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In [Phys. Rev. D 80, 123003 (2009)] Schmidt suggested that dynamical dark energy (DDE) propagating
on the phantom brane could mimick ΛCDM. Schmidt went on to derive a phenomenological expression for
ρDE which could achieve this. We demonstrate that while Schmidt’s central premise is correct, the
expression for ρDE derived by [Schmidt, Phys. Rev. D 80, 123003 (2009)] is flawed. We derive the correct
expression for ρDE which leads toΛCDM-like expansion on the phantom brane. We also show that DDE on
the brane can be associated with a quintessence field and derive a closed form expression for its potential
VðϕÞ. Interestingly the α-attractor based potential VðϕÞ ∝ coth2λϕ makes braneworld expansion resemble
ΛCDM. However the two models can easily be distinguished on the basis of density perturbations which
grow at different rates on the braneworld and in ΛCDM.

DOI: 10.1103/PhysRevD.97.123537

I. INTRODUCTION

Cosmological expansion appears to be speeding up. The
source of cosmic acceleration may be a novel constituent
called dark energy (DE) which violates the strong energy
condition ρþ 3p ≥ 0. An alternative to this scenario rests
on the possibility that general relativity (GR) inadequately
describes late-time cosmic expansion and needs to be
supplanted by a modified theory of gravity. Of the various
DE models suggested in the literature [1] the cosmological
constant Λ occupies a special place since its equation of
state p ¼ −ρ is manifestly Lorentz invariant [2,3]. Λ,
when taken together with cold dark matter (CDM),
constitutes ΛCDM cosmology. The ΛCDM universe
appears to agree remarkably well with a slew of cosmo-
logical observations [4]. Yet some data sets [5,6] also
appear to support a phantom universe possessing a
strongly negative equation of state (EOS) of dark energy
(DE), w < −1 [7]. While current data sets are unable to
unambiguously differentiate between these orthogonal
models, high quality data expected from future DE
experiments are likely to do so.
It is well known that a phantom universe is plagued by

instabilities which render the simplest versions of this
scenario untenable [8]. For this reason considerable interest
has been roused by modified gravity models in which the
EOS is an effective quantity and therefore its becoming
phantomlike is not associated with underlying instabilities.
To this class of models belongs the phantom brane.
Originally proposed in [9,10] the phantom brane has an

effective equation of state of dark energy which is phan-
tomlike, i.e., weff < −1. The expansion rate on the phantom
brane is given by [9]

hðxÞ≡HðxÞ
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mx3 þ Ωσ þ Ωl

q
−

ffiffiffiffiffiffi
Ωl

p
;

x≡ ð1þ zÞ ¼ a0=a; ð1Þ

where Ωσ describes the brane tension while Ωl depends
upon the ratio between the five-dimensional (Mp) and four-
dimensional Plank mass (mp)

Ωl ¼ 1

l2H2
0

where l ¼ 2m2
p

M3
p
: ð2Þ

Since hðx ¼ 1Þ ¼ 1 the constants in (1) are related through
the constraint equation

Ωσ ¼ 1 −Ω0m þ 2
ffiffiffiffiffiffi
Ωl

p
: ð3Þ

Note that in the limit Ωl → 0 (or l → ∞), (1) describes
Friedmann-Robertson-Walker (FRW) expansion in general
relativity (GR). As its name suggests, the phantom brane
has an effective equation of state

weffðxÞ ¼
ð2x=3Þd lnH=dx − 1

1 − ðH0=HÞ2Ωm0x3
; x ¼ 1þ z; ð4Þ

whose value becomes phantomlike, weff < −1, at the
present epoch. It is interesting that the phantom brane
does not possess any of the singularities which usually
afflict conventional phantom models and agrees very well
with observations [11].
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In [12] Schmidt suggested the intriguing possibility that
the presence of dynamical dark energy (DDE) on the brane
might give rise to ΛCDM-like expansion at late times. In
this paper we demonstrate that while Schmidt’s original
conjecture is correct, his expression for DDE is flawed. In
Sec. II, we revisit Schmidt’s formalism and derive the
correct expression for DDE. In Sec. III, we also show how a
Quintessence field propagating on the brane can give rise to
ΛCDM-like expansion. We summarize our results in
Sec. IV with useful discussions.

II. DARK ENERGY ON THE BRANE

It is instructive to generalize braneworld expansion
in (1) to

hðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mx3 þ ΩDEðxÞ þ Ωl

q
−

ffiffiffiffiffiffi
Ωl

p
; ð5Þ

where the constant brane tension Ωσ in (1) has been re-
placed by the dynamical quantity ΩDEðxÞ≡ ρDEðxÞ=ρcr;0.
The critical density at the present epoch is given by ρcr;0 ¼
3m2

pH2
0. Accordingly (3) becomes

ΩDEðx ¼ 1Þ ¼ 1 −Ω0m þ 2
ffiffiffiffiffiffi
Ωl

p
: ð6Þ

Next we demand that brane expansion in (5) coincide with
that in the ΛCDM model

hΛCDMðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mx3 þ ΩΛ

q
: ð7Þ

Equating (5) and (7) one easily gets

ΩDEðxÞ ¼ ΩΛ þ 2
ffiffiffiffiffiffi
Ωl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mx3 þΩΛ

q
¼ ΩΛ þ 2h

ffiffiffiffiffiffi
Ωl

p
;

ð8Þ
which reduces to ΩDEðxÞ ¼ ΩΛ when Ωl ¼ 0.
Surprisingly the expression for ΩDEðxÞ in (8) differs

from that in [12], namely

ΩSchmidt
DE ðxÞ ¼ ΩΛ þ 2Ωl

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ0m=ΩlÞx3 þ 1

q
− 1

i
; ð9Þ

(see Eq. (2.4) of [12]). Indeed, even a cursory comparison
of (9) and our expression (8) reveals that the two expres-
sions for ΩDE are very different. (Note that Ωl in our
notation coincides with Ωrc in [12].) Clearly (8) satisfies
the present epoch constraint (6) whereas (9) fails to do so,
since

ΩSchmidt
DE ðx ¼ 1Þ ¼ ΩΛ þ 2Ωl½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ0m=ΩlÞ þ 1

p
− 1�: ð10Þ

Figure 1(a) shows the fractional difference, Δ, between the
expansion rate in ΛCDM and in the two braneworld
models, [12] and ours. In both cases hbw is given by (5)
with ΩDE determined from (9) in [12] and from (8) in
our model.
Figure 1(a) clearly demonstrates that while Δ ¼ 0 in our

model (as required), Δ ≠ 0 in Schmidt’s model (9). The
possibility of an error in (9) is further supported by an
analysis of the Om diagnostic [13]

OmðxÞ ¼ h2ðxÞ − 1

x3 − 1
; x ¼ 1þ z: ð11Þ

It is well known that Om ¼ Ω0m only in ΛCDM [13]. In
other DE models Om ≠ Ω0m and in dynamical DE models

(b)(a)

FIG. 1. Left panel: The fractional difference, Δ, in the expansion rate of ΛCDM and the two braneworld models (8) and (9) is shown
for different values of Ωl. As expected Δ ¼ 0 for (8), implying that the braneworld (8) and ΛCDM have the same expansion rate.
HoweverΔ ≠ 0 for the braneworld in (9) indicating that the expansion rate in this braneworld does not mimic ΛCDM. Right panel: This
panel shows the Om diagnostic for the two braneworld models (8) and (9). We find that Om=Ω0m ¼ 1 in (8) which is a reflection of the
fact that the expansion rate in (8) is the same as that in ΛCDM. However Om=Ω0m ≠ 1 in the braneworld in (9) which implies that
braneworld expansion in this model does not mimic ΛCDM (as claimed). Note thatΩl in our notation coincides withΩrc in [12]. In this
figure we have set the parameters to the same values as were used in [12] for illustration.
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Om can also be time dependent. Figure 1(b) (right panel)
shows the ratioOm=Ω0m for our model (8) and for (9) from
[12]. We find that Om=Ω0m ¼ 1 in our model but Om is
strongly time dependent for (9). We therefore conclude that
the derivation of (9) in [12] is incorrect.
The equation of state (EOS) of the dark energy, defined

as wDE ≡ pDE=ρDE, can be calculated using the relation

_ρDE ¼ −3HρDEð1þ wDEÞ; ð12Þ
and the expression of ΩDE in (8) as

wDE ¼ −1þ Ω0mx3

ΩDE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωl

Ω0mx3 þ ΩΛ

s
¼ −1þ Ω0mx3

ffiffiffiffiffiffi
Ωl

p
hΩDE

:

ð13Þ
On the other hand, if we assume the incorrect expression
for dark energy given in [12], the expression for wDE is
coming out to be

wSchmidt
DE ¼ −1þ Ω0mx3

ΩSchmidt
DE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωl

Ω0mx3 þ Ωl

s
; ð14Þ

which itself is of course fallacious (ΩSchmidt
DE is given by (9)).

The solid curves in Fig. 2 show the evolution of the
correct equation of state, wDE, given in (13), for two values
of Ωl which were used in [12] for illustration. The
early matter domination and late dark energy domination
asymptotes are wDE ¼ −1=2 and −1 respectively. In Fig. 2,

the dashed curves represent the evolution of the incorrect
expression for wDE, given in (14), for the same two values
of Ωl. Since the plots corresponding to the incorrect
expression for wDE, given in (14), exactly match with
the right panel of Fig. 1 of [12], we conclude that the error
(9), committed in [12] was not just a simple typo and also
carried along in Fig. 1 of that paper. But this error does not
probably plague rest of that paper since only the expansion
rate (which is trivially same as ΛCDM) remains important,
not the explicit expression for ΩDE causing the expansion.
The parameter Ωl in this “mimicry model,” based on
braneworld framework, is constrained as Ωl ≲ 0.25 at 2σ
using growth rate observations [14]. Note that, since
this braneworld model mimics the background expansion
of ΛCDM model, the EOS of the effective dark energy,
weff ¼ −1 always.

III. QUINTESSENCE ON THE BRANE

In this section we derive the precise form of the
Quintessence potential, VðϕÞ, which gives rise to
ΛCDM-like expansion on the brane. Consequently we
replace ΩDEðzÞ in (5) and (8) by Ωϕ, with the result that
the expansion history becomes

hϕðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mx3 þΩϕðxÞ þΩl

q
−

ffiffiffiffiffiffi
Ωl

p
; x ¼ 1þ z;

ð15Þ
whereΩϕ ≡ ρϕ=ρcr;0. The energy density ðρϕÞ and pressure
ðpϕÞ of the scalar field are given by,

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ; pϕ ¼ 1

2
_ϕ2 − VðϕÞ. ð16Þ

Using (15), (16) and the equations of motion

ϕ̈þ 3H _ϕþ dV
dϕ

¼ 0; ð17Þ

one finds

ϕ02

ρcr;0
¼ 2

3xH2
0

�
h0

h

��
1þ

ffiffiffiffiffiffi
Ωl

p
h

�
−
Ω0mx
H2

; ð18Þ

and

VðxÞ
ρcr;0

¼ h2 −
Ω0mx3

2
þ 2h

ffiffiffiffiffiffi
Ωl

p
−
xh0ðhþ ffiffiffiffiffiffi

Ωl
p Þ

3
: ð19Þ

Here prime denotes differentiation with respect to x (or z).
Note that (18) and (19) reduce to the usual equations for the
scalar field in the GR limit, Ωl → 0.
In order to determine VðϕÞ one needs to solve (18) and

substitute the resulting expression for hðϕÞ in (19). This
process can be simplified by noting that hðxÞ in this
mimicry model is given by the ΛCDM expression (7).
Consequently (18) becomes

FIG. 2. The evolution of the correct expression for wDE, given
by (13), is plotted with solid curves. The dashed curves represent
the incorrect expression for wDE given by (14), resulting from
assuming the incorrect expression for ΩDE in (9). For compari-
son, we set the parameters to the same values that were chosen in
[12] for illustration purposes. The incorrect plots (dashed curves)
match with the corresponding curves in [12] (see right panel of
Fig. 1 in that paper). So we believe that the error (9), committed in
[12], was not just a simple typo and also carried along in Fig 1 of
that paper.

EMULATING A ΛCDM-LIKE EXPANSION ON THE … PHYS. REV. D 97, 123537 (2018)

123537-3



ϕ02

ρcr;0
¼ Ω0m

ffiffiffiffiffiffi
Ωl

p
H2

0

�
x
h3

�
: ð20Þ

We choose the negative square root in (20) so that ϕ rolls
towards more positive values (ie _ϕ > 0). Consequently the
evolution of ϕ is determined by

ϕ0 ¼ −
�
mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω0m

ffiffiffiffiffiffi
Ωl

pq � ffiffiffiffiffi
x
h3

r
; ð21Þ

where hðxÞ is given by (7). In this case (19) reduces to

VðxÞ
ρcr;0

¼ ΩΛ þ
ffiffiffiffiffiffi
Ωl

p �
3h2 þ ΩΛ

2h

�
: ð22Þ

Next we look for the solutions to (21) and (22) for the
following important limiting cases.

(i) GR. Substituting Ωl → 0 in (21) and (22) one
easily gets ϕ ¼ constant and V=ρcr;0 ¼ ΩΛ, as
expected.

(ii) Early times. For 1 ≪ x ≪ 103, h ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mx3

p
so that

ϕ

mp
≈

4ffiffiffi
3

p
�
Ωl

Ω0m

�
1=4

x−3=4 ≈
4ffiffiffi
3

p Ω1=4
lffiffiffi
h

p ð23Þ

where the constant of integration is chosen such
that the scalar field rolls from zero initially,
ϕðx ≫ 1Þ ¼ 0. One also finds

V
ρcr;0

≈ΩΛ þ 3

2

ffiffiffiffiffiffi
Ωl

p
h ≈ ΩΛ þ 8Ωl

ðϕ=mpÞ2
∝

1

ϕ2
:

ð24Þ

(iii) Late times. For x ≪ 1 one has h →
ffiffiffiffiffiffiffi
ΩΛ

p
with the

result that

ϕ ≃ −
2ffiffiffi
3

p mp

ffiffiffiffiffiffiffiffiffi
Ω0m

ΩΛ

s �
Ωl

ΩΛ

�
1=4

x3=2 þ ϕ1; ð25Þ

where ϕ1 ¼ ϕðx → 0Þ. It is easy to show that _ϕ2 ∝
x3 ≪ 1 and

V
ρcr;0

≈ ΩΛ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ΩlΩΛ

p
¼ constant: ð26Þ

It is interesting that VðϕÞ in (24) and (26) has preci-
sely the same asymptotic form as the potential V ¼
V0coth2ðλϕ=mpÞ. Accordingly we determine VðϕÞ in terms
of the following ansatz.1

Ω0V ≡ VðϕÞ
ρcr;0

¼ Acoth2
�
λϕ

mp

�
;

where A ¼ ΩΛ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛΩl

p
and λ ¼

ffiffiffiffiffiffiffiffiffi
A

8Ωl

s
: ð27Þ

As demonstrated in Fig. 3, a scalar field propagating on
the brane under the influence of the potential (27) repro-
duces ΛCDM-like expansion to an accuracy of ≤7%
for Ωl ≤ 0.2. This figure was generated by solving the
equation of motion of the scalar field (17) with H given by
(15) andΩϕ ¼ Ω0V þ Ω0;KE whereΩ0V defined in (27) and

Ω0;KE ¼ 1
2
_ϕ2=ρcr;0. Note that, the potential (27) belongs to

the class of potentials—VðϕÞ ∝ cothpðλϕÞ—which are
based on α-attractor family of potentials [15]. This set of
potentials possesses the same early time tracking feature of
the inverse power law potentials [16,17] and the former
has been comprehensively studied in [18] in the context of
dark energy.
But one can do even better. Below we reconstruct the

exact form of VðϕÞ which allows the brane to mimic
ΛCDM-like expansion precisely.

A. Exact form for V(ϕ)

Integrating (21), one obtains the following exact sol-
ution2 for ϕ

FIG. 3. The fractional difference between the expansion rate on
the brane (15) and that in the ΛCDM model is shown for the
ansatz potential (27).

1A companion potential to (27) which gives a some-
what better approximation to ΛCDM is VðϕÞ=ρcr;0 ¼ ΩΛþ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
ΩlΩΛ

p
coth ðλϕmp

Þ2.

2The exact solution for ϕ can also be written as follows

ϕ ¼ −
2ffiffiffi
3

p mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0m

ΩΛ

ffiffiffiffiffiffiffi
Ωl

ΩΛ

svuut x3=22F1

�
3

4
;
1

2
;
3

2
;−

Ω0mx3

ΩΛ

�
þ ϕ1;

where 2F1ða; b; c; μÞ is the Gauss hypergeometric function and
ϕ1 is given in (31).

BAG, MISHRA, and SAHNI PHYS. REV. D 97, 123537 (2018)

123537-4



ϕ ¼ CF
�
sin−1

�
Ω1=4

Λffiffiffi
h

p
����� − 1

�
; ð28Þ

whereC is a constant (having dimensions of mass) given by

C ¼ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcr;0
H2

0

ffiffiffiffiffiffiffi
Ωl

ΩΛ

svuut ¼ 4ffiffiffi
3

p
�
Ωl

ΩΛ

�
1=4

mp; ð29Þ

and FðζjmÞ is an elliptic integral of the first kind, defined as

FðζjmÞ ¼
Z

ζ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2ðθÞ

p : ð30Þ

In obtaining (28) we have chosen the constant of integra-
tion such that ϕðx ≫ 1Þ ¼ 0. It is worth noting that starting
from ϕ ¼ 0 initially (when x ≫ 1), the scalar field rolls up
to the following asymptotic value in the infinite future
(x → 0)

ϕ1 ≡ ϕðx → 0Þ ¼ CKð−1Þ; ð31Þ

whereKð−1Þ ¼ Γð1
4
Þ2=ð4 ffiffiffiffiffiffi

2π
p Þ ≈ 1.31. The complete ellip-

tic integral of the first kind is defined as KðmÞ ¼ Fðπ
2
jmÞ.

Inverting equation (28) one can express the expansion
rate h in terms of ϕ as follows

hðϕÞ ¼
ffiffiffiffiffiffiffi
ΩΛ

p

½snðϕC j − 1Þ�2 ; ð32Þ

where snððϕ=CÞj − 1Þ is one of the Jacobi elliptic func-
tions.3 Next, by inserting the expression for hðϕÞ from (32)
into (22), one easily gets the exact form for the recon-
structed potential as

VðϕÞ
ρcr;0

¼ ΩΛ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛΩl

p �
3

ν2
þ ν2

	
where

ν ¼ sn
�ϕ
C

��� − 1
�
: ð33Þ

Using the properties of the concerned special functions, one
can show that both (28) and (33) possess the correct
limiting values given by (24) and (26) respectively.
The reconstructed potential in (33) is periodic in ϕ and

its relevant part is plotted in Figure 4(a) (red curve) for
Ωl ¼ 0.2. The early and late time asymptotes, given by
(24) and (26), are shown by the blue and green dashed
curves respectively. Starting from its initial value (set at
ϕ ¼ 0) the scalar field ϕ rolls up to ϕ1, given in (31), in the
infinite future (x → 0). This is illustrated in Fig. 4(b) for
Ωl ¼ 0.2. The potential has a minimum at ϕ1, as shown
in Fig. 4(a) by the vertical dotted cyan line. The scalar
field rolls to that minimum very slowly in the infinite
future (x → 0).
Figures 4(b) and 5 show that numerical simulations

carried out using the potential (33) lead to precisely
ΛCDM-like expansion. Figure 5(b) demonstrates that the

(a) (b)

FIG. 4. (a) The potential (33) is shown (red curve) for the braneworld parameter Ωl ¼ 0.2. The early and late time asymptotic
behaviour of the potential is shown by blue and green dashed curves respectively. (b) The numerically obtained value for ϕ (red) is
compared with the analytical expression (dashed black), given by (28). Note that the numerical results match the analytical
expression exactly. This panel demonstrates that, commencing from ϕ ¼ 0, the scalar field asymptotically rolls up to a finite value
ϕ → ϕ1 as x ¼ a0=a → 0. (ϕ1 is shown by the dotted horizontal cyan line). Note that the potential has a minimum at ϕ1, which has
been shown by the vertical dotted cyan line in the left panel. The scalar field rolls to that minimum very slowly and settles there in the
infinite future.

3If u ¼ Fðsin−1ðνÞjmÞ, then the inverse ν ¼ snðujmÞ is a
Jacobi elliptic function.
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potential (33) possesses the same tracking feature as the
inverse power law potential with alike large basin of
attraction at early times, even within the braneworld frame-
work. Therefore, the scalar field can mimick the expansion
of a ΛCDM universe while rolling on the potential (33),
without requiring fine-tuned initial conditions.
It is interesting that although the braneworld and

ΛCDM have exactly the same expansion history, the two
models can be easily distinguished on the basis of structure

formation, since linearized density perturbations grow at
different rates in the two models.4 This has been illustrated
in Fig. 6; also see Fig. 2 of [12].

IV. DISCUSSION

In this paper we have derived an expression for the
dark energy density which, when residing on the phantom
brane, causes the brane to expand like a ΛCDM universe.
We have also shown how DE can be related to a scalar
field and derived a precise form for the scalar field
potential VðϕÞ. Interestingly, the potential possesses the
same early time tracking feature as that of an inverse power
law potential and the former can be well approximated by a
α-attractor potential. We have thus demonstrated that a
scalar field propagating on the phantom-brane can make the
latter mimic the expansion of ΛCDM model.
It may be appropriate to note in this connection that

braneworld expansion can mimic ΛCDM even in the
complete absence of dynamical dark energy on the brane.
As shown in [20,21] such a scenario of “cosmic mimicry”
[20] can arise in either of the following cases:

(i) The brane tension is large and there is a large
cosmological constant associated with the bulk
fifth dimension [20]. (The present treatment as-
sumed that there was no Λ-term associated with
the bulk.)

(a) (b)

FIG. 5. The left panel shows that the expansion rate obtained by numerically integrating the reconstructed potential (33) coincides with
the expansion rate of the ΛCDM model. The red curve in the right panel demonstrates that the potential (33) possesses an early time
tracking feature which is identical to that of the inverse power law potential [16,17], V ∝ 1=ϕ2. This leads to wϕ ≃ −1=2 so that
ρϕ ∝ a−3=2 during the matter dominated epoch. The black dashed curve overlaid on the red curve demonstrates that the analytical
expression for dark energy, given by (8), exactly matches the numerical result obtained by integrating (33).

FIG. 6. Late time growth of linearized matter perturbations on
the brane. Perturbation growth was determined assuming the
quasistatic approximation [19]. Note that for Ωl → 0 one
recovers ΛCDM. This figure illustrates that although the brane-
world with dark energy defined by (8) has exactly the same
expansion rate as ΛCDM, gravitational clustering in the two
models proceeds at very different rates; also see [12].

4Since the quintessence dark energy does not cluster on the
brane in usual setup, the perturbation of the quintessential field
can be ignored. Therefore, one can assume the quasistatic
approximation [19] for calculating the growth of matter pertur-
bation in late times on the phantom brane.
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(ii) The brane violates Z2 symmetry with respect to the
bulk [21]. In this case a small Λ-term on the brane is
induced by a slight asymmetry in values of the
fundamental constants in the bulk.

Our present paper extends this previous work by con-
structing an entirely different scenario for cosmic mimicry.
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