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In this paper, we investigate a new phenomenological parametrization for unified dark matter and dark
energy based on the polynomial expansion of the barotropic equation of state parameter w. Our
parametrization provides a well-behaving evolution of w for both small and big redshifts as well as in
the far future. The dark fluid described by our parametrization behaves for big redshifts like dark matter
(DM). Therefore, one can parametrize dark energy and dark matter using a single dark fluid, like in the case
of the Chaplygin gas. Within this parametrization, we consider two models: one with a dark energy (DE)
barotropic parameter fixed to be −1 and the second one, where w ≠ −1 is chosen to match the best fit to the
data. We study the main cosmological properties of these models at the expansion and perturbation levels.
Based on the Markov chain Monte Carlo method with the currently available cosmic observational data
sets, we constrain these models to determine the cosmological parameters at the level of the background
and clustering of matter. We consider the interaction between dark matter and dark energy which directly
affects the evolution of matter and its clustering. Our model appears to be perfectly consistent with the
ΛCDM model, while providing unification of DE and DM.
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I. INTRODUCTION

Various evidences from independent cosmic observa-
tions such as measurements of the rotation curves of spiral
galaxies [1,2], dynamics of galaxy clusters [3], and cosmic
structure formation [4] show that there is roughly 6 times
more cold dark matter (CDM) than can be afforded by the
baryonic matter in the cosmic matter budget making up of
order ∼30% of critical density [5]. In addition to this
clustering dark component, the astronomical observations
including, e.g., supernovae type Ia (SNIa) [6–8], cosmic
microwave background (CMB) fluctuations [5,9–11],
large-scale structure (LSS) by the Sloan Digital Sky
Survey (SDSS) [12], baryonic acoustic oscillation (BAO)
[13–17], and galaxy clustering provide evidences for the
existence of the so-called dark energy (DE)—an exotic
fluid with sufficiently negative pressure, which causes the
late-time accelerated expansion of the Universe.
Despite a lot of studies on dark matter (DM) and DE,

their physical properties, origin, and nature are yet
unknown. In literature, many candidates have been sug-
gested for dark matter such as axions [18], the lightest
supersymmetric particle (LSP) like neutralinos [19], and
the KaluzaKlein particles [20] that are weakly interacting

massive particles (WIMPs) [21,22]. Also for DE, the most
natural candidate is a cosmological constant with a constant
equation of state (EoS) wΛ ¼ −1, but there is a discrepancy
of some 120 orders of magnitude between its theoretical and
observed values known as the fine-tuning problem [23–26].
For this reason, other candidates such as quintessence and
k-essence models with a time varying EoS parameter have
been suggested. Quintessence models involve canonical
kinetic terms of the self-interacting scalar field [27], and
k-essence models contain exotic scalar fields with nonca-
nonical (nonlinear) kinetic terms which typically lead to a
negative pressure. Generally speaking, it has been proposed
that we cannot entirely understand the nature of DE before
the establishment of a complete theory of quantum gravity
[28]. One can ask if it is possible to obtain a simple model, in
which a single dark fluid (DF) behaves as both dark matter
and dark energy [29]. This attractive dark fluid with a
barotropic equation of state (EoS) w (which is the ratio of
pressure to energy density) can unify DM and DE and
explain both the accelerated and decelerated expansions at
late and early times, respectively. In other words, the
barotropic EoS parameter of DF acts like a DM EoS
parameter (wm ∼ 0) at high redshifts and behaves like a
DE EoS parameter (wde < −1=3) at low redshifts. This dual
role of DF is the most interesting and surprising property in
these scenarios. For this fluid, the coincidence problem of
ΛCDM (i.e., why we live in a particular era during which
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both dark components are of the same order of magnitude at
the present, whereas they were so different in most of the
past evolution of the Universe) is resolved [30]. One
particular case of DF which unifies DM and DE is the
so-called generalized Chaplygin gas (gCg), introduced by
Kamenshchik [31] and then developed in [32].
On the other hand, one possible way to study the EoS

parameter of DE models is via parametrizations. In liter-
ature, we can find different EoS parametrizations for DE in
which the EoS parameter of DE is defined as a function of
cosmic redshift [wðzÞ]. The simplest and earliest EoS
parametrizations are introduced based on the Taylor
expansion of the EoS parameter of DE, wde, with respect
to redshift z as: wdeðzÞ ¼ w0 þ w1z [33,34] and with
respect to (1 − a) as: wdeðzÞ ¼ w0 þ w1

z
1þz, where a ¼

1þ z is a scale factor of the FRW metric. The second
parametrization is a well-known Chevallier-Polarski-Linder
(CPL) parametrization proposed by [35,36]. In addition,
some purely phenomenological parametrizations have
been introduced in recent years. For instance, wdeðzÞ ¼
w0 þ w1z=ð1þ zÞγ, where γ fixes to 2 [37]. Moreover, the
power law wdeðaÞ ¼ w0 þ w1ð1 − aαÞ=α and logarithmic
wdeðaÞ ¼ w0 þ w1 ln a parametrizations have been sug-
gested [38,39]. Another phenomenological parametri-
zation is the Wetterich parametrization wdeðzÞ ¼
w0=½1þ b ln ð1þ zÞ�α, where α is fixed to 1 or 2 [40].
The important note is that although the CPL formula is a
well-behaved parametrization at early (a ≪ 1) and present
(a ∼ 1) epochs, it diverges when the scale factor goes to
infinity at the far future. All of the above parametrizations
are introduced to describe the evolution of the EoS
parameter of DE. Based on our knowledge, there is still
no specific parametrization to describe the barotropic EoS
parameter of DF that consists of DM and DE. In this work,
we introduce a new parametrization for the barotropic EoS
parameter of DF (hereafter, DF parametrization). Using
this parametrization (see Sec. II for a complete description),
the barotropic EoS parameter of DF can tend to w ¼ 0 at
the early matter dominated Universe and w < −1=3 at the
late time accelerated Universe. This paper is organized as
follows. In Sec. II, we introduced the DF parametrization
and study the evolution of its EoS parameter. In Sec. III, the
cosmological background evolution based on the DF
parametrization is investigated. We study the redshift
evolution of the main cosmological quantities using DF
parametrization. Using the latest cosmological data in a
background level including data from joint light-curve
analysis (JLA) supernovae, CMB, BAO, big bang nucleo-
synthesis (BBN), and Hubble expansion rate, in the context
of a Markov chain Monte Carlo (MCMC) algorithm, we
perform a joint likelihood statistical analysis in order to
constrain the free parameters of DF parametrization. In
Sec. IV, we investigate the growth of matter perturbations
using DF parametrization and then perform a likelihood
analysis using the growth rate of perturbations to place

a constraint on the parameters of the model in the
perturbation level and obtain their best fit values.
Finally, we summarize our results in Sec. V.

II. DF PARAMETRIZATION

First, let us consider a simple parametrization for the
barotropic EoS parameter of DF as

wðaÞ ¼ w0 þ
XN
n¼1

wnð1 − aÞn; ð1Þ

where a is scale factor normalized to 1 at present time, wn
are constant coefficients, and w0 is a present-day barotropic
parameter. The issue is that this parametrization leads to
divergences of wðaÞ in the far future, i.e., in the a → ∞
limit. In principle, this is not an issue that would exper-
imentally exclude the model. Quite obviously, one can only
measure past values of w, so its future behavior cannot be a
subject of experimental verification. Nevertheless, a para-
metrization with a nonstable w could be considered as
decoupled from the predictions of most of the theoretical
models of DE. Starting from DE models motivated by the
field theory, like quintessence, to fðRÞ and scalar-tensor
theories, one usually obtains a rather constant value of
the EoS parameter in the far future. Thus, a part of our
motivation is to include in our analysis a connection
between a phenomenological parametrization and more
fundamental theories of DE. In order to solve the problem
of an unstable w, one can secure the existence of finite and
slowly evolving wðaÞ for an arbitrary big, but finite value of
a by assuming that wðaÞ has a stationary point at some
a ¼ as. The maximal order of a stationary point in the
case of Eq. (1) is equal to N − 1, which leads to N − 1
constraints on wðaÞ, namely,

dw
da

¼ d2w
da2

¼ … ¼ dN−1w
daN−1 ¼ 0: ð2Þ

We have obtained N − 1 independent equations that con-
strain N þ 2 parameters (including N þ 1 different wn and
as), which gives three independent parameters of such a
model. Note that this number is N independent. From
Eqs. (1) and (2), one can find

as¼
�
N
wN

w1

� −1
N−1

; wn ¼ð−1Þnþ1
ðN−1Þ!
n!ðN−nÞ!

�
N
wN

w1

�n−1
N−1

:

ð3Þ

For an arbitrary wN, the barotropic EoS parameter wðaÞ
does not necessarily converge in the N → ∞ limit. Note
however that for

wN ¼ σðw1=NÞN; ð4Þ
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where σ is any positive constant, one can obtain a N → ∞
limit of the theory, which gives

wN →0; as∝
N
w1

→∞; wðaÞ¼w0þ1−e−w1ða−1Þ: ð5Þ

This leaves us with two parameters of the theory. With a
growing N, one obtains a bigger as, which secures a lack of
divergence of wðaÞ for bigger values of a. The N → ∞
limit guarantees a lack of divergences for all a. It is easy to
show that any barotropic EoS parameter wðaÞ of the form

wðaÞ ¼ w0 þ fð1 − e−w1ða−1ÞÞ; ð6Þ

where fðaÞ is continuous, differentiable, and well-defined
function for all a, satisfies conditions (2) in the N → ∞
limit. We have normalized the scale factor to be equal to 1
today, and we have assumed fða ¼ 1Þ ¼ 0 in order to
obtain w0 as a present value of a barotropic parameter of
DF. Such a theory may have an arbitrary number of free
parameters within the fðxÞ function. Again, let us empha-
size that the infinite order stationary point in a → ∞
secures a finite value of wðaÞ for all values of the scale
factor. Therefore, one avoids divergences of wðaÞ, which
are otherwise present for this type of parametrization.
Based on Eq. (6), let us assume one of the simplest forms
of fðaÞ, namely,

wðaÞ ¼ w0 þ αð1 − e−w1ða−1ÞÞ; ð7Þ

where α is a constant. According to Eq. (7), one can obtain
the following three limits for the evolution of the barotropic
parameter wðaÞ:

wðaÞ ¼

8>><
>>:

w0 þ αð1 − ew1Þ a → 0

w0 a → 1

w0 þ α a → ∞
;

where a → 0 (a → ∞) represents the far past (future) of the
Universe. Note that both a → 0 and a → ∞ limits lead to
constant and finite values of wðaÞ, which are significantly
different from each other. This leads to the rapid transition
period between the phases of quasiconstant values of w,
which has been investigated in the context of different
parametrizations of inflation and DE in [41–45]. In
principle, we want to obtain a smooth transition between
some initial, almost constant value of the barotropic
parameter denoted as win and a final one, which is
w0 þ α. In order to obtain such an evolution of w, let us
note that for

w1 ¼ log

�
w0 þ α − win

α

�
; ð8Þ

one finds w → win for a → 0. In such a case from Eqs. (7)
and (8), one finds the following form of the barotropic
parameter:

w ¼ w0 þ
�
1 −

�
w0 þ α − win

α

�
1−a

�
: ð9Þ

In this paper, we investigate the case of win ¼ 0.
Nevertheless, one could use this parametrization to describe
the transition between a massless scalar field and DE (for
win ¼ 1) [43] or between a radiationike evolution of a fluid
and DE (win ¼ 1=3) [46]. Note that one needs α < 0 in
order to obtain those limits.
Based on Eq. (9), in Fig. 1, we show the evolution of the

EoS parameter of DF wðaÞ as a function of scale factor for
w0 ¼ −1 and two different values of the free parameter α.
Note that for our parametrization of wðaÞ, one can always
find a, for which w vanishes, meaning that the barotropic
parameter of the DF behaves as pressureless DM. On the
other hand, at present and future times, wðaÞ tends to −1,
which means that DF acts like a cosmological constant. For
comparison, we also show the EoS parameter of CPL
parametrization and the constant EoS parameter of the
ΛCDM model. We see that the CPL parametrization
diverges when the scale factor goes to infinity at the far
future.

III. DF PARAMETRIZATION AGAINST
GEOMETRICAL OBSERVATIONS

In this section, we obtain the basic equations governing
the evolution of background cosmology within DF para-
metrizations. Then using the observational data in the
background level, we perform the statistical MCMC
analysis to put constraints on the cosmological parameters
in the context of DF parametrization. Finally, we show the

w0 1; Α 10 2

w0 1; Α 10 4

CPL w 0 1; w 1 0.2

CDM

10 4 0.001 0.01 0.1 1 10

2.5

2.0

1.5

1.0

0.5

0.0

a

w
a

FIG. 1. The evolution of the EoS parameter of a unified DF and
CPL parametrization as a function of scale factor a. The EoS
parameter of CPL parametrization goes to infinity at the far future
while the EoS parameter of unified DF coincides the ΛCDM one
at today and future times.
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evolution of main cosmological quantities describing the
evolution of background cosmology in DF parametrization.

A. Basic equations

In this section, we use Eq. (9) with wi ¼ 0 as a para-
metrization describing the barotropic EoS parameter of DF
(denoted in here as DF parametrization) to study the
evolution of Hubble flow in the spatially flat Friedman-
Robertson-Walker (FRW) universe. We assume that the
Universe is filled with baryonic matter, radiation, and
unified DF. Then, the first Friedmann equation takes the
following form:

H2 ¼ 1

3m2
p
ðρb þ ρr þ ρdfÞ; ð10Þ

where m2
p ¼ 1

8πG is the reduced Planck mass and ρb, ρr, and
ρdf are the energy densities of baryons, radiation, and DF,
respectively. In the absence of interactions among the
above fluids, the evolution of the energy density as a
function of the cosmic scale factor aðtÞ is characterized by
the continuity equation as follows:

dρi
da

þ 3

a
ð1þ wiðaÞÞρi ¼ 0; ð11Þ

where ρiðaÞ is the energy density of radiation (wi ¼ 1=3),
baryonic matter (wi ¼ 0), and DF is given via Eq. (9),
respectively. It is easy to derive the evolution of the energy
density of baryons and radiation as ρb ¼ ρb0a−3 and
ρr ¼ ρr0a−4, respectively. Also inserting Eq. (9) into
Eq. (11), we can obtain the evolution of ρdf as

ρdfðaÞ ¼ ρdf0e
−3
R

a

1

1þwðxÞ
x dx: ð12Þ

Using the definition of the dimensionless energy density
parameter Ωi ¼ ρi

ρcr
, where ρcr ¼ 3m2

pH2 is the critical
energy density, the dimensionless Hubble parameter,
E ¼ H

H0
takes the following form:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωb0a−3 þΩr0a−4 þ Ωdf0e

−3
R

a

1

1þwðxÞ
x dx

q
: ð13Þ

Applying the Friedman equation, which takes the form ofP
Ωi ¼ 1, we can write Ωdf0 ¼ 1 − Ωb0 −Ωr0, where

Ωr0 ¼ 2.469 × 10−5h−2ð1.6903Þ is the energy density
of radiation (photonsþ relativistic neutrinos) and h ¼
H0=100 [47]. Notice that in the case of our model, DF
is considered as the unification of DM and DE and
therefore, the DM energy density is not explicitly included
in the Hubble flow. In order to obtain the evolution of DM
and DE separately, one needs to decompose the energy
density of DF as

ρdf ¼ ρdm þ ρde: ð14Þ

According to the energy-momentum conservation equa-
tion, one obtains the continuity equation for DF as

_ρdf þ 3Hð1þ wÞρdf ¼ 0: ð15Þ

Then, the continuity equations for DM and DE are,
respectively, given by

_ρdm þ 3Hρdm ¼ Q; ð16Þ

_ρde þ 3Hð1þ wdeÞρde ¼ −Q; ð17Þ

where Q is the interaction parameter between DM and DE
([48–50]). Note, that unified models of DM and DE have a
certain issue related to the behavior of the speed of sound,
namely, they may lead to the production of unphysical
oscillations [51]. The unified models behave like DM at
early times, and therefore their sound speed is vanishing.
As one approaches the present time, the unified models
behave like DE with a negative pressure resulting in a large
sound speed, which produces oscillations or blowup in the
power spectrum [51]. In unified models, this is an unavoid-
able feature unless we identify the DM and DE components
of one fluid. In our case, it is natural to assume that DM and
DE are interacting as they are both considered as a single
fluid. Because of the interaction, one obtains a dissipation
of energy between DM and DE, which can be estimated
phenomenologically as [52,53]

Q ¼ 3aHðξ1ρdm þ ξ2ρdeÞ; ð18Þ

where ξ1 and ξ2 are the coupling coefficients, and they can
be determined by observations. The energy flow from DE
to DM is defined by Q > 0, and oppositely Q < 0 shows
the energy flow from DM to DE.
Using Eq. (14) and the barotropic equation for DF

Pdf ¼ wðaÞρdf , assuming Pdf ¼ Pde (since Pdm ¼ 0), we

can obtain ρdm ¼ ðwdeðaÞ−wðaÞ
wdeðaÞ Þρdf and ρde ¼ wðaÞ

wdeðaÞ ρdf .
Hence, the dimensionless energy densities of DM and

DE can be obtained as: Ωdm ¼ wdeðaÞ−wðaÞ
wdeðaÞ Ωdf and

Ωde ¼ wðaÞ
wdeðaÞΩdf . The energy density of DM and DE can

be obtained as follows:

Ωdm ¼ Ωdf0ðwde − wðaÞÞe−3
R

a

1

1þwðxÞ
x dx

wdeE2ðaÞ ; ð19Þ

Ωde ¼
Ωdf0wðaÞe−3

R
a

1

1þwðxÞ
x dx

wdeE2ðaÞ : ð20Þ

In the rest of paper, we consider two different cases for
DE. First, we assume DE as a cosmological constant with
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wde ¼ −1 (case 1). Second, we consider DE as a quintes-
sence model with a constant wde that differs from −1
(case 2) in order to provide the best fit to the data (see
Table I for details). Let us note that both cases are
considered within the parametrization of the DF presented
in the Eq. (9).

B. Geometrical observations and
cosmological constraints

Now using the background expansion data including
those of a JLA supernovae binned sample [54,55], BAO
[17,56–58], Planck data for the position of CMB acoustic
peak [59], BBN [60], Hubble data [17,58,61,62], we
implement a statistical MCMC analysis for the two classes
of DF parametrization described in Sec. III A. For more
details regarding the MCMC method used in this work, we
refer the reader to [63] [see also [47,64–67]]. In this section,
we have used the following sets of data: 31 distinct points
for JLA binned sample data, 37 points for Hubble data [see
Table 3 of [68]]. The BAO data include six distinct
measurements of the baryon acoustic scale [see Table 1
of [63]]. We use the Plank data for the position of CMB
acoustic peak in [59]. The big bang nucleosynthesis (BBN)
provides the data point which constrains Ωð0Þ

b [60]. The
total likelihood function is the product of the individual
likelihoods for each experiment as

LtotðpÞ ¼ Lsn × Lbao × Lcmb × Lh × Lbbn; ð21Þ

so the total chi-square ( χ2tot) is given by the sum of the
individual chi-squares,

χ2totðpÞ ¼ χ2sn þ χ2bao þ χ2cmb þ χ2h þ χ2bbn; ð22Þ

where the statistical vector p contains free parameters of
the cosmological model. This vector forΛCDM cosmology
contains fΩb0;Ωdm0; H0g. For DF parametrization (case 1),
the vector p contains fΩb0; H0; w0; αg, and for DF para-
metrization (case 2), the vector p includes fΩb0; H0; w0; α;

wdeg. Notice that in the case 2, we have one more free
parameter (wde) than case 1, since in the case 2, we consider
DE as a quintessence with an unknown EoS parameter wde,
while in case 1, DE is considered as a cosmological
constant Λ with a constant EoS wΛ ¼ −1. In this analysis,
we fix the energy density of radiation (photonsþ
relativistic neutrinos) as Ωr0 ¼ 2.469 × 10−5h−2ð1.6903Þ,
where h ¼ H0=100 [47].
In the chi-square analysis, it is clear to conclude that a

model with a lower value of χ2min is better fitted to
observational data compared to other models. However,
this result is valid if the number of free parameters of
models are equal. In other words, this analysis is no longer
valid for comparing different models with a different
number of free parameters. Hence, we use other statistical
tests, the so-called Akaike information criteria (AIC) and
Bayesian information criterion (BIC) to compare DF
parametrizations with observations. Notice that in
ΛCDM cosmology, we have three free parameters; in
the case of DF parametrization (case 1), there are four
free parameters, and in case (2), we have five free
parameters. The AIC [69,70] and BIC [71] estimators
are defined as

AIC ¼ −2 lnLmax þ 2kþ 2kðkþ 1Þ
N − k − 1

; ð23Þ

BIC ¼ −2 lnLmax þ k lnN; ð24Þ

where Lmax is the highest likelihood function (proportional
to a minimum of χ2),N is the number of observational data,
and k is the number of free parameters. One can ignore the
last term in the rhs of Eq. (23) when the number of
observational data N is much more than the number of free
parameters k. Among all models, the one that minimizes
the AIC is considered to be the best one. If the difference
between the AIC of a given model and the best model is
smaller than 4 (Δ ¼ AICmodel − AICmin < 4), one con-
cludes that the best fitted model and a given model are
equally supported by the data. In the case of 4 < Δ < 10,
observations still support the given model but less than the
best one. Finally, for Δ > 10, observations basically do not
support the given model comparing to the best model. The
results of our analysis are presented as follows:

(i) DF parametrization (case 1): χ2min ¼ 65.8, k ¼ 4,
AIC ¼ 74.35.

(ii) DF parametrization (case 2): χ2min ¼ 62.21, k ¼ 5,
AIC ¼ 73.04.

(iii) ΛCDM model: χ2min ¼ 69.94, k ¼ 3, AIC ¼ 76.26.

The above results show that the DF parametrization (case 2)
has the lowest value of AIC. However, since the difference
between the two cases of DF parametrization is about 1.3,
we conclude both DF parametrizations are equally fitted to
the observational data in the background level. Further-
more, we see that the difference between the AIC value of

TABLE I. Best fit values of cosmological parameters obtained
in MCMC analysis using the geometrical data in the background
level.

Parameter Case 1 Case 2 ΛCDM

Ωb0 0.050þ0.0008þ0.002
−0.0008−0.002 0.051þ0.0008þ0.002

−0.001−0.002 0.049þ0.0008þ0.002
−0.0008−0.002

H0 68.9þ0.64þ1.3
−0.64−1.2 68.36þ0.65þ1.3

−0.65−1.3 69.2þ0.69þ1.4
−0.69−1.3

w0 −0.73þ0.008þ0.02
−0.008−0.02 −0.69þ0.02þ0.04

−0.02−0.05 � � �
α −51.3þ13þ22

−11−25 −39.1þ8.0þ9.5
−8.4−11 0

wde −1 −0.95þ0.02þ0.05
−0.03−0.05 −1

Ωdm0 0.257 0.263 0.246þ0.008þ0.02
−0.008−0.02

Ωde0 0.693 0.686 0.705
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ΛCDM cosmology and DF parametrization (case 2) is less
than 4. Hence, all models studied in this work are well fitted
to the observational data in the background level. The best
fit values of cosmological parameters are presented in
Table I. Also, 1σ and 2σ confidence levels of cosmological
parameters are shown in Fig. 2.

C. Cosmological evolution

In this section, based on the best fit values of cosmo-
logical parameters presented in Table I, we depict the
evolution of the main cosmological quantities in the
framework of DF parametrization. In Fig. 3, we present
the evolution of the fractional energy densities for
radiation, DM, and DE. For all models, the Universe
evolves from a radiation dominated phase to a matter
dominated epoch and finally, enters the late time DE
dominated phase. The radiation-matter equality epoch
for ΛCDM model occurs at aeq ≈ 2.9 × 10−4. For DF
parametrization case 1 (case 2), it happens later at
aeq ≈ 5.5 × 10−4ðaeq ≈ 5.1 × 10−4Þ. In all models, we see
that DE starts to dominate the energy budget of the
Universe at a ∼ 0.75. Notice that in the case of DF
parametrization, due to the interaction between DM and
DE, the evolution of energy density of both DM and DE is
different from the one in the ΛCDM scenario.

In Fig. 4, we show the evolution of the EoS parameter of
DF w, the Hubble parameter E, and deceleration parameter
q as a function of redshift z. Notice that in case 2, we use
the best fit values for cosmological parameters based on

FIG. 2. The 1σ and 2σ confidence levels and maximum likelihood function for various cosmological parameters planes. Upper left
(upper right) panel stands for case 1 (case 2) and bottom panel stands for ΛCDM cosmology.
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FIG. 3. Evolution of the fractional energy density of radiation
(green curves), nonrelativistic matter (brown curves), and DE
component (pink curves) in terms of a cosmic scale factor for
different DF parametrizations and standard ΛCDM cosmology.
Dashed and dotted curves stand for case 1 and case 2 of DF
parametrization, respectively. The solid curves represent the
concordance ΛCDM model. In all models, we use the best fit
values from Table I.
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Table I. In the top panel, for both cases, we observe that the
EoS parameter of DF tends to zero at high redshifts
representing the pressureless matter fluid wm ¼ 0 at a high
redshift Universe. While the redshift decreases, the EoS
parameter decreases and reaches negative values smaller
than −1=3, which is a necessary condition for DF to behave
as DE at late times. In the middle panel, the redshift
evolution of the Hubble parameter E has been shown for
both cases of DF parametrization. The ΛCDM case is
shown for comparison. We see that at high redshifts, the
Hubble parameter for DF parametrizations is smaller than
the ΛCDM case. However at low redshifts, the Hubble
parameter in DF parametrization (case 1) coincides with the
ΛCDM model. This result is expected since we assume the
DE component of DF is a cosmological constant Λ with
wde ¼ −1. At low redshifts, when the DE component of the
DF dominates its evolution, we expect that the Hubble

parameter in DF (case 1) fits to the one from the ΛCDM
cosmology. On the other hand, we observe that at low
redshifts, the Hubble parameter in case 2 is a little larger
than the ΛCDM cosmology. This is due to fact that we
consider the DE part of DF as a quintessence DE with
wde > −1. Finally in the bottom panel, we present the
evolution of a deceleration parameter qðzÞ ¼ −1 − _H

H2 for
ΛCDM and DF parametrizations. The connection between
qðzÞ and wde is rather straightforward. From the Friedmann
equations, one finds

_H
H2

¼ −
3

2
ð1þ wdeðzÞΩdeðzÞÞ; ð25Þ

which implies that

qðzÞ ¼ 1

2
þ 3

2
wdeðzÞΩdeðzÞ: ð26Þ

In bothΛCDMmodel and DF parametrizations, q tends to 1
2

at early times as expected. By solving the qðztrÞ ¼ 0, we
can obtain the transition redshift, namely the epoch at
which the expansion of the Universe starts to accelerate. In
particular, we find ztr ¼ 0.9 for DF parametrization
(case 1), ztr ¼ 0.87 for DF parametrization (case 2), and
ztr ¼ 0.66 for ΛCDM. Hence, the ΛCDMmodel is entering
the accelerating phase later than DF parametrizations.
These results are in good agreement with the measured
ztr based on the cosmic HðzÞ data [72] [see also [73,74]].

IV. GROWTH OF PERTURBATIONS

Besides the observational data in the background level, it is
important to study the features of different DE models using
the observations in cluster scales. In fact, most of the
dynamical DE models introduced as parallel candidates of
Λ have the same behaviors at background cosmology.
However, they may have a different evolution in cluster scales
wherewe study thegrowthhistory of perturbations. Therefore,
the information from large scale structure formation is a
powerful tool to examine different types of DEmodels. In this
section, we start from presenting the basic equations for the
growthofmatter perturbations inDFscenarios followedby the
examination of the DF parametrizations against the observa-
tional growth rate data in the perturbation level.

A. Basic equations

We consider the scalar perturbations, which are devel-
oped at low redshifts in the era of structure formation.
The perturbed line element in the conformal Newtonian
gauge as

ds2 ¼ a2ðτÞ½−ð1þ 2ψÞdτ2 þ ð1 − 2ϕÞδijdxidxj�; ð27Þ

where x is the spatial coordinates and ψ and ϕ are the linear
gravitational potentials. In the limit of General Relativity
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FIG. 4. Top panel: Redshift evolution of EoS parameter, w, of
DF parametrizations. Middle panel: redshift evolution of Hubble
parameter E. Bottom panel: redshift evolution of deceleration
parameter q. In all panels, case 1 and case 2 are shown with
dashed and dotted curves, respectively. The concordance ΛCDM
cosmology is shown by red solid curve.
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and in the absence of anisotropic stresses, one finds ψ ¼ ϕ.
We use Latin letters i; j;… for the spatial indexes 1, 2, 3,
and Greek letters μ; ν;… for indexes 0, 1, 2, and 3. In this
formalism, metric is given by

gμν ¼ a2
�−ð1þ 2ψÞ 0

0 ð1 − 2ϕÞδij

�
: ð28Þ

We can rewrite the perturbed metric in Eq. (28) by
separating hμν as gμν ¼ ḡμν þ hμν, where ḡ00 ¼ −a2, ḡij ¼
a2δij are the metric components describing the background
and h00 ¼ −2a2ϕ, hij ¼ −2a2ϕδij are the perturbations of
metric [52]. The energy-momentum tensor for a perfect
fluid in an homogeneous and isotropic universe reads

T̄μν ¼ P̄ ¯gμνðρ̄þ P̄Þūμūν; ð29Þ

where, uμ is the four velocity. Let us decompose the
energy-momentum tensor into Tμν ¼ T̄μν þ δTμν, where
T̄μν and δTμν are background and perturbations, respec-
tively. The perturbed part of the energy momentum tensor
is the following:

δTμν ¼ðδρþδpÞūμūνþðρ̄þ P̄Þðδuμūνþ ūμδuνÞ−δpδμν;

ð30Þ

where different nonzero components of Eq. (30) are
obtained as

δT0
0 ¼ −δρ; δTi

j ¼ δpδji ; δT00 ¼ a2ðδρþ 2ρ̄ϕÞ;
δTi

0 ¼ −a−1ðρ̄þ P̄Þδui; δT0
i ¼ a−1ðρ̄þ P̄Þδui;

δT0i ¼ δi0 ¼ −aðρ̄þ P̄Þδi; δTij ¼ a2ðδp − 2p̄ϕÞδij;
ð31Þ

where the bars indicate that the quantities are unperturbed.
Using the perturbed metric gμν and the perturbed conserva-
tion equations, we can obtain the following evolution
equation for the evolution of thematter perturbations [52,75]:

− _δ−
�
3Hðc2s −wdeÞ−

Q̄0

ρ

�
δ− ð1þ wdeÞðθ − 3 _ϕÞ ¼ δQ0

ρ
;

_θþ
�
Hð1− 3wdeÞ −

Q̄0

ρ
þ _wde

1þwde

�
θ − k2ϕ−

c2sk2

1þwde
δ

¼ ikiδQi

ρ̄ð1þwdeÞ
; ð32Þ

where the overdot is a derivative with respect to conformal
time, δ≡ δρ=ρ̄ is the density perturbation, c2s ≡ δp=δρ is
the sound speed of the DE, ki are the component of the
wave vector in Fourier space, θ≡ a−1ikjδuj is the diver-
gence of the velocity perturbation in Fourier space, δQi are

the perturbation of the exchange of energy momentum in
the perturbed conservation equations, and H is the con-
formal Hubble parameter. Notice that Q̄0 in above equation
is the exchange of energy between DM and DE at the
background level, and due to the homogeneity and isotropy
of the Universe at the background level, its spatial compo-
nents are zero [see also Eq. (18)].
Using the perturbed Poisson equation in the Fourier

space, one finds

�
1þ3H2

k2

�
k2ϕ¼−3H _ϕ−4πGa2ðρmδmþρdeδdeÞ; ð33Þ

where δm is the density perturbation of pressureless matter
(baryonsþ darkmatter) and δde is the DE density perturba-
tion. We focus on the growth of perturbations with a wave-
length much smaller than the horizon (k ≫ H). In this limit,
we can use the pseudo-Newtonian cosmology and neglect the
timevariation of gravitational potential.Hence,we can ignore
the second term of the left-hand side of Eq. (33) and the term
proportional to _ϕ at the right-hand side. Also due to the large
sound horizon of DE, the DE perturbations ðδde ¼ 0Þ are
expected to be negligible on subhorizon scales [76].
Therefore, the Poisson equation reduces to

k2ϕ ¼ −4πGa2ρMδm ¼ −
3

2
H2Ωmδm; ð34Þ

where Ωm ¼ Ωdm þΩb is the sum of fractional density
parameter of dark matter and baryons. Combining Eq. (32)
with the Poisson equation (34), we get

_δm þ 3Hξ
Ωde

Ωm
δm þ θm ¼ 0

_θm þH
�
1þ 3ξ

Ωde

Ωm

�
θm þ 3

2
H2Ωmδm ¼ 0: ð35Þ

Notice that here we use the reduced form of the
phenomenological equation (18) as Q ¼ Q̄0 ¼ −3ξHρde ¼
−3ξH Ωde

Ωm
ρm, by setting ξ1 ¼ 0. Since we are neglecting DE

clustering, we also ignore perturbations of Q to derive
Eqs. (35) [see also [52]]. By eliminating θm from the system
ofEq. (35) and changing thevariables fromconformal time to
physical time according to H ¼ aH, d

dτ ¼ a d
dt and

d2

dτ2 ¼ a2ðd2dt2 þH d
dtÞ, we obtain the following equation:

d2δm
dt2

þ 2

�
H þ 3ξ

Ωde

Ωm

�
_δm −

3

2
H2

�
Ωm − 2ξ

Ωde

Ωm

×

�
1þ

_H
aH2

þ 3ξ
Ωde

Ωm
−

_Ωde

HΩmΩde

��
δm ¼ 0: ð36Þ

Changing the time derivative into a derivative with respect to
the scale factor a (ddt ¼ aH d

da), we get
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δ00m þ Amδ
0
m þ Bmδm ¼ Sm; ð37Þ

where coefficients Am, Bm, and Sm are written as

Am ¼ 3

a
þH0

H
þ 6ξ

a
Ωde

Ωm
;

Bm ¼ −
3

2a2

�
−2ξ

Ωde

Ωm

�
1þH0

H
þ 3ξ

Ωde

Ωm
−

Ω0
m

ΩmΩde

��

Sm ¼ −
3

2a2
Ωmδm: ð38Þ

Notice that by putting ξ ¼ 0, the standard equation for the
evolution of matter perturbations can be recovered. Now we
numerically solve Eq. (37) to obtain the evolution of the
growth ofmatter perturbations inDF cosmology. Concerning
the initial conditions, we set the initial scale factor ai ¼
0.0005 (zi ¼ 2000), whichmeans that we are deep enough in
the early matter dominated era. We use δmi ¼ 8 × 10−5,
which guarantees that the linear regime (δm < 1) of pertur-
bations at the present time. The background cosmological
parameters have been used from the best fit values presented
inTable I. In addition,we set the interaction parameter ξ to the
constrained value ξ ¼ 7 × 10−4 obtained in Table II. Once
the matter perturbation δmðzÞ is obtained, we calculate the

evolution of the growth rate function f ¼ d ln δm
d ln a and the mass

variance of matter perturbations σ8 within the sphere
of R8 ¼ 8h−1 Mpc. The variance of perturbations within
R8 at redshift z reads σ8ðzÞ ¼ DðzÞσ8ðz ¼ 0Þ, whereDðzÞ ¼
δmðzÞ=δmðz ¼ 0Þ is the linear growth factor of matter
perturbations and σ8ðz ¼ 0Þ is the present value
of variances. For models discussed in this work, we fix
σ8ðz ¼ 0Þ from the constrained values in Table II.
In the left panel of Fig. 5, we show the evolution of

the growth rate function f as a function of the cosmic
redshift z. One can see that DE decreases the amplitude of
matter perturbations at low redshift. We observe that in both
cases of DF models and concordance ΛCDM cosmology,
the growth rate of matter perturbations is suppressed due
to the effect of a DE component at low redshifts. Notice that
at high redshifts, the influence of DE on the growth of
perturbations is negligible, and consequently, the growth
function goes to unity, which corresponds to the matter
dominated Universe. We conclude that the suppression of
the amplitude of matter fluctuations in DF cosmologies
starts sooner comparing to the standardΛCDMmodel. This
result can be extracted from Fig. 2 in which the fractional
energy density of DE at higher redshifts calculated in
ΛCDM model vanishes sooner than in the case of DF
cosmology. Hence, the nonvanishing DE at higher redshifts
suppresses the growth of matter fluctuations at earlier
times.
In the right panel of Fig. 5, we show the evolution of

σ8ðzÞ as a function of redshift z computed for DF and
ΛCDM models. Note, that the variance of perturbations in
both DF cosmologies and the ΛCDM model grows with a
scale factor. Moreover, opposite to the behavior of growth
rate function, the variance of perturbations in DF models is
larger than the one in the case of the ΛCDM universe.

B. Growth rate data

In this section, we calculate the theoretical value of
fðzÞσ8ðzÞ in the context of DF cosmology. Using the

TABLE II. Numerical results for different DF parametrizations
and the ΛCDM model obtained from the statistical MCMC
analysis using the cosmological growth rate data in cluster scales.
The best fit values of cosmological parameters ξ and σ8ðz ¼ 0Þ
with their 1σ and 2σ confidence levels are shown in the two first
rows. The minimum of least square function χ2 and minimum of
AIC value are shown in two last rows.

Parameter Case 1 Case 2 ΛCDM

ξð10−4Þ 7.2þ0.003þ0.006
−0.003−0.006 7.3þ0.17þ0.3

−0.17−0.3 0
σ8 0.802þ0.016þ0.02

−0.015−0.02 0.81þ0.02þ0.03
−0.02−0.04 0.74þ0.02þ0.03

−0.02−0.04
χ2min 7.87 7.68 8.11
AICmin 12.51 12.31 10.31
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FIG. 5. Redshift evolution of matter growth rate function fðzÞ (left panel) and variance of perturbations σ8 (right panel) in the context
of DF cosmology. The background cosmological parameters are fixed using their values obtained in Table I. The interaction parameter ξ
and σ8ðz ¼ 0Þ are fixed using their constrained values in Table II. The concordance ΛCDM cosmology is shown by solid curve.
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observational growth rate data [77], we perform a statistical
least square analysis to compute

χ2gr ¼ ΣN
i¼1

½fσðthÞ8 ðziÞ − fσðobsÞ8 ðziÞ�
σ2i

; ð39Þ

where σi are corresponding uncertainties, “obs” stands for
the observed data, and “th” denotes the theoretical pre-
diction in DF cosmology. The growth rate data used in this
analysis comes from 18 distinct data points for fσ8ðzÞ [77].
Here, we consider the interaction parameter ξ and mass
variance σ8ðz ¼ 0Þ as free parameters, which can be
constrained by growth rate data. We fix the other cosmo-
logical parameters using the best fit values presented in
Table I. In MCMC analysis (performed using the growth

rate data), the statistical vector p contains two free
parameters [ξ, σ8ðz ¼ 0Þ] for DF cosmology (both case
1 and 2) and σ8ðz ¼ 0Þ for concordance ΛCDM cosmol-
ogy. Our results in this analysis are presented in Table II.
We show that the ΛCDMmodel, which appears to have the
lowest AIC value, is the best model in cluster scales.
However, since the difference between AIC of DF para-
metrizations (both case 1 and 2) and the ΛCDM model is
lower than 3, we conclude that both cases of DF para-
metrizations are fitted to growth rate data as well as in the
case of the ΛCDM cosmology. In Fig. 6, we visualize the
1σ and 2σ confidence levels in ξ − σ8 plane for the DF
parametrization case 1 (left panel) and for case 2 (right
panel). In Fig. 7, we show the theoretically predicted
fðzÞσ8ðzÞ for DF parametrizations using the best fit
cosmological parameters presented in Tables I and II.
We see that both DF parametrizations are well fitted with
observational growth rate data and that the fit is as good as
in the case of ΛCDM cosmology. This result is comparable
with the implications of Fig. 5, in which the predicted
growth rate function fðzÞ in DF cosmologies is lower than
that in the ΛCDMmodel (see left panel), while the quantity
σ8ðzÞ calculated in DF models is higher than the same
quantity in the ΛCDM universe (right panel). Hence, one
can conclude that the production of the growth rate function
and variance of perturbation, i.e., fðzÞσ8ðzÞ, of DF cos-
mology is compatible with that of the one in the ΛCDM
model (see Fig. 7).

V. CONCLUSION

In this paper, we have proposed a novel parametrization
of a dark fluid, which may include both DM and DE. In the
Sec. II, we have considered the barotropic equation of the
state parameter wðaÞ as a general polynomial function with

FIG. 6. The 1σ and 2σ confidence contours and maximum likelihood functions in ξ − σ8ðz ¼ 0Þ plane for case 1 (left panel) and case 2
(right panel) of DF parametrization.
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observational growth rate data points. DF parametrizations case 1
and case 2 are shown by dashed and dotted curves, respectively.
The concordance ΛCDM cosmology is shown by red solid curve.
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a scale factor as a variable. We have shown that the
existence of a stationary point of wðaÞ secures the lack
of divergences of w in the far future. For a simple example
of such a barotropic parameter with a stationary point, we
have shown that it can describe the smooth transition
between the initial zero barotropic parameter wi ¼ 0 and
the negative DE equation of state parameter wde < −1=3;
therefore, it may be used to unify DM and DE in one
dark fluid.
In the Sec. III, we have investigated the DF parametri-

zation in two cases: for constant and dynamical energy
density of the DE. We have included the constraints on the
background evolution of the Universe using data from JLA
supernovae, BAO, CMB, BBN, and Hubble expansion. We
have implemented the MCMC statistical analysis for the
two considered DE scenarios, and we compared the results
with the ΛCDM model. We have proven that both DF
parametrizations are well fitted to observations as equally
as the concordance ΛCDM model. For all considered

models, we have also founded the redshift, for which
the Universe starts to accelerate. The results vary from
ztr ¼ 0.9 (for the case 1) to ztr ¼ 0.66 for the ΛCDM, all in
good agreement with recent works [72–74,78].
In the Sec. IV, we have investigated the growth rate of

matter perturbations in the context of unified DF cosmol-
ogy. We have shown that in this model the DE component,
like Λ sector in the standard ΛCDM model, can suppress
the amplitude of matter perturbations at low redshift while
its effects on the growth rate are negligible at high redshift
epochs. We have also proven that both cases of DF
parametrization are consistent with growth rate data in
cluster scales as equally as the concordance ΛCDM model.
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