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We consider a quasi-single field inflation model in which the inflaton interacts with a massive scalar field
called the isocurvaton. Due to the breaking of time translational invariance by the inflaton background,
these interactions induce kinetic mixing between the inflaton and isocurvaton, which is parameterized by a
constant μ. We derive analytic formulas for the curvature perturbation two-, three-, four-, five-, and six-
point functions explicitly in terms of the external wave vectors in the limit where μ and the mass of the
isocurvaton m are both much smaller than H. In previous work, it has been noted that when m=H and μ=H
are small, the non-Gaussianities predicted by quasi-single field inflation give rise to long wavelength
enhancements of the power spectrum for biased objects (e.g., galactic halos). We review this calculation,
and calculate the analogous enhanced contribution to the bispectrum of biased objects. We determine the
scale at which these enhanced terms are larger than the Gaussian piece. We also identify the scaling of these
enhanced parts to the n-point function of biased objects.
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I. INTRODUCTION

The inflationary paradigm [1] proposes an era in the very
early universe during which the energy density is domi-
nated by vacuum energy. It explains why the universe is
close to flat and the near isotropy of the cosmic microwave
background radiation. In addition, it has a simple quantum
mechanical mechanism for generating energy density
perturbations with wavelengths that are well outside the
horizon in the early universe. The energy density pertur-
bations resulting from inflation have an almost scale
invariant Harrison-Zeldovich power spectrum. The sim-
plest inflation models consist of a single scalar field ϕ
called the inflaton. The quantum fluctuations in the
Goldstone mode π associated with the breaking of time
translation invariance by the inflaton [2] source the energy
density fluctuations. In the simplest of these single field
inflationary models, the density perturbations are approx-
imately Gaussian [3].
Quasi-single field inflation [4] is a simple generalization

of single field inflation that consists of a massive scalar
field, the isocurvaton field s, that couples to the inflaton.
This coupling can give rise to significant non-Gaussianities

in the correlators of π. The Lagrange density in this model
contains an unusual kinetic mixing of the form μ _πs that
gives rise to a wealth of interesting phenomena.
In this paper, we study the effects of primordial non-

Gaussianities on large scale structure. One complication
that is not present for the microwave background radiation
is that galaxies are biased objects. They do not trace the
mass distribution but rather arise at special points, for
example where the fluctuations in the mass density exceed
some threshold. It was realized in [5,6] that the power
spectrum for biased objects can deviate significantly from
Harrison-Zeldovich on large scales if the primordial mass
density perturbations are non-Gaussian. These effects have
become known as scale-dependent bias and stochastic bias.
In [7] these enhancements for the power spectrum of biased
objects were systematically explored within the context
of quasi-single field inflation.1 Quantitative predictions for
the power spectrum of galactic halos in quasi-single field
inflation (and other models for non-Gaussian primordial
fluctuations) were recently made in [8]. Very recently the
scale-dependent bias introduced by higher spin fields [9]
coupled to the inflaton has been explored [10].
In this paper we continue and extend the work of [7] and

compute the galactic halo power spectrum and bispectrum
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1We refer to these effects as enhancements even though for
some range of wave-vectors and model parameters they can
interfere destructively with the usual part arising from Gaussian
primordial density fluctuations.
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in quasi-single field inflation. The bispectrum for galaxies
was computed for local non-Gaussianity in [11] and for
equilateral non-Gaussianity [12]. We make explicit numeri-
cal predictions by adopting the very simple model in which
galaxies arise at points where the underlying energy density
fluctuations (averaged over a volume) are above a threshold
[13].2 Also, we identify the scaling of the n-point function
of the halo overdensity in quasi-single field inflation within
this threshold model.
The impact of the non-Gaussianities in quasi-single field

inflation is largest when the kinetic mixing μ and the
isocurvaton mass m are small compared to the Hubble
constant during inflationH.Wederive new analyticmethods
to calculate the correlations of π in this region of parameter
space. These are applied to derive analytic expressions for
the two-, three-, four-, five-, and six-point functions of π.We
apply these results to derive explicit expressions for the
galactic halo power spectrum and bispectrum. The effects in
the power spectrum and the bispectrum of galaxies due to
primordial non-Gaussianities can become pronounced at the
scale q ≃ 1=ð200h−1 MpcÞ. In this workwe neglect the time
evolution of the galaxy distribution after galaxies form. Even
though this is not a small effect, we do not expect that
neglecting it will qualitatively impact our conclusions.
Furthermore, the computations we perform of the higher
correlations of π will be useful for a more complete
computation of the galaxy bispectrum.
In Sec. II we outline the quasi-single field inflationmodel.

Wediscuss the power series expansion of themode functions
of the quantum fields π and s at small jτj, where τ is
conformal time. For small μ=H and m=H, a method is
developed to determine the power series coefficients needed
to compute the two-, three-, four-, five- and six-point
correlations of the curvature perturbation ζ.3 In Sec. III
we compute the three-, four-, five- and six-point correlations
of ζ. The three- and four-point functions are computed for
general wave vectors, but the five- and six-point functions
are only computed for the configurations of wave-vectors
that are relevant to the longwavelength enhancements to the
galactic halo bispectrum. Section IV introduces the bias
expansion and the points above threshold model for the
galactic halo overdensity. The results from Sec. III are used
to compute the halo power spectrum and bispectrum. We
also present the scaling of the n-point function of the halo
overdensity in quasi-single field inflation. Concluding
remarks are given in Sec. V.

II. THE MODEL AND THE MODE FUNCTIONS

We consider a quasi-single field inflation theory in which
inflation is driven by a single scalar inflaton field ϕ and the
inflaton is coupled to a single massive scalar isocurvaton

field s. The classical background field of the inflaton, ϕ0ðtÞ,
is time-dependent but we will impose conditions so that to
leading order in slow-roll parameters, the background value
of s is zero. We also impose a shift symmetry ϕ → ϕþ c
and a Z2 symmetry ϕ → −ϕ on the inflaton that is only
broken by its potential. This implies that the isocurvaton
field s couples to derivatives of the inflaton. The lowest
dimension operator coupling the inflaton to the isocurvaton
is the dimension five operator,

Ldim 5 ¼
1

Λ
gμν∂μϕ∂νϕs: ð2:1Þ

We choose the gauge in which the inflaton is only a
function of time, ϕðxÞ ¼ ϕ0ðtÞ. We expand the potential for
s in a power series about s¼ 0, VðsÞ¼V 0sþV 00s2=2þ
V 000s3=3!þ��� and assume the tadpole in s cancels,
ð _ϕ0Þ2=Λ − V 0 ¼ 0. Since we work to leading order in
slow-roll parameters, we can neglect ϕ̈0, making this
cancellation possible. To obtain long wavelength enhance-
ments to the correlations of biased objects, we need m, the
mass of s (m2 ¼ V 00), to be less than the Hubble constant
during inflation, H. We assume there is some inflaton
potential (likely non-analytic in ϕ) that gives values of the
power spectrum tilt nS and the tensor to scalar ratio r
consistent with observations.
The Goldstone field πðxÞ, associated with time transla-

tional invariance breaking by the time dependence of ϕ0,
gives rise to the curvature fluctuations. In a de-Sitter
background, the Lagrangian describing πðxÞ and sðxÞ is

L ¼ L0 þ Lint ð2:2Þ

where

L0 ¼
1

2ðHτÞ2
�
ð∂τπÞ2 −∇π ·∇π þ ð∂τsÞ2

−
m2

ðHτÞ2 s
2 −∇s ·∇s −

2μ

Hτ
s∂τπ

�
ð2:3Þ

and

Lint ¼
1

ðHτÞ4
�ðHτÞ2

Λ
ðð∂τπÞ2 −∇π ·∇πÞs

−
V 000

3!
s3 −

Vð4Þ

4!
s4…

�
: ð2:4Þ

In Eq. (2.3) we have introduced

μ ¼ 2 _ϕ0=Λ ð2:5Þ

and conformal time τ ¼ −e−Ht=H. We have rescaled π by
_ϕ0 (we take _ϕ0 > 0) to obtain a more standard normali-
zation for the π kinetic term. We have also included the

2Kaiser applied this model to explain the biasing of rich
clusters of galaxies [14].

3π and ζ are linearly related.
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measure factor
ffiffiffiffiffiffi−gp

in the Lagrangian so that the action is
equal to

R
d3xdτL. Note the unusual kinetic mixing term in

(2.3) which is a result of the background inflaton field
breaking Lorentz invariance.
To compute correlation functions involving π and s, we

expand the quantum fields in terms of creation and
annihilation operators. Since the fields π and s have kinetic
mixing, they share a pair of creation and annihilation
operators. Introducing η ¼ kτ we write,

πðx; τÞ ¼
Z

d3k
ð2πÞ3 ða

ð1ÞðkÞπð1Þk ðηÞeik·x

þ að2ÞðkÞπð2Þk ðηÞeik·x þ H:c:Þ ð2:6Þ

and

sðx; τÞ ¼
Z

d3k
ð2πÞ3 ða

ð1ÞðkÞsð1Þk ðηÞeik·x

þ að2ÞðkÞsð2Þk ðηÞeik·x þ H:c:Þ ð2:7Þ

By varying (2.3) we can obtain the equations of motion for

the mode functions πðiÞk ðηÞ and sðiÞk ðηÞ. These are

πðiÞ00k −
2πðiÞ0k

η
þ πðiÞk −

μ

H

�
sðiÞ0k

η
−
3sðiÞk
η2

�
¼ 0 ð2:8Þ

and

sðiÞ00k −
2sðiÞ0k

η
þ
�
1þ m2

H2η2

�
sðiÞk þ μ

H
πðiÞ0k

η
¼ 0; ð2:9Þ

where a “ 0” indicates an η derivative.

A. Power series solution

As mentioned in the introduction it is difficult to solve
Eqs. (2.8) and (2.9) analytically for general m and μ.
Fortunately, in the small m=H and μ=H regime we do not
need the mode functions’ full time-dependence to deter-
mine the leading behavior of the correlation functions of π.
Rather, we only need their small −η behavior.4 To deter-
mine this, we obtain a power series solution to (2.8) and
(2.9). To begin, we rescale the mode functions

πðiÞk ðηÞ¼ðH=k3=2ÞπðiÞðηÞ sðiÞk ðηÞ¼ðH=k3=2ÞsðiÞðηÞ ð2:10Þ

and then expand πðiÞðηÞ and sðiÞðηÞ as a power series in −η

πiðηÞ¼
X∞
n¼0

aðiÞr;nð−ηÞnþr sðiÞðηÞ¼
X∞
n¼0

bðiÞr;nð−ηÞnþr: ð2:11Þ

By plugging (2.11) into (2.8) and (2.9), we derive relations

among the coefficients aðiÞr;n and bðiÞr;n

�
aðiÞr;0r −

μ

H
bðiÞr;0

�
ðr − 3Þð−ηÞr−2 þ

�
aðiÞr;1ðrþ 1Þ − μ

H
bðiÞr;1

�
ðr − 2Þð−ηÞr−1

þ
X∞
n¼0

��
aðiÞr;nþ2ðnþ rþ 2Þ − μ

H
bðiÞr;nþ2

�
ðnþ r − 1Þ þ aðiÞr;n

�
ð−ηÞnþr ¼ 0

��
bðiÞr;0ðr − 3Þ þ μ

H
aðiÞr;0

�
rþ bðiÞr;0

m2

H2

�
ð−ηÞr−2 þ

��
bðiÞr;1ðr − 2Þ þ μ

H
aðiÞr;1

�
ðrþ 1Þ þ bðiÞr;1

m2

H2

�
ð−ηÞr−1

þ
X∞
n¼0

��
bðiÞr;nþ2ðnþ r − 1Þ þ μ

H
aðiÞr;nþ2

�
ðnþ rþ 2Þ þ bðiÞr;nþ2

m2

H2
þ bðiÞr;n

�
ð−ηÞnþr ¼ 0: ð2:12Þ

Since (2.12) is true for all η < 0, the coefficient multiplying
each power of −η vanishes. The constraints due to the
coefficients multiplying ð−ηÞnþr provide recursion rela-
tions relating the nþ 2 coefficients to the n ones. The
constraints due to the coefficients multiplying ð−ηÞr−2 are

�
aðiÞr;0r −

μ

H
bðiÞr;0

�
ðr − 3Þ ¼ 0;

�
bðiÞr;0ðr − 3Þ þ μ

H
aðiÞr;0

�
rþ bðiÞr;0

m2

H2
¼ 0: ð2:13Þ

Equation (2.13) implies the only possible values of r are

r ¼ 0; 3; α−; αþ ð2:14Þ

where

α� ¼ 3=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − ðμ=HÞ2 − ðm=HÞ2

q
: ð2:15Þ

Note α− and αþ approach 0 and 3 when m and μ approach
zero. Then small μ=H and m=H imply small α−. Consid-
ering odd n instead of even n results in the same exact

solution, so we take aðiÞr;1 ¼ bðiÞr;1 ¼ 0 to eliminate this
redundant solution.

4Conformal time η satisfies −∞ < η < 0 with inflation ending
at η ¼ 0.

NON-GAUSSIAN ENHANCEMENTS OF GALACTIC HALO … PHYS. REV. D 97, 123528 (2018)

123528-3



There are then four branches of the series solution (2.11).
The leading power of each branch is ð−ηÞr and the
successive terms go like ð−ηÞrþ2k where k is a positive
integer. The series solutions (2.11) are a linear combination
of each branch. The small−η behavior of πðiÞ and sðiÞ is then

πðiÞðηÞ ¼ aðiÞ0 þ aðiÞ− ð−ηÞα− þ aðiÞ0;2ð−ηÞ2 þ aðiÞ−;2ð−ηÞα−þ2

þ aðiÞþ ð−ηÞαþ þ aðiÞ3 ð−ηÞ3 þ � � �
sðiÞðηÞ ¼ bðiÞ− ð−ηÞα− þ bðiÞ0;2ð−ηÞ2 þ bðiÞ− ð−ηÞα−þ2

þ bðiÞþ ð−ηÞαþ þ bðiÞ3 ð−ηÞ3 þ � � � ð2:16Þ

Note that we have used the notation aðiÞ�;n ≡ aðiÞα�;n and

bðiÞ�;n ≡ bðiÞα�;n, andwehave alsowritten then ¼ 0 coefficients

as aðiÞr . Moreover, bðiÞ0 ¼ 0 due to (2.13).
As −η → 0, sðiÞðηÞ → 0 while πðiÞðηÞ → aðiÞ0 . However,

for α− ≪ 1 the ð−ηÞα− term will remain significant even for
−η ≪ 1 which means π can undergo superhorizon evolu-
tion. We can estimate the value of η at which π stops
evolving using α− ≃ ðμ2 þm2Þ=ð3H2Þ which is valid for
small μ and m. The π modes then stop evolving at
−η ∼ e−3H

2=ðμ2þm2Þ. In this paper we only consider values
of m and μ such that the modes of interest stop evolving
before the end of inflation. Then one does not need to
consider the details of reheating to make predictions for the
curvature perturbations.
Equation (2.13) can also be used to relate the aðiÞ and bðiÞ

coefficients multiplying the leading ð−ηÞr term of each
branch

bðiÞ0 ¼ 0; bðiÞ− ¼ HaðiÞ− α−
μ

;

bðiÞþ ¼ HaðiÞþ αþ
μ

; bðiÞ3 ¼ −3Hμ

m2
aðiÞ3 : ð2:17Þ

A full solution to the mode equations is unnecessary. We
only need certain combinations of the power series coef-
ficients to derive the leading (for smallm and μ) behavior of
the correlation functions of π and s. For example, the

combinations
P

ijaðiÞ0 j2, Pia
ðiÞ
0 bðiÞ�− and

P
ijbðiÞ− j2 deter-

mine the two point functions hππi, hπsi and hssi at late
times.

B. Power series coefficients

In this section, we outline the derivation of the combi-
nations of power series coefficients that are needed to
compute the correlation functions of π whenm=H and μ=H
are small. We begin with the combination

P
ijbðiÞ− j2, which

can be obtained by matching to an effective field theory that
reproduces the correct two point function of s in the small η

limit. It turns out that once we know
P

ijbðiÞ− j2 we can

determine
P

ijaðiÞ0 j2 and
P

ia
ðiÞ
0 bðiÞ�− from the full theory.

In the small −η limit we can neglect the second term
appearing in (2.3). Then:

LEFT
0 ¼ 1

2ðHτÞ2
�
ð∂τπÞ2 þ ð∂τsÞ2 −

m2

ðHτÞ2 s
2

−∇s ·∇s −
2μ

Hτ
s∂τπ

�
ð2:18Þ

The π equation of motion gives

∂τπ ¼ μ

H
sðτÞ
τ

ð2:19Þ

where we have dropped a term proportional to τ2 in (2.19).
The solution of Eq. (2.19) is

πðτÞ ¼ c1 þ
Z

τ

−∞

μ

H
sðτ0Þ
τ0

dτ0 ð2:20Þ

where c1 is a constant operator. As mentioned earlier, since

(for small η) sðiÞk ðηÞ ≃ bðiÞ− ð−ηÞα− and α− is small, the mode

functions sðiÞk remain nonzero even after the mode wave-
vector has exited the horizon (i.e., when jηj < 1). Due to
the factor of 1=τ in the integral in (2.20), the π mode
functions will undergo superhorizon growth and can
become quite large if m=H and μ=H are small.
We use Eq. (2.20) to express the field π in terms of s.

Integrating out π using its equation of motion yields an
effective Lagrangian for s:

LEFT
0 ¼ 1

2ðHτÞ2
�
ð∂τsÞ2−

m2þμ2

ðHτÞ2 s2−∇s ·∇s

�
: ð2:21Þ

Since in this effective theory there is only one field s, it can
be written in terms of a single mode function sk that
satisfies the differential equation,

s00kðηÞ−
2

η
s0kðηÞþ skðηÞþ

�
μ2

H2
þm2

H2

�
skðηÞ
η2

¼ 0: ð2:22Þ

The solution to (2.22) that satisfies the asymptotic Bunch-
Davies vacuum condition and is consistent with the
canonical commutation relations is

skðηÞ ¼ H

ffiffiffiffiffiffiffi
π

4k3

r
ð−ηÞ3=2Hð1Þ

ν ðηÞ ð2:23Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − ðμ=HÞ2 − ðm=HÞ2

p
and Hð1Þ

ν is a
Hankel function of the first kind. The small −η limit of
(2.23) is
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skðηÞ ¼ Hð−ηÞα− i

k3=2
1ffiffiffi
2

p : ð2:24Þ

Using (2.24), we can determine the small −η limit of the
two-point function of the Fourier transform of s. Denoting
this Fourier transform by sk, we obtain

hsksk0 iðτ0Þ ¼ ð2πÞ3δ3ðkþ k0Þ H
2

2k3
ð−ηÞ2α− : ð2:25Þ

By matching the full theory prediction for hssi to (2.25)
we find

X
i

jbðiÞ− j2 ¼ 1

2
: ð2:26Þ

Equation (2.20) can be used to determine the leading
small −η behavior of the π mode functions in the full
theory. It gives

πðiÞð0Þ ¼ cðiÞ1 þ
Z

0

−∞

μ

H
sðiÞðη0Þ

η0
dη0: ð2:27Þ

From Eq. (2.16) we see that the integrand in (2.27) goes
like ð−ηÞ−1þα− in the IR region of the integral, i.e., −η < 1.
For small m=H and μ=H, α− is very small and the integral
will receive a large contribution from the IR. On the other
hand, the contribution from the UV is small because the
mode functions become oscillatory with smaller amplitude
when −η > 1. This means the integral is fixed by the
integrand’s IR behavior so that5

πðiÞð0Þ ≃ cðiÞ1 −
μbðiÞ−
H

Z
0

−1
ð−ηÞ−1þα−dη

¼ cðiÞ1 −
μbðiÞ−
H

1

α−
¼ cðiÞ1 −

3μHbðiÞ−
μ2 þm2

: ð2:28Þ

In (2.28) we have used α−1− ≃ 3H2=ðμ2 þm2Þ. The correc-
tions to (2.28) are suppressed by powers of α− and are
unimportant when m=H and μ=H are small. The integral is
insensitive to the exact value of the UV cutoff because α−
is small.
We can now compute the two-point function of the

Fourier transform of π, which can be written as

hπkð0Þπk0 ð0Þi ≃ ð2πÞ3δðkþ k0ÞH
2

k3
C2ðμ; mÞ: ð2:29Þ

We determine C2ðμ; mÞ by taking the magnitude squared
of (2.28):

C2ðμ; mÞ ≃
X
i

�
jcðiÞ1 j2 þ 9μ2H2

ðμ2 þm2Þ jb
ðiÞ
− j2

−
6μH

μ2 þm2
ReðcðiÞ1 bðiÞ�− Þ

�
: ð2:30Þ

In writing (2.30), we have only kept the terms that are most
important for m=H and μ=H small. Now hππi is invariant
under s → −s.6 This implies the last term in the brackets of
(2.30) has to vanish. We can determine the first term by

noting that the constant cðiÞ1 is μ independent. This can be
seen from the fact that it is a boundary condition fixed by
the UV, thereby independent of the mixing factor μ. We can
then fix the first term in (2.30) by demanding that
C2ð0; mÞ ¼ 1=2. Finally, using (2.26) we find that

C2ðμ; mÞ ≃ 1

2
þ 9μ2H2

2ðμ2 þm2Þ2 : ð2:31Þ

Equation (2.31) gives the leading behavior of C2ðμ; mÞ in
the limit of small m=H and μ=H. We can determine the
accuracy of (2.31) by extending the numerical techniques
developed in [15,16] to the region of small m=H and μ=H
and computing the power spectrum numerically. This is
done in Appendix A.
We now compute the leading m and μ dependence of the

curvature perturbation two-point function. The curvature
perturbation is related to the Goldstone field by

ζk ¼ −
H
_ϕ0

πk: ð2:32Þ

The curvature perturbation two-point is then

hζk1
ζk2

i ¼
�
H
_ϕ0

�
2

hπk1
πk2

i ¼ ð2πÞ3δðk1 þ k2ÞPζðkÞ

¼ ð2πÞ3δðk1 þ k2Þ
�
H2

_ϕ0

�
2 1

k3
C2ðμ; mÞ: ð2:33Þ

Using (2.33) we can express _ϕ0 in terms of μ, m, and
the measured value of the dimensionless power spectrum
Δζ [17]:

Δ2
ζ ¼ 2.12 × 10−9 ¼ k3

2π2
PζðkÞ ¼

�
H2

_ϕ0

�
2 1

2π2
C2ðμ; mÞ:

ð2:34Þ

This implies

5We will use these same arguments when we evaluate the time
integrals involved in the calculation of higher point correlators.

6If we treat μ as a perturbation then all of the corrections to
hππi involve even powers of the s field.
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_ϕ0

H2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðμ; mÞ
2π2Δ2

ζ

s
: ð2:35Þ

We can determine the combination
P

ia
ðiÞ
0 bðiÞ�− by

multiplying both sides of (2.28) by bðiÞ�− and summing
over i. This gives

X
i

aðiÞ0 bðiÞ�− ¼
X
i

cðiÞ1 bðiÞ�− −
3μH

2ðμ2 þm2Þ : ð2:36Þ

We have already shown that
P

iReðcðiÞ1 bðiÞ�− Þ ¼ 0, which
implies

X
i

ReðaðiÞ0 bðiÞ�− Þ ¼ −
3μH

2ðμ2 þm2Þ : ð2:37Þ

The remaining combinations of power series coefficients
needed to compute the higher order correlation functions of
π are fixed using the canonical commutation relations of s
and π. Consider the equal time relation ½sðx; τÞ; πðy; τÞ� ¼ 0.
By inserting (2.6) and (2.7) into this relation, we find

½πðx;τÞ;sðy;τÞ�

¼
Z

d3k
ð2πÞ3 e

ik·ðx−yÞX
i

½πðiÞk ðηÞsðiÞ�k ðηÞ−c:c:� ¼ 0: ð2:38Þ

The mode functions must then satisfyX
i

Im½πðiÞk ðηÞsðiÞ�k ðηÞ� ¼ 0 ð2:39Þ

for all η. Plugging the leading IR behavior of the mode
functions (2.16) into (2.39) and demanding it holds at orders
ð−ηÞα− , ð−ηÞαþ , ð−ηÞ2, and ð−ηÞ3 respectively yields the
following constraintsX
i

Im½aðiÞ0 bðiÞ�− � ¼
X
i

Im½aðiÞ0 bðiÞ�þ �¼
X
i

Im½aðiÞ0 bðiÞ�0;2 �

¼
X
i

Im½aðiÞ0 bðiÞ�3 þaðiÞþ bðiÞ�− þaðiÞ− bðiÞ�þ �¼ 0:

ð2:40Þ
Given the fact that the recursion relations (2.12) and
Eq. (2.17) are real, Eqs. (2.40) and (2.17) further imply that:X

i

Im½aðiÞ0 bðiÞ�−;2 � ¼
X
i

Im½bðiÞ− bðiÞ�0;2 � ¼ 0 ð2:41Þ

Moreover, the recursion relations (2.12) being real along
with the fact that

P
iIm½jbðiÞ− j2� ¼ 0 imply that

X
i

Im½bðiÞ− bðiÞ�−;2 � ¼ 0 ð2:42Þ

Furthermore, using the commutation relation ½πðx; τÞ;
Ππðy; τÞ� ¼ iδ3ðx − yÞ gives:
X
i

Im½3aðiÞ0 aðiÞ�3 þ αþaðiÞ− aðiÞ�þ þ α−a
ðiÞ
þ aðiÞ�− � ¼ −

1

2X
i

Im½aðiÞ− aðiÞ�3 � ¼ 0 ð2:43Þ

Again using the fact that relations (2.17) are real, we can
convert the second equation in (2.43) to:

X
i

Im½bðiÞ− bðiÞ�3 � ¼ 0 ð2:44Þ

Using (2.17), we can combine the final equation of (2.40)
with the first equation of (2.43) to find

X
i

Im½aðiÞ0 bðiÞ�3 � ¼ μH
2ðμ2 þm2ÞX

i

Im½bðiÞ− bðiÞ�þ � ¼ −1
2ðαþ − α−Þ

≃ −
1

6
: ð2:45Þ

The equalities in Eq. (2.45) hold for all m and μ such that
m2 þ μ2 ≤ 9H2=4, i.e., for α− and αþ real.
Equations (2.26), (2.31), (2.37), (2.41), (2.42), (2.44),

and (2.45) comprise the full set of relations among power
series coefficients we need to compute the leading m and μ
dependence of the correlation functions of π. We will also

need the fact that n > 0 coefficients aðiÞr;n and bðiÞr;n are not

enhanced by powers of α−1− compared to aðiÞr and bðiÞr
coefficients for small α−, a fact which is simple to see from
the recursion relations (2.12).

III. PRIMORDIAL NON-GAUSSIANITIES

In this sectionwe compute the leadingm andμ behavior of
the connected three- and four-point functions of the curvature
perturbation ζ for arbitrary external wave vectors. We also
compute the connected five-and six-point functions in certain
kinematic limits. We will use these results to calculate the
two- and three-point functions of biased objects.
We perform the computation of these correlation

functions using the in-in formalism [18]. We will mostly
use the commutator form of the in-in correlator of an
operator Oð0Þ:

hOð0Þi ¼
X∞
N¼0

iN
Z

0

−∞
dτN

Z
τN

−∞
dτN−1…

Z
τ2

−∞
dτ1h½HI

intðτ1Þ; ½HI
intðτ2Þ;…½HI

intðτNÞ;OIð0Þ�…�iI ð3:1Þ
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where I denotes a state or operator evolving in the interaction
picture and Hint denotes the interaction Hamiltonian7

HintðτÞ ¼
1

ðHτÞ4
Z

d3x

�
1

Λ
sðxÞgμν∂μπðxÞ∂νπðxÞ

þ V 000

3!
sðxÞ3 þ Vð4Þ

4!
sðxÞ4

�
: ð3:2Þ

For simplicity, we assume Vð4Þ is much smaller than
ðV 000=HÞ2 and can be neglected. We have also explored
the importance of the s∂π∂π interaction in comparison with
the s3 interaction for the primordial curvature bispectrum.
For the range of parameters that we are using in this paper,
we find numerically that the ratio of these contributions is
Oð10−3Þ=fNL. We suspect that this interaction is subdomi-
nant for the other primordial correlation functions as well,
and neglect this interaction henceforth. All relevant inter-
actions are then mediated by the V 000 term. We assume
jV 000j=H < 1 so that perturbation theory is valid.

A. Three-point function

The three-point function of ζ can be written

hζk1
ζk2

ζk3
i≡Bζðk1;k2;k3Þð2πÞ3δ3ðk1þk2þk3Þ: ð3:3Þ

The leading contribution to the bispectrum Bζðk1;k2;k3Þ
is obtained by inserting a single factor of the V 000 interaction
into (3.1). This yields

Bζðk1;k2;k3Þ

¼ −2V 000
�
H
_ϕ0

�
3

Im
Z

0

−∞

dτ
ðHτÞ4

Y3
l¼1

½πð1Þkl
ð0Þsð1Þ�kl

ðklτÞ

þ πð2Þkl
ð0Þsð2Þ�kl

ðklτÞ�: ð3:4Þ

Equation (3.4), written in terms of the rescaled mode
functions (2.10), becomes

Bζðk1;k2;k3Þ ¼ −2
�
H2

_ϕ0

�
3
�
V 000

H

��Y3
i

1

k3i

�
Im

Z
0

−∞

dτ
τ4

Y3
l¼1

X
i

πðiÞð0ÞsðiÞ�ðklτÞ: ð3:5Þ

Let us now focus on the evaluation of the integral in (3.5), which can be written:

k3UVIm
Z

0

−∞

dη
η4

Y3
l¼1

X
i

πðiÞð0ÞsðiÞ�
�

kl
kUV

η

�
ð3:6Þ

where we define kUV ¼ maxðklÞ and η ¼ kUVτ. In the small μ and m regime, (3.6) receives most of its support from the
IR region of the integral (when the arguments of the mode functions are less than 1 in magnitude) due to the
superhorizon growth mentioned in the discussion following (2.20). The contribution from the UV region is
subdominant. Our choice of kUV implies the leading m and μ contribution to the integral comes from the region
−1 ≤ η ≤ 0, and (3.6) becomes:

k3UVIm
Z

0

−1

dη
η4

Y3
l¼1

X
i

�
ðaðiÞ0 bðiÞ�− Þ

�
−

kl
kUV

η

�
α− þ ðaðiÞ0 bðiÞ�0;2 Þ

�
−

kl
kUV

η

�
2

þ ðaðiÞ0 bðiÞ�−;2 Þ
�
−

kl
kUV

η

�
α−þ2

þ ðaðiÞ0 bðiÞ�þ Þ
�
−

kl
kUV

η

�
αþ þ ðaðiÞ0 bðiÞ�3 Þ

�
−

kl
kUV

η

�
3

þOðη4Þ
�
: ð3:7Þ

Note the integral is potentially IR divergent because of the factor of 1=η4. However, Eqs. (2.40) and (2.41) imply the
coefficients multiplying the IR divergent terms are zero, and that the leading μ and m behavior of (3.7) is

�X
i

Re½aðiÞ0 bðiÞ�− �
�

2
�X

i

Im½aðiÞ0 bðiÞ�3 �
��

k31

�
k2k3
k2UV

�
α− þ cyc perm

� Z
0

−1
dηð−ηÞ−1þ2α−

¼ 27

16

μ3H5

ðμ2 þm2Þ4
�
k31

�
k2k3
k2UV

�
α− þ cyc perm

�
: ð3:8Þ

7We restrict our attention to renormalizable terms in the potential for s.
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As long as α− is small, the answer does not depend on
the precise choice of kUV, we only have to choose it to
be of the same order as the hardest wave vector
entering the vertex.8 Equivalently, the answer is in-
sensitive to the precise choice of the lower bound of the
η integral. Plugging (3.8) into (3.5), we find that the
leading m and μ behavior of the OðV 000Þ contribution to
the bispectrum is

Bζðk1;k2;k3Þ

¼−
�
H2

_ϕ0

�
3
�
V 000

H

�
1

k31k
3
2k

3
3

ð3μ=2Þ3H5

ðμ2þm2Þ4

×

�
k31

�
k2k3
k2UV

�
α− þk32

�
k1k3
k2UV

�
α− þk33

�
k1k2
k2UV

�
α−
�

ð3:9Þ

where kUV ¼ maxðkiÞ. Equation (3.9) was computed
numerically in [4] and is valid for any external wave-
vector configuration. Note that when the wave vectors
k1, k2 and k3 are the same order of magnitude,
the terms raised to the power α− can be set to unity.
Then the bispectrum has the same form as local
non-Gaussianity, i.e., Bζðk1;k2;k3Þ ∝ ½Pζðk1ÞPζðk2Þþ
Pζðk1ÞPζðk3Þ þ Pζðk2ÞPζðk3Þ�.
We now study (3.9) in a couple interesting

kinematic limits. First, consider (3.9) in the equilateral
limit ki ≡ k

Bequil
ζ ðkÞ ¼ −

�
H2

_ϕ0

�
3
�
V 000

H

�
1

k6
3ð3μ=2Þ3H5

ðμ2 þm2Þ4 : ð3:10Þ

We can use (3.10) to relate V 000 to the model’s prediction for
fNL. We estimate fNL using

fNL ¼ 5

18
×
Bequil
ζ ðkÞ
PζðkÞ2

: ð3:11Þ

Substituting (2.33), (2.35), and (3.10) into (3.11) gives

V 000

H
¼ −

6

5
fNL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2Δ2

ζ

q
C2ðμ; mÞ32 ðμ

2 þm2Þ4
ð3μ=2Þ3H5

: ð3:12Þ

The current Planck 95% C.L. constraint for local non-
Gaussianity is fNL ¼ 2.7� 11.6. For fNL ¼ 10 and
μ=H ¼ m=H ¼ 0.3, we find that jV 000j=H ≃ 10−3.
The two kinematic configurations we will be most

interested in when we compute galactic halo correlators
are when all three external wave vectors are soft [Fig. 2(c)],
and when one leg is soft while the other two are hard—the
so-called squeezed limit [Fig. 1(a)]. In what follows, we
will denote hard wave vectors by k and soft wave vectors by
q. First we consider the squeezed limit. We choose k2 ¼
−k1 − q and k1 ¼ k2 ≡ k ≫ k3 ≡ q. The full OðV 000Þ
contribution (3.5) to the bispectrum in this limit can be
written

Bsq
ζ ðk;qÞ¼−

�
H2

_ϕ0

�
3
�
V 000

H

�
2ð3μ=2Þ3H5

ðμ2þm2Þ4
1

k3þα−q3−α−
:

ð3:13Þ
The wave vector dependence of Eq. (3.13) was first
determined in [4,19]. Finally, the bispectrum in the limit
where all three external wave vectors are soft can be
obtained simply by making the replacement ki → qi
in (3.9).

B. Four-point function

The four-point function of ζ can be written

hζk1
ζk2

ζk3
ζk4

i≡ Nð4Þ
ζ ðk1;k2;k3;k4Þð2πÞ3δ3

�X4
i

ki

�
:

ð3:14Þ

We can derive the leading contribution to Nð4Þ
ζ by inserting

two factors of the V 000 interaction into (3.1). It is convenient
to define

AðxÞ≡X
i

πðiÞð0ÞsðiÞ�ðxÞ BðxÞ≡X
i

bðiÞ− sðiÞ�ðxÞ:

ð3:15Þ

By expanding the commutators and performing all possible
contractions, we find:

FIG. 1. Diagrams that contribute to three- and four-point
correlations of ζ in the squeezed and collapsed limits respectively.
These diagrams contribute to the galactic halo power spectrum.
Dashed lines represent π, while solid lines represent s.

8The ratios of external wave vectors to kUV raised to the power
α− in Eq. (3.8) can be interpreted as the resummation of leading
logs in the α− expansion.
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Nð4Þ
ζ ðk1;k2;k3;k4Þ ¼ 4

�
H2

_ϕ0

�
4
�
V 000

H

�
2
�Y4

i

1

k3i

�
1

k312

Z
0

−∞

dτ
τ4

Z
τ

−∞

dτ0

τ04

× Im½Aðk1τÞAðk2τÞ�Im
�
Aðk3τ0ÞAðk4τ0Þ

X
i

sðiÞðk12τÞsðiÞ�ðk12τ0Þ
�

þ ðk1 ↔ k3; k2 ↔ k4Þ þ cyc permsðk2;k3;k4Þ ð3:16Þ

where k12 ¼ jk1 þ k2j.
Unlike the calculation of the three-point function, the

four-point one involves nested time integrals. Again, the
four-point integral is dominated by the IR for α− ≪ 1 and
the integrand reduces to polynomials in τ and τ0. Like
before, we make the change of variable η≡ kUV12

τ and
η0 ≡ kUV34

τ0, where kUVij
≡maxfki; kj; jki þ kjjg and cut

off the integrals at ηUV ¼ −1 and η0UV ¼ −1 (recall that the

result is not sensitive to this cutoff value as long as α− is
small). The relationships among the power series coeffi-
cients deduced in Sec. II B imply the integral converges in
the IR.
Without loss of generality, assume that k1 is the largest

external wave vector (this implies that kUV12
≥ kUV34

).
Using the identities relating the power series coefficients
derived in Sec. II B, the time integral in (3.16) becomes:

Z
0

−∞

dτ
τ4

Z
τ

−∞

dτ0

τ04
Im½Aðk1τÞAðk2τÞ�Im

�
Aðk3τ0ÞAðk4τ0Þ

X
i

sðiÞðk12τÞsðiÞ�ðk12τ0Þ
�
þ ðk1 ↔ k3; k2 ↔ k4Þ

¼ 9

32

μ4H4

ðμ2 þm2Þ4
��

k2I
k2UV12

k2UV34

�
α− ½k31kα−2 þ k32k

α−
1 �½k33kα−4 þ k34k

α−
3 �

×

�Z
0

−1
dηð−ηÞ−1þ2α−

Z kUV34
kUV12

η

−1
dη0ð−η0Þ−1þ2α− þ

Z
0

−
kUV34
kUV12

dηð−ηÞ−1þ2α−

Z kUV12
kUV34

η

−1
dη0ð−η0Þ−1þ2α−

�

þ
�

k3I
kUV12

2α−kUV34

α−

�
½k31kα−2 þ k32k

α−
1 �½kα−3 kα−4 �

Z
0

−1
dηð−ηÞ−1þ2α−

Z kUV34
kUV12

η

−1
dη0ð−η0Þ−1þα−

þ
�

k3I
kUV12

α−kUV34

2α−

�
½kα−1 kα−2 �½k33kα−4 þ kα−3 k34�

Z
0

−
kUV34
kUV12

dηð−ηÞ−1þ2α−

Z kUV12
kUV34

η

−1
dη0ð−η0Þ−1þα−

�
: ð3:17Þ

Notice not all of the lower bounds of the η integrals equal −1, some are cutoff by − kUV34
kUV12

. This is to ensure that the upper
bound of the η0 integral is greater than −1. Evaluating the time integrals, we find the four-point function for general external
wave vectors is

Nð4Þ
ζ ðk1;k2;k3;k4Þ ¼

�
H2

_ϕ0

�
4
�
V 000

H

�
2
�Y4

i¼1

1

k3i

�
1

k312

ð3μ=2Þ4H8

2ðμ2 þm2Þ6
�
ðk31kα−2 þ kα−1 k32Þðk33kα−4 þ kα−3 k34Þ

�
k12

kUV12
kUV34

�
2α−

þ 2

�
1 −

2

3

�
kUV34

kUV12

�
α−
�
ðk31kα−2 þ kα−1 k32Þðk3k4Þα−

k312
k2α−UV12

kα−UV34

þ 2

3
ðk1k2Þα−ðk33kα−4 þ kα−3 k34Þ

k312
k3α−UV12

�

þ cyc permðk2;k3;k4Þ ð3:18Þ

We now focus on kinematic limits of (3.18) that are most
important in the calculation of the two- and three-point
functions of galactic dark matter halos. The enhancements
discovered in [5,6] respectively occur when the magnitude
of a sum of wave vectors in the correlation function of ζ is
small or when the magnitude of an external wave vector
is small. For the four-point correlation, the first of these is
referred to as the collapsed limit. Suppose that q denotes

small wave vectors, and k denotes large wave vectors.
In these computations (as well as in later computations of
the five- and six-point functions of ζ), we assume that
ðki=kjÞα− ≃ 1 and ðqi=qjÞα− ≃ 1. This approximation is
justified in our application to galactic halos since we will
want to consider k’s roughly on the order of the inverse of
the galactic halo radius, and since the q’s will be taken to be
within an order of magnitude from each other (i.e., between
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about ð50 Mpc=hÞ−1 and ð1000 Mpc=hÞ−1). However, we
do not take ðq=kÞα− to be approximately 1 since q and kmay
differ by several orders of magnitude. We first specialize to
the collapsed limit of (3.18) which occurs when two pairs of
legs have nearly equal and opposite wave vectors. Let k2 ¼
−k1 þ q and k4 ¼ −k3 − q where q ≪ k1, k3. Then the
most important permutation of (3.18) in this collapsed limit
is when k1 and k2 are attached to one vertex, and k3 and k4

are attached to the other. Thewave vector of the internal line
becomes very small [Fig. 1(b)] and Eq. (3.18) becomes

Nð4Þ;coll
ζ ðk1;−k1þq;k3;−k3−qÞ

¼
�
H2

_ϕ0

�
4
�
V 000

H

�
2 1

q3−2α−
1

ðk1k3Þ3þα−

2ð3μ=2Þ4H8

ðμ2þm2Þ6 : ð3:19Þ

The four-point in the collapsed limit was previously com-
puted in [20].
The other interesting kinematic limit of (3.18) is when

one pair of legs have nearly equal and opposite wave

vectors and the wave vectors of the other two legs are soft.
We find for the sum of Figs. 2(d) and 2(e):

Nð4Þ
ζ ðk1;−k1þq1;q2;q3Þ

¼
�
H2

_ϕ0

�
4
�
V 000

H

�
2 ð3μ=2Þ4H8

ðμ2þm2Þ6
1

k31

�
q
k1

�
α−

×

�
1

q31q
3
2

þ 1

q31q
3
3

þ2

�
1þ1

2

�
q
k1

�
α−
�

1

q32q
3
3

�
: ð3:20Þ

C. Five- and six-point functions

Given the techniques we have developed so far, it is
possible to compute the five- and six-point functions of ζ
for general external wave vectors. However, our primary
purpose in studying these objects is to compute their most
important contributions to the three-point function of
galactic dark matter halos in the limit of large halo
separation. We then only focus on the kinematic limits

FIG. 2. Diagrams that contribute to the three-, four-, five-, and six-point correlations of ζ in the kinematic regimes that contribute to the
enhanced part of the galactic halo bispectrum. Dashed lines represent π, while solid lines represent s.
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of the five- and six-points giving rise to the largest long
wavelength enhanced terms. Even in these limits, the
calculation is too long to present here. In this section we
just quote results and relegate an outline of the derivation to
Appendix B.
The strongest long wavelength enhanced behavior of the

five-point function is achieved when one leg is soft and the
other four come in pairs of nearly equal and opposite wave
vectors. Panels f and g of Fig. 2 illustrate this kinematic
setup. The contribution of these graphs to the five-point
function is

Nð5Þ
ζ ðk1;q1−k1;k2;q2−k2;q3Þ

¼−
�
H2

_ϕ0

�
5
�
V 000

H

�
3ð3μ=2Þ5H11

ðμ2þm2Þ8
1

k31k
3
2

�
q2

k1k2

�
α−

×

�
1

q31q
3
2

þ
�
2−

1

6

�
q
k2

�
α−
�

1

q32q
3
3

þ
�
2−

1

6

�
q
k1

�
α−
�

1

q31q
3
3

�
ð3:21Þ

where we have defined q ¼ maxfqig.
The most important long wavelength contributions to the

six-point function occur when all six legs come in pairs of
nearly equal and opposite wave vectors. The most impor-
tant diagrams are displayed in panels (h) and (i) of Fig. 2
and the sum of their contributions is

Nð6Þ
ζ ðk1;q1 − k1;k2;q2 − k2;k3;q3 − k3Þ

¼
�
H2

_ϕ0

�
6
�
V000

H

�
4 1

k31k
3
2k

3
3

2ð3μ=2Þ6H14

ðμ2 þm2Þ10

×

�
1þ 1

2

�
q3

k1k2k3

�
α−=3

��
q1q2q3
k1k2k3

�
α−

×
�

1

q32q
3
3

þ 1

q31q
3
3

þ 1

q31q
3
2

�
ð3:22Þ

IV. CORRELATION FUNCTIONS OF
BIASED OBJECTS

In this section we review the computation of the galactic
halo power spectrum, and compute the bispectrum in the
limit of large halo separation. At large enough separation,
the primordial non-Gaussian contributions to the power
spectrum and bispectrum are larger than the Gaussian ones.
This leads to interesting observable long wavelength
effects. The long wavelength scaling of the power spectrum
was already discussed in [7]. Here we compute the long
wavelength enhanced contributions and present results for
the bispectrum as well.
We start by assuming halos form instantaneously, at the

same time tcoll, and at points where the matter overdensity
δðxÞ averaged over a spherical region with comoving radius
R exceeds a threshold δc. We choose the smoothing radius

R to be of order the characteristic length scale of the region
of space that collapses to form a halo.9 The smoothed
matter overdensity is related to the matter overdensity by

δRðx; aÞ ¼
Z

d3yWRðjx − yjÞδðy; aÞ: ð4:1Þ

Here WRðjx − yjÞ ¼ ΘHðR − jx − yjÞ is the top hat win-
dow function.10 The Fourier transform of the window
function is:

WRðkÞ ¼
3ðsin kR − kR cos kRÞ

ðkRÞ3 : ð4:2Þ

Assuming δðx; aÞ undergoes linear growth before the
collapse time, we can express the density perturbations
at the time of collapse in terms of the linearly evolved
density perturbations today, δRðx, acollÞ ¼ δRðxÞDðacollÞ
where today a ¼ 1 and the growth factor Dð1Þ ¼ 1.
We will ignore the evolution of halos after collapse, and

so the number density of halos today, up to an irrelevant
dimensionful normalization constant, is given by:

nhðxÞ¼ΘHðδRðx;acollÞ−δcðacollÞÞ¼ΘHðδRðxÞ−δcÞ
ð4:3Þ

where δc ≡ δcðacollÞ=DðacollÞ. We use δc ¼ 4.215, which
assumes that δcðacollÞ ¼ 1.686 with zcoll ¼ 1.5 [13]. The
halo overdensity δhðxÞ at a point x today is defined by

δhðxÞ ¼
nhðxÞ − hnhi

hnhi
; ð4:4Þ

where hnhi is the average halo density.
We are interested in the two- and three-point functions of

δhðxÞ. These can be computed using (4.3) and the path
integral techniques discussed in [21]. A more general
approach that we adopt here is to write δh as11,12

δhðxÞ ¼ b1δRðxÞ þ b2ðδ2RðxÞ − hδ2RiÞ þ � � � ð4:5Þ

The constants b1 and b2 are bias coefficients. They can be
computed using a specific model of halo formation such as
(4.3) that expresses the halo overdensity in terms of δR or
determined from data. The two-point function of the halo
overdensity is then:

9We set R ¼ 1.9h−1 Mpc.
10ΘH is the Heaviside step function.
11The ellipses denote higher order terms in the bias expansion.

They are not needed to the order we work in ðqRÞ and ðV 000=HÞ.
However it is important to remember that they are defined
with subtractions. For example, the next order term is
b3ðδ3RðxÞ − 3hδ2RiδRðxÞÞ.

12A completely general approach is possible; for a review,
see [22].
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hδhðxÞδhðyÞi¼b21hδRðxÞδRðyÞiþb1b2hðδ2RðxÞ−hδ2RiÞδRðyÞi
þhδRðxÞðδ2RðyÞ−hδ2RiÞi
þb22hðδ2RðxÞ−hδ2RiÞðδ2RðyÞ−hδ2RiÞiþ���:

ð4:6Þ
Note

hδ2RðxÞδ2RðyÞi ¼ hδ2Ri2 þ hδRðxÞδRðyÞi2 þ hδ2RðxÞδ2RðyÞic:
ð4:7Þ

We can neglect the second term because it is very small at
large halo separations compared to the b21 term in (4.6). All
factors of hδ2Ri cancel and we find

hδhðxÞδhðyÞi≃b21hδRðxÞδRðyÞiþb1b2ðhδ2RðxÞδRðyÞi
þhδRðxÞδ2RðyÞiÞþb22hδ2RðxÞδ2RðyÞicþ��� :

ð4:8Þ

The term proportional to b21 comes from the Gaussian two-
point function of ζ and the remaining terms arise from the
connected three- and four-point functions of ζ that we
computed earlier.
Similarly, we can express the three-point function of

δh as:

hδhðxÞδhðyÞδhðzÞi ¼ b31hδRðxÞδRðyÞδRðzÞic þ b32hδðxÞ2δðyÞ2δðzÞ2ic
þ ½2b21b2hδRðxÞδRðyÞihδRðxÞδRðzÞi þ b21b2hδ2RðxÞδRðyÞδRðzÞic
þ b1b22hδ2RðxÞδ2RðyÞδRðzÞic þ cyc permðx; y; zÞ� þ � � � ð4:9Þ

The first term proportional to b21b2 is the three-point halo
correlation when the underlying curvature perturbations are
Gaussian, which was first calculated in [21]. The remaining
terms arise from the non-Gaussian correlations of the
primordial fluctuations. In the next section we present a
power counting argument showing that for widely sepa-
rated points jx − yj ≫ R and jV 000j=H < 1, the higher order
terms in the bias expansion are negligible in the threshold
model. Only b1 and b2 are needed to compute the halo
overdensity power spectrum and bispectrum evaluated at
wave-vectors q ≪ 1=R.
Using, for example, path integral methods, it is straight-

forward to derive expressions for hnhi and the bias
coefficients b1 and b2 in the threshold model mentioned
above. They can be expressed in terms of δc and

σ2R ¼ hδRðxÞδRðxÞi ð4:10Þ

as

hnhi ¼
1

2
erfc

�
δcffiffiffi
2

p
σR

�
ð4:11Þ

and

b1 ¼
e−δ

2
c=ð2σ2RÞffiffiffiffiffiffi

2π
p

σRhnhi
b2 ¼

e−δ
2
c=ð2σ2RÞδc

2
ffiffiffiffiffiffi
2π

p
σ3Rhnhi

: ð4:12Þ

The Fourier transformed smoothed matter overdensity
δRðkÞ is related to the curvature perturbation through

δRðkÞ ¼
2k2

5ΩmH2
0

TðkÞWRðkÞζk ð4:13Þ

where TðkÞ is the transfer function, Ωm is the ratio of the
matter density to the critical density today, and H0 is the
Hubble constant evaluated today [23]. When performing
integrals against TðkÞ we use the Bardeen-Bond-Kaiser-
Szalay approximation to the transfer function [24]:

Tðk ¼ ðΩmh2 Mpc−1ÞuÞ

¼ ln½1þ 2.34u�
ð2.34uÞ ½1þ 3.89uþ ð16.2uÞ2

þ ð5.47uÞ3 þ ð6.71uÞ4�−1=4 ð4:14Þ

We can then write σ2R as

σ2R ¼
�
H2

_ϕ0

2

5

1

ΩmH2
0R

2

�
2

C2ðμ; mÞJ ð4:15Þ

where

J ¼ 1

2π2

Z
∞

0

dxx3Tðx=RÞ2WðxÞ2 ð4:16Þ

and WðxÞ≡WRðx=RÞ is independent of R.
The Fourier transform of the halo two-point gives the

halo power spectrum

PhhðqÞ ¼
Z

d3xhδhðxÞδhð0Þie−iq·x: ð4:17Þ

Fourier transforming (4.8) and plugging in (4.13) to express
the correlation functions of δRðkÞ in terms of those of ζk,
we find for q ≪ 1=R:
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PhhðqÞ ¼ b21αRðqÞ2PζðqÞ þ 2b1b2αRðqÞ

×
Z

d3k
ð2πÞ3 αRðkÞ

2Bζðq;k;−k − qÞ

þ b22

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3 αRðk1Þ

2αRðk2Þ2

× Nð4Þ
ζ ðk1;q − k1;k2;−k2 − qÞ: ð4:18Þ

To condense the expression we have defined

αRðkÞ ¼
2k2

5ΩmH2
0

TðkÞWRðkÞ: ð4:19Þ

Thewave vectors integrated over in the integrals of (4.18)
are of order 1=R. Since we are interested in q ≪ 1=R the
curvature bispectrum and trispectrum appearing in (4.18)
are in their squeezed and collapsed configurations.
Equations (3.13) and (3.19) imply the strongest small q
scaling of the primordial squeezed bispectrum and collapsed
trispectrum are 1=q3−α− and 1=q3−2α− . Note that the bispec-
trum’s contribution to the halo power spectrum is suppressed
by a factor of αRðqÞ ∝ q2, so that term goes like 1=q1−α− .
An intuitive picture of the non-Gaussian contributions to

(4.18) is given by Fig. 3. The shaded circles represent the
halo overdensity, while the lines they are attached to are ζ
legs. In these graphs, the external ζ legs are each multiplied
by αR. If one ζ leg is attached to a shaded circle it carries a
soft wave vector and a factor of b1. If two legs are attached
to a shaded circle, they carry equal and opposite wave
vectors with magnitude approximately 1=R. In this case, the
shaded circle also contains a factor of b2 and a wave vector
integral.
The halo power spectrum is then13

PhhðqÞ¼PG
hhðqÞ

�
1þ γðμ;mÞ

×

�
2

βðμ;mÞ
ðqRÞ2−α−TðqÞþ

βðμ;mÞ2
ðqRÞ4−2α−TðqÞ2

��
ð4:20Þ

where

PG
hhðqÞ ¼ b21PmmðqÞ

PmmðqÞ ¼ R3C2ðμ; mÞ
�
H2

_ϕ0

�
2
�

2

5ΩmH2
0R

2

�
2

ðqRÞTðqÞ2

γðμ; mÞ ¼ 9μ2H2

ðμ2 þm2Þ2 þ 9μ2H2

βðμ; mÞ ¼ 6

5

b2
b1

H2

_ϕ0

2

5ΩmH2
0R

2
J fNL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2Δ2

ζ

q
C2ðμ; mÞ32

×
ðμ2 þm2Þ2
ð3μ=2Þ2H2

: ð4:21Þ

Pmm denotes the “matter-matter” power spectrum, i.e., the
Fourier transform of hδRðxÞδRðyÞi.
Since 0 < γðμ; mÞ < 1, it is simple to show that PhhðqÞ

is positive definite, as it must be. Note that for fNL < 0, this
would not be true at very small wave vectors without the
contribution due to the four-point function of ζ. The scale
non-Gaussianities begin to dominate is ðqRÞ2 ∼ βðμ; mÞ ∝
fNL (up to ðqRÞα− terms). Current measurements of the
galactic power spectrum have not seen significant devia-
tions from Gaussian initial conditions at wave vectors
around q ∼ h=ð100 MpcÞ [25].
In the threshold model, we find that β ∝ R2, indicating

that the scale at which non-Gaussianities begin to dominate
is independent of model parameter R.
On the other hand, we can also compute the matter-halo

cross correlation power spectrum PhmðqÞ, which corre-
sponds to the two-point function hδhðxÞδRðyÞi. The “h” in
Phm stands for halo, and the “m” for matter. The result is

PhmðqÞ ¼ bðqÞPmmðqÞ ð4:22Þ

where

bðqÞ≡ b1 þ b1γðμ; mÞβðμ; mÞ 1

ðqRÞ2−α−TðqÞ : ð4:23Þ

This implies a scale-dependent bias14:

ΔbðqÞ ¼ b1γðμ; mÞβðμ; mÞ 1

ðqRÞ2−α−TðqÞ : ð4:24Þ

In local non-Gaussianity, ΔbðqÞ ∝ q−2. Then quasi-single
field inflation predicts a different shape for the scale-
dependent bias, which is distinguishable from local non-
Gaussianity if α− is large enough.
Note that Phh can be written in this notation as:

FIG. 3. A diagrammatic representation of terms contributing to
the galactic halo power spectrum. Cf. Fig. 1.

13In writing (4.20) we have used
R
∞
0 dxx3−nα−Tðx=RÞ2WðxÞ2 ≃R∞

0 dxx3Tðx=RÞ2WðxÞ2, where n is an O(1) integer.

14Recall that we have neglected the time evolution of the
distribution of galaxies after they have formed.
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PhhðqÞ ¼
�
bðqÞ2 þ b21βðμ; mÞ2γðμ; mÞð1 − γðμ; mÞÞ 1

ðqRÞ4−2α−TðqÞ2
�
PmmðqÞ: ð4:25Þ

In this form, the second term in the brackets is due to
stochastic bias. Note that this term is proportional to
1 − γðμ; mÞ, which approaches 0 in the limit that μ≳m
as μ=H and m=H go to zero. This suppression is evident in
Fig. 5. If the stochastic bias were zero, then the purple
curves’ minimum value would be 0. Since they all reach a
minimum value less than around 0.1, this indicates that the
stochastic bias is small in the μ ∼m regime. However, for
μ ≪ m the stochastic bias can become large, see Fig. 6. For
local non-Gaussianity, stochastic bias is absent. As we will
show toward the end of this section, for μ several orders of
magnitude smaller thanm, other contributions to the power
spectrum that we have neglected become important.

In Figs. 5 and 6, we plot the ratio of the galactic halo
power spectrum in quasi-single field inflation divided by
the Gaussian contribution PG

hh. Notice that for reason-
able model parameters, PhhðqÞ begins to differ from
PG
hhðqÞ at q ∼ 0.005h=Mpc. The difference becomes very

large for values of q significantly less than this.
Figures 5 and 6 use fNL ¼ �10, and various values
for α− and μ.
Let us now study the halo three-point function given in

Eq. (4.9). The non-Gaussian contributions are depicted in
Fig. 4. Fourier transforming equation (4.9), we find that the
bispectrum of the halo overdensity is

Bhhhðq1;q2;q3Þ¼ b31αRðqÞ3Bζðq1;q2;q3Þ

þ
�
2b21b2αRðq2Þ2αRðq3Þ2Pζðq2ÞPζðq3Þþb21b2αRðq2ÞαRðq3Þ

Z
d3k
ð2πÞ3αRðkÞ

2Nð4Þ
ζ ðk;q1−k;q2;q3Þ

þb1b22αRðq3Þ
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3αRðk1Þ

2αRðk2Þ2Nð5Þ
ζ ðk1;q1−k1;k2;q2−k2;q3Þþ cyc permðq1;q2;q3Þ

�

þb32

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3k3
ð2πÞ3αRðk1Þ

2αRðk2Þ2αRðk3Þ2Nð6Þ
ζ ðk1;q1−k1;k2;q2−k2;k3;q3−k3Þ: ð4:26Þ

Similar to the calculation of the two-point, we can simplify the wave-vector integrals to express the bispectrum as

Bhhhðq1;q2;q3Þ ¼ 2b21b2R
6

�
H2

_ϕ0

�
4
�

2

5ΩmH2
0R

2

�
4

C2
2

�
Tðq1Þ2Tðq2Þ2q1q2R2:þ ωðμ; mÞ

�
βðμ; mÞ q21

q2q3
Tðq1ÞTðq2ÞTðq3Þ

þ βðμ; mÞ2Tðq2ÞTðq3ÞðqRÞα−
�

q22
R2q31q3

þ q23
R2q31q2

þ 2

�
1þ 1

2
ðqRÞα−

�
1

R2q2q3

�

þ βðμ; mÞ3Tðq3ÞðqRÞ2α−
�

q23
q31q

3
2R

4
þ 2

�
1 −

1

12
ðqRÞα−

�
1

R4q32q3
þ 2

�
1 −

1

12
ðqRÞα−

�
1

R4q31q3

�

þ βðμ; mÞ4ðqRÞ3α−ð2þ ðqRÞα−Þ 1

R6q31q
3
2

��
þ cyc permðq1; q2; q3Þ: ð4:27Þ

where q≡maxðqiÞ, and

ωðμ;mÞ¼ b21
4b22

1

JC2

�
_ϕ0

H2

�2�5ΩmH2
0R

2

2

�
2

γðμ;mÞ: ð4:28Þ

Again, the scale at which the non-Gaussian contribu-
tions begin to dominate is ðqRÞ2 ∼ βðμ; mÞ, which means
the galactic power spectrum and bispectrum both begin
to deviate from their Gaussian contributions at roughly

the same scale. Since it is easier to measure the halo
two-point function than the halo three-point function, it
is more likely that we will see these non-Gaussian
effects in the halo two-point before we see them in the
three-point.
The equilateral configuration of the galactic halo bis-

pectrum is plotted in Figs. 7 and 8 for various values of
α− and μ. Note that we have scaled the bispectrum by its
value when V 000 ¼ 0,

BG
hhhðq1;q2;q3Þ ¼ 2b21b2R

6

�
H2

_ϕ0

�
4
�

2

5ΩmH2
0R

2

�
4

C2
2Tðq1Þ2Tðq2Þ2q1q2R2 þ cyc permðq1; q2; q3Þ: ð4:29Þ
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FIG. 4. A diagrammatic representation of terms contributing to the galactic halo bispectrum. Cf. Fig. 2.

FIG. 5. We plot the ratio of the galactic halo power spectrum in
quasi-single field inflation to the halo power spectrum in which
there are no primordial non-Gaussianities for a range of α−: α− ¼
0.025 (lightest), 0.050, 0.075, 0.100, 0.125, 0.150 (darkest). We
plot for μ ¼ m and fNL ¼ 10 (green) and fNL ¼ −10 (purple).

FIG. 6. We plot the ratio of the galactic halo power spectrum in
quasi-single field inflation to the halo power spectrum in which
there are no primordial non-Gaussianities for a range of μ. We
plot for lnðμ=HÞ ¼ −1 (darkest), −2, −3, −4 (lightest), with
α− ¼ 0.05 and fNL ¼ 10 (pink) and fNL ¼ −10 (blue).
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In the equilateral configuration with fNL < 0, this scaled
bispectrum never falls significantly below unity. Note also
that it rises more rapidly than the scaled power spectrum
shown in Figs. 5 and 6 as q becomes small.
Equation (4.27) expresses the bispectrum in terms of the

magnitude of the wave vectors q1, q2, and q3. It could also
be expressed in terms of q1 and q2 and the angle between
them. This angular dependence is usually displayed as a
multipole expansion.
Currently, there are measurements of the galaxy bispec-

trum at wave vectors as small as about h=ð20 MpcÞ [26].
There is no evidence in this data for the type of effects we
have found.
We have ignored the evolution of the galactic halo

distribution after their collapse. These effects are Oð1Þ.
However, we do not expect that including them greatly
shifts at what scale non-Gaussianities or their rapid growth

become important. One can include these effects either
by numerical simulation or analytic methods [27–29].
Evolution during this period is expected to decrease the
influence of bias, drawing the galactic distribution closer to
the dark matter distribution. Some of these effects cancel
out in the ratios we have plotted.
We have chosen to plot the power spectrum and

bispectrum scaled by PG
hh and BG

hhh since these ratios are
less sensitive to the value of R than the power spectrum and
bispectrum alone.
It is possible to use the methods developed here to

consider even higher correlations of the halo overdensity.
The dependence of galactic halo n-point correlations on
the parameters V 000, q, and R in quasi-single field inflation
with the halo number density modeled by Eq. (4.3) is
given by

hδnhi∼R3ðn−1ÞðqRÞn−1

×

�
1þ

X2n−2
i¼n−2

�
V 000

HðqRÞ2
�

iXn−1
j¼0

X∞
p¼0

ðqRÞ3j
�
V 000

H

�
p
�

ð4:30Þ

where for simplicity, factors of ðqRÞα− have been set to
unity. In our analysis of the power spectrum (n ¼ 2) and
the bispectrum (n ¼ 3), we have included only the j ¼
p ¼ 0 terms in the sums.
Recall, the validity of our calculations relies on the

several assumptions. First of all we have assumed that
α− ¼ ðμ2 þm2Þ=3H2 ≪ 1. However, we must also have
α− ≳ 1=60 or else superhorizon evolution would
have persisted to the end of inflation. Finally, we assumed
qR ≪ 1 and jV 000j=H ≪ 1. Note that for fixed jfNLj ¼ 10
and α− ¼ 0.05, then jV 000j=H > 1 for μ < 0.005. Therefore,
our results do not apply at very small μ=m. For jV000j=H not
small, we would need to include additional contributions,
e.g., the diagram shown in Fig. 9.

FIG. 7. We plot the ratio of the galactic halo bispectrum in
quasi-single field inflation to the galactic halo bispectrum with no
primordial non-Gaussianities (BG

hhh) in the equilateral configu-
ration for a range of α−: α− ¼ 0.025 (lightest), 0.050, 0.075,
0.100, 0.125, 0.150 (darkest). We plot for μ ¼ m and fNL ¼ 10
(green) and fNL ¼ −10 (purple).

FIG. 8. We plot the ratio of the galactic halo bispectrum in
quasi-single field inflation to the galactic halo bispectrum with no
primordial non-Gaussianities (BG

hhh) in the equilateral configu-
ration for a range of μ: lnðμ=HÞ ¼ −1 (darkest), −2, −3, −4
(lightest). We plot for α− ¼ 0.05 and fNL ¼ 10 (pink) and fNL ¼
−10 (blue).

FIG. 9. The above diagram can contribute significantly to the
galactic halo power-spectrum if jV 000j=H is not very small.
However, it can be ignored as long as jV 000j=H ≪ 1. In the
context of Eq. (4.30), this is a p ¼ 1, j ¼ 0 term.
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V. CONCLUSIONS

The 1=q3 dependence of the de-Sitter propagator for
massless scalar fields implies that if the primordial curvature
fluctuations are non-Gaussian, they have the potential to give
rise to enhancements in the correlations of biased objects at
small wave vectors [5,6]. This effect cannot be produced by
nonlinear gravitational evolution without primordial non-
Gaussianities. The main goal of this paper was to explore
these enhancements within quasi-single field inflation.
We developed a method to analytically compute the

correlation functions of the curvature perturbation ζ in
quasi-single field inflation in the limit of small m=H and
μ=H. We computed the three- and four-point functions of ζ
for arbitrary external wave vectors and computed the five-
and six-point functions in the kinematic limits that give the
strongest long wavelength enhanced contributions to the
three-point function of the galactic halo overdensity δh.
We applied these results to the computation of the two- and

three-point correlations of δh (i.e., the power spectrum and
bispectrum). For model parameters consistent with the
constraints on fNL, we found that non-Gaussian contribu-
tions to these correlation functions are larger than the
Gaussian ones at scales around h=ð200 MpcÞ. Even larger
scaleswill be probed in upcoming large scale surveys such as
SPHEREx. Prospects for future improvements in measure-
ments of the galactic power spectrum and bispectrum are
reviewed in [30].
After making a number of approximations, we obtained

analytic expressions for the power spectrum and bispec-
trum15 of δh that are valid at small wave vectors. We studied
the dependence of the stochastic bias on the parameters μ
and m, and found that it could be small or significant
depending on the values of μ and m.
The departure from the predictions of Gaussian primor-

dial perturbations in both the equilateral configuration of the
bispectrum and the power spectrum begin at wave vectors
around h=ð200 MpcÞ (when jfNLj is near its upper bound).
However, for the bispectrum the deviation growsmuchmore
rapidly as the wave vectors decrease than in the power
spectrum. Unfortunately, it is more difficult to measure the
three-point correlation than the two-point correlation of δh.
If these enhancements exist, it is more likely wewill first see
them in the power spectrum than in the bispectrum. Finally,
we identified the scaling of the n-point function of δh.
The calculations (at small wave-vectors) of the galactic

power spectrum and bispectrum presented in this paper can
be improved and made more model independent. We hope
to address this in future work.
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APPENDIX A: NUMERICAL CHECKS

In this appendix we check that the analytical results we
derived for the two- and three-point functions of ζ agree
with the numerical evaluation of these quantities. First,
consider the two-point function. In Eq. (2.29), we absorbed
all of the μ and m dependence of the curvature perturbation
power spectrum into the constant C2ðμ; mÞ. We can express
this quantity in terms of the exact mode functions of π as

C2ðμ; mÞ ¼
X
i

jπðiÞð0Þj2: ðA1Þ

We found in Eq. (2.31) that the leading behavior was

C2ðμ; mÞ ≃ 1

2
þ 9μ2H2

2ðμ2 þm2Þ2 : ðA2Þ

up to terms suppressed by α−. By extending the numerical
techniques developed in [15,16] to the region of small μ=H
and m=H we can compute (A1) numerically. In Fig. 10 we
compare (A2) to the numerical evaluation of (A1). The fit is
good even for modest values of μ=H as long as m=H
is small.
To determine the accuracy of our formula for the

bispectrum of ζ (3.9), we compare it with the numerical
evaluation of the exact result (3.5) in a couple of kinematic
limits. Let us first consider the equilateral configuration.
We define Cequil

3 ðμ; mÞ to be the integral in Eq. (3.5) in the
equilateral configuration:

Cequil
3 ðμ;mÞ≡

Z
0

−∞

dη
η4

Im½ðπð1Þð0Þsð1Þ�ðηÞþπð2Þð0Þsð2Þ�ðηÞÞ3�:

ðA3Þ

Equation (3.10) gives the leading behavior of this integral
for small α−, which we reproduce here for convenience

Cequil
3 ðμ; mÞ ¼ 3ð3μ=2Þ3H5

2ðμ2 þm2Þ4 : ðA4Þ

Again, we can use the same numerical techniques to
compute (A3). However, there is a subtlety in its evaluation
that needs to be addressed.
As mentioned in Sec. III A, the integral is naively IR

divergent because of the factor of 1=η4. However, through
the commutation relations, we proved the leading IR
behavior is ð−ηÞ−1þ2α− in the IR, and that the integral is
IR finite. However, numerical error prevents the coeffi-
cients in front of the potentially IR divergent terms from
canceling exactly, giving rise to spurious infinities. The

15Since galactic halos are biased objects, even if the primordial
fluctuations are Gaussian a halo bispectrum is not zero.
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way around this is to define the integrand piecewise about
some point ηIR. For η < ηIR we use the numerical mode
functions in the integrand, and for η > ηIR we set the
integrand equal to að−ηÞ−1þ2α− , where a is some propor-
tionality constant that can be obtained by fitting the
integrand to the correct power law.
In Fig. 11 we compare (A4) to the numerical evaluation

of (A3). As expected the fit is better for smaller values ofm,
however it is still accurate to around 25% even for μ ¼
0.5H and m ¼ 0.3H.
The previous tests have confirmed the μ and m depend-

ence of our analytic expressions. To test the dependence on
the external wave vectors, we consider the isosceles
configuration in which k1 ¼ k2 ≡ k and 0 ≤ k3 ≤ 2k. In
this limit, Eq. (3.9) becomes

Bisos
ζ ðk; k3Þ ¼ −

�
H2

_ϕ0

�
3
�
V 000

H

�
1

k3k33
Cisos
3 ðA5Þ

where we have defined

Cisos
3 ≡ 2Im

Z
0

−∞

dη
η4

�X
i

πðiÞð0ÞsðiÞ�ðηÞ
�

2

×

�X
i

πðiÞð0ÞsðiÞ�
�
k3
k
η

��
: ðA6Þ

Equation (3.8) approximates Cisos
3 as

Cisos
3 ðμ; m; k; k3Þ ≃

ð3μ=2Þ3
ðμ2 þm2Þ4

�
2

�
k3
k

�
α− þ k33

k3

�
: ðA7Þ

In Fig. 12 we plot (A7) against the numerical evaluation of
(A6). The errors are around 10% for each data point,
suggesting the error is not in the wave-vector dependence
of the formula, but rather in its μ and m dependent
normalization.

FIG. 10. We compare the power spectrum (2.33) (red) com-
puted with the numeric mode functions against the leading μ and
m expression (2.31) (black) for m ¼ 0.2H (top) and m ¼ 0.3H
(bottom).

FIG. 11. We plot the numerical evaluation of (A3) (red) with the
leading μ and m expression (A4) (black) for m ¼ 0.2H (top) and
m ¼ 0.3H (bottom).

FIG. 12. We plot the numerical evaluation of (3.6) (red) taking
μ ¼ 0.3H, m ¼ 0.2H against (A7) (black).
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APPENDIX B: OUTLINE OF FIVE- AND SIX-POINT CALCULATIONS

In order to compute the three-point correlation of biased objects, it is necessary to compute five- and six-point correlation

functions in certain kinematic regimes. The contribution due to the diagram in panel f of Fig. 2, Nð5Þ
ζ;f, can be computed

using the commutator form of the in-in formalism:

Nð5Þ
ζ;fðk1;q1 − k1;k2;q2 − k2;q3Þ ¼ −

�
H2

_ϕ0

�
2
�
V 000

H

�
3 8

k61k
6
2q

3
1q

3
2q

3
3

ðq1q2Þα−
Z

0

−∞

dτ
τ4

Z
τ

−∞

dτ0

τ04

Z
τ0

−∞

dτ00

τ004

× ðImfAðk1τÞ2gImfAðk2τ0Þ2gImfAðq3τ00ÞBðq1τ00ÞBðq2τ00Þgð−τÞα−ð−τ0Þα−
þ ImfAðk1τÞ2gImfAðq3τ0ÞBðq1τ0ÞgImfAðk2τ00Þ2B�ðq2τ0Þgð−τÞα−ð−τ00Þα−
þ ImfAðq3τÞgImfAðk1τ0Þ2B�ðq1τÞgImfAðk2τ00Þ2B�ðq2τÞgð−τ0Þα−ð−τ00Þα− þ 1 ↔ 2Þ:

ðB1Þ

where Nð5Þ
ζ is defined in an analogous way to Nð4Þ

ζ , and

AðxÞ≡X
i

πðiÞð0ÞsðiÞ�ðxÞ BðxÞ≡X
i

bðiÞ− sðiÞ�ðxÞ: ðB2Þ

We also compute the contribution due to the diagram in panel g of Fig. 2, Nð5Þ
ζ;g :

Nð5Þ
ζ;gðk1;q1−k1;k2;q2−k2;q3Þ¼−

�
H2

_ϕ0

�
2
�
V 000

H

�
3 16

P
i;ja

ðiÞ
0 bðiÞ�− jbðjÞ− j2

k91k
6
2q

3
2q

3
3

ðq1q22Þα−
Z

0

−∞

dτ
τ4

Z
0

−∞

dτ0

τ04

Z
τ0

−∞

dτ00

τ004
ð−ττ0τ00Þα−

× ðImfðAðk1τÞ2gImfðAðk2τ0ÞgImfðAðk1τ00Þ
X
i

sðiÞðk1τ0ÞsðiÞ�ðk1τ00Þgþ1↔ 2Þ: ðB3Þ

Two diagrams also contribute to the six-point function. These diagrams are shown in panels h and i of Fig. 2. For panel h,
we find

Nð6Þ
ζ;hðk1;q1−k1;k2;q2−k2;k3;q3−k3Þ¼

�
H2

_ϕ0

�
6
�
V 000

H

�
464ðjbðiÞ− j2Þ2q3ðq21q22Þα−

k61k
6
2k

6
3q

3
1q

3
2q

3
3

Z
0

−∞

dτ
τ4

Z
0

−∞

dτ0

τ04

Z
0

−∞

dτ00

τ004

Z
τ00

−∞

dτ000

τ0004
ðττ0τ00τ000Þα−

×ðImfAðk1τÞ2gImfAðk2τ0Þ2gImfAðk3τ00ÞgImfAðk3τ000ÞsðiÞðk3τ00ÞsðiÞ�ðk3τ000Þg
þcycpermð1;2;3ÞÞ: ðB4Þ

For panel i, on the other hand,

Nð6Þ
ζi ðk1;q1 − k1;k2;q2 − k2;k3;q3 − k3Þ

¼
�
H2

_ϕ0

�
6
�
V 000

H

�
4 16q3ðq1q2q3Þα−
k61k

6
2k

6
3q

3
1q

3
2q

3
3

Z
0

−∞

dτ
τ4

Z
τ

−∞

dτ0

τ04

Z
τ0

−∞

dτ00

τ004

Z
τ00

−∞

dτ000

τ0004

× ðImfAðk1τÞ2gImfAðk2τ0Þ2gImfAðk3τ00Þ2gImfBðq1τ000ÞBðq2τ000ÞBðq3τ000Þgð−ττ0τ00Þα−
þ ImfAðk1τÞ2gImfAðk2τ0Þ2gImfBðq1τ00ÞBðq2τ00ÞgImfAðk3τ000Þ2B�ðq3τ00Þgð−ττ0τ000Þα−
þ ImfAðk1τÞ2gImfBðq1τ00ÞgImfAðk2τ00Þ2B�ðq2τ0ÞgImfAðk3τ000Þ2B�ðq3τ0Þgð−ττ0τ000Þα− þ all permð1; 2; 3ÞÞ: ðB5Þ

As with the four-point function of ζ, our task of evaluating these integrals is simplified by the fact that these integrals are
IR dominated. We keep terms leading in α− and q=k. As mentioned in Sec. III B, we take ðki=kjÞα− ≃ 1 and ðqi=qjÞα− ≃ 1,
but not ðqi=kjÞα− . With this assumption, we can integrate the above expressions in a way similar to our integration of the
four-point function’s nested integrals.
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