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Whether or not the primordial gravitationalwave (GW)produced during inflation is sufficiently strong to be
observable, GWs are necessarily produced from the primordial curvature perturbations in the second order of
perturbation. The inducedGWs can be enhanced by curvature perturbations enhanced at small scales or by the
presence of matter-dominated stages of the cosmological history. We analytically calculate the integral in the
expression of the power spectrum of the induced GWs, which is a universal part independent of the spectrum
of the primordial curvature perturbations. Thismakes the subsequent numerical integrals significantly easy. In
simple cases, we derive fully analytic formulas for the induced GW spectrum.
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I. INTRODUCTION

Gravitational wave (GW) astronomy began after the
detection of GWs by the LIGO and Virgo collaborations
[1–5], andmore signals or constraints are awaited for current
and future precise observations. It is now important to study
what we can learn about the early Universe or new physics
beyond the StandardModel usingGWs as probes. Currently,
there is only an upper bound on the strength of the primordial
GW [6,7] in terms of the tensor-to-scalar ratio, r < 0.07
(95% confidence level; Planck, BICEP2/Keck Array com-
bined) [8] at the pivot scale k ¼ 0.05 Mpc−1, from the
cosmic microwave background (CMB) observations.
Whether or not the primordial GW is observable, there

exits an independent generation mechanism for GWs. 1 The
GWs are generated from curvature perturbations in the
second order of perturbation [22], although the tensor and
scalar modes are decoupled in the first order of perturbation,
as is well known. It is true that the induced second-order GW
is suppressed by the square of the curvature perturbations, but

it can be sizable and can even become larger than the
primordial (first-order) GW if the primordial curvature
perturbations are enhanced at small scales compared to
the CMB scale [22–24] or if the density perturbations grow
in a matter-dominated (MD) phase of the Universe [25–28].
The enhancement of the primordial curvature perturbations
at small scales is realized in somemodels of inflation, and, in
particular, motivates us to explore scenarios to produce
primordial black holes (PBHs), which can explain dark
matter and/or the binary black hole merger event rate; see,
e.g., Refs. [29–33] and the references therein. In particular,
the induced GWs are used as constraints on the PBH
scenarios, and, conversely, the PBH constraints can be recast
as the constraints on the inducedGWs [23,34–36]. Similarly,
the induced GWs can put constraints on inflation models
which lead to small scale enhancement of perturbations
[24,28,37]. Also, MD eras are expected in some scenarios
involving heavy particles or oscillating scalar fields like an
inflaton. Entropy production by the decay of such particles/
fields at the end of theMD period can dilute unwanted long-
lived particles like gravitinos in supersymmetric theories,
which otherwise affects the CMB or big-bang nucleosyn-
thesis (BBN). In this way, studies of inducedGWs (as well as
the primordial ones) are motivated by cosmology, astro-
physics, and particle physics.
To calculate the power spectrum of the GWproduced in the

radiation-dominated (RD) Universe, we need to do multiple
integrals of a highly oscillating function. Schematically,

Ph ∼
Z

dk
Z

dk0
�Z

dtfðk; k0; tÞ
�

2

PζðkÞPζðk0Þ;

1Apart from the induced second-order GWs, which are the
topic of this paper, there are other mechanisms of GW production
in the early Universe, including those associated with preheating
[9–12], phase transitions [13–15], and topological defects such as
cosmic strings [16,17]. In particular, it should be noted that the
GWs are also produced from the primordial curvature perturba-
tions in the subhorizon when shocks are formed [18]. It was
reported in Ref. [18] that the resultant GW power spectrum is
similar to that of the induced GWs we are considering, but the
frequency is lowered by P1=2

ζ , which would affect the constraints
on PBH scenarios which aim to explain the merger rate of binary
black holes of around 30 solar masses. For light PBH scenarios,
GWs emitted by Hawking radiation are relevant [19–21].
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where Ph (Pζ) is the power spectrum of the induced GW
(primordial curvature perturbations), k and k0 correspond to the
momenta of the scalar sourcemodes, t describes the timewhen
the GW is sourced from the scalar modes (using the Green’s
function method), and fðk; k0; tÞ is some oscillating function.
We will shortly introduce the precise definition. This can be
numerically done, but it is time consuming and sometimes
obscures theunderlyingphysics.Ananalytic calculation for the
time integral was partially done in the pioneering paper [22],
and we complete the calculation to obtain a relatively short,
useful expression. An analytic formula was also obtained in
Ref. [24], but we find it shows the wrong behavior for the
contribution from the long-wavelength modes of the density
perturbations. Once we obtain an analytic formula for the
integral within the parentheses above, it is easy to take an
oscillation average analytically, so the subsequent (numerical)
integration with respect to the wave numbers k and k0 are
greatly simplified and the calculation cost is significantly
reduced.
In Sec. II, we review the derivation of the scalar-induced

GWs, basically following the conventions of Ref. [38]. In
Sec. III, we analytically calculate the time integral and take its
oscillation average. We consider the cases of both the RD
Universe and the MD Universe, and we briefly discuss more
general cases there and in Appendix A. For simple examples,
we obtain fully analytic formulas for the power spectrum of
the induced GWs. We conclude in Sec. IV. The usage of our
formulas is illustrated in Appendix B, where they are
compared with future observations. As a byproduct, we
derive a new BBN constraint on relativistic degrees of
freedom (d.o.f.) (gravitons, in our case) in Appendix C.

II. BASIC EQUATIONS

In this section, we review the derivation of the master
formula for the second-order GWs. We basically follow the
conventions of Ref. [38] and extend their results so that we
can use them both in a RD era and in a MD era. See also
Refs. [22,26] for the derivation.

A. Definitions, energy density, and power spectrum

We choose the longitudinal (conformal Newtonian)
gauge, and the metric reads

ds2 ¼ gμνdxμdxν

¼ −a2ð1þ 2ΦÞdη2 þ a2
�
ð1 − 2ΨÞδij þ

1

2
hij

�
dxidxj;

ð1Þ
where η is the conformal time. We neglect the vector
perturbations, the first-order GWs, and the anisotropic
stress, andΦ ¼ Ψ then follows. The effect of the difference
Φ − Ψ ≠ 0 was studied in Ref. [26], and it turns out to be
small. With the above normalization, the second-order
graviton action is

S ¼ M2
P

32

Z
dηd3xa2ðh0ijh0ij − hij;khij;kÞ; ð2Þ

whereMP ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 1 is the reduced Planck mass and
primes denote the derivative with respect to the conformal
time. The GW energy density ρGWðηÞ ¼

R
d ln kρGWðη; kÞ

can be evaluated in the subhorizon as [39]

ρGW ¼ M2
P

16a2
hhij;khij;ki; ð3Þ

where the overline denotes the oscillation average. The
Fourier components of the tensor mode are introduced as
usual,

hijðη;xÞ ¼
Z

d3k

ð2πÞ3=2 ðe
þ
ijðkÞhþk ðηÞ þ e×ijðkÞh×kðηÞÞeik·x;

ð4Þ

where the transverse traceless polarization tensors
are defined as eþijðkÞ ¼ 1ffiffi

2
p ðeiðkÞejðkÞ − ēiðkÞējðkÞ and

e×ijðkÞ ¼ 1ffiffi
2

p ðeiðkÞējðkÞ þ ēiðkÞejðkÞ, with eiðkÞ and

ēiðkÞ being normalized vectors orthogonal to each other
and to k. The dimensionless power spectrum is defined by

hhλkðηÞhλ
0
k0 ðηÞi ¼ δλλ0δ

3ðkþ k0Þ 2π
2

k3
Phðη; kÞ; ð5Þ

where λ; λ0 ¼ þ;× represents the polarization index, which
we omit in the following. We consider parity invariant
situations so that both polarizations give the same result.
The fraction of the GW energy density per logarithmic
wavelength is

ΩGWðη; kÞ ¼
ρGWðη; kÞ
ρtotðηÞ

¼ 1

24

�
k

aðηÞHðηÞ
�

2

Phðη; kÞ; ð6Þ

where we have summed over the two polarization modes.
ThisΩGW is the observationally relevant quantity, and below
we compute the power spectrum Ph.

B. Equations of motion

The equation of motion for the tensor mode hkðηÞ can be
derived straightforwardly from the tensor part of the
Einstein equation. In the second-order equation, squares
of first-order quantities also appear. The first-order pertur-
bations of the energy-momentum tensor can be related to
the derivative of the gravitational potential Φ via the first-
order Einstein equation. Thus, one obtains the tensor
equation of motion sourced by the scalar perturbations Φ,

h00kðηÞ þ 2Hh0kðηÞ þ k2hkðηÞ ¼ 4SkðηÞ; ð7Þ
whereH ¼ aH is the conformal Hubble parameter, and the
source term is given by
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Sk ¼
Z

d3q

ð2πÞ3=2eijðkÞqiqj
�
2ΦqΦk−q

þ 4

3ð1þwÞðH
−1Φ0

qþΦqÞðH−1Φ0
k−qþΦk−qÞ

�
: ð8Þ

We have used −2 _H ¼ ρþ P ¼ ð1þ wÞρ ¼ 3ð1þ wÞH2,
where w ¼ P=ρ is the equation-of-state parameter where P
and ρ denote the pressure and energy density. The Fourier
components Φk of the gravitational potential are defined
similarly to those of the tensor mode (of course without the
polarization tensor). We adopt the Green’s function method
to solve hkðηÞ,

aðηÞhkðηÞ ¼ 4

Z
η
dη̄Gkðη; η̄Þaðη̄ÞSkðη̄Þ; ð9Þ

where the Green’s function Gkðη; η̄Þ is the solution of

G00
kðη; η̄Þ þ

�
k2 −

a00ðηÞ
aðηÞ

�
Gkðη; η̄Þ ¼ δðη − η̄Þ: ð10Þ

The derivatives are with respect to η.
We need to know the time evolution of the source term

SkðηÞ. The gravitational potential obeys the following
equation of motion (see, e.g., Ref. [40]):

Φ00
k þ 3Hð1þ c2s ÞΦ0

k þ ð2H0 þ ð1þ 3c2s ÞH2 þ c2sk2ÞΦk

¼ a2

2
τδS; ð11Þ

where c2s and τ are defined as δP ¼ c2sδρþ τδS, with S
being entropy. In the absence of entropy perturbations and
using c2s ¼ w, the above equation reduces to

Φ00
kðηÞ þ

6ð1þ wÞ
ð1þ 3wÞηΦ

0
kðηÞ þ wk2ΦkðηÞ ¼ 0: ð12Þ

In the following, we pull out the primordial value ϕk from
the definition of Φk ¼ ΦðkηÞϕk so that the transfer
function ΦðkηÞ approaches unity well before the horizon
entry. The primordial value is related to the curvature
perturbation as

hϕkϕk0 i ¼ δðkþ k0Þ 2π
2

k3

�
3þ 3w
5þ 3w

�
2

PζðkÞ; ð13Þ

where w should be evaluated at time well before the horizon
entry. As the above equation implies, we define the
“primordial” value ϕk as being well before the horizon
entry but not too early so that the equation of state of the
Universe at the “primordial time” is the same as that at the
horizon entry.
One can compute the correlation function hSkðηÞSk0 ðη0Þi

by neglecting the non-Gaussianity of the primordial

curvature perturbations. It involves integration with respect
to the wave number k̃ corresponding to that of the scalar
source Φk̃. It turns out to be useful to introduce the
dimensionless variables u ¼ jk − k̃j=k and v ¼ k̃=k. The
details for this calculation can be found in Refs. [22,26,31].
After some algebra, by comparing hSkðηÞSk0 ðη0Þi with the
definition of Ph, one can extract the power spectrum Ph,

Phðη; kÞ ¼ 4

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4vu

�
2

× I2ðv; u; xÞPζðkvÞPζðkuÞ; ð14Þ

where the dimensionless combination x≡ kη should not be
confused with the spatial coordinate. The function Iðv; u; xÞ
is defined as

Iðv; u; xÞ ¼
Z

x

0

dx̄
aðη̄Þ
aðηÞ kGkðη; η̄Þfðv; u; x̄Þ; ð15Þ

and the source information is contained in

fðv; u; x̄Þ ¼ 6ðwþ 1Þ
3wþ 5

Φðvx̄ÞΦðux̄Þ þ 6ð1þ 3wÞðwþ 1Þ
ð3wþ 5Þ2

× ðx̄∂ η̄Φðvx̄ÞΦðux̄Þ þ x̄∂ η̄Φðux̄ÞΦðvx̄ÞÞ

þ 3ð1þ 3wÞ2ð1þ wÞ
ð3wþ 5Þ2 x̄2∂ η̄Φðvx̄Þ∂ η̄Φðux̄Þ;

ð16Þ

where x̄ ¼ kη̄, and we have used H ¼ aH ¼
2=ðð1þ 3wÞηÞ. Note that the integral defining Ph includes
the square of a single function Iðv; u; xÞ. The integral has
been recast in this form by noticing symmetries of the
integrand under changes of variables, as explained in
Ref. [31]. This was seemingly unnoticed in the original
paper [22], which makes their analytic expression so
complicated. Related to this, both the integrand and the
integral region are symmetric under the exchange of u and v.
Taking advantage of the above form, we will calculate the
function Iðv; u; xÞ analytically in the following section.

III. ANALYTIC INTEGRATION

We find it useful to introduce new variables t¼uþv−1
and s ¼ u − v to finally execute the remaining integrals.
The Jacobian for this transformation is 1=2. Using these
variables, the power spectrum is rewritten as

Phðη; kÞ ¼ 2

Z
∞

0

dt
Z

1

−1
ds

�
tð2þ tÞðs2 − 1Þ

ð1 − sþ tÞð1þ sþ tÞ
�
2

× I2ðv; u; xÞPζðkvÞPζðkuÞ; ð17Þ

where u ¼ ðtþ sþ 1Þ=2 and v ¼ ðt − sþ 1Þ=2, and we
remind the reader of the definition x ¼ kη. In the following,
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we give expressions of I in terms of u and v as well as
t and s. We separately study the cases of a pure RD era and a
pure MD era, finally discussing more realistic situations.

A. Radiation-dominated Universe

In the RD Universe, the solution to Eq. (10) for the
Green’s function of GW is

kGkðη; η̄Þ ¼ −xx̄ðj0ðxÞy0ðx̄Þ − y0ðxÞj0ðx̄ÞÞ ¼ sinðx − x̄Þ;
ð18Þ

where j0ðxÞ (y0ðxÞ) is the spherical Bessel function of the
first (second) kind. The solution to Eq. (12) for the
gravitational potential which approaches 1 in the past
(x → 0) is

ΦðxÞ ¼ 9

x2

�
sinðx= ffiffiffi

3
p Þ

x=
ffiffiffi
3

p − cosðx=
ffiffiffi
3

p
Þ
�
: ð19Þ

The factor 1=
ffiffiffi
3

p
is the sound speed in the RD era. The

gravitational potential decays like x−2 at large x.

The source function f in the RD era is

fRDðv; u; xÞ ¼
12

u3v3x6

�
18uvx2 cos

uxffiffiffi
3

p cos
vxffiffiffi
3

p þ ð54 − 6ðu2 þ v2Þx2 þ u2v2x4Þ sin uxffiffiffi
3

p sin
vxffiffiffi
3

p

þ 2
ffiffiffi
3

p
uxðv2x2 − 9Þ cos uxffiffiffi

3
p sin

vxffiffiffi
3

p þ 2
ffiffiffi
3

p
vxðu2x2 − 9Þ sin uxffiffiffi

3
p cos

vxffiffiffi
3

p
�
: ð20Þ

This is equal to 4=3 at x ¼ 0 and decays like ∼1=ðuvx2Þ at large x. The factor aðη̄Þ=aðηÞ in the definition of Iðv; u; xÞ is
equal to x̄=x in the RD era. 2

Combining this information, we calculate the integral Iðv; u; xÞ. To this end, multiple usages of the trigonometric
addition theorem and integration by parts are required [22]. The result is

IRDðv; u; xÞ ¼
3

4u3v3x

�
−

4

x3

�
uvðu2 þ v2 − 3Þx3 sin x − 6uvx2 cos

uxffiffiffi
3

p cos
vxffiffiffi
3

p

þ 6
ffiffiffi
3

p
ux cos

uxffiffiffi
3

p sin
vxffiffiffi
3

p þ 6
ffiffiffi
3

p
vx sin

uxffiffiffi
3

p cos
vxffiffiffi
3

p − 3ð6þ ðu2 þ v2 − 3Þx2Þ sin uxffiffiffi
3

p sin
vxffiffiffi
3

p
�

þ ðu2 þ v2 − 3Þ2
�
sin x

�
Ci

��
1 −

v − uffiffiffi
3

p
�
x

�
þ Ci

��
1þ v − uffiffiffi

3
p

�
x

�

− Ci

�����1 − vþ uffiffiffi
3

p
����x
�
− Ci

��
1þ vþ uffiffiffi

3
p

�
x

�
þ log

���� 3 − ðuþ vÞ2
3 − ðu − vÞ2

����
�

þ cos x

�
−Si

��
1 −

v − uffiffiffi
3

p
�
x

�
− Si

��
1þ v − uffiffiffi

3
p

�
x

�

þ Si

��
1 −

vþ uffiffiffi
3

p
�
x

�
þ Si

��
1þ vþ uffiffiffi

3
p

�
x

���
; ð22Þ

where Si and Ci functions are defined as follows:

SiðxÞ ¼
Z

x

0

dx̄
sin x̄
x̄

; CiðxÞ ¼ −
Z

∞

x
dx̄

cos x̄
x̄

: ð23Þ

2Precisely speaking, it involves the effective numbers of relativistic d.o.f.,

aðη̄Þ
aðηÞ ¼

η̄

η

�
g�ðTðη̄ÞÞ
g�ðTðηÞÞ

�
1=2

�
g�;sðTðηÞÞ
g�;sðTðη̄ÞÞ

�
2=3

: ð21Þ

Before recombination, both numbers are the same, g�ðTÞ ¼ g�;sðTÞ, and the power is only 1=6. We neglect these factors for analytic
calculations.
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We have used the fact thatZ
x

0

dx̄
cosAx̄ − cosBx̄

x̄

¼ CiðAxÞ − logðAxÞ − CiðBxÞ þ logðBxÞ: ð24Þ

For small x, the leading term is independent of u and
v, IRDðv; u; xÞ ≃ x2=2.
We are interested in the GW spectrum

observed today, so let us take the late-time limit η → ∞
or x ≫ 1:

IRDðv; u; x → ∞Þ ¼ 3ðu2 þ v2 − 3Þ
4u3v3x

�
sin x

�
−4uvþ ðu2 þ v2 − 3Þ log

���� 3 − ðuþ vÞ2
3 − ðu − vÞ2

����
�

− πðu2 þ v2 − 3ÞΘðvþ u −
ffiffiffi
3

p
Þ cos x

�
: ð25Þ

Wehave used limx→�∞SiðxÞ¼�π=2 and limx→þ∞CiðxÞ¼0, and the sign change of the limit of Si is the origin of theHeaviside
theta functionΘ in the above expression. We can see that it redshifts like x−1 ∝ a−1 in this limit. What we want to know is its
oscillation average [see Eq. (6)]. It is

I2RDðv; u; x → ∞Þ ¼ 1

2

�
3ðu2 þ v2 − 3Þ

4u3v3x

�
2
��

−4uvþ ðu2 þ v2 − 3Þ log
���� 3 − ðuþ vÞ2
3 − ðu − vÞ2

����
�

2

þ π2ðu2 þ v2 − 3Þ2Θðvþ u −
ffiffiffi
3

p
Þ
�
: ð26Þ

In terms of the variables t ¼ uþ v − 1 and s ¼ u − v,

I2RDðt; s; x → ∞Þ ¼ 288ð−5þ s2 þ tð2þ tÞÞ2
x2ð1 − sþ tÞ6ð1þ sþ tÞ6

�
π2

4
ð−5þ s2 þ tð2þ tÞÞ2Θðt − ð

ffiffiffi
3

p
− 1ÞÞ

þ
�
−ðt − sþ 1Þðtþ sþ 1Þ þ 1

2
ð−5þ s2 þ tð2þ tÞÞ log

����−2þ tð2þ tÞ
3 − s2

����
�

2
�
: ð27Þ

These formulas are our main results.

Let us discuss some simple examples.

1. Example 1: Monochromatic source

Consider the monochromatic curvature perturbations,

PζðkÞ ¼ Aζδðlog k=k�Þ; ð28Þ
where Aζ is the overall normalization and k� is the wave
number at which the power spectrum has a delta-function
peak. This may be regarded as a rough approximation of a
spectrum with a sharp peak. For example, k� should be
about 3.5 × 105 Mpc−1 or 2.7 × 10−14 Mpc−1 for PBHs
produced in a RD era to explain dark matter abundance or
the LIGO/Virgo binary black hole merger rate, respectively.
In this monochromatic case, the GW strength is

ΩGWðη; kÞ ¼
3A2

ζ

64

�
4 − k̃2

4

�
2

k̃2ð3k̃2 − 2Þ2

×
�
π2ð3k̃2 − 2Þ2Θð2

ffiffiffi
3

p
− 3k̃Þ

þ
�
4þ ð3k̃2 − 2Þ log

����1 − 4

3k̃2

����
�

2
�
Θð2 − k̃Þ;

ð29Þ

where the dimensionless wave number k̃≡ k=k� is intro-
duced for notational simplicity. The result of Ref. [38] is
reproduced in the small k̃ limit where their approximation is
valid. The logarithmic singularity at k ¼ ð2= ffiffiffi

3
p Þk�

(uþ v ¼ ffiffiffi
3

p
) is due to resonant amplification: the fre-

quency of the source term oscillation is twice that of the
gravitational potential 2 × k�=

ffiffiffi
3

p
. The factor 2 is used

because this is the second-order effect, and 1=
ffiffiffi
3

p
is the

ratio between the propagating speeds of GWs and radiation.
The spectrum vanishes above k ¼ 2k� because there are no
solutions satisfying the momentum conservation.
Equation (29) is shown in Fig. 1.

2. Example 2: Scale-invariant case

The scale-invariant power spectrum is

PζðkÞ ¼ Aζ; ð30Þ
where Aζ is independent of k. We can do a numerical
integration to obtain

Phðη; kÞ ≃
19.73
ðkηÞ2 A

2
ζ ; ΩGWðη; kÞ ≃ 0.8222A2

ζ ; ð31Þ

where we have used H ¼ η−1 in the RD era.
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3. Example 3: Power-law spectrum

We extend the previous case to a general power-law
spectrum,

Pζ ¼ Aζ

�
k
k�

�
ns−1

; ð32Þ

where k� is a reference scale and ns − 1 controls the
spectral tilt. In this case,

Phðη; kÞ ¼
24QðnsÞ
ðkηÞ2 A2

ζ

�
k
k�

�
2ðns−1Þ

;

ΩGWðη; kÞ ¼ QðnsÞA2
ζ

�
k
k�

�
2ðns−1Þ

; ð33Þ

where examples of the overall coefficient QðnsÞ are
shown in Table I. For the central value of the Planck
2015 TTþ lowP constraint, ns¼0.9655�0.0062 [41], we
obtain Qð0.9655Þ¼0.8149.
Too large or small ns makes the integral divergent.

B. Matter-dominated Universe

The GW spectrum from the curvature perturbations in a
MD Universe was studied in Refs. [26,27], and the analytic
formula for Iðv; u; xÞ was obtained there. We also derive
the formula using our conventions for self-completeness,
which makes comparisons with other papers easier, and
obtain fully analytic formulas of the GW power spectrum
for simple examples, some of which were obtained only
approximately.
In the MD Universe, the solution of Eq. (10) for the

Green’s function of GW is

kGkðη; η̄Þ ¼ −xx̄ðj1ðxÞy1ðx̄Þ − y1ðxÞj1ðx̄ÞÞ

¼ 1

xx̄
ðð1þ xx̄Þ sinðx − x̄Þ − ðx − x̄Þ cosðx − x̄ÞÞ:

ð34Þ

For a late-time η ≫ η̄ and for a sufficiently large k,
it is almost the sinusoidal functions, − 1

x̄ cosðx − x̄Þ and
sinðx − x̄Þ, respectively. The solution of Eq. (12) for the
gravitational potential which is regular at x → 0 is 3

ΦðxÞ ¼ 1: ð35Þ
The source function f is

fMDðv; u; xÞ ¼
6

5
: ð36Þ

Since this is constant, the function Iðv; u; xÞ in the MD era
can be much more easily obtained. The ratio aðη̄Þ=aðηÞ is
now ðx̄=xÞ2 in the MD era. The function Iðv; u; xÞ turns out
to be

IMDðv; u; xÞ ¼
6ðx3 þ 3x cos x − 3 sin xÞ

5x3
: ð37Þ

This asymptotes to 6=5 in the large x limit. For a small x,
the leading term is 3x2=25. When we introduce the
oscillation average in Eq. (3), we neglect the kinetic term
and instead multiply the gradient term by 2. To compensate
for the factor 2 for the oscillation average of the non-
oscillating term, we have to multiply the correction factor
by 1=2 to obtain

I2ðv; u; x → ∞Þ ¼ 18

25
: ð38Þ

1. Example 1: Monochromatic source

The first example for the curvature perturbation is the
monochromatic case,

PζðkÞ ¼ Aζδðlogðk=k�ÞÞ: ð39Þ
The GW spectrum is obtained as

ΩGW ¼ 3

25

�
k�
aH

�
2
�
1 −

�
k
2k�

�
2
�

2

A2
ζΘð2k� − kÞ: ð40Þ

2. Example 2: Scale-invariant case

If the MD era continues eternally, the density perturba-
tions eventually become nonlinear. Then the perturbation
approach becomes invalid, so we set a cutoff scale kmax to
the curvature perturbations. Actually, the integral is diver-
gent in the pure MD era unless we introduce such a cutoff.
In practice, the cutoff scale is the larger of the nonlinear
scale k−1NL ∼ P1=4

ζ H−1 [27] (see also Appendix B) and the

0.01 0.05 0.10 0.50 1
0.001

0.010

0.100

1

10

FIG. 1. The energy density fraction ΩGW of GWs produced in
the RD era, Eq. (29), from the monochromatic source, Eq. (28).

3This heuristic derivation is actually not a proper treatment
because small perturbations to the pure MD equation affect
properties of its solution significantly. A proper treatment without
neglecting the entropy perturbation shows the existence of the
constant solution sourced by the entropy perturbation, which is a
well-known fact in cosmology.
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scale corresponding to the onset of the MD era k−1MD (for
example, the beginning of the inflaton oscillation). Thus, as
a toy model, we assume a scale-invariant curvature per-
turbation with a cutoff kmax [27],

PζðkÞ ¼ AζΘðkmax − kÞ: ð41Þ

For 0 < k ≤ kmax, the integration regions dictated by the
Heaviside theta function are 0<t<2kmax

k −2,−1 < s < 1 and
2kmax
k −2<t<2kmax

k −1, t−2kmax
k þ1<s<−ðt−2kmax

k þ1Þ, while
for kmax<k≤2kmax, the integration region is 0<t<2kmax

k −1,
t − 2kmax

k þ 1 < s < −ðt − 2kmax
k þ 1Þ. The GW strength is

ΩGW ¼ A2
ζ

14000

�
k
aH

�
2

×

� ð1792k̃−1 − 2520þ 768k̃þ 105k̃2Þ ð0 < k ≤ kmaxÞ
ð1 − 2k̃−1Þ4ð105k̃2 þ 72k̃þ 16 − 32k̃−1 − 16k̃−2Þ ðkmax < k ≤ 2kmaxÞ

; ð42Þ

where k̃≡ k=kmax. The two expressions coincide up to and
including the third derivative at k ¼ kmax. Equation (42) is
shown as the dashed brown line in Fig. 2.
Note that the power spectrum Ph is enhanced by k̃−1 ¼

kmax=k for a small k. This enhancement is due to the effect
of a nondecaying scalar source, Φ ¼ const, during the MD
era. Taking the leading term for a small k reproduces the
result in Ref. [27] up to a numerical factor. 4

C. Transitions between radiation/matter eras

So far, we have considered the pure RD and the pure MD
Universe. However, the RD epoch is taken over by the late-
time MD epoch. Also, an early MD era such as an inflaton
oscillation period may precede the RD era. We consider
these transitions, the MD era to the RD era and the RD era
to the MD era, separately below. When one considers
nonminimal cosmological scenarios, there may be multiple
transitions. Generalization to such cases is a straightfor-
ward task.

1. MD-to-RD transition

We imagine a MD era dominated by some massive field
which decays to reheat the Universe. After the decay, it is a
RD era. We indicate the reheating time by the subscript R.
Before reheating (x < xR ≡ kηR), the function Iðv; u; xÞ is
the same as the MD case we have seen above, i.e.,
Iðv; u; xÞ ¼ IMDðv; u; xÞ. After reheating (x > xR), we
separate the time integral as follows:

Iðv;u;xÞ¼
Z

xR

0

dx̄

�
xR
x

��
x̄
xR

�
2

kGMD→RD
k ðη; η̄ÞfMDðv;u;x̄Þ

þ
Z

x

xR

dx̄

�
x̄
x

�
kGRD

k ðη; η̄ÞfMD→RDðv;u;x̄Þ; ð43Þ

where the first line is the contribution from the MD era
taking into account the fact that the propagation of the GW
changes after reheating. The second line is the contribution
from the RD era taking into account the fact that the scalar
source experienced the MD era.
We may integrate it explicitly, but the expression is

complicated. Here, let us focus on terms with a qualitatively
new behavior, that is, a feature beyond the simple sum of
the RD and MD contributions. Such a nontrivial feature
resides in modes which were about to grow near the end of
the MD era. These come from the first line of Eq. (43). We
connect the GW solution at the transition requiring con-
tinuity of the zeroth and first derivatives. Then the first line
becomes
Z

xR

0

dx̄

�
xR
x

��
x̄
xR

�
2

kGMD→RD
k ðη; η̄ÞfMDðv;u; x̄Þ

¼ 3

5xx3R
ð3ð2x2R−1Þcosx−6xR sinx

þ2x4R cosðx−xRÞþ4x3R sinðx−xRÞþ3cosðx−2xRÞÞ:
ð44Þ

In the limit xR → x, this reduces to the pure MD case result,
Eq. (37). On the other hand, in the limit x ≫ xR, it is
approximated as ð12=25Þðx2R=xÞ sin x. By taking the square
and oscillation average for x and dividing it by Eq. (38) and
the common redshift factor ðxR=xÞ, we obtain the relative
factor R explaining the inefficient enhancement of super-
horizon modes at reheating,

TABLE I. The overall coefficient of the second-order GW sourced from the power-law index spectrum.

ns 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

QðnsÞ 0.8196 0.7984 0.7956 0.8222 0.8988 1.074 1.470 2.478 5.783 24.77 708.2

4After taking into account the difference of the normalization
conventions, a factor 2 is missed in the source side of their equation
of motion for GW, and a geometric factor cos 2ϕ=

ffiffiffi
2

p
is missed for

projection to the transverse traceless mode where ϕ is the angle
between the polarization vector eðkÞ and the projection of the
source wave number k̃ onto the plane spanned by eðkÞ and ēðkÞ.
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R¼ 1

4x8R
ðð−6xRþ4x3R cosxRþ2x4R sinxRþ6cosxR sinxRÞ2

þð−3þ6x2Rþ2x4R cosxRþ3cos2xR−4x3R sinxRÞ2Þ;
ð45Þ

which reduces to one in the subhorizon limit xR ≫ 1 and is
proportional to x2R in the superhorizon limit xR ≪ 1.
Multiplying Eq. (42) by this factor, we obtain the brown
solid line in Fig. 2.
The contribution to Iðv; u; xÞ from modes entering the

horizon a bit after reheating scales like k. Squaring this and
multiplying the integration region of t which scales like
kmax=k, the power spectrum for this range of wave numbers
behaves like Ph ∼ ðaðηRÞ=aðηÞÞ2ðkmaxk=k2RÞP2

ζðkÞ, where
we have replaced ηR ∼ k−1R with kR ≡HðηRÞ. This scaling

is valid at late times η ≫ ηR since we have taken the late-
time limit. Note that the snapshot of the power spectrum at
the time of reheating scales as k3, but the observed
spectrum scales as k, taking into account the evolution
of modes since reheating to their horizon entry. The origin
of this evolution is the kinetic energy of GWs already
developed at reheating. It seems that this change of scaling
has not been explicitly noticed in the literature.
For shorter length scales, kR < k < kmax, the form of the

power spectrum is similar to that in the MD case,
Ph ∼ ðaðηRÞ=aðηÞÞ2ðkmax=kÞP2

ζðkÞ. On the other hand, for
larger length scales, k < kRits with the intersection kRits≡
kRðkR=kmaxÞ1=3, it is similar to the RD case, Ph ∼ ðaðηRÞ=
aðηÞÞ2ðkR=kÞ2P2

ζðkÞ. The common factor ðaðηRÞ=aðηÞÞ2
represents redshift, andP2

ζðkÞ represents the source character-
istics. The remaining factor represents the specific feature for
the MD, RD, or intermediate era.

2. RD-to-MD transition

We now consider a RD era followed by a MD era,
denoting the equality time by the subscript eq. Before the
equality (i.e., x < xeq ≡ kηeq), Iðv; u; xÞ ¼ IRDðv; u; xÞ is
satisfied. After the equality, we may split the time integral
for the function Iðv; u; xÞ as follows:

Iðv;u;xÞ¼
Z

xeq

0

dx̄

�
xeq
x

�
2
�

x̄
xeq

�
kGRD→MD

k ðη;η̄ÞfRDðv;u;x̄Þ

þ
Z

x

xeq

dx̄

�
x̄
x

�
2

kGMD
k ðη;η̄ÞfRD→MDðv;u;x̄Þ: ð46Þ

The first line is the contribution produced in theRD erawhen
taking into account the fact that theGWpropagation changes
after the radiation-matter equality. The second line is the
contribution produced in the MD era when taking into
account the fact that the source term experienced the RD era.
Again, for modes entering the horizon well before

equality and well after equality, the power spectrum is
essentially the same as that in the RD era and in the MD era,
respectively. This time, the only nontrivial terms come from
the second line. The scalar modes entering the horizon a bit
before equality are suppressed in the RD Universe, so, even
after the enhancement in the MD era, the corresponding
GW power spectrum is less enhanced compared to the
modes entering the horizon after equality. Note also that
this effect gives a physical cutoff for an otherwise divergent
integral in the MD era. Quantitatively, this effect is
explained by the large k limit of the transfer function,

Φðη ≫ ηeq; k ≫ keqÞ ¼
lnðc1kηeqÞ
ðc2kηeqÞ2

;

c1 ¼
2ffiffiffi

3
p ð ffiffiffi

2
p

− 1Þ e
γ−7

2 ≈ 0.15;

c2 ¼
ffiffiffiffiffiffiffiffiffiffi
9=10

p
9ð ffiffiffi

2
p

− 1Þ ≈ 0.25: ð47Þ
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FIG. 2. The energy density fractionΩGW ofGWsproduced in the
MDera from the scale-invariant source. The brown lines (vanishing
at k ¼ 2kmax) show the case of an abrupt cutoff kmax (41), which
may be interpreted as the scale corresponding to the beginning of
inflaton oscillation or the scalewhere density perturbations become
nonlinear. The dashed curve represents Eq. (42), where reheating is
not considered (the pure MD case). The effect of reheating
(transition to theRD era) is included in the solid line bymultiplying
Eq. (45) for the case kR ¼ 10−3kmax.

5 These lines overlap for
k ≫ kR. The above plot shows the spectra observed at late time
(η ≫ ηR), scaled back in time by the common redshift factor
(independent of k) in such away that they coincidewith the spectra
at H ¼ kR for modes k ≫ kR. In other words, we have taken into
account the evolution of modes k ≪ kR since reheating to their
horizon entry. The green line shows the case of a MD era preceded
by a RD era. kmax is identified as keq. The standard radiation-matter
transition corresponds to this case with keq ¼ 1.0 × 10−2 Mpc−1

[42]. This line is obtained numerically using the interpolating
transfer function (49).Note thatΩGW growsduring theMDera.The
above plot shows the spectra atH ¼ 10−3kmax (see footnote5). The
pink line (horizontal dotted dashed) is the standard in the RD era
[see Eq. (31)], shown for comparison.

5For this choice with Aζ ∼ 10−9, the nonlinear scale kNL comes
below kmax. The reason for this choice is to clearly show the
characteristic behavior of each of the modes k≪kR, kR≪k<kmax,
and kmax < k.
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This is a standard result; see, e.g., Ref. [40]. Using this, the second line of Eq. (46) becomes

Z
x

xeq

dx̄

�
x̄
x

�
2

kGMD
k ðη; η̄ÞfRD→MDðv; u; x̄Þ ¼

ðx3 − 3ðx − xeqÞ − xx2eqÞ cosðx − xeqÞ − ð3þ 3xxeq − x2eqÞ sinðx − xeqÞ
x3

×
6

5

lnðc1uxeqÞ
ðc2uxeqÞ2

lnðc1vxeqÞ
ðc2vxeqÞ2

: ð48Þ

For a late-time η ≫ ηeq, the first factor asymptotes to 1, and
the k dependence at large k is given just by Φ2, or
k−4ðln kÞ2. Squaring this and numerically integrating 6 it
with respect to t and s, we find that the power spectrum
scales as Ph ∼ ðkηeqÞ−2γðkÞP2

ζðkÞ, with 3≲ γðkÞ≲ 4 being
an increasing function of k. This is consistent with an
observation in Ref. [26]. For larger length scales, k < keq, it
is essentially the MD era, and Ph ∼ ðkeq=kÞP2

ζðkÞ, where
kmax has been replaced by the physical cutoff keq. For
shorter length scales, keq < k < keqits with the intersection
keqits ≡ keqðkeq=HðηÞÞ2=ðγ−1Þ, it is essentially the RD era,
so Ph ∼ ðaðηeqÞ=aðηÞÞ2ðkeq=kÞ2P2

ζðkÞ.

IV. SUMMARY AND CONCLUSION

Traditionally, the second-order GWs sourced from the
primordial curvature perturbations have been studied
mainly numerically. We have analytically calculated the
part of the curvature-induced GW power spectrum
Iðv; u; xÞ [defined in Eq. (15)], which is calculable inde-
pendently of the primordial curvature perturbations PζðkÞ.
One of our main results is the expression (22) and its late-

time oscillation average, I2RDðv; u; xÞ [Eq. (26)], or, equiv-
alently in terms of the other variables, I2RDðt; s; xÞ
[Eq. (27)]. Once the primordial curvature perturbation
PζðkÞ is specified, one can easily compute the remaining
integrals for u and v [Eq. (14)]—or, equivalently, t and s
[Eq. (17)]—whose physical meaning is the wave number of
the gravitational potential Φ.
As applications of the analytic formula, we have calcu-

lated the power spectrum of the induced GW for simple
examples of the primordial curvature perturbations. This
has been done numerically or fully analytically when
possible. For completeness, we have also studied the

second-order GWs induced in a MD era and have obtained
analytic formulas for simple examples. Moreover, we have
suggested an approximate way of analytically calculating
the GW power spectrum in the presence of transitions
between the RD and MD eras. In fact, using our formulas,
we have derived the nontrivial wave-number dependence of
the induced GW power spectrum. In particular, we have
analytically obtained the suppression factor (45) for modes
entering the horizon after reheating by assuming the sudden
transition between the MD and RD eras, taking into
account the growth of these modes after reheating until
their horizon entry. The RD-to-MD transition can be treated

FIG. 3. Simple examples of the energy density fraction ΩGWh2

of the induced GWs. The brown lines show the case of the scale-
invariant curvature perturbations with Aζ ¼ 2.2 × 10−9. The
horizontal part is the contribution from the RD era. The bottom
left curves show the effect of the late-time MD era. The dashed
line is in the nonlinear regime, and the solid line is a conservative
one neglecting all of the contributions beyond the nonlinearity
scale. The bottom right curve shows an example of an early MD
era with the reheating temperature TR ¼ 109 GeV. The scale of
the onset of the early MD era is assumed to be 200 times shorter
than the reheating scale so that there is no nonlinearity issue. The
green line shows the contribution from the RD era in the case of
power-law curvature perturbations with Aζ ¼ 10−12, ns ¼ 2, and
k� ¼ 0.05 Mpc−1. The blue lines denote existing pulsar timing
array constraints from EPTA [52], NANOGrav [53], and PPTA
[54]. The pink lines show sensitivity curves [55] of various future
GW observations reproduced from Ref. [56]. The observations
are from SKA [57], eLISA [58], LISA [59], BBO [60], DECIGO
[61], Einstein Telescope [62], Cosmic Explorer [63], and KA-
GRA [64]. The gray line (dotted) shows the upper bound on the
relativistic d.o.f. from BBN, ΩGWh2 < 1.8 × 10−6 (95% C.L.)
derived in Appendix C.

6For this purpose, we interpolate the large k behavior of the
transfer function (47) and the small k limit Φ ¼ 1 with the
following function:

Φðη ≫ ηeq; kÞ ¼
logð1þ c1kηeqÞ

logð1þ c1kηeqÞ þ ðc2kηeqÞ2
: ð49Þ

The numerical result of ΩGW using this transfer function in the
case of the scale-invariant source is shown as the green solid line
in Fig. 2.
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numerically. In this way, the nontrivial shape of the power
spectrum of the induced GWs in the presence of finite
duration of the MD era, during which the GW spectrum is
enhanced, is obtained (semi)analytically, as demonstrated
in Fig. 2 for the case of the scale-invariant curvature
perturbations.
Our results are useful when one quantitatively evaluates

the power spectrum Phðη; kÞ or the corresponding energy
fraction parameter ΩGWðη; kÞ of the GW induced from the
curvature perturbations. These quantities are to be com-
pared with observations, as illustrated in Appendix B and
Fig. 3 with simple examples. From Fig. 3, one can see that
it would be difficult to detect the induced GWs by near
future observations if the curvature perturbation can be
approximated as a scale-invariant one. This is so even if we
assume the presence of an early MD era to enhance the
induced GWs, as long as we consider the linear regime. By
contrast, if the spectrum of the curvature perturbation has a
sufficiently blue tilt or running, it may be possible to detect
it, as shown in the Fig. 3. In such a case, one has to consider
constraints on the enhanced curvature perturbations by μ
distortion of the CMB [43,44], change of the baryon-to-
photon ratio [45] and the neutron-to-proton ratio [46] (see
also Ref. [47]) in BBN, and overproduction of ultracompact
minihalos [48,49] or PBHs (for reviews of the constraints,
see, e.g., Refs. [33,50,51]).
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in the context of the Standard Model Higgs instability.

APPENDIX A: GENERAL INTEGRAL
FORMULAS WITH RADIATION/MATTER

TRANSITIONS

In this Appendix, we provide general formulas which
can be used for the calculation of Iðv; u; xÞ in the presence
of multiple RD/MD transitions. We need to consider a
generalization of Eqs. (43) and (46).
In general, in a RD era, Φ can be written as a

linear combination of two independent solutions,
3j1ðx=

ffiffiffi
3

p Þ=ðx= ffiffiffi
3

p Þ and 3y1ðx=
ffiffiffi
3

p Þ=ðx= ffiffiffi
3

p Þ. The GW
solution is a linear combination of two independent sol-
utions, sin x̄ and cos x̄. On the other hand, in aMD era,Φ can
be written as a linear combination of two independent
solutions, 1 and x−5. (However, the power of the decaying
mode changes when we perturb the pure MD case, and, in
any case,we neglect the decayingmode.) TheGWsolution is
a linear combination of two independent solutions, x̄j1ðx̄Þ
and x̄y1ðx̄Þ.

For the RD case, we consider

IRDðv; u; x1; x2Þ ¼
Z

x2

x1

dx̄ x̄ðC sin x̄þD cos x̄ÞfRDðv; u; x̄ÞjΦðx̄Þ¼3
ffiffi
3

p ðAj1ðx̄=
ffiffi
3

p ÞþBy1ðx̄=
ffiffi
3

p ÞÞ=x̄: ðA1Þ

For the MD case, we consider

IMDðv; u; x1; x2Þ ¼
Z

x2

x1

dx̄x̄2ðCx̄j1ðx̄Þ þDx̄y1ðx̄ÞÞfMDðv; u; x̄ÞjΦðx̄Þ¼A; ðA2Þ
where x1 ≡ kη1 and x2 ≡ kη2, and where A, B, C, and D are constants with respect to η̄. A and B may depend on k and η1,
and C and D may depend on k, η2, and the present time η. Substituting Φ into fðv; u; k; ηÞ, AðkÞ becomes AðukÞ or AðvkÞ,
and B behaves similarly. We show only the dependence on u and v, so we express this as AðuÞ and AðvÞ.
The function f is now

fRDðv; u; x̄ÞjΦðx̄Þ¼3
ffiffi
3

p ðAj1ðx̄=
ffiffi
3

p ÞþBy1ðx̄=
ffiffi
3

p ÞÞ=x̄ ¼
1

u3v3x̄6

�
Ecos;v−u cos

ðv − uÞx̄ffiffiffi
3

p þ Esin;v−u sin
ðv − uÞx̄ffiffiffi

3
p þ Ecos;vþu cos

ðvþ uÞx̄ffiffiffi
3

p

þ Esin;vþu sin
ðvþ uÞx̄ffiffiffi

3
p

�
; ðA3Þ

where the E values are functions of ðu; v; x̄Þ,
Ecos;v−u ¼ 6ðAðuÞAðvÞ þ BðuÞBðvÞÞð54 − 6ðu2 þ v2 − 3uvÞx̄2 þ u2v2x̄4Þ

þ 12
ffiffiffi
3

p
ðAðuÞBðvÞ − AðvÞBðuÞÞðu − vÞx̄ð9þ uvx̄2Þ; ðA4Þ
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Ecos;vþu ¼ −6ð2
ffiffiffi
3

p
ðAðuÞBðvÞ þ AðvÞBðuÞÞðuþ vÞx̄ð−9þ uvx̄2Þ

þðAðuÞAðvÞ − BðuÞBðvÞÞð54 − 6ðu2 þ v2 þ 3uvÞx̄2 þ u2v2x̄4ÞÞ; ðA5Þ

Esin;v−u ¼ −6ð2
ffiffiffi
3

p
x̄ðAðuÞAðvÞ þ BðuÞBðvÞÞðu − vÞð9þ uvx̄2Þ

þðAðvÞBðuÞ − AðuÞBðvÞÞð54 − 6ðu2 − 3uvþ v2Þx̄2 þ u2v2x̄4ÞÞ; ðA6Þ

Esin;vþu ¼ 6ð2
ffiffiffi
3

p
ðAðuÞAðvÞ − BðuÞBðvÞÞðuþ vÞx̄ð−9þ uvx̄2Þ

þðAðuÞBðvÞ þ AðvÞBðuÞÞð−54þ 6ðu2 þ v2 þ 3uvÞx̄2 − u2v2x̄4ÞÞ: ðA7Þ

The counterpart in the MD case is

fMDðv; u; x̄ÞjΦðx̄Þ¼A ¼ 6AðuÞAðvÞ
5

: ðA8Þ

The integrals Iðv; u; x1; x2Þ are as follows:

IRDðv; u; x1; x2Þ ¼
3

4u3v3

�
1

x4
ðF−− cos y−− þ Fþ− cos yþ− þ F−þ cos y−þ þ Fþþ cos yþþ

þ G−− sin y−− þGþ− sin yþ− þ G−þ sin y−þ þGþþ sin yþþÞ
�
x2

x1

þ 3ðu2 þ v2 − 3Þ2
4u3v3

½H−−Ciðy−−Þ þHþ−Ciðyþ−Þ þH−þCiðjy−þjÞ þHþþCiðyþþÞ
þ I−−Siðy−−Þ þ Iþ−Siðyþ−Þ þ I−þSiðy−þÞ þ IþþSiðyþþÞ�x2x1 ; ðA9Þ

where we have introduced y�� ¼ ð1� v�uffiffi
3

p Þx for compact notation, where the first (second) � on the left side corresponds

to the first (second)� on the right side. (The first sign is the relative sign between 1 and v, and the second sign is the relative
sign between v and u.) The coefficient functions F, G, H, and I are defined as

F−− ¼ I−−ð18ð−1þ
ffiffiffi
3

p
ðu − vÞÞxþ ð−3þ

ffiffiffi
3

p
ðu − vÞÞððuþ vÞ2 − 3Þx3Þ

−H−−ð54 − 3ð3þ u2 þ v2 − 6uvþ 2
ffiffiffi
3

p
ðv − uÞÞx2Þ; ðA10Þ

Fþ− ¼ −Iþ−ð18ð1þ
ffiffiffi
3

p
ðu − vÞÞxþ ð3þ

ffiffiffi
3

p
ðu − vÞÞððuþ vÞ2 − 3Þx3Þ

−Hþ−ð54 − 3ð3þ u2 þ v2 − 6uvþ 2
ffiffiffi
3

p
ðu − vÞÞx2Þ; ðA11Þ

F−þ ¼ −I−þð18ð1þ
ffiffiffi
3

p
ðuþ vÞÞxþ ð3þ

ffiffiffi
3

p
ðuþ vÞÞððu − vÞ2 − 3Þx3Þ

−H−þð54 − 3ð3þ u2 þ v2 þ 6uvþ 2
ffiffiffi
3

p
ðuþ vÞÞx2Þ; ðA12Þ

Fþþ ¼ Iþþð18ð−1þ
ffiffiffi
3

p
ðuþ vÞÞxþ ð−3þ

ffiffiffi
3

p
ðuþ vÞÞððu − vÞ2 − 3Þx3Þ

−Hþþð54 − 3ð3þ u2 þ v2 þ 6uv − 2
ffiffiffi
3

p
ðuþ vÞÞx2Þ; ðA13Þ

G−− ¼ −H−−ð18ð−1þ
ffiffiffi
3

p
ðu − vÞÞxþ ð−3þ

ffiffiffi
3

p
ðu − vÞÞððuþ vÞ2 − 3Þx3Þ

− I−−ð54 − 3ð3þ u2 þ v2 − 6uvþ 2
ffiffiffi
3

p
ðv − uÞÞx2Þ; ðA14Þ

Gþ− ¼ Hþ−ð18ð1þ
ffiffiffi
3

p
ðu − vÞÞxþ ð3þ

ffiffiffi
3

p
ðu − vÞÞððuþ vÞ2 − 3Þx3Þ

− Iþ−ð54 − 3ð3þ u2 þ v2 − 6uvþ 2
ffiffiffi
3

p
ðu − vÞÞx2Þ; ðA15Þ
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G−þ ¼ H−þð18ð1þ
ffiffiffi
3

p
ðuþ vÞÞxþ ð3þ

ffiffiffi
3

p
ðuþ vÞÞððu − vÞ2 − 3Þx3Þ

− I−þð54 − 3ð3þ u2 þ v2 þ 6uvþ 2
ffiffiffi
3

p
ðuþ vÞÞx2Þ; ðA16Þ

Gþþ ¼ −Hþþð18ð−1þ
ffiffiffi
3

p
ðuþ vÞÞxþ ð−3þ

ffiffiffi
3

p
ðuþ vÞÞððu − vÞ2 − 3Þx3Þ

− Iþþð54 − 3ð3þ u2 þ v2 þ 6uv − 2
ffiffiffi
3

p
ðuþ vÞÞx2Þ; ðA17Þ

H−− ¼ ðAðuÞAðvÞ þ BðuÞBðvÞÞDþ ðAðuÞBðvÞ − AðvÞBðuÞÞC; ðA18Þ

Hþ− ¼ ðAðuÞAðvÞ þ BðuÞBðvÞÞDþ ðAðvÞBðuÞ − AðuÞBðvÞÞC; ðA19Þ

H−þ ¼ −ððAðuÞAðvÞ − BðuÞBðvÞÞDþ ðAðuÞBðvÞ þ AðvÞBðuÞÞCÞ; ðA20Þ

Hþþ ¼ −ððAðuÞAðvÞ − BðuÞBðvÞÞD − ðAðuÞBðvÞ þ AðvÞBðuÞÞCÞ; ðA21Þ

I−− ¼ ðAðuÞAðvÞ þ BðuÞBðvÞÞCþ ðAðvÞBðuÞ − AðuÞBðvÞÞD; ðA22Þ

Iþ− ¼ ðAðuÞAðvÞ þ BðuÞBðvÞÞCþ ðAðuÞBðvÞ − AðvÞBðuÞÞD; ðA23Þ

I−þ ¼ −ððAðuÞAðvÞ − BðuÞBðvÞÞC − ðAðuÞBðvÞ þ AðvÞBðuÞÞDÞ; ðA24Þ

Iþþ ¼ −ððAðuÞAðvÞ − BðuÞBðvÞÞCþ ðAðuÞBðvÞ þ AðvÞBðuÞÞDÞ: ðA25Þ

The x1 → 0 limit can be taken by using limx1→0CiðAx1Þ − CiðBx1Þ ¼ logA − logB. The above formula correctly
reproduces earlier results. For example, if we take A ¼ 1, B ¼ 0, C ¼ − cos x, and D ¼ sin x,
then x−1limx1→0IRDðv; u; x1; xÞ ¼ IRDðv; u; xÞ.
The MD counterpart of the integral is

IMDðv; u; x1; x2Þ ¼
6AðuÞAðvÞ

5
½Cð−3x cos xþ ð3 − x2Þ sin xÞ þDð−3x sin xþ ðx2 − 3Þ cos xÞ�x2x1 : ðA26Þ

If we take A ¼ 1, C ¼ xy1ðxÞ, and D ¼ −xj1ðxÞ, this
reduces to the pureMD result, x−2limx1→0IMDðv; u; x1; xÞ ¼
IMDðv; u; xÞ. Equation (44) is obtained by using the values
of C and D which equate the zeroth and first derivatives
before and after the reheating (the sudden decay approxi-
mation is used). Also, we substitute Φ in Eq. (47) to A to
obtain Eq. (48).

APPENDIX B: COMPARISON WITH
OBSERVATIONS

Although the focus of this paper is the derivation of the
analytic formulas of the power spectrumof the inducedGWs,
we briefly illustrate how to compare our results to observa-
tions. The related discussion is given at the end of Sec. IV.
Well after the horizon entry, GWs produced in a RD era

redshift as radiation ρGW ∝ a−4, so ΩGW is constant during
a RD era, but it is diluted as a−1 in a MD era. This fact is
represented by the redshift factor ðxeq=xÞ2 in Eq. (46). The
present value of the energy fraction for the contribution
from or before the RD era is thus

ΩGWðη0; kÞ ¼ Ωr;0ΩGWðηc; kÞ; ðB1Þ

where Ωr;0 ¼ ρr;0=ρ0 is the present value of the energy
density fraction of radiation, and ηc is some time after
ΩGWðη; kÞ has become constant, so ΩGWðηc; kÞ is the
asymptotic constant value during the RD era [31]. A
precise formula taking into account the change in the
number of relativistic d.o.f. can be found, e.g., in Ref. [66]
in the context of the primordial GWs. For a comprehensive
discussion on the precise temperature dependence of the
effective d.o.f., see Ref. [67]. We do not show such a
dependence here because we neglect such changes in the
analytic integral; see footnote 2.
On the other hand, the present value of the energy

fraction for the contribution after the radiation-matter
equality is obtained as

ΩGWðη0; kÞ ¼
ρGWðη0; kÞ
ρGWðηΛ; kÞ

ρGWðηΛ; kÞ
ρðηΛÞ

ρðηΛÞ
ρmðη0Þ

ρmðη0Þ
ρðη0Þ

≃ 2Ωm;0
aðηΛÞ
aðη0Þ

ΩGWðηΛ; kÞ; ðB2Þ
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where Ωm;0 ¼ ρm;0=ρ0 is the present value of the matter
energy fraction, ηΛ is the conformal time when the dark
energy begins to dominate the Universe, ρmðηΛÞ¼ρΛðηΛÞ≃
ρðηΛÞ=2, and we approximate ΩGWðηΛ; kÞ by the MD-to-
RD formula because GWs are supposed to redshift like
radiation after the MD era.
To suppress the uncertainty of the Hubble parameter, it is

customary to multiply ΩGW with h20, which is defined as
H0 ¼ 100h0 km=s=Mpc. Some simple examples are plot-
ted in Fig. 3 for illustration. The brown lines show the
scale-invariant case with two MD eras. The green line
shows an example of the power-law spectrum, which may
be interpreted qualitatively as a rough approximation for
some PBH scenarios with curvatons [68–71]. The pulsar
timing array constraints and the sensitivity curves of future
GW detectors are also shown, as blue and pink lines,
respectively.
The dashed line in the Fig. 3 indicates that it is in the

nonlinear regime. Since the gravitational potential and the
density perturbation are related to each other throughΔΦ ≃
a2δρ=2 in the deep subhorizon limit, we define the non-
linear scale as (see Ref. [27])

kNLðηÞ ¼
3

2
P−1=4

ζ HðηÞ: ðB3Þ

We are mostly interested in the nonlinear scale evaluated at
the end of the MD era. The solid line below the dashed one
is the case in which we cut off the source spectrum at the
nonlinear scale, and the line of the RD era is simply
extrapolated. This should be too conservative because there
would be a contribution which gets marginally nonlinear
during the MD era and subsequently diluted just by cosmic
expansion. This contribution scales as ðkNL=kÞ4 [27].
However, to derive the precise spectrum, including
the region aroung k ≃ kNL, one has to consider a

time-dependent cutoff kNLðηÞ or rely on nonlinear lattice
simulations. For simplicity, we neglect this contribution.
The true value will be between the dashed and solid curves.

APPENDIX C: CONSTRAINTS ON GW FROM
BIG-BANG NUCLEOSYNTHESIS

An extra component of radiation such as the primordial
gravitational wave background speeds up the expansion of
the Universe, which can be checked by light element
abundances produced in the epoch of BBN. Such an extra
component of radiation is often parametrized by the
effective number of neutrino species Nν;eff ≡ ρν;eff=ρνi ,
where ρν;eff is the total energy density for the three species
of active neutrinos and the extra component of radiation,
and ρνi is the energy density for one species of active
neutrino νi. If Nν;eff is larger than ∼3, the interconverting
reactions between neutron (n) and proton (p) should be
decoupled from the thermal bath earlier than the time in the
case of the standard BBN, which gives a larger neutron to
proton ratio (n=p) as its freeze-out value. Then more 4He
and D are produced due to this larger n=p. Compared with
observational light element abundances of 4He and D, we
can constrain Nν;eff for a fixed value of baryon number.
Here, we adopt the value of the baryon number to be
ΩBh20 ¼ 0.02229�0.00029

0.00027 (95% C.L.) [42].
In this paper we adopt the following observational values

of the mass fraction of 4He [72] and the deuterium (D) to
hydrogen (H) ratio [73] at 68% C.L.,

Yp ¼ 0.2449� 0.0040; ðC1Þ
and

ðD=HÞp ¼ ð2.545� 0.025Þ × 10−5; ðC2Þ
respectively.

FIG. 4. (a) χ2 as a function of Nν;eff to fit abundances of D and 4He, respectively. (b) Total χ2 as a function ofΩGWh20 to simultaneously
fit both D and 4He.
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In Fig. 4(a), we plot χ2s as a function of Nν;eff to fit the
observational abundance of D and 4He, respectively, by
using theoretical values of abundances calculated in BBN
with errors of nuclear reaction rates. By using these values
of χ2, we can calculate the total χ2, which is plotted in
Fig. 4(b) as a function of ΩGWh20 ∼ 5.6 × 10−6ðNν;eff − 3Þ.

From this figure, we obtain the upper bound on the
energy density of the primordial GWs to be ΩGWh20 <
1.8 × 10−6 at 95% C.L. It is notable that this constraint is
sensitive to both the adiabatic and nonadiabatic compo-
nents of radiation. This constraint is shown in Fig. 3 as the
gray dotted line.
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