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Gravitational lensing deflects the paths of cosmic infrared background (CIB) photons, leaving a
measurable imprint on CIB maps. The resulting statistical anisotropy can be used to reconstruct the matter
distribution out to the redshifts of CIB sources. To this end, we generalize the cosmic microwave
background (CMB) lensing quadratic estimator to any weakly non-Gaussian source field, by deriving the
optimal lensing weights. We point out the additional noise and bias caused by the non-Gaussianity and the
“self-lensing” of the source field. We propose methods to reduce, subtract, or model these non-
Gaussianities. We show that CIB lensing should be detectable with Planck data and detectable at high
significance for future CMB experiments like CCAT-Prime. The CIB thus constitutes a new source image
for lensing studies, providing constraints on the amplitude of structure at intermediate redshifts between
galaxies and the CMB. CIB lensing measurements will also give valuable information on the star-formation
history in the Universe, constraining CIB halo models beyond the CIB power spectrum. By laying out a
detailed treatment of lens reconstruction from a weakly non-Gaussian source field, this work constitutes a
stepping stone toward lens reconstruction from continuum or line intensity mapping data, such as the
Lyman-alpha emission, absorption, and the 21 cm radiation.
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I. INTRODUCTION

Weak gravitational lensing probes the projected mass
distribution between the source and the observer and is
therefore sensitive to the underlying cosmology. Using
multiple source and lens redshift bins further allows us to
track the amplitude of structure across cosmic time.
Lensing introduces subtle correlations that would be
forbidden by the assumption of statistical isotropy and
homogeneity, and these correlations can be used to recon-
struct mass maps, which include the combined effect of
dark matter, baryons, neutrinos, and all other forms of
energy density. At the same time, the amplitude of these
fluctuations and their angular size on the sky are deter-
mined by the expansion history and the nature of the
gravitational force, making weak lensing also a sensitive
probe of dark energy, modified gravity, and the masses of
neutrinos. It is therefore one of the most promising
cosmological tools for decades to come.
So far, two phenomenologically distinct regimes of weak

lensing have been explored: on the one hand, optical
surveys use images of individually resolved galaxies to

measure small correlations in their ellipticities induced by
lensing (see Refs. [1–3] for a review). In this case, the
source plane is highly non-Gaussian,1 and measurements of
shear of individual galaxies is appropriate. Galaxy lensing
has been detected in a large number of surveys, including
most recently by KiDS [4], DES [5], and HSC [6].
In the opposite regime, when the source is a Gaussian

random field such as the cosmic microwave background
(CMB) radiation, a rich theory of estimators has been
developed (see Refs. [7,8] for a review), the most commonly
used being the quadratic estimator of Hu and Okamoto [9].
While only optimal among the class of estimators that are
quadratic in the measured lensed fluctuations,2 it has been
shown to be close to optimal for the analysis of current
experiments. Recent detections include those by the Atacama
Cosmology Telescope [12], the South Pole Telescope [13],
POLARBEAR [14], and the Planck mission [15]. In the case
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1Meaning that the pixel-to-pixel joint probability distribution
is highly non-Gaussian.

2More general but much more computationally expensive
methods can be used, and they have been shown to perform
better than the quadratic estimator in the low-noise or small-scale
regimes [10,11].
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of CMB lensing, the statistical properties of the source field
are very well characterized, and so is its redshift. It is possible
to extract information from both the shearing of the fluctua-
tions (which are on average round for the unlensedCMB) and
a local magnification or demagnification. In fact, on large
scales, the quadratic estimator can be rewritten as aminimum-
variance combination of estimators of shear and dilation [16].
The cosmic infrared background (CIB) [17] is the highly

blended and unresolved thermal emission from a large
population of dusty star-forming galaxies over a broad
range of redshifts 1≲ z≲ 4. The CIB is an excellent probe
of star-formation history, and its fluctuations reflect the
clustering properties of the underlying galaxy populations.
Indeed, the CIB fluctuations are highly correlated with the
CMB lensing potential, meaning that it closely traces the
dark matter distribution at those intermediate redshifts [18].
Its source redshift distribution is broad, and current models
predict that observations at lower frequency receive a larger
contribution from higher redshifts [19,20].
A simple geometric argument shows that the sensitivity

to a fixed mass lens is maximized when the lens is roughly
halfway between the source and the observer. Having
source images at different redshifts therefore allows one
to reconstruct the mass distribution in the Universe tomo-
graphically. The CIB source distribution is at intermediate
redshifts between the galaxies typically used in galaxy
lensing and the CMB, thus providing a useful complement.
Because of the central limit theorem, CIB fluctuations are

closer to Gaussian than images of resolved galaxies but are
weakly non-Gaussian nonetheless [21]. In this paper, we
generalize the CMB lensing quadratic estimator to the case of
any weakly non-Gaussian source field and apply this for-
malism to the CIB. We discuss how the non-Gaussianity of
the sourcemodifies the usual noise biases and hownewbiases
arise due to the large redshift span of the non-Gaussian
emission. Specifically, galaxies at low redshift that source the
CIB emission also act as lenses for the emission from higher-
redshift CIB galaxies, an effect that we call “self-lensing.”
This affects both the power spectrum of the inferred CIB
lensing potential and its cross-correlation with low-redshift
tracers.We exploremethods to mitigate this self-lensing bias.
While we take the CIB as our primary example, our

formalism is general and applies to lensing of any other
weakly non-Gaussian sources, such as the Lyman-alpha
forest [22,23], the 21 cm radiation from either the epoch of
reionization or low-redshift galaxies [24–27], or any other
line intensity mapping.
Finally, any residual CIB contamination in foreground

cleaned CMB maps is known to bias CMB lensing
reconstruction [28,29]. However, the fact that the CIB field
is itself lensed introduces an additional bias, not considered
previously, which we point out and discuss in this paper.
This paper is organized as follows. We begin with a

heuristic review of lensing estimation in Sec. II, in order to
motivate our choice of a quadratic estimator for lensing.

In Sec. III, we describe our model for the auto- and cross-
power spectra for various observables, including galaxies,
the lensing convergence, and theCIB. InSec. IV,we compute
the lensing correction to the CIB power spectrum. In Sec. V,
we review the quadratic estimator formalism and extend it to
non-Gaussian source fields. In Sec. VI, we present forecasts
for current and future experiments, showing that the signal
should be detectable at high significance. In Sec. VII, we
explore how the usual lensing biases are modified in the case
of a non-Gaussian source and show that new biases are
generated by the extended and non-Gaussian nature of the
CIB.Finally, inSec.VIII,wediscuss the bias toCMBlensing
given some residual level of CIB contamination to CMB
maps, taking into account that the CIB itself is lensed.
We conclude in Sec. IX. Appendices A–E present the
details of the CIB halo model implemented in this paper,
a full derivation of the lensing kernel for CIB lensing, a
derivation of the lensing signal-to-noise in a simple limiting
(Poissonian) regime, and the method used for our direct
measurement of theCIB trispectrumon thePlanck eneralized
needlet internal linear combination (GNILC) maps.
Throughout the paper, we will assume a flat Lambda

cold dark matter (ΛCDM cosmology with cosmological
parameters from the 2015 Planck release (column 3 of
Table 4 of Ref. [30]).

II. HEURISTIC REVIEW
OF LENSING ESTIMATION

In this section, we present a heuristic review of the
lensing estimation methods used for the CMB and galaxies.
Understanding the lensing estimators in the two limiting
regimes, from discrete pointlike objects to a continuum
Gaussian random field, will inform us about what estimator
to use in the intermediate case of the CIB. The goal of this
section is therefore to provide motivation for the CIB
quadratic lensing estimator we present below. Lens
reconstruction consists of inferring the unlensed map
and the convergence map, given the observed lensed
map. In the case of CMB lensing, this problem is well
posed because the statistics of the unlensed CMB is largely
understood: it is a Gaussian random field with a known
power spectrum. Thanks to this prior on the unlensed map,
the exact posterior for the lensing map can be written
explicitly [10], and numerical exploration of this posterior
for realistic data sets is possible [11,31].
On the contrary, in the case of galaxy lensing, the

unlensed images are non-Gaussian and complex, and a
full prior on the unlensed field is not readily available. One
way around this is to assume a reasonable partial prior. For
instance, barring intrinsic alignments, unlensed galaxy
ellipticities are assumed to be uncorrelated. One builds a
catalog of the individual observed galaxy ellipticities and
infers the shear. Another partial prior is that galaxy sizes
and brightness are uncorrelated on large scales. Yet another
one is that galaxy positions at high and low redshifts should
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be uncorrelated. These priors can be used to detect
magnification [32–35].
Consider now the “large-scale lens regime,” where the

lensing field varies on scales larger than the typical
fluctuations in the unlensed image. This is the regime of
galaxy lensing, where shear and convergence are coherent
on the scale of several galaxies. This regime also occurs in
CMB lensing, for lensing modes that are coherent over
many CMB hot and cold spots. In this case, the CMB
lensing quadratic estimator effectively looks for distortions
of the locally measured power spectrum. Indeed, for a small
patch with roughly uniform shear γ and convergence κ, the
local power spectrum is modified as [16]

Cl ¼ C0
l

�
1þ κ

∂ lnl2C0
l

∂ lnl þ γ cosð2θlÞ
∂ lnC0

l

∂ lnl
�
; ð1Þ

where C0
l and Cl are the unlensed and lensed power spectra,

respectively; κ is the convergence; and γ is the shear amplitude,
assumed to be uniformon the patchwhere the power spectrum
ismeasured. The angle θl is the angle between the direction of
the shear and the wave vector l. As this equation shows,
magnification results in a monopole distortion of the two-
dimensional (2D) power spectrum, and shear produces a
quadrupolar distortion. This is illustrated in Fig. 1.
In this large-scale lens regime, where the CMB quadratic

estimator measures shear and magnification, it is close to
optimal. However, this estimator would be suboptimal in
galaxy lensing, for several reasons. For example, applying a
quadratic estimator to the intensity map of a highly
populated galaxy field would implicitly weight galaxies
by their brightness, instead of the uncertainty on their
shapes. The estimator would thus be dominated by the few
brightest galaxies in the field.

FIG. 1. Schematic illustration of the large-scale lens regime, in which the unlensed image varies on much smaller scales than the
lensing convergence field. In this regime, shear and convergence are uniform on the scale of several galaxies, or several CMB hot or cold
spots. The figure shows the analogy between galaxy lensing and CMB lensing estimators in this regime. Left column: The large-scale
lens regime is one of the regimes in which the CMB lensing quadratic estimator operates. In this regime, the quadratic estimator can be
shown to look for monopolar (magnification) and quadrupolar (shear) distortions in the local observed power spectrum [16,39]. Central
column: The shear is estimated from the galaxy shape (quadrupole of the image) and in principle magnification from the galaxy size,
brightness, or number density (monopole of the image). Right column: Naive schematic of the power spectrum of an optical image, on a
field containing galaxies and with uniform magnification/shear. We schematically describe the power spectrum as a clustering
component, plus a 1-halo or 1-galaxy term. The amplitude of this 1-halo/1-galaxy encodes both the galaxy number density and
brightness, and its turnover encodes the galaxy size and shape. The effect of magnification is to rescale the multipoles lx and ly
isotropically as well as the power spectrum amplitude. Magnification thus affects the local number density, brightness, and size of the
galaxies, without distorting their shapes. On the other hand, the effect of shear is an anisotropic rescaling of the multipoles lx and ly,
leaving the number density and brightness unchanged. This figure shows that the shape, size, brightness, and number density measured
from individual objects (individual galaxies or CMB hot spots) are also encoded in the power spectrum of these objects (power spectrum
of the galaxy field image or the CMB). In the large-scale lens regime, the information measured by galaxy lensing estimators on
individual objects is completely analogous to that measured by the quadratic estimator on the CMB power spectrum.
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The CIB is a somewhat intermediate case. Similarly to
galaxy images, the unlensed CIB is a non-Gaussian field
for which a full statistical description is not available.
Without an explicit prior on the unlensed CIB, it is not
possible to write down an explicit posterior and explore it,
as is done for CMB lensing. However, the CIB is similar to
the CMB in that it is a continuous field, with small
fluctuations around a mean value (of order percent).
Furthermore, we do have some knowledge about the
non-Gaussianity of the CIB: its bispectrum has been
measured [18], and halo models predicting its trispectrum
exist [19,20]. The non-Gaussianity of the CIB is weak, in a
sense that we shall define precisely later. Intuitively, this is
expected from the central limit theorem and the fact that the
CIB is the superposition of many blended galaxy emis-
sions. It is thus natural to build upon a quadratic estimator
designed for Gaussian random fields and derive the optimal
weights for any weakly non-Gaussian field. We further
quantify the statistical error and biases of this estimator, due
to the non-Gaussianity of the CIB. On small scales
(l ≳ 1000), the CIB is dominated by the galaxy shot noise,
which is expected to be nearly Poissonian. On these scales,
similar to the galaxy lensing case, the CIB multipoles
become highly correlated. Accounting for these correla-
tions is then crucial to avoid overcounting the lensing
information.
The rest of the paper formalizes this heuristic intuition.

To start, we first need to introduce our modeling of the
galaxy number density field, the lensing convergence field,
and the CIB temperature fluctuations. This is done in the
next section.

III. MODELING TRACERS, LENSING
POTENTIAL, AND THE CIB

A. Galaxy, CIB, lensing fields, and their power spectra

In this section, we define our notations for the auto-
and cross-power spectra of tracers, lensing potential or
convergence, and the CIB. For the number counts of
galaxies (or any other tracer of the matter distribution),
we denote the fractional fluctuations in number density
ng in direction n̂ on the sky as δgðn̂Þ ¼ ngðn̂Þ=n̄g − 1.
Lensing is expressed interchangeably in terms of the
lensing potential ϕ or convergence κ, related by3

κ ¼ 1
2
∇2ϕ. We denote by κgal, κCMB, and κCIB the lensing

convergence reconstructed from galaxy shapes, the CMB,
and the CIB, respectively.

Each observable A ∈ fδg; κgal; κCIB; κCMBg is a projection
of the total matter density contrast δm between the source and
the observer, weighted by an efficiency kernel WA,

AðnÞ ¼
Z

dχWAðχÞδmðχn̂; χÞ; ð2Þ

where χ denotes the comoving radial distance or the comov-
ing angular diameter distance—identical for a flat Universe.
For the projected galaxy overdensity field δgðn̂Þ, the

efficiency kernel is

WgðχÞ ¼ bgðzÞ
1

ng

dng
dz

dz
dχ

; with ng ¼
Z

dz
dng
dz

; ð3Þ

where bgðzÞ is the galaxy bias and dng=dz is the redshift
distribution of the galaxies.
In the case of lensing, the integral in Eq. (2) is taken

along the unperturbed (straight) path between the source
and the observer, rather than on the true (perturbed) path.
This Born approximation has been extensively studied and
shown to be an excellent approximation in the regime
considered [36–38]. Given a source at comoving distance
χS, the lensing efficiency is

Wκðχ; χSÞ ¼
3

2

�
H0

c

�
2

Ω0
m

χ

aðχÞ
�
1 −

χ

χS

�
: ð4Þ

The CMB originates from the surface of last scattering at
comoving distance χSLS, corresponding to zSLS ∼ 1100. As
a result, the CMB lensing kernel is given by

WκCMBðχÞ ¼ Wκðχ; χSLSÞ: ð5Þ

For the lensing of galaxies, the sources are distributed in
redshift, and the efficiency kernel is obtained by averaging
over the source distribution dnS=dχS:

WκgalðχÞ¼ 1

nS

Z
dχS

dnS
dχS

Wκðχ;χSÞ; with nS¼
Z

dχ
dnS
dχ

:

ð6Þ

Similarly, for the CIB, we loosely define a source
distribution WCIB and a resulting CIB lensing kernel
WκCIB . The case of CIB lensing is slightly more subtle
than the cases of CMB and galaxy lensing. Indeed, one
might be tempted to use the redshift distribution of the CIB
monopole as the relevant CIB source distribution.
However, as we explain later, we are not reconstructing
the lensing from the CIB monopole but instead from the
CIB fluctuations. As a result, the relevant CIB “source
distribution” is related to the redshift distribution of the CIB
power spectrum, not the monopole (see Fig. 2). The exact

3Throughout this paper, we adopt the optical lensing sign
convention (e.g., Ref. [1]) rather than the CMB lensing con-
vention (e.g., Ref. [7]). This only affects the sign of the
displacement vector and of the lensing potential but not the sign
of the convergence.
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expression for the appropriate CIB source distribution is
derived and discussed in Appendix B. Due to the very
extended nature of the CIB emission, there is a non-
negligible overlap between the CIB emission kernel and
the CIB lensing efficiency, causing self-lensing biases that

we discuss later. Here, approximating the CIB as a single
source at redshift 2 is sufficient for estimating the lensing
signal. However, we will take into account the large width
of the CIB redshift distribution when assessing biases in the
lens reconstruction.

FIG. 2. Redshift contribution to the CIBmonopole (left panel) and to the CIB fluctuations (right panel) seen by Planck at 545GHz. Left:
Redshift dependence of the CIB monopole at 545 GHz from different halo models. Betherminþ 12 [40] relies on the galaxy spectral
energy distribution (SEDs)measured byHerschel and reproduces Herschel galaxy counts. Schmidtþ 15 [41] is fit to the cross-correlation
of PlanckHigh-frequency instrument (HFI) datawith Sloan digital sky survey (SDSS) quasars. Pullenþ 17 [42] is inferred from a fit to the
cross-correlation of Planck HFI data with SDSS quasars and constant mass (CMASS). This highlights a significant modeling uncertainty
on the redshift distribution. Right: Since lensing is reconstructed from the CIB fluctuations rather than the monopole, we plot the redshift
dependence of the CIB power spectrum, assuming the halo model of Peninþ 14 [20], based on the Bethermin þ 12 model (see the left
panel). Various CIB models will differ to a similar extent as for the CIB monopole (left panel). Comparing the left and right panels, low
redshifts (z ≲ 0.5) make a small contribution to the CIB monopole but a large contribution to the CIB power spectrum. However, these
low-redshift CIB sources are presumably known galaxies and could therefore be masked if needed.

FIG. 3. Left: Lensing efficiency kernels for the lensing of the CMB, CIB (assuming a single zS ¼ 2 source plane), and galaxies
(assuming a single zS ¼ 1 source plane). CIB lensing probes an intermediate-redshift range between CMB and galaxy lensing. Right:
Auto- and cross-power spectra of the lensing convergence for galaxies, the CMB, and the CIB. For lower-redshift sources, the lensing
power is smaller, peaks on larger scales, and has a more visible 1-halo contribution at l ≳ 1000.

TABLE I. Specifications used for Planck [48] and CCAT-Prime (see Table 2 of Ref. [49]). The Planck flux cut at 545 GHz is taken
from Table 2 in Ref. [48]. For CCAT-Prime, we replaced the frequency 405 GHz by 545 GHz, in order to use the same halo model for the
signal. Since the CIB emission is larger at higher frequencies, this will alter the signal-to-noise ratio in the CCAT-Prime band.
We neglect this, given the large uncertainty on the actual noise level of the cleaned CIB map from CCAT-Prime. The flux cut for
CCAT-Prime is obtained by assuming that point sources detected at 5σ and above via a matched filter are masked.

Frequency Beam FWHM White noise Flux cut Maximum multipole fsky

Planck 545 GHz 4.80 13.5 Jy/rad, i.e., 822μK0
CMB 350 mJy 3000 0.4

CCAT-Prime 545 GHz 0.50 1.2 Jy/rad, i.e., 20μK0
CMB 73 mJy 40000 0.4
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In the Limber and flat sky approximations, the cross-
spectrum CAB

l between observables A and B is related to the
matter power spectrum Pm via

CAB
l ¼

Z
dχ
χ2

WAðχÞWBðχÞPm

�
k ¼ lþ 1=2

χ
; χ

�
: ð7Þ

We show the lensing auto- and cross-power spectra in
Fig. 3. For lower-redshift sources, the lensing power is
smaller, peaks on larger angular scales, and has a more
visible “1-halo” contribution at l > 1000. For reference,
the root-mean-square lensing deflection is 1.30 for CIB at
z ¼ 2, compared to 2.30 for CMB at z ¼ 1100.

B. Cosmic infrared background: Data and halo model

Several halo model prescriptions exist for the CIB
[20,40–46]. They differ in terms of their assumptions, their
level of realism, and their complexity. While most
successfully reproduce the observed CIB power spectrum,
their best fit parameters differ in detail (see, for instance, the
redshift distributions from several models in Fig. 2).
We implement the halo model of Refs. [20,43], summa-

rized in Appendix A, and use it throughout this paper. This
model includes a halo occupation distribution, which allows
to self-consistently predict the 2-halo, 1-halo, and galaxy
shot-noise terms. This also allows one to compute all the halo
model terms for the higher-point functions, such as the CIB
trispectrum, most relevant in this paper. In this model, the
average CIB intensity is determined by the galaxy flux
distribution function from Ref. [40]. These galaxies are
assumed to populate dark matter halos according to the halo

occupation distribution (HOD) of Ref. [47]. The CIB
fluctuations are assumed to linearly trace the fluctuations
in total galaxy number density, neglecting the fact that galaxy
clustering is luminosity dependent.
A generic feature of the CIB halo models is that the CIB

emissions at different frequencies are produced by galaxies at
slightly different redshifts. Furthermore, a more sensitive
instrument will resolve and typically mask more individual
sources. As a result, the observed CIB depends on the
frequency band andon the flux cut for the instrument. Inwhat
follows, we consider the CIB as seen by Planck [48] and by a
CCAT-Prime–like experiment4 with a configuration from
Table 2 of Ref. [49]. The assumed specifications are
presented in Table I. For the Planck 545 GHz CIB map,
we use the 350mJy flux cut presented in Table 2 of Ref. [48].
For CCAT-Prime, we estimate the point source detection
noise with a matched filter (matched to the CCAT-Prime
beam) and assume that the point sources detected at 5σ have
been masked. This corresponds to a flux cut at 73 mJy.
According to the halo models (see Fig. 2), the

CIB monopole has a broad redshift distribution, peaks
at z ¼ 2, and extends to z ∼ 4. However, as we explain
above, lensing is reconstructed from the CIB fluctuations
and not the CIB monopole. The relevant redshift
distribution is therefore that of the CIB power spectrum.
It is much more skewed toward low redshift, especially for
l≲ 1000. Finally, we compare the measured Planck CIB
power spectrum at 545 GHz to the halo model prediction
in Fig. 4.

FIG. 4. Left: Power spectrum of the CIB at 545 GHz as measured by Planck (black points with error bars) and predicted by the halo
model of Peninþ 14 (thick red line). The halo model calculation is the sum of the 2-halo term (dark orange line), the 1-halo term (light
orange line), and the shot noise or 1-galaxy term (yellow line). Because they only start to dominate on small scales, the 1-halo and shot-
noise terms are not very well constrained from the Planck power spectrum alone. The gray dashed curve shows the noise level for
Planck. The gray dot-dashed curve shows the noise level for CCAT-Prime. Planck’s beam and sensitivity make it a perfect CIB
experiment below l≲ 3000, while CCAT-Prime will be a perfect CIB experiment out to l ∼ 50; 000. These considerations neglect the
issue of component separation, and in particular the ability to distinguish the CIB from Galactic dust. Right: Comparison between the
unlensed CIB power spectrum (red curve) and the corrections due to weak lensing of the CIB, from Eq. (8). The one-loop term (blue
curve) corresponds to the lensing correction at first order in Cϕϕ

L , and the two-loop term (cyan curve) corresponds to the lensing
correction terms involving two powers of Cϕϕ

L . Weak lensing thus has almost no effect on the CIB power spectrum; however, this does
not mean that lensing cannot be detected, as we show below.

4http://www.ccatobservatory.org/.
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IV. EFFECT OF LENSING ON THE
CIB POWER SPECTRUM

The halo model we implement in this paper [20] already
includes the effect of strong lensing on the CIB. Indeed, this
halo model relies on the galaxy flux distribution function
from Ref. [40], which includes the effect of highly
magnified dusty star-forming galaxies on the observed
flux distribution (see Fig. 3 in Ref. [40]). In this section, we
focus instead on the effect of weak lensing on the CIB
power spectrum.
For a source image at a given redshift, gravitational

lensing deflects light by an angle5 d ¼ ∇ϕ. As described in
Ref. [1], the observed map T (in units of temperature,
surface brightness, number counts, or any other quantity
that gets lensed) at final position n̂ is equal to the unlensed
source map T0 at position n̂ − d: Tðn̂Þ ¼ T0ðn̂ − dÞ. Taylor
expanding this equation in d ¼ ∇ϕ thus allows one to
compute the lensed power spectrum [7].
We approximate the CIB as a single source at redshift

z ¼ 2. In this single-source approximation, the lensed
power spectrum can be computed to “two-loop” order
(i.e., to second order in Cϕ) as [50]

Cl ¼ C0
l

�
1 − l2D2 þ 1

2
l4D4

�

þ
Z

d2L
ð2π2ÞC

ϕ
LC

0
l−L½L · ðl − LÞ�2½1 − jl − Lj2D2�

þ 1

2

Z
d2L1d2L2

ð2πÞ4 Cϕ
L1
Cϕ
L2
C0
l−L1−L2

½L1 · ðl − L1 − L2Þ

× L2 · ðl − L1 − L2Þ�2 þOððCϕÞ3Þ; ð8Þ

where D2 ≡ R
dL
4π L

3Cϕ
L is half of the mean squared deflec-

tion. The result is shown in Fig. 4: weak lensing changes
the CIB power spectrum by less than a percent for l < 104.
As pointed out in Ref. [7], this is expected when the
unlensed power spectrum is close to featureless, resembling
a power law. A more precise calculation of the lensed CIB
power spectrum is possible, taking account of the extended
redshift distribution of the CIB emission [50]. However,
given the small size of the effect, such a calculation appears
unnecessary. Such a small change in the CIB power
spectrum seems extremely difficult to detect, as it would
require a prior knowledge of the unlensed CIB to better
than 1%. However, although weak lensing does not change
the mean CIB power spectrum in a detectable way, it causes
detectable spatial modulations of the power spectrum, as
we show below.

V. QUADRATIC LENSING ESTIMATOR

While lensing has little effect on the power spectrum, it
introduces statistical inhomogeneities in the lensed maps,
which can be used to reconstruct the lensing potential.
Here, we first follow the derivation and notations of the
quadratic estimator of Ref. [9] and then generalize the
formalism to include non-Gaussian source distributions.
Expanding T0 at position n̂ − ∇ϕ to linear order in ϕ yields

Tðn̂Þ ¼ T0ðn̂Þ − ∇ϕ · ∇T0 þOðϕ2Þ; ð9Þ

or in Fourier space,

Tl ¼ T0
l þ

Z
d2L
ð2πÞ2 L · ðl − LÞϕLT0

l−L þOðϕ2Þ: ð10Þ

The unlensed map is assumed to be statistically homog-
enous (or isotropic for the curved sky), which translates
into uncorrelated Fourier modes,

hT0
lT

0
l0 i ¼ ð2πÞ2δDlþl0C0

l ; ð11Þ

where δD is the Dirac delta distribution. In contrast, lensing
couples Fourier modes of the unlensed map, thus breaking
this statistical homogeneity:

hTlTL−lifixedϕ¼ϕLð−LÞ · ½lC0
lþðL−lÞC0

L−l�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fl;L−l

þOðϕ2C0Þ:

ð12Þ

From the last equation, we see that for a fixed realization of
the lensing potential the quadratic quantity

ϕ̂L;l ≡ TlTL−l

fl;L−l
ð13Þ

is an estimator for ϕL, unbiased to linear order in ϕ:�
TlTL−l

fl;L−l

�
fixed ϕ

¼ ϕL þOðϕ2Þ: ð14Þ

Note that fl;L−l ¼ fL−l;l and ϕ̂L;l ¼ ϕ̂L;L−l by symmetry,
and ϕ̂⋆

L;l ¼ ϕ̂−L;−l.We thus obtainmany estimators ofϕL, by
fixing L and varying l in ϕ̂L;l. These may be combined into
the unbiased (to first order inϕ)minimum-variance quadratic
estimator for ϕL, with inverse-variance weighting. This
minimum-variance weighting is different for a Gaussian
and non-Gaussian unlensed map, as we now present.

A. Gaussian unlensed map

First, consider the case of a Gaussian unlensed map T0,
as for the CMB. For a fixed realization of the lensing field,
the lensed map is then Gaussian, too, and we get

5Again, we follow the optical lensing sign convention
Tðn̂Þ ¼ T0ðn̂ − dÞ, d ¼ ∇ϕ, and κ ¼ 1

2
∇2ϕ from Ref. [1], as

opposed to the CMB lensing sign convention Tðn̂Þ ¼ T0ðn̂þ dÞ,
d ¼ ∇ϕ, and κ ¼ − 1

2
∇2ϕ from Ref. [7].
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hϕ̂L;lϕ̂
⋆
L0;l0 ifixed ϕ ¼ ð2πÞ2δDL−L0

ð2πÞ2ðδDl0−l þ δDl0−ðL−lÞÞ
2

×
2Ctotal

l Ctotal
L−l

f2l;L−l|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}:
≡σ2L;l

ð15Þ

Note that we have fixed the lensing realization and
marginalized over the unlensed map. This equation implies
that the various estimators ϕ̂L;l are uncorrelated, and the
minimum-variance unbiased (to linear order in ϕ) quadratic
estimator takes the simple form

ϕ̂L ¼
R

d2l
ð2πÞ2 ϕ̂L;l=σ2L;lR

d2l
ð2πÞ2 1=σ

2
L;l

: ð16Þ

As usual, inverse-variance weighting optimally weights
modes according to whether they are signal or noise
dominated. It further upweights temperature modes l that
are more aligned with the lensing mode L, since these are
most affected by lensing. The optimal quadratic estimator
can be recast into the familiar form [8]:

ϕ̂L ¼ NL

Z
d2l
ð2πÞ2 iL·|{z}

divergence

�
TL−l

Ctotal
L−l|ffl{zffl}

inverse-var
weighted map

×
C0
l

Ctotal
l

ilTl|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Wiener-filtered
gradient map

�
: ð17Þ

We recover the fact that the quadratic estimator for aGaussian
unlensed map is the divergence of the real-space product of
the inverse variance–weighted unlensed map by its Wiener-
filtered gradient. The reconstruction noise is then

NL¼
�Z

d2l
ð2πÞ2

1

σ2L;l

�−1
¼
�Z

d2l
ð2πÞ2

f2l;L−l
2Ctotal

l Ctotal
L−l

�−1
: ð18Þ

In this Gaussian case, the quadratic temperature pairs are
uncorrelated, so they each add independent information. This
will no longer be the case for a non-Gaussian unlensed map,
as we now show.

B. Non-Gaussian unlensed map

If the unlensed map is non-Gaussian, it may
have a nonzero trispectrum T 0, defined as the connected
component of the four-point function: hT0

l1
T0
l2
T0
l3
T0
l4
ic ≡

ð2πÞ2δDl1þl2þl3þl4
T 0

l1;l2;l3;l4
. This both increases the

statistical error of the quadratic lensing estimators and
correlates them6:

hϕ̂L;lϕ̂
⋆
L0;l0 ifixed ϕ ¼ ð2πÞ2δDL−L0

�ð2πÞ2ðδDl0−l þ δDl0−ðL−lÞÞCtotal
l Ctotal

L−l þ T 0
l;−l0;L−l;l0−L

fl;L−lfl0;L−l0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡ðΣLÞl;l0

: ð19Þ

Because the estimators ϕ̂L;l are now correlated for different
l, the inverse-variance weighting should include the non-
diagonal covariance matrix ðΣLÞl;l0 ,

ϕ̂L ¼
R

d2l
ð2πÞ2 ϕ̂L;l

hR
d2l0
ð2πÞ2 ðΣLÞ−1l;l0

i
R

d2ld2l0
ð2πÞ4 ðΣLÞ−1l;l0

; ð20Þ

where the inverse-covariance matrix in the continuum limit
is defined byZ

d2l
ð2πÞ2 ðΣLÞ−1l1;lðΣLÞl;l2

¼ ð2πÞ2δDl1−l2 : ð21Þ

The associated reconstruction-noise power spectrum is

NL ¼
�Z

d2ld2l0

ð2πÞ4 ðΣLÞ−1l;l0
�−1

: ð22Þ

As a result, the noise in the lens reconstruction is enhanced
by the presence of the trispectrum. This lensing noise
constitutes a bias in the auto-power spectrum of the
reconstructed lens field, as for the Gaussian case.
To add some intuition and aid comparing to the Gaussian

case, we evaluate Eq. (22) in the simple case of a pure
Poisson unlensed map. That is, both the power spectrum C0

and the trispectrum T 0 are white, i.e., independent of the
multipole. In this particular case, the lensing noise in units
of κ becomes (see Appendix D for a complete derivation)

Nκ
L ¼ 2π

Nmodes|fflffl{zfflffl}
Gaussian noise

þ T 0

4ðC0Þ2|fflfflffl{zfflfflffl}
non-Gaussian correction

; ð23Þ

where Nmodes ≡ 4π
R

d2l
ð2πÞ2 ¼ l2

max − l2
min. This simple for-

mula provides several key insights. The first term is the
Gaussian contribution. This term goes to zero as the
number of observed multipoles increases; if the modes
are Gaussian, each of them adds independent lensing
information, and the number of modes is the only limit
to the reconstruction precision. The second term is the

6In principle, the right-hand side should also include the self-
lensing bispectrum described in Sec. VII B. In practice, neglect-
ing this term only increases the lensing noise but does not
introduce further bias.
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additional lensing noise due to the non-Gaussianity of the
unlensed map. It does not decrease as the number of
observed modes increases. Thus, in the limit of an infinite
number of modes, the Gaussian term tends to zero, and the
total noise is entirely determined by the non-Gaussian term.
Another important insight is the following. For the purpose
of lens reconstruction, a small ratio between the trispectrum
and the squared power spectrum, i.e., T 0

ðC0Þ2 ≪ 1, is not

sufficient for the field to be considered Gaussian. One
needs the trispectrum to be small compared to the squared
power spectrum divided by the number of modes Nmodes:

T 0

ðC0Þ2=Nmodes
≪ 1. This is a more stringent condition and one

that depends on the experiment. As we show below, it is
satisfied by Planck but not by CCAT-Prime.

C. Applying Gaussian weights to a non-Gaussian map

In order to avoid inverting the large covariance matrix, or
if the unlensed trispectrum is not well known, one may
apply the quadratic estimator with Gaussian weights to a
non-Gaussian map. If the non-Gaussianity is large, i.e.,

T 0

ðC0Þ2=Nmodes
≪1, the Gaussian weighting is suboptimal; it

may increase significantly the reconstruction noise but does
not introduce bias. When applying the Gaussian weights of
Eq. (16) to a non-Gaussian map, the lensing-noise power
spectrum is no longer given by Eq. (22), but instead

NL ¼
R

d2ld2l0
ð2πÞ4 ðΣLÞl;l0=σ2L;lσ2−L;l0

½R d2l
ð2πÞ2 1=σ

2
L;l�2

¼ N0
L þ T 0

L; ð24Þ

where the Gaussian reconstruction-noise N0
L is the same as

in Eq. (18),

N0
L ¼

�Z
d2l
ð2πÞ2

1

σ2L;l

�−1
¼
�Z

d2l
ð2πÞ2

f2l;L−l
2Ctotal

l Ctotal
L−l

�−1
; ð25Þ

and the additional contribution due to the unlensed source
trispectrum is

T 0
L ¼ ðN0

LÞ2
Z

d2ld2l0

ð2πÞ4
fl;L−l

2Ctotal
l Ctotal

L−l

fl;−L−l0

2Ctotal
l0 Ctotal

−L−l0

× T 0
l;L−l;l0;−L−l0 : ð26Þ

As expected, the reconstruction noise is enhanced by the
unlensed trispectrum relative to the Gaussian case.
In particular, for a white trispectrum (but an arbitrary

power spectrum), this non-Gaussian noise simplifies to

T 0
L ¼ ðN0

LÞ2
�Z

d2l
ð2πÞ2

fl;L−l
2Ctotal

l Ctotal
L−l

�
2

T 0: ð27Þ

In Sec. VI, we evaluate this expression to quantify the effect
of the shot-noise trispectrum on the CIB lensing estimator.

If the power spectrum and trispectrum are both white, e.g.,
in the shot-noise regime of the CIB, Eq. (27) further
simplifies to T 0

L ¼ T 0=ðL4C2Þ (Appendix D). In this very
special case, despite the potentially large non-Gaussianity,
we recover the corresponding result for the non-Gaussian
weights. Indeed, if both the power spectrum and the
trispectrum are white, then all temperature modes are
equivalent and will be weighted equally by both the
Gaussian and non-Gaussian weights.

D. CIB trispectrum: Halo model prediction
and map-based measurement

As we have shown, the unlensed CIB trispectrum
contributes to the lensing noise. Furthermore, as we shall
demonstrate shortly, the quadratic CIB lensing estimator
best reconstructs the low lensing multipoles L and relies
mostly on the high temperature multipoles l. In other
words, the relevant trispectrum configuration is the col-
lapsed one: T CIB

l;L−l;l0;−L−l0 , with L ≪ l. In what follows,
we therefore focus exclusively on this configuration. This
configuration can be measured from the data without
implementing a complete trispectrum estimator (see
Appendix E), and it also simplifies the halo model
calculations (see Appendix A).
In Fig. 5, we show estimates of the CIB trispectrum from

the halo model, together with a map-based measurement.
As shown in the left panel, the halo model prediction for the
CIB trispectrum appears to be extremely sensitive to the
low-redshift CIB sources, as defined in Appendix A 2. This
makes it difficult to reliably estimate the CIB trispectrum
from the halo model, given current observables. For this
reason, we also measured the collapsed trispectrum from
the Planck GNILC CIB map at 545 GHz. The details of the
method are presented in Appendix E. Our measurement
from the Planck maps extends to l ¼ 1500. Over this range
of multipoles, we do not detect a collapsed trispectrum but
place an upper limit. This upper limit excludes most halo
model components below l ¼ 1500, except for the 4-halo
and shot-noise terms, This implies that the “excluded”
terms are highly overestimated in the halo model we
implemented. Although our measurement does not con-
strain the higher multipoles directly, it suggests that the
shot-noise trispectrum is the only dominant term for
l≳ 1500, where most of the lensing information origi-
nates. Indeed, all other halo model terms decrease rapidly
with l, so if their amplitudes were consistent with the upper
limit at l ¼ 1500, they would be small compared to the
shot noise at l≳ 1500. As shown in Fig. 6, the non-
Gaussian lensing noise due to the shot-noise trispectrum is
negligible compared to the Gaussian contribution for
Planck and dominant for CCAT-Prime. Thus, the
Gaussian lensing weights are close to optimal for Planck
and likely suboptimal for CCAT-Prime.
The halo model term which is least uncertain is probably

the shot-noise trispectrum, since it comes from measured
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luminosity functions. As we show below, CIB lensing from
CCAT-Prime relies mostly on temperature multipoles
above l ¼ 10; 000, where the shot noise is the only
dominant term. As a result, our forecast for the non-
Gaussian lensing noise for CCAT-Prime should be robust.
Since the CIB non-Gaussianity increases the lensing noise

for CCAT-Prime, one natural question iswhether theCIB can
be “Gaussianized.” An efficient way of achieving this is to
mask rare, bright objects, which contribute little to the power

spectrum but a lot to the trispectrum. For instance, the deeper
CCAT-Prime flux cut reduces the shot-noise power spectrum
by less than 10% (compared to the 350 mJy flux cut of
Planck) but lowers the shot-noise trispectrum by an order of
magnitude. Masking known infrared sources from galaxy
surveys should further reduce the CIB trispectrum, while
marginally affecting the CIB power spectrum.
On the other hand, the apparent discrepancy between the

halo model and the data also suggests that the higher-point

FIG. 5. Measure of the CIB non-Gaussianity relevant for the lensing-noise power spectrum: comparison between the angle-averaged
collapsed CIB trispectrum (solid black line) and the squared CIB power spectrum (dashed black line) Left panel: We show the large
dependence of the halo model trispectrum on the minimum-redshift cut zmin in the halo model trispectrum, Eq. (A11). We vary this value
from 0 to 1.5 and show the corresponding CIB trispectra in shades of gray. Rigt panel: Keeping z ¼ 0 as the minimum-redshift cut, we
compare the various halo model terms (colored lines) to our trispectrum measurement from the Planck GNILC map at 545 GHz. The
measurement procedure is presented in Appendix E. We find no significant evidence for a nonzero collapsed trispectrum and show one-
sided 2σ upper bounds as downward triangles. The nondetection of a collapsed trispectrum with the optimal estimator for Planck implies
that CIB non-Gaussianity can be safely ignored for the CIB lens reconstruction with Planck. The measurement only extends to l ¼ 1500
and therefore does not directly constrain the higher multipoles. However, the fact that most halo model terms are excluded at low
multipoles suggests that only the shot-noise trispectrum will be significant at higher multipoles. We include it in the Planck and CCAT-
Prime forecasts, which rely primarily on these high multipoles.

FIG. 6. Noise per multipole on the CIB lens reconstruction, using Gaussian weights for the quadratic estimator. Solid black lines show
the lensing signal and the lensing noise. The solid red curve shows the lensing noise expected if the CIB were perfectly Gaussian. The
dashed red curve shows the additional noise contribution from the shot-noise trispectrum. Left panel: Planck CIB lensing. As explained
in the main text, the CIB trispectrum does not alter the lensing noise in a detectable manner, since it is not detected by our collapsed
trispectrum estimator. In particular, the lensing noise due to the CIB shot-noise trispectrum is negligible compared to the Gaussian noise.
Right panel: CCAT-Prime CIB lensing. The lensing noise is dominated by the non-Gaussian contribution, i.e., the CIB shot-noise
trispectrum. The lensing modes between a few and 50 are signal dominated. CIB lensing from CCAT-Prime relies on higher multipoles
than for Planck (see Fig. 7). While the shot-noise trispectrum is smaller for CCAT-Prime than for Planck, due to the lower flux cut, the
CIB power spectrum is also smaller at these higher multipoles. As a result, the non-Gaussian lensing noise is similar for CCAT-Prime
and Planck, scaling roughly as T 0

4ðC0Þ2.
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functions of the CIB contain useful information to dis-
tinguish between different halo models of the CIB and thus
constrain the history of star formation in the Universe.

VI. FORECASTS

We forecast the signal-to-noise ratio for the CIB lensing
auto- and cross-correlations, for Planck and CCAT-Prime.
Our specifications are presented in Table I. Because the
CIB trispectrum is very uncertain, we assume Gaussian
weights for the quadratic estimator for both Planck and
CCAT-Prime. As discussed above, this should be optimal
for Planck, but not for CCAT-Prime. In both cases, we
compute the noise contribution due to the CIB shot-noise
trispectrum. The resulting lensing noises for Planck and
CCAT-Prime are shown in Fig. 6, in the left and right
panels, respectively. In Fig. 7, we show that the lens
reconstruction is dominated by the highest signal-domi-
nated multipoles available in the experiment: l ∼ 1000 for
Planck and l ∼ 10; 000 for CCAT-Prime. This justifies
retaining only the shot-noise term in the CIB trispectrum.
We then forecast the signal-to-noise ratio on the auto-

and cross-correlations between CIB lensing and various
tracers of the matter density. The results are summarized in
Table II. For Planck CMB lensing, we consider CMB maps
with 50 beam full width at half maximum (FWHM), 60 μK0

noise in temperature, and 60
ffiffiffi
2

p
μK0 noise in E- and

B-mode polarizations at 143 GHz [48]. We use
lmax T ¼ lmax P ¼ 2000. This reproduces the lensing noise
measured by the Planck Collaboration [15]. For CMB
lensing from a stage 4 CMB experiment (CMB S4), we
assume a 10 FWHM beam, 1μK0 noise in temperature, and

ffiffiffi
2

p
μK0 noise in E- and B-mode polarization at 143 GHz

[51,52] and assume lmax T ¼ 3000 and lmax P ¼ 5000. For
the CMASS galaxy sample, we assume a galaxy number
density of 0.02 arcmin−2 and bias of 2 over 24% of the
sky. For the WISE galaxy catalog, we assume 0.6 galaxies
per squared arc min, with a bias of 1.13, over 40% of the
sky. The redshift distributions of CMASS and WISE are
shown in Fig. 8.
As shown in Table II, the auto-power spectrum of CIB

lensing is not detectable with existing Planck CIB data.
However, the cross-correlations of Planck CIB lensing
with tracers should be significant, including the cross-
correlations with CMB lensing and galaxy catalogs like
WISE or CMASS. With CCAT-Prime data, CIB lensing
will be detectable both in auto- and cross-correlation at
high significance. CIB lensing will therefore provide an
independent measurement of the amplitude of density
fluctuations. However, the cosmological interpretation of
this measurement will be affected by the uncertainty on the
redshift distribution of the CIB. On the other hand, one can
use CIB lensing measurements and the current best
estimates of cosmological parameters to constrain the
CIB redshift distribution. Moreover, if CIB lensing

FIG. 7. Contribution from the various l-modes of the CIB
temperature map to the lensing potential at L ¼ 100, for Planck
(solid red curve) and CCAT-Prime (solid blue curve). To show
both curves on the same axis, they have been normalized to a
maximum of unity. The dashed lines show the expectation for
Planck and CCAT-Prime when including only sample variance
mode counting [Nκ

L ¼ 2π=Nmodes from Eq. (23)]. They show that
most of the lensing information comes from the highest multi-
poles that are signal dominated in the CIB map, since they
contribute the largest number of modes. For these high multi-
poles, the trispectrum can be approximated by the shot-noise
term.

FIG. 8. Redshift distribution for WISE (green curve) and
CMASS (orange curve). As lens galaxies, these may be corre-
lated with the reconstructed CIB lensing potential.

TABLE II. Forecasts for the signal-to-noise ratio of each auto-/
cross-correlation. These values of the signal-to-noise ratio in-
clude the Gaussian and non-Gaussian lensing noises as well as
the cosmic variance. They thus correspond to the final error on
the measured amplitude of the signal. The signal-to-noise ratio
values for detection alone, i.e., without the cosmic variance, are
therefore slightly larger than those quoted in this table. These
signal-to-noise ratios are statistical only and therefore do not
include the biases discussed in Sec. VII.

Planck κCIB CCAT-Prime–like κCIB

Auto-power, fsky ¼ 0.4 1 37
Planck κCMB, fsky ¼ 0.4 5 28
CMB S4 κCMB, fsky ¼ 0.4 12 80
WISE, fsky ¼ 0.4 18 129
CMASS, fsky ¼ 0.24 6 40
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measurements are combined with galaxy or CMB lensing,
one can effectively use distance ratios (also referred to as
“cosmography”) to determine the CIB redshift distribution,
without requiring a cosmological model.

VII. BIASES TO THE AUTO- AND
CROSS-CORRELATION

A. Lens reconstruction biases: Overview

In addition to the usual noise biases present in CMB
lensing reconstruction [53,54], the non-Gaussian nature of
CIB emission over a broad redshift range introduces new
forms of bias. These affect both the ϕ̂ power spectrum and
its cross-correlation with tracers in slightly distinct ways:

(i) Standard noise biases:
It is well known that the power spectrum of the

standard quadratic estimator ϕ̂ is subject to noise
biases, even in the case of the Gaussian source and
lensing potential. Schematically, we can write

hCϕ̂ ϕ̂
L i ¼ Nð0Þ

L þ Cϕϕ
L þ Nð1Þ

L þOð½Cϕϕ
L �2Þ: ð28Þ

The Nð0Þ
L term is present even when applying the

quadratic estimator to a Gaussian unlensed source
field and represents the disconnected part of the
temperature four-point function. Following the con-
vention in the literature, we denote the noise biases
by NðnÞ, where n is the power of Cϕϕ

L appearing
explicitly in the evaluation of the bias term.
At lowest order, the connected part of the ϕ̂ power

spectrum expansion contains the true signal Cϕϕ
L and

another contraction Nð1Þ
L at the same order (but

typically smaller than the signal, at least for CMB
lensing) [53,54]. At higher order, additional biases

Nð2Þ
L ,Nð3Þ

L , etc.,maybecome important for small-scale
or low-noise experiments. In cross-correlation with

tracers, Nð2Þ
L is the lowest order bias present [54].

The higher order biases are partially due to the first
order Taylor expansion used in deriving the quadratic
estimator:

Tðn̂Þ ¼ T0ðn̂ − ∇ϕÞ ≈ T0ðn̂Þ − ∇ϕ · ∇T0: ð29Þ
This linear truncation of the expansion is inexact and
misses all the termsOðϕnÞ for n ≥ 2. As a result, the
quadratic estimator ϕ̂ is biased by terms Oðϕ2Þ. An
estimator including higher order Taylor expansion
terms, or a maximum likelihood estimator where the
lensed field contains the correct pixel to pixel remap-
ping by lensing, would avoid some part (but not all) of

the biases Nð1Þ
L , Nð2Þ

L , etc.
(ii) Non-Gaussian unlensed map T0:

Each noise termNðnÞ
L involves a four-point function

of the unlensed temperature map and is therefore

enhanced by the unlensed trispectrum. Schematically,

when using Gaussian weights, NðnÞ
L → NðnÞ

L þ T ðnÞ
L ,

where T ðnÞ
L is an integral over the unlensed trispec-

trum T 0 weighted by 2n powers ofϕ. The n ¼ 0 case
is given by Eq. (26).

As discussed previously, the lowest order bias in
cross-correlation is Nð2Þ. This makes the cross-
correlation more robust to uncertainties in the
modeling of the trispectrum, which can be hard to
disentangle from the lensing contribution.

(iii) Non-Gaussian lensing potential ϕ:
As the lensing potential is sourced by large-scale

structure, it is affected by the nonlinear evolution
under gravity. This makes the lensing potential non-
Gaussian on small scales. A consequence is the
appearance of new bias terms NðjÞ that involve both
odd and even powers ofϕ (as opposed to even powers
only if ϕ is Gaussian). For example, terms like Nð3=2Þ

or Nð5=2Þ appear and involve the lensing potential
bispectrum or five-point function, respectively [55].
The other biases NðnÞ for integer values of n are also
enhanced by the connected ð2nÞ-point function of ϕ.
For example, the Nð2Þ bias is enhanced by the four-
point function of ϕ. These biases also appear in CMB
lensing and are subject to active research.

(iv) Self-lensing:
When the source distribution is broad in redshift,

as for the CIB, the lower-redshift sources can act
as lenses for the higher-redshift sources and there-
fore introduce a bias in both the auto- and cross-
correlation. We call this effect self-lensing. This is
analogous to the dominant contribution of some of
the foreground-induced biases to CMB lensing
[28,29,56], in which part of the foregrounds leaks
into the temperature map. Given the importance of
this term, which affects both the auto- and cross-
correlation, we explore it in detail in the next section.

(v) Foreground contamination:
Analogously to CMB lensing, the imperfect re-

moval of foregrounds such as Galactic dust or
extragalactic thermal Sunyaev Zel'dovich (tSZ) can
lead to biases in the lens reconstruction [28,29,56].
While the tSZ signal can be accurately cleaned due to
its unique frequency dependence, Galactic dust is
highly degenerate with the CIB, especially at lower
frequencies, and residual amounts can lead to a bias
for the lensing reconstruction.

(vi) Magnification bias:
Magnification bias occurs in galaxy catalogs with

a fixed detection threshold. In magnified regions,
galaxies appear brighter, and therefore more galaxies
will be detected. This effect partially compensates
the expected dilution of the galaxy number density
due to magnification.
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However, as surface brightness is conserved in
lensing, intensity maps with no detection threshold,
e.g., in CIB or 21 cm intensity mapping [57], do not
suffer from magnification bias. In practice, when
masking a bright point source in a realistic CIB
analysis, some magnification bias is introduced.
Because point sources are relatively rare and have
a small effect on the power spectrum (compared to
the trispectrum), we expect this bias to be negligible.

B. Self-lensing contribution

The CIB self-lensing bias is simpler to evaluate in cross-
correlation with tracers than in auto-correlation. We discuss
them separately in this section.

1. Cross-correlation

Suppose that we cross-correlate the reconstructed ϕ̂ with
a low-redshift tracer δg. For concreteness, we consider the
cross-correlation with galaxies, but the same formalism
applies to any tracer of matter, such as galaxy lensing or
CMB lensing. Since these galaxies produce some IR
emission that contributes to the CIB, we decompose the
unlensed CIB emission T0 into a high-redshift component
Thigh−z (uncorrelated with the tracer) and a component Tg

originating from the tracers themselves, or objects corre-
lated with them. Thus, T0 ¼ Thigh−z þ Tg. Since the ϕ̂

estimator is quadratic in T, ϕ̂ ∼ TT, the cross-correlation
hϕ̂δgi contains a term of the form hTgTgδgi ∝ BδgTgTg

,
proportional to the hybrid bispectrum of two powers of Tg

and one power of δg.
Following the Appendix of Ref. [56], the self-lensing

bias to the cross-correlation Cϕ̂×g
L is given by

ðΔCϕ̂×g
L ÞSL ¼ NL

Z
dχ

WgðχÞðWCIBðχÞÞ2
χ2

Bðk ¼ L=χ; χÞ;

ð30Þ

with

Bðk; χÞ≡
Z

d2q
ð2πÞ2

fqχ;kχ−qχ
2Ctotal

qχ Ctotal
kχ−qχ

BδTgTg
ðk;q;−k − q; χÞ:

ð31Þ

In the expression above, the momenta k, q and −k − q lie
on a plane perpendicular to the line of sight.

2. Auto-correlation

Since the true lensing potential ϕ is also a tracer of the
matter at low redshift, the previous discussion implies a
bias to the auto-correlation of the reconstructed lensing
potential,

ðΔCϕ̂ ϕ̂
L ÞSL ≈ 2ðΔCϕ̂ϕ

L ÞSL þ secondary contractions; ð32Þ

where the combinatorial factor of 2 arises from the two
possible choices of ϕ̂ as a tracer. From Eq. (30), we have

ðΔCϕ̂ϕ
L ÞSL ¼ NL

Z
dχ

WϕCIB
L ðχÞðWCIBðχÞÞ2

χ2
Bðk ¼ L=χ; χÞ;

ð33Þ

with WϕCIB
L ðχÞ ¼ −2WκCIBðχÞ=L2 and WκCIB as defined in

Sec. III.
In addition to the term (33), secondary contractions

appear in Eq. (32). To understand the origin of such terms,
we once again separate the CIB emission into high- and
low-z components. Schematically, the auto-correlation is
given by hϕ̂ ϕ̂i ∼ hðTTÞðTTÞi. Expanding the lensed
T, we get “primary contractions” of the form
hðTgTgÞðThigh−zThigh−zÞi, which correspond to the ones
in Eq. (32), since hðThigh−zThigh−zÞi ∼ ϕ. In addition, we
also get “secondary contractions” of the form
hðTgThigh−zÞðTgThigh−zÞi, which are the same order in the
expansion as the primary contractions but more involved to
calculate, since the integrals do not separate as in Eqs. (30)
and (31). Similar contractions also appear in CMB lensing
reconstruction (e.g., in the Nð1Þ bias), and are highly
suppressed compared to the primary contractions.
However, this suppression is not guaranteed in our case.
For example, secondary contractions of foreground con-
tamination of CMB lensing have been estimated to be of
the same order of magnitude as the primary ones [29,56].

C. Mitigation strategies

Controlling the biases presented above is crucial, in
order to provide a convincing measurement of the lensing
auto- or cross-correlation. In this section, we propose
several mitigation approaches.

1. Cross-correlation

First, in cross-correlation with low-z tracers, the Nð0Þ
L and

Nð1Þ
L terms only act as extra noise but not as a bias. In

practice, this noise can usually be evaluated from the data
themselves. As a result, the most concerning bias in cross-
correlation is the self-lensing bispectrum. We propose four
methods to quantify or reduce this self-lensing bispectrum.
Emission template: For a given tracer sample (e.g.,

galaxy catalog), we can build a template of the emission
from the tracer sample at CIB frequencies Tg. Because the
bispectrum BδTgTg

sourcing the self-lensing bias involves
two powers of Tg, having the correct galaxy flux fluctua-
tions is important. The optical or infrared brightness of the
galaxies can inform us about their relative brightness at CIB
frequency. The overall normalization of the template map is
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obtained by cross-correlating the template with the CIB
map. We can then apply the quadratic estimator to this
template map and cross-correlate the result with the tracer
map to estimate the self-lensing bias. Alternatively, the
template can be subtracted directly from the CIB map
before applying the lensing quadratic estimator.
Source hardening: Techniques similar to “source hard-

ening” [29] or the related “bias hardening” [58] used in
CMB lensing are applicable to CIB lensing. If we assume a
known shape for the source bispectrum BδTgTg

, an optimal
estimator for its amplitude can be derived [29,59]. Given an
amplitude for the source bispectrum, it can be propagated to
the bias to CMB lensing by evaluating Eq. (30). The source
estimator and the lensing estimator are not orthogonal but
can be combined into unbiased estimates of the lensing
potential and amplitude of sources, by inverting a response
matrix as in Ref. [29].
Separate shear and dilation estimation: As discussed in

the Introduction (and Ref. [16]), the quadratic estimator on
large scales combines estimates of shear and dilation to
reconstruct the lensing potential. It is, however, possible to
split it into shear-only and dilation-only estimators [16,39].
While the statistical power of the shear-only and dilation-
only estimators is approximately equal, it is reasonable to
assume that point-source contamination, such as in self-
lensing, should mostly affect the dilation estimator but not
the shear estimator. We leave investigating this conjecture
for future work and note that this could be a very effective
technique to isolate contamination in both CIB and CMB
lensing.
Using disjoint sets of multipoles: In this case, as for self-

lensing, lensing reconstruction and cross-correlation using
disjoint l can help. For example, we could reconstruct ϕ̂L
only using CIB multipoles l > lcut and then perform the
cross-correlation only for L < lcut. This ensures that the
map used in the reconstruction Tðl > lcutÞ is uncorrelated
with the tracer map on the scales used for the cross-
correlation. This eliminates the equilateral self-lensing
bispectrum configuration and can thus limit the impact
of contaminants that are common to the tracers and CIB
map, e.g., residual Galactic dust.

2. Auto-correlation

Similar mitigation techniques apply for the auto-power
spectrum; we summarize these below. In auto-correlation,
Nð0Þ and Nð1Þ constitute a bias, contrary to the cross-
correlation case. These biases are usually computed with
simulations and subtracted from the ϕ̂ power spectrum.
However, this requires correctly simulating the intrinsic
trispectrum of the CIB to much better precision than the
lensing-induced trispectrum. This can be challenging,
since the intrinsic trispectrum is not well constrained,
and even though it can be predicted in the halo model,
achieving the required accuracy may not be straightfor-
ward. For this reason, auto-correlation analyses may be

more challenging. Most mitigation strategies presented for
the cross-correlation also apply in auto-correlation. Here,
we focus on the differences.
Making an emission template from low-redshift galaxies

is likely to be more challenging in auto-correlation than in
cross-correlation; one would need a flux-weighted template
of every source contributing to the low-z part of the CIB,
not only the sources from a given tracer catalog. To the
extent that the emission traces matter and that the redshift-
dependent IR luminosity function is known, a combination
of galaxy surveys covering most of the CIB redshift
distribution might provide the required template.
Source hardening seems a more promising avenue.

In this case, we must assume a known shape for the
intrinsic source bispectrum and trispectrum and measure
their amplitudes with appropriate estimators [29]. This
procedure is complicated by the presence of secondary
contractions.
Disjoint l reconstruction can be used in the auto-

correlation as well. This method can be generalized and
made more optimal by partitioning Fourier space into
annuli and evaluating the ϕ power spectrum only using
the cross-correlation between estimates reconstructed from
modes belonging to different annuli [60].
Finally, we note that part of the non-Gaussianity of the

CIB is due to nonlinear gravitational evolution. In particu-
lar, nonlinear coupling between long and short wavelength
modes produces a modulation in the small-scale power
spectrum that is proportional to the long wavelength mode.
The part of the trispectrum generated by this coupling can
be undone by tidal reconstruction [61].

VIII. BIAS FROM CIB LENSING TO
CMB LENSING RECONSTRUCTION

In this section, we switch focus and consider CIB lensing
not as the signal of interest but as a contaminant to CMB
lensing. CMB lensing reconstruction typically operates on
a cleaned temperature map. Imperfect subtraction of the
CIB (or any other foreground) biases the auto- and cross-
spectra of the reconstructed CMB lensing potential. One
factor that is often neglected is that some of the foregrounds
lie at cosmological distance from us and are therefore
lensed. In this section, we present the extra bias to CMB
lensing due to residual lensed CIB.
Suppose that the cleaned CMB map T contains not only

the true lensed CMB TCMB but also some lensed CIB TCIB.
This lensed CIB is either the full CIB emission or the
reduced CIB residual if some foreground reduction is
applied,

T ¼ TCMB þ TCIB

¼ T0
CMB − ∇ϕCMB · ∇T0

CMB þ T0
CIB

− ∇ϕCIB · ∇T0
CIB þ… ð34Þ

SCHAAN, FERRARO, and SPERGEL PHYS. REV. D 97, 123539 (2018)

123539-14



We carefully distinguish the CMB lensing potential ϕCMB,
which receives contributions from redshift zero to the
surface of last scattering, from the CIB lensing potential
ϕCIB, which is only sourced by lower-redshift structures. As
shown in Refs. [28,29], neglecting the T0

CIB contribution
results in a biased estimation of ϕCMB. As before, we treat
the auto- and cross-correlations separately.

A. Cross-correlation

Suppose we ignore the presence of CIB contamination
and apply the quadratic estimator to T, to get an estimate of
ϕ̂CMB ¼ QCMB½T�, where the subscript “CMB” on the
quadratic estimator Q denotes that the weights used in
the estimator are those appropriate to the CMB lensing
reconstruction. The cross-correlation with tracers δg then
contains terms of the form hQCMB½TCIB�δgi. When replac-
ing the lensed TCIB by the unlensed T0

CIB, we get bispec-
trum terms hQCMB½T0

CIB�δgi ∝ BTgTgδg , which have been
discussed in previous work. But we also note that
QCMB½TCIB� −QCMB½T0

CIB� is effectively a reconstruction
of ϕCIB. This reconstruction is both suboptimal and biased
because the CMB rather than the CIB weights have been
used.7 Nonetheless, if we write hQCMB½TCIB�ðLÞi ¼
RðLÞϕCIBðLÞ in terms of a response function R, then the
cross-correlation with tracers is further biased by a factor
RðLÞhϕCIBδgi.

B. Auto-correlation

Similarly, the auto-correlation will be enhanced by terms
of the form RðLÞhϕCIBϕCMBiðLÞ, R2ðLÞhϕCIBϕCIBiðLÞ, as
well as the trispectrum term T L of the form of Eq. (26), but
with the CIB lensing weights replaced with the CMB
lensing ones. Quantifying this effect is an interesting and
important problem, but it is outside the scope of this paper.

IX. CONCLUSIONS

Intensity mapping experiments such as 21 cm, Hα,
Lyman-α, carbon monoxyde (CO), or ionized carbon
(CII) [62] will probe large volumes of the Universe.
Lensing reconstruction from these intensity maps has the
potential to become a powerful cosmological tool, by
enabling measurements of the amplitude of structure at
intermediate redshifts between galaxy surveys and the
CMB. This constitutes a new regime for lens reconstruction.
While the source field is continuous with small fluctuations
(like in CMB lensing), it is also generically non-Gaussian,
and a full statistical prior is not readily available (like in
galaxy lensing). Furthermore, intensity maps may contain
some redshift information, allowing the full three-
dimensional gravitational potential to be estimated.

Because of smooth foregrounds in frequency space (e.g.,
due to Galactic dust in 21 cm [63] or continuum fitting in the
Lyman-α forest), wave vectors with low radial components
may be unusable,which complicates the lens reconstruction.
In this paper, we have addressed the issue of the non-

Gaussianity of the source field. We have generalized the
quadratic estimator formalism commonly used in CMB
lensing to any weakly non-Gaussian source field by
deriving the optimal weights. We have computed the effect
of non-Gaussianity on the lensing noise and shown that
the relevant measure of non-Gaussianity is the ratio of the
trispectrum to the squared power spectrum, divided by the
number of modes.
Beyond the statistical error, the non-Gaussianity of the

unlensed map also produces systematic biases in the lens
reconstruction, both in auto- and cross-correlation. We have
explored in detail the non-Gaussian noise biases, the effect
of foregrounds, and self-lensing due to the lensing of high-
redshift sources by the halos low-redshift sources. We have
proposed various means to reduce the non-Gaussianity of
the source (e.g., by masking the rare bright point sources),
to avoid it (e.g., using disjoint multipoles or shear/dilation
estimators), and to subtract it (e.g., using emission tem-
plates or source/bias hardening). Overall, these biases
appear easier to mitigate in cross-correlation than in
auto-correlation.
Since high-quality CIB intensity maps already exist, we

have applied our formalism to the case of CIB lensing. We
forecast that CIB lensing is detectable with current Planck
data and will be measured at high precision in future
submillimeter experiments like CCAT-Prime. Because the
CIB is at lower redshift than most proposed intensity
mapping surveys, the non-Gaussianity is expected to be
larger. Furthermore, the redshift distribution of the CIB is
complex (dependent on the multipole considered), some-
what uncertain, and extremely wide, extending all the way
to redshift zero. This produces a larger self-lensing bias,
compared to line intensity maps where the redshifts are
known precisely. CIB lensing is therefore a very useful
stepping stone toward lensing reconstruction of intensity
mapping experiments.
CIB lensing will also provide a measurement of the

amplitude of structure at intermediate redshifts, although
its cosmological interpretation may at first be affected by
uncertainties in the CIB redshift distribution. Turning this
around, CIB lensing can be used to constrain the redshift
distribution of the CIB, by measuring distance ratios
(sometimes referred to as cosmography) between CIB
lensing and CMB or galaxy lensing or by assuming a
known cosmology. In other words, measuring CIB lensing
can provide useful insight into star-formation history.
Finally, because residual CIB will be present in cleaned

CMB maps, the lensing of the CIB will be a bias in CMB
lensing. We have described these biases but leave their
evaluation to future work.

7The optimal and unbiased reconstruction of ϕCIB would have
been QCIB½TCIB�.
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APPENDIX A: CIB HALO MODEL

1. CIB monopole and power spectrum

We follow the halo model implementation from
Refs. [20,43]. Consider a galaxy with luminosity Lν, i.e.,
such that the power emitted in frequency band dν is Lνdν
and the observed flux per unit frequency is

Sν ¼
aLν=a

4πχ2
½power=area=frequency�; ðA1Þ

where a is the scale factor and χ is the comoving distance.
Note this equation does not involve the usual luminosity
distance because we are not considering the bolometric flux
but a band-limited flux. The observed CIB specific surface
brightness Iν is the sum of the fluxes from all galaxies
within an observed solid angle dΩ:

Iν ¼
Z

dNgal

dΩ
Sν½power=area=solid angle=frequency�:

ðA2Þ

Introducing the comoving volume dV ¼ dΩχ2dχ and the
galaxy number density contrast δgalðSνÞ, this can be
expressed as

δIν ¼
Z

dχχ2
Z

dSν
dN̄gal

dSνdV
SνδgalðSνÞ: ðA3Þ

The flux distribution functions of galaxies dN̄gal=dSνdV for
the Planck frequency bands are taken from the “two
star-forming modes” model in Ref. [40]. We apply the
flux cuts relevant for Planck (see Table 1 in Ref. [21]) and
for CCAT-Prime. The model we implement makes the

simplifying but unphysical assumption that all galaxies
cluster identically, regardless of their luminosity. With this
assumption, the equation above becomes

δIν ¼
Z

dχχ2j̄νδgal; ðA4Þ

where we have introduced

j̄ν ¼
Z

dSν
dN̄gal

dSνdV
Sν: ðA5Þ

Note that our definition differs by a factor a=χ2 from other
sources in the literature.
Hence, the CIB intensity power spectrum

CIνIν0
l ¼

Z
dχχ2j̄νj̄ν0P3d

gal

�
k ¼ lþ 1=2

χ
; z

�
: ðA6Þ

The power spectrum of galaxies is then evaluated from a
halo model, which produces a 2h-term, 1h-term (or halo
shot noise) and a 1-galaxy term (or galaxy shot noise). The
clustering of galaxies (2-halo and 1-halo terms) is com-
puted using a HOD from Ref. [47],


P1h
galðkÞ ¼ I02ðkÞ

P2h
galðkÞ ¼ I211ðkÞPlinðkÞ; ðA7Þ

where

Iijðk1;…; kjÞ≡
Z

dm
dn
dm

bi

�
NgalðmÞ
n̄gal

�
j

uðk1Þ…uðkjÞ:

ðA8Þ

Here, NgalðmÞ and n̄gal define the HOD, and uðkÞ is the
normalized Fourier transform of the halo profile [47].
Following Ref. [20], we vary the HOD depending on the
frequency band observed. The shot-noise power spectrum
is computed as

dCgal shot
l ¼ dN

dΩ
Sν;

soCgal shot
l ¼

Z
dχχ2

Z
dSν

dN̄gal

dSνdV
S2ν|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≡j̄ν;2

: ðA9Þ

Finally, our model for the CIB power spectrum becomes

CIνIν0
l ¼

Z
dχχ2½j̄νj̄ν0P1hþ2h

gal þ j̄ν;2�: ðA10Þ

Several limitations should be noted. First, the CIB emission
is assumed independent of galaxy mass. Second, for this
approach to be consistent, there has to exist a mass-flux
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relation such that the HOD in Ref. [47] produces the flux
counts of Ref. [43], which is not guaranteed. Finally, for the
mass integrals to converge, one needs to integrate to very
low halo masses, ≃1010 M⊙, where the HOD may be
uncertain.

2. CIB trispectrum

The power spectrum of the reconstructed lensing poten-
tial is a four-point function of the temperature. Therefore,
the unlensed CIB trispectrum contributes to the lensing
power spectrum. Similarly to the case of the power
spectrum, the halo model relates the CIB trispectrum to

the galaxy trispectrum and eventually to the matter power
spectrum, bispectrum, and trispectrum:

T CIB
l1;l2;l3;l4

¼
Z

dχχ2½j̄4νT 1hþ2hþ3hþ4h
gal þ j̄ν;4�; ðA11Þ

with

j̄ν;4 ¼
Z

dSν
dN̄gal

dSνdV
S4ν: ðA12Þ

As shown in Fig. 5, our halo model trispectrum is very
sensitive to the minimum redshift (or distance) in the integral
above. In order to evaluate Eq (A11), we need to compute the
galaxy trispectrum T gal in the halo model [64],

8>>>>>><
>>>>>>:

T 1h
galðk1;k2;k3;k4Þ ¼ I04ðk1; k2; k3; k4Þ

T 2h
galðk1;k2;k3;k4Þ ¼ Pmðk12ÞI12ðk1; k2ÞI12ðk3; k4Þ þ 2 perm:þ Pmðk1ÞI11ðk1ÞI13ðk2; k3; k4Þ þ 3 perm:

T 3h
galðk1;k2;k3;k4Þ ¼ Bmðk1;k2;k34ÞI11ðk1ÞI11ðk2ÞI12ðk3; k4Þ þ 5 perm:

T 4h
galðk1;k2;k3;k4Þ ¼ Tmðk1;k2;k3;k4ÞI11ðk1ÞI11ðk2ÞI11ðk3ÞI11ðk4Þ;

ðA13Þ

where Pm, Bm, and Tm are the matter power spectrum,
bispectrum, and trispectrum, respectively.
When applying the quadratic estimator, the low lensing

multipoles L are best reconstructed, and this
reconstruction relies mostly on the high map multipoles
l. The trispectrum configuration of interest is therefore
“almost collapsed,” T CIB

l;L−l;l0;−L−l0 , with L ≪ l. This is
convenient for two reasons. First, the almost-collapsed
trispectrum can be measured from the map without
having to implement a general trispectrum estimator
(see Appendix E). Second, in this limit, the halo model
expressions simplify. Indeed, for the galaxy number
density or any general three-dimensional (3D) field,
there exists a consistency relation between the almost-
collapsed trispectrum, the exactly collapsed trispectrum
T galðk;−k;k0;−k0Þ, and the response of the power
spectrum to a matter overdensity:

T galðk;K − k;k0;−K − k0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
almost-collapsed

≃ T galðk;−k;k0;−k0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
exactly-collapsed

þ ∂PgalðkÞ
∂δm

∂PgalðkÞ
∂δm PlinðKÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

power spectrum response

:

ðA14Þ

This relation was derived in the context of the covariance
of measured power spectra, and the second term on the
right-hand side is then interpreted as the supersample
variance [64–66]. In Ref. [64], it was shown that the halo

model satisfies this consistency relation. This is conven-
ient because it means that we only need to evaluate
the halo model trispectrum in the exactly collapsed
limit.
We follow Ref. [64] for the expressions of the halo model

trispectrum. The shot-noise and 1-halo trispectra are easy to
evaluate, depending only on the mass function, HOD, and
halo profile. The 2-halo further depends on the matter
power spectrum and is also straightforward to compute. In
the exactly collapsed limit, the 3-halo term T 3h cancels
because the matter bispectrum is zero in the collapsed
configuration. The 4-halo trispectrum is related to the
matter trispectrum.
For the purpose of lens reconstruction, we focus on the

collapsed trispectrum hT galðk;−k;k0;−k0Þi, averaged
over the angle between k and k0, and with k0 ¼ k.
Indeed, we mostly reconstruct the low-L lensing modes
and from only high-l temperature modes, which justifies
the collapsed limit. Furthermore, as can be seen from
Fig. 7, the range of multipoles which contribute to the
(Gaussian) signal-to-noise ratio is quite narrow, which
justifies considering k0 ¼ k. Finally, the power spectrum of
the reconstructed lensing at fixed L is effectively an
average over the angle between l and l0. It is true that
this average involves some angular weights, but this is not
expected to change the result by more than a factor
of a few, which is sufficient here. In this very specific
limit, the matter trispectrum takes a simple form,
hT mðk;−k;k0;−k0Þi ≃ ð232=441ÞPmðkÞ3 [67], and the
halo model terms become

WEAK LENSING OF INTENSITY MAPPING: THE COSMIC … PHYS. REV. D 97, 123539 (2018)

123539-17



8>>>>>><
>>>>>>:

hT 1h
galðk;−k;k0;−k0Þi ¼ I04ðk; k; k; kÞ

hT 2h
galðk;−k;k0;−k0Þi ¼ 4PmðkÞI11ðkÞI13ðk; k; kÞ þ 2PmðkÞI12ðk; kÞ2

hT 3h
galðk;−k;k0;−k0Þi ¼ 0

hT 4h
galðk;−k;k0;−k0Þi ¼ 232

441
PmðkÞ3I11ðkÞ4:

ðA15Þ

Finally, we follow Ref. [65] for the expression of the power

spectrum response ∂PgalðkÞ
∂δm in the halo model.

APPENDIX B: DERIVING THE LENSING
KERNEL FOR THE CIB LENSING

QUADRATIC ESTIMATOR

In this Appendix, we derive the lensing efficiency kernel
for the CIB lensing quadratic estimator. In other words, we
wish to derive the redshift range probed by the CIB lensing
estimator.
In the case of CMB lensing, this question is trivial, since

the CMB is sourced at a single redshift of 1100. In the case
of galaxy lensing, there is a well-defined number density of
galaxies dn=dz. The shear estimator is linear in the
individual galaxy shapes. If the signal-to-noise ratio on
each galaxy shape were the same, regardless of galaxy
redshift, then the observed shear would be simply the
average of the shears defined at each galaxy redshift,
weighted by dn=dz.
In the case of CIB lensing, this question is less

straightforward. Indeed, depending on the multipole,
the unlensed CIB is sourced by different redshift ranges:
the 2-halo, 1-halo, and 1-galaxy terms in the CIB
power spectrum have different redshift distributions (see
Fig. 12 in Ref. [68]). The quadratic estimator mixes the CIB
multipoles to reconstruct the lensing potential, in a way that
depends on the multipole of lensing to be reconstructed.
Thus, different multipoles of the CIB lensing quadratic
estimator probe different redshifts.
We decompose the unlensed CIB emissions into sta-

tistically independent redshift slices:

T0
l ¼

Z
dzTz

l; with hTz
lT

z0
l0 i ∝ δDz−z0 : ðB1Þ

As a result, the unlensed CIB power spectrum can be
decomposed as

C0
l ¼

Z
dz

dC0
l

dz
;

where hTz
lT

z0
l0 i ¼ δDz−z0 ð2πÞ2δDlþl0

dC0
l

dz
: ðB2Þ

We then define ϕz to be the lensing potential for a source
at redshift z. The unlensed CIB emission at redshift z is
lensed by the potential ϕz. Thus,

hTz
lT

z
L−li ¼ ϕz

Lf
z
l;L−l þOðϕ2C0Þ; ðB3Þ

where

fzl;L−l ¼ −L ·

�
l
dC0

l

dz
þ ðL − lÞ dC

0
L−l
dz

�
: ðB4Þ

In particular,

fl;L−l ¼
Z

dzfzl;L−l: ðB5Þ

As a result, the basic quadratic estimator measures

hϕ̂L;li ¼
Z

dzϕz
L

fzl;L−l
fl;L−l

: ðB6Þ

We can finally express the quadratic estimator as a
weighted sum of the lensing potential over the various
redshifts slices, with the weights

hϕ̂Li ∝
Z

dzϕz
L

Z
d2l
ð2πÞ2

fzl;L−l
fl;L−l

1

σ2L;l
: ðB7Þ

In conclusion, the measured CIB lensing convergence can
be written as

κCIBL ¼
Z

dχWκCIBðχ;LÞδmðk⃗ ¼ L=χ; χÞ; ðB8Þ

where

WκCIBðχ;LÞ ¼
Z

dχSWCIBðχS;LÞWκðχ; χSÞ; ðB9Þ

Wκðχ; χSÞ ¼
3

2

�
H0

c

�
2

Ω0
m

χ

aðχÞ ð1 − χ=χSÞ; ðB10Þ

and

SCHAAN, FERRARO, and SPERGEL PHYS. REV. D 97, 123539 (2018)

123539-18



WCIBðχS;LÞ ∝
dz
dχs

Z
d2l
ð2πÞ2

fzl;L−l
fl;L−l

1

σ2L;l
;

normalized by
Z

dχSWCIBðχS;LÞ ¼ 1:

ðB11Þ

A few comments are in order. First, the lensing kernel
WκCIBðχ;LÞ depends on the multipole L considered. This is
not the case in CMB lensing, due to fact that the unlensed
CMB comes from a single redshift. This is also different
from the galaxy lensing case.
Second, the lensing kernel for the CIB quadratic esti-

mator is determined by the redshift distribution of the

unlensed CIB power spectrum
dC0

l
dz as well as the noise

power spectrum of the CIB map. Intuitively, the minimum-
variance quadratic estimator weighs the various CIB multi-
poles differently depending on their signal-to-noise ratio.
Since different redshifts contribute differently to the various
CIB multipoles, this weighting will upweight or down-
weight certain redshift ranges.

APPENDIX C: NON-GAUSSIANITY AND POWER
SPECTRUM SIGNAL-TO-NOISE RATIO

Before looking at the case of lensing, for a first step, we
compute the angular power spectrum covariance in both the
Gaussian and Poisson cases. For multipoles above
l ∼ 1000, the CIB is dominated by the 1-halo or 1-galaxy
terms. In this regime, the statistics of the field are close to a
uniform Poissonian sampling, rather than a Gaussian
random field. Below, we compute and interpret intuitively
the reduction in signal-to-noise ratio due to the Poisson
sampling. This intuition is useful for understanding the
effect of non-Gaussianity on the lensing signal-to-noise
ratio, as described in the next section.

1. Gaussian random field

For a Gaussian random field, we know that the various
l-modes are independent. This leads to the well-known
formula for the power spectrum covariance,

cov½Cl; Cl0 � ¼ δKl;l0
2C2

l

Nmodesl
; ðC1Þ

where Nmodesl ≈ 2fskylΔl is the number of observed
Fourier modes in a bin centered at l and of width Δl. As
a result, the signal-to-noise ratio for the power spectrum is

SNRGaussianðClÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmodesl

2

r
: ðC2Þ

Intuitively, each mode contributes a signal-to-noise
ratio of 1=

ffiffiffi
2

p
, and the modes are all independent, so

SNR ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmodesl

p
. As expected, the signal-to-noise ratio

becomes infinite in the limit of infinite number of modes;
the only limit to the signal-to-noise is the number of modes.

2. Non-Gaussian random field

For a non-Gaussian random field, the situation is differ-
ent. The various multipoles are no longer independent,
which translates into correlations across power spectrum
bins,

cov½Cl; Cl0 � ¼ δKl;l0
2C2

l

Nmodesl
þ T l;−l;l0;−l0

V
; ðC3Þ

where V is the 3D volume or 2D area of the survey. The
trispectrum of the field thus adds a nondiagonal covariance
term. As a result, the signal-to-noise is reduced compared
to the Gaussian case. We explore this in more detail in the
special case of the uniform Poisson sampling in the
following.

3. Uniform Poisson sampling

A uniform Poisson sampling describes a collection of
unclustered point sources well. In this case, the power
spectrum and trispectrum take simple forms that are
independent of multipole,

(
Cl ¼ hs2i

n̄ ;

T l;−l;l0;−l0 ¼ hs4i
n̄3 ;

ðC4Þ

where each object has a flux s and the mean number density
of objects is n̄.
In this simple case, the power spectrum is entirely

determined by these two numbers. The most natural way
of extracting this information would be to estimate n̄ and
hs2i directly, without computing the power spectrum. One
could simply count the number of objects. Intuitively, the
signal-to-noise ratio on this measurement should scale asffiffiffiffiffiffiffiffi
Ngal

p ¼ ffiffiffiffiffiffi
n̄V

p
. One would then estimate hs2i directly from

the galaxy catalog. The signal-to-noise ratio on the power
spectrum will be determined by the amount of object-
to-object fluctuations in the flux; i.e., it will scale as
hs2i=

ffiffiffiffiffiffiffiffi
hs4i

p
.

While measuring the power spectrum is a good way to
extract the information for the Gaussian case, it is a clumsy
approach for the Poisson case. First, we can see that the
various Cl bins are correlated due to the trispectrum term.
However, they are not 100% correlated, so extracting all the
information requires measuring all the available multipoles.
Indeed, the non-Gaussian formula for the signal-to-noise
ratio simplifies to
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SNRPoissonðClÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmodesl

2

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ NmodeslT
2C2V

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmodesl

2

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Nmodesl
2Ngal

hs4i
hs2i2

q : ðC5Þ

In particular, in the limit of infinite number of modes, the
signal-to-noise ratio is not infinite but asymptotes to

SNRPoissonðCl; Nmodesl → ∞Þ ¼ ffiffiffiffiffiffiffiffi
Ngal

p hs2iffiffiffiffiffiffiffiffi
hs4i

p : ðC6Þ

We thus obtain the expression expected for the information
content of a Poisson sampling.

APPENDIX D: NON-GAUSSIANITY
AND LENSING SIGNAL-TO-NOISE

We go a step further and compute the total noise on the
lens reconstruction when the unlensed source image is a
uniform Poisson sampling. In this simple limiting case, the
power spectrum and trispectrum are independent of the
multipole. This allows us to evaluate Eqs. (22) and (24) and
gain some intuition for the magnitude of the non-Gaussian
lensing noise.

1. Non-Gaussian weights

To evaluate Eq. (22), we need to be careful about double
counting modes. Noting that ϕ̂L;l ¼ ϕ̂L;L−l, we can replace
the covariance matrix by

ðΣLÞl;l0 ¼
1

fl;L−lfl0;L−l0

× ½2ð2πÞ2δDl0−lCtotal
l Ctotal

L−l þ T 0
l;−l0;L−l;l0−L�:

ðD1Þ

If power spectrum and trispectrum are independent of l,
and Ctotal ≃ C0, the Sherman-Morrison formula allows one
to invert the covariance matrix as

ðΣLÞ−1l;l0 ¼
fl;L−lfl0;L−l0

2ðC0Þ2

×

�
ð2πÞ2δDl0−l −

T 0

2ðC0Þ2 þ T 0ðR d2l
ð2πÞ2Þ

�
; ðD2Þ

which we then integrate:

Z
d2ld2l0

ð2πÞ4 ðΣLÞ−1l;l0 ¼ L4
ðR d2l

ð2πÞ2ÞðC0Þ2
2ðC0Þ2 þ ðR d2l

ð2πÞ2ÞT 0
: ðD3Þ

Therefore, the reconstruction noise on ϕ [Eq. (22)] becomes

NL ¼
�Z

d2ld2l0

ð2πÞ4 ðΣLÞ−1l;l0
�−1

¼ 2

L4ðR d2l
ð2πÞ2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

GaussianNL

þ T 0

L4ðC0Þ2|fflfflfflffl{zfflfflfflffl}
non-Gaussian correction

; ðD4Þ

or in terms of κ,

Nκ
L ¼ 2π

Nmodes|fflffl{zfflffl}
Gaussian noise

þ T 0

4ðC0Þ2|fflfflffl{zfflfflffl}
non-Gaussian correction

; ðD5Þ

where Nmodes ≡ 4π
R

d2l
ð2πÞ2 ¼ l2

max − l2
min and lmin and lmax

define the range of observed multipoles used for the lens
reconstruction. The first term recovers the noise relevant for a
Gaussian (instead of Poisson) white noise. This term goes to
zero as the number of observed multipoles increases; if the
modes are Gaussian, each of them adds independent lensing
information, and the number of modes is the only limit to the
reconstruction precision. The second term is due to the non-
Gaussian nature of the unlensed map. Interestingly, it is
independent of the number of observed multipoles.
In the limit of an infinite number of observed multipoles,

the reconstruction noise thus asymptotes to NL → T 0

L4C2.
This is the noise on the reconstructed lensing potential ϕ.
The corresponding noise on the lensing convergence κ is

Nκ
L ¼ T 0

4C2
¼ 1

4

hs4i
hs2i2

1

n̄
: ðD6Þ

This shows that the noise on the reconstructed ϕ̂L
is independent of the multipole L. This is the same L-
dependence as the shape noise of galaxy shear. As stated
above, because the unlensed power spectrum is white (Cl is
independent of l), shear has no effect on the map, and all the
lensing information is reconstructed from magnification.
Hence, this noise does not originate from fluctuations in the
shapes of galaxies but rather in fluctuations in the local
number density and brightness of galaxies. Locally, these
fluctuations are degeneratewith a localmagnification and are
therefore a source of noise for the lens reconstruction.
A more intuitive derivation is the following. Schemati-

cally, the observed surface brightness map can be described
as ns, where n is the number count of galaxies and s is the
galaxy brightness. Lensing conserves the surface brightness.
Indeed, if the convergence is nonzero, the observed number
counts are diluted as n̄ → n̄=ð1þ 2κÞ, but the individual
galaxy brightnesses are enhanced as hsi → hsið1þ 2κÞ, thus
producing no net effect. On the other hand, the power
spectrum of the map, which scales as C0

l ¼ hs2i=n̄, is
modified as Cl ¼ C0

lð1þ 2κÞ. As a result, the
reconstruction noise on the convergence is directly related
to the intrinsic fluctuations in the power spectrum,
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σ2κ ¼
1

4

1

SNRPoisson
; ðD7Þ

where SNRPoisson ¼ T 0

C2 is the signal-to-noise ratio on the
measured power spectrum, computed above. Finally, since
this noise on the reconstruction of the local κ is uncorrelated
between positions, we get

Nκ
L ¼ σ2κ ¼

1

4

1

SNRPoisson
¼ T 0

4C2
; ðD8Þ

consistent with the result above.

2. Gaussian weights

When the power spectrum and trispectrum are indepen-
dent of the multipole, Eq. (24) for the lens reconstruction
noise takes the simple form

Nκ
L ¼ 2π

Nmodes
þ T 0

4ðC0Þ2 : ðD9Þ

Notice that the reconstruction noise in this case (Gaussian
weights on a non-Gaussian unlensed map) is the same as

when using the more optimal non-Gaussian weights. This
coincidence occurs for the following reason: since the
power spectrum and trispectrum are independent of the
multipole, both the non-Gaussian and Gaussian weights
give equal weight to every temperature mode, resulting in
the same estimator. This is not the case for a general power
spectrum and trispectrum.

APPENDIX E: MEASURING THE TRISPECTRUM
IN THE COLLAPSED LIMIT

Here, we present the estimator for the CIB trispectrum
T 0

l;L−l;l;−L−l in the collapsed limit L ≪ l that we have
used to derive the upper limits in Fig. 5. Let us define a
filtered map TfðlÞ ¼ WfðlÞTl, with the filter normalizing
such that Z

d2l
ð2πÞ2W

2
fðlÞ ¼ 1: ðE1Þ

Let us further define the field KðxÞ in real space as
Kðn̂Þ ¼ T2

fðn̂Þ. The power spectrum of K is then

hKðLÞKðL0Þi ¼
Z

d2ld2l0

ð2πÞ4 WfðlÞWfðjL − ljÞWfðl0ÞWfðjL0 − l0jÞhTlTL−lTl0TL0−l0 i

¼ ð2πÞ2δDLþL0 ×

�
2

Z
d2l
ð2πÞ2W

2
fðlÞW2

fðjL − ljÞCtotal
l Ctotal

jL−lj

þ
Z

d2ld2l0

ð2πÞ4 WfðlÞWfðjL − ljÞWfðl0ÞWfðjL0 − l0jÞT 0
l;L−l;l0;L0−l0

�
: ðE2Þ

In this limit, and for a narrow filter centered around l�, we thus obtain

CKK
L ¼

�
2

�Z
d2l
ð2πÞ2W

4
fðlÞ

�
ðCtotal

l� Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gaussian part

þ hT 0
l�;L−l�;l�;−L−l� i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

angle-averaged trispectrum

�
: ðE3Þ

To estimate the trispectrum, we subtract the Gaussian part of CKK
L measured on Gaussian simulations with the same power

spectrum as the CIB.
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