0

dz0WX0 ðz0ÞbX0 ðz0Þ

×
Z

∞

0

dk
k
jlðkχðzÞÞjlðkχðz0ÞÞk3PδXδX0 ðk; z; z0Þ:

ðA6Þ

Direct numerical evaluation of this integral is challenging
because the spherical Bessel functions are highly oscilla-
tory. We therefore use different evaluation techniques on
small and large angular scales.

a. Small scales: Limber approximation

On small angular scales, l≳ 50, we use the Limber
approximation [97,98],Z

∞

0

dkk2jlðkχÞjlðkχ0ÞfðkÞ≃
π

2χ2
δDðχ−χ0Þfðl=χÞ; ðA7Þ

which gives the simple result

CXX0
l ¼

Z
z
PδXδX0 ðk ¼ l=χðzÞ; zÞ

×WXðzÞbXðzÞWX0 ðzÞbX0 ðzÞ: ðA8Þ

The integration

Z
z
≡
Z

∞

0

dz
HðzÞ
χ2ðzÞ ðA9Þ

includes a factor that converts volumes from Mpc3 to
steradian times dz. We include nonlinear halofit corrections
[60–63] for the power spectrum PδXδX0 ðk; zÞ, which we
compute as a 2-D spline in k and z using CAMB Python
[95,96,99].
We implement the Limber-approximated line-

of-sight integral of Eq. (A8) using matrix multiplica-
tion, Cli ¼ Mijvj, where Mij ≡ Pðli=χðzjÞ; zjÞ and
vj ∼W2ðzjÞb2ðzjÞΔzjHðzjÞ=χ2ðzjÞ. This enables fast on-
the-fly computation of line-of-sight integrals in high-level
languages such as Python.

b. Large scales: Exact integration

On large angular scales, l≲ 50, we compute exact line-
of-sight integrals (A6) because the Limber approxima-
tion fails. We assume linear growth, i.e., Pðk; z; z0Þ ¼
D̄ðzÞD̄ðz0ÞPðk; z ¼ 0Þ where D̄ðzÞ≡DðzÞ=Dðz ¼ 0Þ is
normalized to unity at z ¼ 0. Then,

CXX0
l ¼ 2

π

Z
∞

0

dχW̄XðχÞ
Z

∞

0

dχ0W̄X0 ðχ0Þ

×
Z

∞

0

dk
k
jlðkχÞjlðkχ0Þk3PδXδX0 ðk; z ¼ 0Þ; ðA10Þ

where we changed integration variables from z to χ and
absorbed all time-dependent factors in the kernel

W̄XðχÞ≡HðzÞD̄ðzÞWXðzÞbXðzÞ; ðA11Þ

where χ ¼ χðzÞ.
The conventional way to evaluate this is to first integrate

over χ and χ0, and then over k, i.e.,

CXX0
l ¼ 2

π

Z
∞

0

dk
k
ΔX;lðkÞΔX0;lðkÞk3PδXδX0 ðk; z ¼ 0Þ;

ðA12Þ

where

ΔX;lðkÞ≡
Z

∞

0

dχW̄XðχÞjlðkχÞ: ðA13Þ

This transfer function scales asΔX;lðkÞ ∼ kl at low k, peaks
at k ≃ l=χpeak where χpeak is the peak of the kernel W̄XðχÞ,
and fallsoff athighkbecause jlðkχÞ¼ðkχÞ−1 sinðkχ−lπ=2Þ
for kχ → ∞.
For fast evaluation of multiple line-of-sight integrals we

tabulate jlðkχÞ at the discrete sampling points of the k and
χ integrations and use the large-argument limit of spherical
Bessel functions for kχ > 2000. The computational cost
could be reduced further by using a generalized form of
the FFTLog algorithm [100] to evaluate the projection
integrals [101].
To include scale-dependent bias from local primordial

non-Gaussianity, we replace ΔX;lðkÞ by

ΔX;lðkÞ þ fNL
3Ωm;0δcH2

0

k2TðkÞc2
Z

∞

0

dχW̄fNL
X ðχÞjlðkχÞ; ðA14Þ

where from Eq. (B2)

W̄fNL
X ðχÞ ¼ HðzÞWXðzÞ

Dðz ¼ 0Þ ½bXðzÞ − 1�: ðA15Þ

c. Noise

Observable power spectra include noise, Ĉl ¼ Cl þ Nl.
The noise power N denotes either CMB lensing
reconstruction noise NκCMBκCMB shown in Fig. 3, or shot
noise, which is given by (e.g., [56])

Ngg
l ¼

Z
z

W2
gðzÞ

ncomðzÞ
; ðA16Þ

where the comoving number density is

ncomðzÞ ¼
dN

dzdθ2
HðzÞ
χ2ðzÞ : ðA17Þ
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APPENDIX B: ORIGIN OF
SCALE-DEPENDENT BIAS

In this Appendix we provide some background that
explains the origin of the scale-dependent bias from
primordial non-Gaussianity fNL and neutrino mass. We
also summarize the motivation to measure this.

1. Primordial non-Gaussianity

a. Motivation to measure fNL
LSS density perturbations are sourced by primordial

density fluctuations generated in the early Universe.
Measuring statistical properties of the LSS can therefore
give us clues about the physics that generated the primor-
dial fluctuations. In particular, within the paradigm of
inflation, a primordial probability distribution function
(pdf) that is not a Gaussian can only be produced
by certain inflation models, involving for example
multiple fields. Here we focus on the local type of
primordial non-Gaussianity, where the primordial potential
is the sum of a random Gaussian field and its square,
ϕðxÞ þ fNLðϕ2ðxÞ − hϕ2iÞ, which has a non-Gaussian pdf.
If we observe this with a large nonlinear amplitude,
fNL ≳ 1, it will rule out single-field models of the infla-
tionary expansion of the early Universe in a robust way
[102,103]. This is one of few known observational means to
rule out a whole class of currently viable early-universe
models.
In practice the measurement is challenging because

the threshold signal fNL ≃ 1 separating between single-
field and multi-field models has a very small effect on
observables. The best upper limit, fNL ¼ 0.8� 5.0,
comes from Planck CMB temperature and polarization
measurements [79].
Observations of late-time LSS can improve the CMB

limit on fNL because they probe different Fourier modes,
and because they can exploit the scale-dependent bias effect
[7]. In brief, that effect is generated as follows. Inflation
models with multiple fields can generate non-Gaussian
correlations between long and short wavelength modes,
hδlδsδsi ≠ 0. As a consequence, the small-scale power of
fluctuations in a region depends on the realization of long
wavelength modes in that region. Dark matter halos and
galaxies thus form preferentially in regions where long-
wavelength modes are high. This leads to a scale-dependent
bias between the matter and galaxy density that scales as
k−2 on large scales [7]; see [104] for a recent review.
Observing such scale-dependent galaxy bias from local
primordial non-Gaussianity would rule out single-field
inflation because correlations between long and short
modes are suppressed in all single-field inflation models
[102,103]. Several forecasts have already demonstrated the
high sensitivity of future LSS probes alone to fNL, e.g.,
[77,105–109]. Many of these forecasts could potentially be

improved by adding information from cross-correlations
with CMB lensing.

b. Scale-dependent bias

Quantitatively, the non-Gaussian coupling between long
and short wavelength modes imposed by local primordial
non-Gaussianity rescales the bias bg between galaxies
(forming in collapsed dark matter halos) and dark matter as

bgðzÞ → bgðzÞ½1þ fNLβðk; zÞ�; ðB1Þ

where the fractional bias change relative to Gaussian
fluctuations is [7,36,110] (also see [111] and references
therein)

βðk; zÞ ¼ Δbg
bg

¼ 3
ðbg − 1Þ

bg

Ωm;0δc
k2TðkÞDðzÞ

�
H0

c

�
2

: ðB2Þ

Here, bgðzÞ is the fiducial linear bias of the galaxy sample
assuming Gaussian fluctuations, δc ¼ 1.686 is the linear
overdensity of spherical collapse, TðkÞ is the transfer
function normalized to unity on large scales, DðzÞ is the
linear growth function normalized to ð1þ zÞ−1 in matter
domination, Ωm;0 is the matter density today, and H0 is the
Hubble constant today. Equation (B2) shows that the scale-
dependent bias increases with higher redshift and with
increasing fiducial galaxy bias.
Since the scale-dependent bias correction only applies to

the galaxy overdensity but not to the lensing convergence,
the galaxy-galaxy power spectrum scales like ð1þ fNLβÞ2≈
1þ 2fNLβ, whereas the lensing-galaxy cross-spectrum
scales like 1þ fNLβ, and the lensing-lensing power spec-
trum is independent of fNL. Comparing these power spectra
therefore allows for a partial cancellation of cosmic variance
as illustrated in Fig. 1.

2. Neutrino mass scale-dependent
bias from transfer functions

To describe the scale-dependent bias between lensing
and clustering expected from neutrino mass, we define the
fractional difference between the cb × cbν and cbν × cbν
power spectra as

Δðk; zÞ≡ Pcb;cbνðk; zÞ
Pcbν;cbνðk; zÞ

− 1: ðB3Þ

Figure 2 shows −Δðk; zÞ as a function of wave number k
for a few redshifts z. On large scales, k≲ 10−3 hMpc−1, the
two transfer functions equal each other. Over the range of
scales 10−3 hMpc−1 ≲ k≲ 10−1 hMpc−1, where neutrino
free-streaming becomes relevant, the transfer functions
smoothly separate from each other, reaching a maximal
relative difference of Δmax ¼ fν at k≳ 0.1 hMpc−1. The

PARAMETER CONSTRAINTS FROM CROSS-CORRELATION … PHYS. REV. D 97, 123540 (2018)

123540-27



transition is slightly redshift-dependent, with slightly larger
scale-dependent bias at higher redshift for a given scale k.
In our forecasts, we focus on the neutrino mass infor-

mation coming from the scale-dependent bias at
10−3 hMpc−1 ≲ k≲ 10−1 hMpc−1, marginalizing over
potential scale-dependent changes of the total matter power
spectrum that could mimic a neutrino signature. To imple-
ment this we write (with k ¼ l=χðzÞ)

Cκκ
l ¼

Z
z
W2

κðzÞ½1þmfake
ν Δ̄ðk;z¼ 1Þ�2Pcbν;cbνðk;zÞþNκκ

l ;

ðB4Þ

Cκgi
l ¼

Z
z
WκðzÞWgiðzÞbgiðzÞ½1þmνΔ̄ðk; zÞ�

× ½1þmfake
ν Δ̄ðk; z ¼ 1Þ�2Pcbν;cbνðk; zÞ; ðB5Þ

C
gigj
l ¼

Z
z
WgiðzÞWgjðzÞbgiðzÞbgjðzÞ½1þmνΔ̄ðk; zÞ�2

× ½1þmfake
ν Δ̄ðk; z ¼ 1Þ�2Pcbν;cbνðk; zÞ

þ δKijN
gigi
l ; ðB6Þ

where we marginalize over the “fake” parameter mfake
ν that

rescales all power spectra in a way that resembles the
shape of the scale-dependent transfer function difference
Δðk; z ¼ 1Þ. The “true” neutrino mass, whose precision we
will forecast, enters only κg and gg spectra. We include it by
linearly rescaling Δ in mν, e.g.,

Pcb;cbνðk; zÞ ¼ ½1þmνΔ̄ðk; zÞ�Pcbν;cbνðk; zÞ; ðB7Þ

where we defined

Δ̄ðk; zÞ≡ Δðk; zÞ
mfid

ν
ðB8Þ

and choose mfid
ν ¼ 60 meV. This approximation is suffi-

ciently accurate for our purposes.
The above relations for angular power spectra show

that if we express clustering and lensing power spectra in
terms of the total matter power spectrum Pcbν;cbν, the scale-
dependence from the different transfer functions can be
treated as a scale-dependent bias correction

bgðzÞ → bgðzÞ½1þmνΔ̄ðk; zÞ�: ðB9Þ

We do not include the redshift dependence of Δðk; zÞ for
the fake neutrino mass parameter because that parameter is
intended to parameterize only the unknown scale depend-
ence of the matter power spectrum. In practice, our results
change very little if we include time dependence for the
fake neutrino mass parameter. As mentioned in the main
text, we include redshift-independent bias amplitude

parameters B that rescale the fiducial redshift-dependent
bias bðzÞ in each tomographic redshift bin.

APPENDIX C: ERROR OF LENSING-
CLUSTERING CROSS-SPECTRUM

In this Appendix we discuss the sample variance error
of the amplitude of the κg cross-spectrum, ignoring other
power spectra and sample variance cancellation. For a
single mode,

varðCκgÞ ¼ ðCκgÞ2 þ CggCκκ ¼ ðCκgÞ2ð1þ r−2l Þ: ðC1Þ

The fractional error per mode is thus ð1þ r−2l Þ1=2, which isffiffiffi
2

p
if lensing and clustering are perfectly correlated,

rl ¼ 1. If they are not perfectly correlated, the fractional
error increases and becomes

ffiffiffi
2

p ð1þ ϵ
2
Þ if ϵ≡ 1 − rl and

jϵj ≪ 1.
Summing over all modes gives the fractional error of the

cross-spectrum amplitude9

σðCκgÞ
Cκg ¼

�
1þ r−2cc
Nmodes

�
1=2

≃
�
1þ r−2cc
fskyl2

max

�
1=2

: ðC3Þ

The crucial point about Eq. (C3) is that the cross-
correlation coefficient rcc that we need to insert is the
one for the total combined sample. So if we are only
looking at a single tracer at a single redshift, rcc may be
low, but when we combine all tracers the total rcc is higher;
see Fig. 5. This can also be seen in Fig. 28 which evaluates
Eq. (C3) using rcc from Fig. 5.
The improvement factor of a multitracer analysis for

measuring the κg amplitude relative to a single-tracer
analysis is

σsingle
σmulti

≃
�
1þ r−2cc;single
1þ r−2cc;multi

�1=2

; ðC4Þ

if we only account for the sampling variance of κg as
in Eq. (C3). Eq. (C4) involves only the cross-correlation
coefficient between CMB lensing and LSS tracers. At l ¼
1000 in Fig. 5 we have rcc ∼ 0.22 for a single tracer at
z ¼ 3–4, and rcc ∼ 0.62 for combined tracers, so the error
improvement is ½ð1þ 0.22−2Þ=ð1þ 0.62−2Þ�1=2 ¼ 2.4. At
lower wavenumbers the improvement factor is similar, for

9Here we used Nmodes ¼ fsky
P

lð2lþ 1Þ ≃ fskyl2
max, and we

introduced the mode-averaged cross-correlation coefficient rcc,

ð1þ r−2cc Þ−1=2 ¼
P

lð2lþ 1Þð1þ r−2l Þ−1=2P
l0 ð2l0 þ 1Þ : ðC2Þ

In practice, rcc as a function of lmax is similar to rl shown in
Fig. 5 but slightly higher for large lmax. If rl ¼ const it would
reduce to rcc ¼ rl exactly.
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example ½ð1þ 0.3−2Þ=ð1þ 0.88−2Þ�1=2 ¼ 2.3 at l ¼ 100,
and ½ð1þ 0.22−2Þ=ð1þ 0.94−2Þ�1=2 ¼ 3.2 at l ¼ 30. We
thus expect to improve error bars by a factor of 2 to 3 in a
multi-tracer analysis that combines all tomographic LSS
redshift bins relative to working with just a single tracer.
By construction the improvement factor only captures

the reduction in sample variance uncertainty of κg due to
combining tracers and increasing rcc, while ignoring
improvements from other spectra and sample variance
cancellation. For example, this is the improvement one
would expect when measuring σ8 from κg without mar-
ginalizing over galaxy bias or any other parameters. When
we instead marginalize over galaxy bias, σ8 cannot be
determined from κg alone because σ8 and galaxy bias
are degenerate, and this can only partially be broken by
including gg spectra.

We can consider a simple scenario where we restrict
ourselves to using a single tomographic redshift bin of
LSST at z ¼ 3–4 and constrain only the amplitude σ8ðz ¼
3–4Þ in the same redshift bin (i.e., we use only κκ, κgLSSTz¼3–4,
and gLSSTz¼3–4g

LSST
z¼3−4 power spectra, while still marginalizing

over linear bias as usual). The resulting single-tracer σ8
precision is shown in dashed in Fig. 29, where we also
show the precision if all tracers are included (solid). On
large and intermediate scales the multi-tracer analysis
yields 2 to 3 times better precision than the single-tracer
analysis because of its increased cross-correlation coeffi-
cient with CMB lensing on large scales. This is roughly
consistent with the improvement factor estimated above.

APPENDIX D: COMBINING OBSERVATIONS

Using all auto- and cross-spectra of CMB lensing and
tomographic redshift bins leads to a large data vector; in the
most extreme case that we study it contains 120 power
spectra of 15 fields. While we make the idealized assump-
tion of Gaussian covariances, real data often requires
simulations to obtain accurate covariances. Estimating
the covariance of 120 power spectra, all of which should
have Oð10Þ or more bins in l, would require a rather large
number of simulations, which may not be practical.
To address this potential issue, we explore two schemes

to compress the data vector while trying to keep as much
sensitivity to the signal of interest as possible. The first
compression scheme combines observed power spectra,
while the second one combines observations at the map
level before computing power spectra. Related and more
general compression schemes have been studied in more
detail elsewhere, for example [112–114].

1. Combining power spectra

In the first compression scheme we combine the mea-
sured power spectra ĈXY

l of all observed fields X, Y to a
single combined power spectrum D̂l that retains full
sensitivity to the parameter of interest.
Let us assume that the measured power spectra

d̂l ¼ ðĈ11
l ; Ĉ12

l ;…; Ĉ1N
l ; Ĉ22

l ; Ĉ23
l ;…; ĈNN

l Þ ðD1Þ

follow a Gaussian likelihood10

−2 lnL ¼
X
l

ðd̂l − dlÞcovðd̂l; d̂lÞ−1ðd̂l − dlÞ ðD2Þ

FIG. 28. Approximate estimate of the fractional error of the
total κg spectrum based only on the correlation coefficients
shown in Fig. 5, computed using Eq. (C3).

FIG. 29. Fractional statistical uncertainty of σ8ðz ¼ 3–4Þ at a
single redshift bin obtained from a multitracer analysis (solid) or a
single-tracer analysis using only the LSST z ¼ 3–4 redshift bin
(dashed).

10This is adequate for κκ assuming Planck-like noise levels
[64], but may be less accurate for lower lensing noise and for κg
and gg power spectra. An additional term involving the deter-
minant of the covariance is irrelevant under the assumption that
the covariance is independent of cosmological and nuisance
parameters θa.
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with Gaussian covariance (14). The model dl ¼ hd̂li
depends on parameters θa which can be cosmological or
nuisance parameters. We approximate this dependence by a
first-order Taylor expansion around the fiducial parameter
values θfida ,

dl ¼ dfid
l þ

X
a

∂dl

∂θa ðθa − θfida Þ; ðD3Þ

i.e., we assume that second derivatives of the model with
respect to parameters are small. If our goal is to measure a
specific parameter θm, its maximum-likelihood estimator
follows by solving ∂½−2 lnL�=∂θm ¼ 0 for θm, which gives

θ̂m ¼ θfidm þ
X
l

wlðd̂l − dfid
l Þ: ðD4Þ

The weighting vector w is (no sum over l)

wl ≡
X
b

ðF−1Þmb
∂dl

∂θb covðd̂l; d̂lÞ−1; ðD5Þ

or writing out all components of the data vector,

ðwlÞi ¼
X
b

ðF−1Þmb

X
j

∂ðdlÞj
∂θb ½covðd̂l; d̂lÞ−1�ji: ðD6Þ

Here F−1 is the inverse of the Fisher matrix given by
Eq. (17). The weight in Eqs. (D5) and (D6) has a simple
interpretation: It first applies an inverse-covariance (“C−1”)
operation on the data vector to down-weight noisy modes,
and then projects on the expected signal from the parameter
θm that we try to measure. This is similar to a Wiener filter.
Guided by Eq. (D4) we can define a weighted combi-

nation D̂l of all measured power spectra ĈXY
l contained

in d̂ as

D̂l ≡ wld̂l: ðD7Þ

This is a compressed power spectrum, containing a single
number for every multipole l. The estimator θ̂m then
becomes

θ̂m ¼ θfidm þ
X
l

ðD̂l −Dfid
l Þ: ðD8Þ

Therefore, the maximum-likelihood estimate for θm can
be obtained by fitting the measured compressed power
spectrum D̂l to the fiducial model. It is straightforward to
check that the Fisher information of Eq. (D8) agrees with
the Fisher information (17) if measuring all power spectra,
i.e., covðθ̂m; θ̂mÞ ¼ ðF−1Þmm. The compression in Eq. (D7)
is therefore lossless if we aim to measure a single
parameter θm.

Generalizing the above, we can define one compressed
power spectrum for each parameter of interest. This then
gives Nparam compressed power spectra if we are interested
in Nparam parameters. Fitting these power spectra with a
model retains full sensitivity to all parameters.
If the number of parameters Nparams is smaller than the

number of measured power spectra, the compression (D7)
reduces the size of the data vector toNparams spectra at every
l. This is precisely what we were after: If 120 power
spectra are measured but we are only interested in say 6
cosmological parameters, we can compress the measured
power spectra to 6 combined power spectra D̂l that retain
full sensitivity to the parameters. This is useful when
estimating the covariance from a limited number of
simulations. It also has the nice property of down-weight-
ing noisy modes and keeping only modes relevant for the
signal of interest, similarly to a matched-filter estimator.
A subtlety of the above approach is that the inverse

covariance of the full data vector d̂with all measured power
spectra enters the weights w, so we still need to know the
full covariance. To address this, one could use an idealized
theoretical covariance for the weights w that would not
require simulations. If that covariance used for the weights
deviates from the true covariance, the estimator becomes
suboptimal and the compression is not perfectly lossless
any more. Importantly, however, one can then use a small
number of simulations to characterize the true noise of the
suboptimally compressed power spectra (i.e., compute
Monte-Carlo errors of D̂l). This would account for
corrections to the true covariance that are not captured
by the idealized covariance model. Final parameter esti-
mates from the compressed power spectra can thus have
larger error bars if the idealized covariance used for the
weights is not accurate, but these larger error bars can still
be estimated correctly using simulations.
A potential disadvantage of the compression is that the

optimal weights (D5) to compress the data vector depend
on the parameters that are estimated and marginalized over,
because the weights depend on the inverse Fisher matrix.
For example, the combined data vector that is optimal for
fNL is not optimal for measuring neutrino mass, and vice
versa. If enough simulations are available for estimating
the covariance, it may thus be simpler to work with the
uncompressed data vector involving all observed spectra.
Checking results with compressed power spectra may still
provide useful cross-checks, for example if there is uncer-
tainty about the accuracy of the covariance between all
measured power spectra.

2. Combining LSS tracer maps

Rather than combining observations at the power spec-
trum level one may try to combine them already at the map
level and then compute only few auto- and cross-spectra
of combined maps. For example, one could combine all
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biased LSS tracers to a combined map I ¼ P
iciδgi such

that it is maximally correlated with the CMB lensing
convergence at the map level.11 However, such a weighting
at the map level imposes relationships between the weights
of individual LSS auto- and their cross-spectra with
lensing.12 We expect the resulting weights to be suboptimal
in general because the optimal weights of Eq. (D5) involve
the response of power spectra with respect to cosmological
and nuisance parameters included in the analysis and the
inverse of a large covariance matrix. In general, combining
biased LSS tracers at the map level is therefore expected to
be suboptimal, resulting in a data compression that is not
lossless in general.
However, there are special cases in which lossless

compression at the map level is possible. One example

is the situation where the only goal is to maximize the
correlation coefficient with lensing to delens the CMB
[58]. Another example is the situation where we drop
all observed LSS auto-spectra Cgigj from the observed
data vector d̂, which may be relevant if all LSS auto-
spectra are dominated by systematics on the scales of
interest. In that case the reduced data vector d̂ contains
only Cκκ and Cκgi . The optimal weights ðwlÞi for com-
pressing these power spectra are then given by evaluating
Eq. (D5) for the reduced data vector. Since the sum of cross
spectra is the same as the cross-spectrum of the sum,P

iðwlÞiCκδgi ¼ Cκ
P

i
ðwlÞiδgi , we can combine biased LSS

tracers at the map level as

IðlÞ≡X
i

ðwlÞiδgiðlÞ ðD9Þ

where the sum is over all biased LSS tracers. The measured
Cκκ and CκI then contain the same Fisher information as the
measured Cκκ and Cκgi . Equation (D9) therefore represents
a lossless data compression if and only if LSS auto-spectra
Cgigj are excluded from the data analysis.
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043510 (2007).
[14] C. M. Hirata, S. Ho, N. Padmanabhan, U. Seljak, and N. A.

Bahcall, Phys. Rev. D 78, 043520 (2008).

[15] L. E. Bleem, A. van Engelen, G. P. Holder, K. A. Aird, R.
Armstrong, M. L. N. Ashby, M. R. Becker, B. A. Benson,
T. Biesiadzinski, M. Brodwin et al., Astrophys. J. Lett.
753, L9 (2012).

[16] B. D. Sherwin, S. Das, A. Hajian, G. Addison, J. R. Bond,
D. Crichton, M. J. Devlin, J. Dunkley, M. B. Gralla, M.
Halpern et al., Phys. Rev. D 86, 083006 (2012).

[17] P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M.
Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont,
C. Baccigalupi, A. J. Banday, R. B. Barreiro et al. (Planck
Collaboration), Astron. Astrophys. 571, A17 (2014).

[18] T. Giannantonio and W. J. Percival, Mon. Not. R. Astron.
Soc. 441, L16 (2014).

[19] F. Bianchini, P. Bielewicz, A. Lapi, J. Gonzalez-Nuevo, C.
Baccigalupi, G. de Zotti, L. Danese, N. Bourne, A. Cooray,
L. Dunne et al., Astrophys. J. 802, 64 (2015).

[20] Y. Omori and G. Holder, arXiv:1502.03405.
[21] T. Giannantonio, P. Fosalba, R. Cawthon, Y. Omori, M.

Crocce, F. Elsner, B. Leistedt, S. Dodelson, A. Benoit-
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J. Rhodes, and D. N. Spergel, Phys. Rev. D 95, 123512
(2017).

[28] C. Modi, M. White, and Z. Vlah, J. Cosmol. Astropart.
Phys. 08 (2017) 009.

[29] A. Banerjee, B. Jain, N. Dalal, and J. Shelton, J. Cosmol.
Astropart. Phys. 01 (2018) 022.

[30] U.-L. Pen, Mon. Not. R. Astron. Soc. 350, 1445 (2004).
[31] B. Yu et al.
[32] B. Jain and U. Seljak, Astrophys. J. 484, 560 (1997).
[33] J. Rhodes, S. Allen, B. A. Benson, T. Chang, R. de Putter,
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