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We construct and train an artificial neural network called the backpropagation neural network to describe
the evolution of the type Ia supernova spectrum by using the data from the CfA Supernova Program. This
network method has many attractive features, and one of them is that the constructed model is
differentiable. Benefiting from this, we calculate the absorption velocity and its variation. The model
we constructed can well describe not only the spectrum of SNe Ia with wavelength range from 3500 Å to
8000 Å but also the light-curve evolution with phase time from −15 to 50 with different colors. Moreover,
the number of parameters needed during the training process is much less than the usual methods.
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I. INTRODUCTION

Type Ia supernova (SN Ia) is regarded as the standard
candle to measure the distance on cosmological scales,
since all of them have almost the same intrinsic brightness.
By using the SN Ia distance indicator, the accelerating
expansion of the universe was discovered in 1998 [1,2].
The standard model of SN Ia involves the thermonuclear
disruption of a carbon-oxygen white dwarf star as it
approaches the Chandrasekhar mass, and most type Ia
supernovae are very similar in their photometric and
spectroscopic properties. The SN Ia may be generated
through the merging of components in close binaries [3]. A
correlation between the peak luminosity and the shape of
the early light curve was also found, with brighter objects
having a lower rate of decline than dimmer ones [4], which
is matched by a spectroscopic sequence.
The model of the spectroscopic sequence is constructed

by a training process, such as the SALT2 model [5], in
which the mean evolution of the spectral energy distribu-
tion (SED) sequence of SN Ia and its variation with color
are modeled as a functional form; see Eq. (1) in [5]. During
the training process of SALT2, one ends up with more than
3000 parameters [5] to fit, due to the obvious nonlinearities
of the SED.
In past decades, among the various machine intelligence

procedures, artificial neural network (ANN) methods have
been established as powerful techniques to solve a variety
of real-world problems because of its excellent learning
capacity [6,7]. ANN is one of the popular areas of artificial

intelligence research and also an abstract computational
model based on the organizational structure of the human
brain [6]. In this paper, we will construct and train an ANN
called the backpropagation neural network (BPNN) to
describe the evolution of the SN Ia spectrum. The inputs
of our ANN are the phase (or time), the wavelength, and
also the color from the data that will be described later,
while the output is just the corresponding flux of the SN Ia.
The SED we trained is almost the same as that in the
SALT2 model. However, the employment of a neural
architecture adds many attractive features:

(i) One does not need to assume a functional form of
the SED model during the ANN’s training process.

(ii) The SED via ANNs is differentiable, and then it is
easily used in any subsequent calculations, e.g., the
calculation of the absorption velocity gradients of Si
II λ6355 line of SN Ia in the following.

(iii) The required number of model parameters is far less
than the traditional methods.

(iv) The method can be realized in hardware, using
neuroprocessors, and hence offer the opportunity
to handle the real-time analysis of the SN Ia’s
spectra.

(v) The method can also be efficiently implemented on
parallel architectures, such as the data parallelism, in
which the data set is split into small ones and each of
them is feed to a processor.

Si II λ6355 is one of the strongest features in optical/
near-infrared spectra of SN Ia; the blueshift of its absorp-
tion minimum has often been used to diagnose the diversity
among SN Ia [8]. Different subclass evolutions of Si II
λ6355 absorption velocity (vabs) have been compared in
Ref. [9], while the relation between its gradient and the
parameter Δm15 of SN Ia has been studied in [10]. In this
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paper, we have studied the properties of vabs and its
gradients by using the spectrum evolution model after
ANN’s training. The results are fully consistent with those
in [11,12].
The structure of this paper is as follows. In Sec. II, we

construct the neural network, and then train it in Sec. III.
The spectra data set we used for training is described in
Sec. IV, while the training results are presented in Sec. V,
and the vabs and its gradient are also computed in this
section. In Sec. VI the relation between vabs and color is
shown. Finally, discussions and conclusions are given in
Sec. VII.

II. NETWORK CONSTRUCTION

In the following, the neural network will be constructed,
which is called the backpropagation neural network. This
kind of ANN has already been used in astronomy and
physics, for example, to classify the type of a supernova
(e.g., Ia, Ib, II, etc.) by using the neural network from the
multifrequency observations of its light curve; see [13] and
references therein. The structure (or topology) of the BPNN
could be described as Fig. 1: where a few hidden layers and
a few neural neurons in each layer are presented for limited
space. In general, there could be totally Lþ 2 layers in the
network, and we will use l ¼ 0; 1; 2;…; L; Lþ 1 to denote
them, where l ¼ 0 is called the input layer, l ¼ Lþ 1 is
called the output layer, and others are all called the hidden
levels.
Let Nl denote the number of neurons at level l, with N0

and NLþ1 also being called the dimensions of the input and
the output, respectively. In this paper, we consider two
cases with N0 ¼ 2 and 3, and NLþ1 ¼ 1 for both.
Between the lth and the (l − 1)th level, we have the

weights

Wl ≡ ðWi
jÞl ∈ RNL×ðNL−1þ1Þ ð1Þ

for l ≥ 1, where i ¼ 1; 2;…; Nl; j ¼ 0; 1; 2;…; Nl−1, and
here we have included the bias vector in j ¼ 0, namely,

ðWi
0Þl ¼ ðbiÞl: ð2Þ

By construction, the input of the lth level is just the
output of the (l − 1)th level plus the bias, so we set the
output of the lth level ðoimÞl as the following:

ðoimÞ0 ¼ ðnimÞ0 ¼ Xi
m; l ¼ 0; ð3Þ

ðnimÞl ¼
XNl−1

j¼0

ðWi
jÞlðojmÞl−1; l ≥ 1; ð4Þ

ðoimÞl ¼ glððnimÞlÞ; l ≥ 1; ð5Þ

where i ¼ 1; 2;…; Nl, m ¼ 1; 2;…;M, and M denotes the
total number of the samples. Here, the function glðxÞ is the
activation function, which is often taken as a sigmoid
function or the tangent hyperbolic function.

gðxÞ ¼
� 1

1þe−x for sigmoid function;

tanhðxÞ for tanhðxÞ; ð6Þ

between the hidden layers, i.e., l ≤ L. Straightforward, we
also have

_g ¼ dg
dx

¼
�
gð1 − gÞ for sigmoid function;

1 − g2 for tanhðxÞ: ð7Þ

For the output layer, we take the activation function as a
linear function gðxÞ ¼ x; _g ¼ 1.

III. NETWORK TRAINING

To train the network, one needs to minimize a cost
function after feeding training samples. The cost function is
also called the error function, which describes the error
between the output and training samples. In our cases,
the cost function is given by E ¼ eTC−1e=2, or more
specifically,

E ¼ 1

2

�
F⃗obs − F⃗ANN

�
T
C−1

�
F⃗obs − F⃗ANN

�
; ð8Þ

where C is the covariance matrix of the observational
flux F⃗obs and the flux F⃗ANN is the output of BPNN for a
supernova at the redshift z that depends on the phase
p≡ ðt − tBmaxÞ=ð1þ zÞ, the wavelength λ, and maybe the
color C. In the rest frame of a supernova, p is just the days
after (p > 0) or before (p < 0) the date on which it has a
maximum luminosity. Furthermore, the error for a given
sample m in Eq. (8) reads

em ¼ Fobs
m − FANN

m : ð9Þ
FIG. 1. Typical structure of an ANN.
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In the following, we will perform the Levenberg-
Marquardt (LM) algorithm to train the BPNN. In each
step s, the following weighted normal equations will be
solved:

ðJTC−1Jþ μIÞðWsþ1 −WsÞ ¼ −JTC−1e; ð10Þ

to update each weight between the layers of the network for
next step sþ 1. Here I is the identity matrix, and μ is the
combination coefficient that could be changed during the
training procedure as the following: If the updated param-
eters ΔW ¼ Wsþ1 −Ws computed from Eq. (10) lead to a
reduction of the error, the updated parameters are accepted
and μ is decreased by factor of 2 or so in the next.
Otherwise, μ is increased by a factor of 2 or so, and
Eq. (10) is solved again to process until the decreased error
is found. This process repeats until the required precision is
reached.
The Jacobi matrix J ∈ RM×N is defined as

0
BBBBB@

∂e1∂W1

∂e1∂W2
� � � ∂e1∂WN

∂e2∂W1

∂e2∂W2
� � � ∂e2∂WN

� � � � � � � � � � � �
∂eM∂W1

∂eM∂W2
� � � ∂eM∂WN

1
CCCCCA
; ð11Þ

where N ¼ PLþ1
l¼1 NlðNl−1 þ 1Þ is the total number of

weights (including bias).
For a given sample m we also have the following

recurrence relation:

∂em
∂Wl ¼

∂ðFobs
m − FANN

m Þ
∂Wl ¼ −∂ðoLþ1

m Þ
∂Wl ; ð12Þ

∂ðoLþ1
m Þ

∂Wl ¼ δlðol−1m ÞT; ð13Þ

δLþ1 ¼ 1; ð14Þ

δl ¼ _Glðnl
mÞðW̄lÞTδlþ1; l ≤ L; ð15Þ

where ðW̄lÞ are the weights not including the bias vector,
i.e., ðW̄i

jÞl ¼ ðW̄i
jÞl; j ≠ 0, and

_Glðnl
mÞ¼

0
BBB@

_glððn1mÞlÞ 0 � � � 0

0 _glððn2mÞlÞ � � � 0

� � � � � � � � � � � �
0 0 � � � _glððnNl

m ÞlÞ

1
CCCA: ð16Þ

In summary, by using the LM algorithm, the update rule of
weights can be presented as

Wsþ1 ¼ Ws − ðJTC−1Jþ μIÞ−1JTC−1e: ð17Þ

Actually, we also have tried the famous resilient back-
propagation (RPROP) algorithm [14] to train BPNN, but it
turns out that the LM one is much better, especially when
the input dimension is higher than 2.

IV. DATA ANALYSIS

The data used in this paper are obtained through the CfA
Supernova Program, and there are 2603 spectra of 462 low-
z SNIa in total; see Refs. [9,15–21]. It should be noticed
that some of the spectra in the CfA data have no flux error
information and in this case we estimate the flux error by
averaging the errors of the other data. For the training, the
recalibration (or renormalization) of spectra from the
corresponding supernova needs the knowledge of tBmax,
i.e., the time when the flux has a maximum luminosity, so
that spectra without the information of tBmax will be
disregarded. We only focus on −15 < p < 50, which is
the most important phase range when dealing with the
spectra. Beyond this range, we have either a few spectra or
slowly varying ones. The spectra of SN Ia with color
C>0.8 and those without a spectrum in range −10<p<15
are ignored, since the supernova has strong extinctions for
large color. Actually, the impact is limited on training that
includes these outside ranges in the sense that the trained
weights of the network do not change much, but we do not
think that the network could well describe the range outside
of ½−15; 50� in which there are only a few data points, and
the color range C > 0.8 in which the data have too strong
extinctions to deal with when the covariance matrices are
unknown. Here, the color of a SN Ia could be defined
through the spectra:

C ¼ 2.5 log

�R
λ λTVðλÞSSNðλÞdλR
λ λTBðλÞSSNðλÞdλ

�
; ð18Þ

where SSNðλÞ is the de-redshift spectrum nearest tBmax, and
TBðλÞ and TVðλÞ are the effective instrument transmissions
in photometric bands B and V, respectively. The color
defined from spectroscopy in the equation above has almost
the same properties as that defined from the photometry;
see Ref. [15].
Finally, there are 1787 spectra of 238 SN Ia (about 4600

thousand data points) that will be left for the BPNN
training. We have shown the number and redshift distri-
butions of these samples in Figs. 2 and 3. From the number
distribution of the spectra in Fig. 2 (unfilled histogram), we
find that many spectra were obtained near the max date tBmax
(p ¼ 0), but the average phase is about p̄ ∼ 10.5 because
the distribution has a long tail. The height of each column
of the filled histogram in Fig. 2 indicates the number of SN
Ia whose earliest spectrum is obtained at the phase p. It
shows that more than half of the supernovae have the
spectra earlier than the max date. From Fig. 3, one can see
that almost all the SN Ia are below z < 0.05, and the
average value is z̄ ∼ 0.02.
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The Δm15 and color C distributions of the spectra are
also plotted in Fig. 4. The filled histogram tells us the
average value ofΔm15 is about ¯Δm15 ∼ 1.15mag, while the
unfilled one shows the average value of C̄ ∼ 0.34 mag.
To make the best use of the spectroscopic data, one needs

to recalibrate or renormalize the data by using the corre-
sponding SN Ia photometry, since in general the photom-
etry is much better calibrated and uniform than its spectra.
The recalibration is performed by multiplying each input
spectrum by the factor

fpSN ¼ F̄obs
R ðpÞR

λ λTRðλÞSSNðλÞpdλ
; ð19Þ

where F̄obs
R ðpÞ is the average value of the flux in the R band

filter.

V. TRAINING RESULTS

The output flux of BPNN F⃗ANN in Eq. (8) could depend
on either two inputs, i.e., phase p and wavelength λ, or
three inputs, phase p, wavelength λ, and color C. In the
following, the networks of these two cases will be trained.

FIG. 2. Number distributions of the spectra and SN Ia.

FIG. 3. Redshift distribution of the spectra.

FIG. 4. Parameter distribution of the spectra.

FIG. 5. The RMSE and MAE vs the neuron number in the
hidden level for the BPNN with only one hidden level.

TABLE I. Results in Case I with different network structures.
The first column is the topology of the network, the second
column is the total number of the weights (including the bias),
and the third and forth columns are the final RMSE and MAE,
respectively. Note that the values of RMSE and MAE are already
divided by the number of data points.

Structure No. RMSE MAE

2-10-10-1 151 0.4964 0.2981
2-15-15-1 301 0.4077 0.2220
2-20-20-1 501 0.3549 0.1871
2-10-10-10-1 261 0.4063 0.2206
2-15-15-15-1 541 0.3491 0.1866
2-20-20-20-1 921 0.3059 0.1690
2-10-10-10-10-1 371 0.3769 0.1988
2-15-15-15-15-1 781 0.3016 0.1705
2-20-20-20-20-1 1341 0.2780 0.1665

FIG. 6. Three-dimensional vision: A best-trained spectrum
evolution model.
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For simplicity, we assume each hidden level of the network
has the same number of neurons in both cases.

A. Case I: F⃗ANN = F⃗ANNðp;λÞ
In this case, the network will be trained by using the

spectra in the wavelength range between 3500 and 8000 Å
with a bin interval of 10 Å. In each interval, we average the
flux weighted by its variation. There are about 57 000 data
points in total.

Figure 5 indicates the variation of the root mean squared
error (RMSE) and the mean absolute error (MAE) vs the
neuron number, where the BPNN has only one hidden
level. One can clearly see that both RMSE and MAE
decrease with the increase of the neuron number. We have
also compared different structures of the network with three
or four hidden levels; see Table I. The total number of
parameters including weights and bias in the training
network is less than 1000 except the last one, which has
the most complicated structure. However, during the train-
ing process of SALT2, one usually ends up with more than
3000 parameters [5] to fit. To illustrate the ability of the
BPNN method, a best-trained spectrum evolution model is
presented in Figs. 6–8.
To see whether the training is overfit, we split the data

into training and test sets by randomly choosing the training
points from the all data set. A typical value of RMSE and
MAE between these two sets is presented in Table II.
From Table II, one can see that the difference between

the training and test sets is small. Therefore, it seems that
there is no overfit issue for the networks we have trained.

B. Case II: F⃗ANN = F⃗ANNðp;λ;CÞ
It is well known that the K correction of the light curve

mainly depends on spectral color [22,23], so in this case,
the color will be included as one input of the network and

FIG. 7. Contour: A best-trained spectrum evolution model.

FIG. 8. Evolution of spectrum with phase, where the number in
parentheses denotes the phase.

TABLE II. The data are split randomly to the training and test
sets accordingly (80% to 20% or 70% to 30% split).

Percent (%) Number RMSE MAE

Training set 80 1416 0.4471 0.2699
Test set 20 371 0.4297 0.2643
Training set 70 1240 0.4303 0.2657
Test set 30 547 0.4778 0.2790

FIG. 9. Color vs phase.
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the full set of spectra data will be used instead of the
bin one.
After training, we find the behavior of the RMSE and

MAE is the same as that in Case I. It is interesting that the
color is almost a constant before the maximum luminosity
day, after which it is proportional to the phase time; see
Fig. 9. We also compared the trained spectra with those in
SALT2 at different phases; see Fig. 10. One can see that the
difference between them is very small at long wavelength,
whereas at the short wavelength, the difference mainly
depends on the color value; when C ∼ 0.15, the model
we trained is almost the same as that in SALT2. The

RMSE/MAEs over the training and test sets for the SALT2
and BPNN models are also given in Table III.
From Table III, one can see that the values of

RMSE=MAE are slightly smaller for the BPNN model
than that for the SALT2 model.

VI. APPLICATION: ABSORPTION VELOCITY

As we stated in the Introduction, one of the attractive
features of applying the ANN method is that the output of
the network is differentiable. One can benefit from this
property to perform the consequence calculation, e.g., to
calculate the absorption velocity gradients of Si II λ6355
line of SN Ia.
The absorption velocity is defined by using the relativ-

istic Doppler formula:

vabs
c

¼ ðλabs=λ0Þ2 − 1

ðλabs=λ0Þ2 þ 1
; ð20Þ

where λ0 is the wavelength of the corresponding transition,
and c is the speed of light. The wavelength corresponding
to the maximum absorption λabsðpÞ can be obtained from
the trained network; i.e., the value of wavelength minimizes
F⃗ANN at phase p (see Fig. 11). And then the changes of vabs
can be more efficiently obtained than those in Ref. [24] (see
Fig. 12). The evolution is much faster at early times of the

FIG. 10. Comparison of different color spectra. The black
dashed line is SALT2 template spectra.

TABLE III. The RMSE/MAEs over the training and test sets for
the SALT2 and BPNN models.

RMSE=MAE SALT2 BPNN model

Training set (80%) 0.7098=0.4656 0.4471=0.2699
Test set (20%) 0.6685=0.4489 0.4297=0.2643
Training set (70%) 0.6900=0.4612 0.4303=0.2657
Test set (30%) 0.7270=0.4642 0.4778=0.2790

FIG. 11. Evolution of the Si II λ6355 absorption velocity with
time for the spectra of different colors.
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supernova’s explosion, which is about vabs ∼ 13; 000 km=s
at phase p ∼ −8. Later, the speed decreases to vabs ∼
11; 000 km=s at the maximum date p ∼ 0 with range
∼2000 km=s for different colors, and it is nearly a constant
during these phases. Finally, it will continue to decrease to
vabs ∼ 9; 000 km=s at p ∼ 25 with range 1; 000 km=s. The
speed is almost a constant during 0 < p < 5, i.e., ∂tvabs∼0,
while ∂tvabs∼110km=s=day after phase p ∼ 10.

VII. CONCLUSION AND FUTURE WORK

We have constructed an SN Ia spectrum evolution model
by training a backpropagation neural network with the
observed nearby spectra from the CfA SN Program. The
model can well describe not only the spectrum of SNe Ia
with wavelength range from 3500 to 8000 Å but also the
light-curve evolution with phase time from −15 to 50 for
different colors. We also compare the results with the
SALT2 template and find that the model we constructed by
using ANN is almost the same as the SALT2 template but
with fewer parameters during the training process.

From Fig. 5, one can see that the RMSE and MAE
appear to still be decreasing with increasing network
complexity. Actually, we have tried a few more compli-
cated networks with more layers and hidden units, but the
RMSE and MAE do not decrease very much, something
like ≲0.1%. However, the computing time increases very
much. It costs even a few months to train a network with the
most complicated network during our research. Besides,
the number of parameters will increase when the network
becomes complicated, and it may lead to an overfit issue.
By taking advantage of the network method, we calcu-

lated Si II λ6355 absorption velocity and its gradient in
different phases and colors, and our results are consistent
with the previous works in the literature.
It also shows that the Levenberg-Marquardt algorithm

for training the network is much faster than others such as
the RPROP algorithm.
With the artificial neural network, the evolution of the

universe could be obtained with the trained spectra model,
which we will tackle in our future work. Actually, the
history of the universe could be observed without
assumption of any cosmological model, for example, the
model given in Refs. [25,26]. Such a model-independent
attempt has been put forward in Ref. [27]. We will try to
achieve this goal using the network method directly.
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