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Dipartimento di Fisica e Astronomia, Università di Bologna, INFN, Via Irnerio 46, 40126 Bologna, Italy
and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences,

Kosygin street 2, 119334 Moscow, Russia

Alessandro Tronconi,† Tereza Vardanyan,‡ and Giovanni Venturi§

Dipartimento di Fisica e Astronomia, Università di Bologna and INFN,
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In the context of quantum cosmology and the Wheeler-DeWitt equation, we investigate the possible
effects of a non-semiclassical wave function of the Universe on the evolution of the inflationary
perturbations. These are associated with the quantum behavior of the homogenous degrees of freedom (in
particular the radius of the Universe) in the early stages of the inflationary expansion, which in turn can
affect the dynamics of the trans-Planckian modes of the fields present. The existence of a bounce for the
homogeneous gravitational wave function is studied. This can lead to an interference between a contracting
and an expanding universe and, as a consequence, to the above quantum gravitational effects on the
primordial spectra. In the traditional study of the inflationary fluctuations, such effects are neglected and a
quasiclassical behavior for the homogeneous inflaton-gravity system is taken.
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I. INTRODUCTION

Thanks to numerous cosmological observations, we have
fairly precise information on the distribution of matter in
the Universe [1]. Because of the inflationary paradigm [2],
this is related to quantum fluctuations at the beginning of
the evolution of the Universe when it was very small and
presumably quantum effects were very important [3]. This
has led to the study of the quantum matter-gravity system
with the aim of understanding how time and the structures
in the Universe emerged. We have previously examined the
matter-gravity quantum system in the context of a Wheeler-
DeWitt (WdW) equation [4], quantum matter and a Born-
Oppenheimer (BO) approach [5–7] wherein gravitation is
associated with the heavy (Planck mass) degrees of free-
dom (d.o.f.) and matter corresponds to the light ones. The
introduction of the semiclassical limit for gravitation leads
to the emergence of time and an evolution equation for
matter (cosmological perturbations) having corrections
involving the Planck mass.
An alternative approach we examined was the emer-

gence of a time even with gravity and the inflaton in
quantum regimes [8]: it is a consequence of the fact that
normal matter cannot see quantum oscillations above the

Planck frequency but just experiences an evolution with
respect to a function of the scale factor, associated with the
speed of inflation. In such a framework, time only exists for
normal matter which evolves according to its position on
the gravitational wave function of the Universe. In par-
ticular, such an approach consisted of the study of a
quantum matter-gravity system containing a minimally
coupled massive homogeneous scalar field which is known
to lead to inflation. After choosing a suitable highly peaked
initial state for the scalar field, the equation for the
homogeneous gravity-matter system is solved in the infla-
tionary (scale factor a large) limit. Upon introducing other
matter fields (or inhomogeneous modes), after coarse
graining of the gravitational wave function, an effective
time evolution emerges for them. In this case, the presence
of an effective time evolution for matter arises from a
mechanism similar to one already observed in the analysis
of the classical limit of quantum systems, such as the
hydrogen atom [9]—in particular, the zero angular momen-
tum and large principal quantum number case which
exhibits a radial highly oscillatory behavior. In this case,
upon coarse graining (in particular, upon applying the
Riemann-Lebesgue Lemma), one is able to recover the
classical trajectory. Indeed, the classical trajectory is related
to a classical spatial probability distribution of a particle in
terms of the inverse of its speed (the fraction of time spent
in a spatial interval is a measure of the probability density
[10]). There is a deep connection between the above
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example and the situation present in the matter-gravity
system for this case.
In recent years, there has been increasing interest in

cosmological models that replace the initial cosmological
singularity (or “big bang”) with a “big bounce,” i.e., a
“smooth” transition from contraction to expansion. Many
models of quantum gravity suggest the possibility of a
bouncing universe, since a pointlike singularity is incom-
patible with the laws of quantum mechanics. Actually,
some hints of a bouncing dynamics were present in [8],
where the gravitational wave function, in large a limit (a
being the scale factor), was found to be an arbitrary
superposition of a contracting and an expanding homo-
geneous universe. Such an arbitrariness was due to the
lack of an exact solution (or at least an approximate
solution) for all a and its effects on the evolution of
normal matter (inflaton/metric fluctuations) were elimi-
nated by the coarse graining. Averaging the dynamical
equations for “normal” matter over Planckian oscillations
is reasonable at energies below the Planck scale. How-
ever, during the inflationary expansion, the wavelength
of inflaton/metric fluctuations is stretched from trans-
Planckian values down to sub-Planckian ones and
throughout their entire evolution a coarse graining pro-
cedure may not be justified any longer.
In this paper, we calculate the quantum gravitational

effects originating from the trans-Planckian oscillations of
the gravitational wave function for a large on the infla-
tionary spectra; that is, we study the effects of an essentially
quantum mechanical gravitational wave function on the
dynamics of the inflationary perturbations. Such effects
arise from the superposition of two quantum states far from
the classical regime and such a superposition can be
justified by the existence of a bounce solution for the
homogeneous WdW equation in the a small regime.
The paper is organized as follows: in Sec. II, we

introduce the general formalism for the classical and
quantum description of inflation with a minimally coupled
scalar field plus inflaton/metric perturbations. In Sec. III,
we perform a BO decomposition for the inhomogeneous
matter-gravity system. In Sec. IV, we approximately solve
the homogeneous WdW equation both for a large (during
inflation) and a small, and we justify the existence of a
bouncing universe. In Sec. V, we study the quantum
gravitational effects on the evolution of the inflationary
perturbations, and in Sec. VI we apply our results to the de
Sitter case. Finally, Sec. VII is dedicated to the conclusions.

II. FORMALISM

We consider the inflaton-gravity system which is
described by the following action,

S ¼
Z

dηd3x
ffiffiffiffiffiffi
−g

p �
−
MP

2

2
Rþ 1

2
∂μϕ∂μϕ − VðϕÞ

�
; ð1Þ

where MP ¼ ð8πGÞ−1=2 is the reduced Planck mass. The
above action can be decomposed into a homogeneous part
plus fluctuations around it. The homogeneous part deter-
mines the overall expansion while the inhomogeneous
contributions are treated as perturbations. These perturba-
tions play a major role as their spectra can be connected
both to the dynamics of the homogeneous part and to the
observable features of the CMB [3]. The fluctuations of the
metric δgμνðx⃗; ηÞ are defined by

gμν ¼ gð0Þμν þ δgμν; ð2Þ

where gð0Þμν ¼ diag½aðηÞ2ð1;−1;−1;−1Þ� is a flat RW
metric and η is the conformal time. Only the scalar and
the tensor fluctuations “survive” the inflationary expansion:
δg¼ δgðSÞ þδgðTÞ. The scalar inflaton fluctuation is defined
as ϕðx⃗; ηÞ≡ ϕðηÞð0Þ þ δϕðx⃗; ηÞ and mixes with the scalar
metric d.o.f. δgðSÞ. The physical perturbations can be
finally described by three Mukhanov-Sasaki (MS) fields
(one for the scalar part and two for the independent tensor
polarizations). The homogeneous part plus the linearized
perturbations dynamics is given by the following action,

S ¼
Z

dη

�
L3

�
−
M̃2

P

2
a02 þ a2

2
ðϕ02

0 − 2Vðϕ0Þa2Þ
�

þ 1

2

X
i¼1;2

X
k≠0

�
v0i;kðηÞ2 þ

�
−k2 þ z00

z

�
vi;kðηÞ2

�

þ 1

2

X
λ¼þ;×

X
i¼1;2

X
k≠0

��
vðλÞi;k

dη

�2

þ
�
−k2 þ a00

a

�
ðvðλÞi;k Þ2

��

≡ SG þ SI þ SMS; ð3Þ

where the vi;k are Fourier components of the scalar MS

field and the vðλÞi;k are those of the MS tensor field and the
index i accounts for the real and imaginary parts of each
component, M̃P ¼

ffiffiffi
6

p
MP, z≡ ϕ0

0=H, H ¼ a0=a2 is the
Hubble parameter, and L3 ≡ R d3x. We formally split
the full action into three contributions: SG and SI are the
homogeneous gravity and inflaton actions, respectively,
and SMS collectively describes perturbations.
Let us note that on working in a flat 3-space and

considering both homogeneous and inhomogeneous
quantities one must introduce an unspecified length L.
One can then eliminate the factor L3 by replacing a → a=L,
η → ηL, v →

ffiffiffiffi
L

p
v and k → k=L. Such a redefinition is

equivalent to setting L ¼ 1 in the above action (3) (then
implicitly assuming the convention ½aðηÞ� ¼ l and ½dx� ¼
½dη� ¼ l0) and then proceeding with its quantization.
Henceforth we shall use this latter simplifying choice.
Only at the end, in order to compare our results with
observations, we shall restore all quantities to their original
definitions and the dependence on L will become explicit.
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Let us finally note that the fact that L is infinite does not
create a problem. As usual, the transition from the Fourier
integral with respect to the wave number to the Fourier
series eliminates the corresponding divergence.
The action (3) is the starting point for the study of the

inflationary dynamics in the semiclassical context. In such
a context, one assumes that the homogeneous quantities
have a classical behavior and only the perturbations are
quantized. Within such a framework, the spacetime coor-
dinates are well-defined classical labels and the scale factor
and the homogeneous inflaton have a definite time depend-
ence which is given by the classical Einstein equations.
However in a quantum universe the above assumption is
not true and the homogeneous d.o.f. must also be quan-
tized. Furthermore the definition of spacetime coordinates
loses its classical (intuitive) meaning. The exact treatment
of homogeneous plus inhomogeneous d.o.f. in a fully
quantized framework suffers from many technical prob-
lems. This is the main reason behind either the minisuper-
space approximation (which neglects the perturbations)
leading to the homogeneous WdW equation or the semi-
classical approximation for the inflatonic scalar-tensor
fluctuations which are commonly adopted for (3). If one
needs to estimate the effects arising in a fully quantized
system on the dynamics of the primordial fluctuations
then these effects must be treated in a perturbative fashion.
With this assumption the classical definition of space and
time holds at zero order and one is finally led to the
standard MS equations plus a perturbation which is a
consequence of a fully quantized system. Moreover, in the
leading order, one recovers the classical trajectory aðηÞ and
ϕ0ðηÞ. Technically, this amounts to canonically quantizing
the homogeneous and the inhomogeneous parts separately,

i.e., in treating the homogeneous variables which appear in
SMS as classical (zero-order) time variables.
If one, without loss of generality, considers just one MS

field then (3) reduces to

S ¼
Z

dη

��
−
M̃2

P

2
a02 þ a2

2
ðϕ02

0 − 2Vðϕ0Þa2Þ
�

þ 1

2

X∞
k≠0

½v0kðηÞ2 − ω2
kvkðηÞ2�

�
≡
Z

dηLtot ð4Þ

where ω2
k ¼ k2 þm2ðηÞ is time dependent and L has been

set equal to 1. Let us note that the time dependent mass in
ω2
k is m

2ðηÞ ¼ − z00
z for each mode of the scalar perturbation

and m2ðηÞ ¼ − a00
a for each mode of the tensor perturbation,

where zðηÞ, aðηÞ are classical (zero-order) expressions.1 In
our approach, ω2

k is finally rewritten as a function of a
and related to η on the classical trajectory. The Hamiltonian
is finally

H ¼ −
π2a
2M̃2

P

þ π2ϕ
2a2

þ a4V þ
X∞
k≠0

�
π2k
2
þ ω2

k

2
v2k

�

≡HG þHI þHMS; ð5Þ

where henceforth we shall limit ourselves to the chaotic
inflaton potential V ¼ m2ϕ2

0=2 and

πa ¼ −M̃2
Pa

0; πϕ ¼ a2ϕ0
0; πk ¼ v0k: ð6Þ

The canonical quantization of the Hamiltonian constraints
leads to the following WdWequation for the wave function
of the Universe (matter plus gravity)

�
1

2M̃2
P

∂2

∂a2 −
1

2a2
∂2

∂ϕ2
0

þm2a4

2
ϕ2
0 þ

X∞
k≠0

�
−
1

2

∂2

∂v2k þ
ω2
k

2
v2k

��
Ψða;ϕ0; fvkgÞ ¼ 0 ð7Þ

with HI ≡H0 and Ĥk ≡ 1
2

∂2
∂v2k þ

ω2
k
2
v2k for k ≠ 0. The above

quantum equation will be the starting point in our approach.
In Sec. III, we shall return to the particular factor ordering
employed in quantizing the gravitational kinetic term.

III. DECOMPOSITION OF THE
QUANTUM SYSTEM

Finding the general solution of the WdW equation (7),
even in the absence of perturbations, is a very complicated
task due to the interaction between matter and gravity.

A set of approximate solutions can be found within a BO
approach. However what we shall follow here is only in
part a BO approach as we shall separate the homogeneous
and inhomogeneous modes of the wave function and
implicitly consider the latter as a perturbation of the former.
The BO approximation was originally introduced in order
to simplify the Schrödinger equation of complex atoms and
molecules [5] and has been applied successfully to the
inflaton-gravity system. Within such a BO decomposition
the semiclassical limit can be recovered straightforwardly.
Moreover this approach treats the quantum-mechanical
probability flux correctly to all orders, without violating
unitarity [11,12].
It consists in factorizing the wave function of the

Universe Ψða;ϕ0; fvkgÞ into the product
1In particular z ¼ a

ffiffiffiffiffi
ϵ1

p
where ϵ1 is the first Hubble flow

function associated with slow roll.
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Ψða;ϕ0; fvkgÞ ¼ Ψ0ða;ϕ0Þ
Y∞
k≠0

χkða; vkÞ ð8Þ

where Ψ0ða;ϕ0Þ is the wave function for the homo-
geneous inflaton-gravity sector and χkða; vkÞ is that for
each mode of MS perturbation field. Let us note that the
wave function of each mode k depends parametrically on
the conformal time η and, in the semiclassical (zero-order)
limit, the evolution of the scale factor a ¼ aðηÞ fixes η as a
function of a. On projecting out the WdW equation on
χ ≡Q∞

k≠0 χkða; vkÞ one is led to an equation for the
homogeneous inflatonþ gravity system wave function
of the form

�
1

2M̃2
P

∂2

∂a2 þ ĤI þ hĤMSi
�
Ψ̃0 ¼ −

1

2M̃2
P

	 ∂2

∂a2


Ψ̃0 ð9Þ

where

Ψ0 ¼ e−i
R

a Ada0Ψ̃0; χ ¼ ei
R

a Ada0 χ̃; A ¼ −ihχj ∂∂a jχi
ð10Þ

and hÔi≡ hχ̃jÔjχ̃i. Each mode is individually normalized
by hχkjχki ¼

R
dvkχ�kχk ¼ 1. The compact notation in (9)

and (10) needs further explanation. Let us first note that

hĤMSi ¼
X
k≠0

hχkjĤkjχki; ð11Þ

A ¼Pk≠0Ak with Ak ≡ −ihχkj ∂
∂a jχki and

χ̃ ¼
Y
k≠0

χ̃k with χk ¼ ei
R

a Akda0 χ̃k; ð12Þ

and finally

	 ∂2

∂a2



¼
X
k≠0

hχ̃kj
∂2

∂a2 jχ̃ki: ð13Þ

On then neglecting the back-reaction of the quantum
fluctuations on the homogeneous part, Eq. (9) becomes

�
1

2M̃2
P

∂2

∂a2 þ ĤI

�
Ψ̃0 ≃ 0: ð14Þ

The equation for χ̃k can be obtained by projecting out the
WdW equation on

Q∞
j≠k χj and is

Ψ̃�
0Ψ̃0½Ĥk − hχ̃kjĤkjχ̃ki�χ̃k þ

1

M̃2
P

�
Ψ̃�

0

∂Ψ̃0

∂a
�
×
∂χ̃k
∂a

¼ 1

2M̃2
P

Ψ̃�
0Ψ̃0

�
hχ̃kj

∂2

∂a2 jχ̃ki −
∂2

∂a2
�
χ̃k: ð15Þ

This latter equation contains the wave function of the
homogeneous Universe Ψ̃0ða;ϕ0Þ and the wave function
of a single k-mode. One needs to substitute the appropriate
Hamiltonian in (15) in order to obtain the corresponding
quantum evolution.
The right-hand side (rhs) of Eqs. (9) and (15) describes

the nonadiabatic transitions in our BO decomposition and
are generally associated with the quantum gravitational
effects (QGE). The homogeneous part of the wave function
of the Universe is further decomposed into the wave
function for the scale factor ψðaÞ and that for the
homogeneous inflaton χ0ða;ϕ0Þ as

Ψ̃0ða;ϕ0Þ≡ ψðaÞχ0ða;ϕ0Þ: ð16Þ

For χ0ða;ϕ0Þ, we shall consider a quantum state highly
peaked on some value of ϕ0. This latter assumption is used
both when considering a classical limit and in the loop
space formulation [13]. In the current approach, we shall
neglect the rhs of Eq. (15) and evaluate the effect of the
above nonclassical homogeneous wave functions on the
evolution of the MS variables. If we consider a generic
homogeneous matter wave function and again perform a
B.O. decomposition, as for the inhomogeneous part,
together with the semiclassical limit for gravitation we
can introduce time. One can then study the evolution of the
MS variables and the effect of the right hand side of
Eq. (15) describing nonadiabatic transitions in our BO
decomposition, which are generally associated with quan-
tum gravitational effects (QGE). In particular, these QGE
affecting the evolution of the MS variables have been
investigated in a series of paper [7,11,14] and have been
shown to lead to k a dependent deviation from the standard
inflationary spectra generated during inflation.

IV. THE EMERGENCE OF TIME AND BOUNCE

The evolution of the MS fields depends on the wave
function of the homogeneous Universe Ψ̃0ða;ϕ0Þ. The
homogeneous inflaton-gravity system, for the chaotic
inflation case, has been studied in different papers
[8,12,15,16]. In particular, we are interested in the approach
followed in [8] wherein the system is solved in a infla-
tionary regime with a highly peaked inflaton wave function
and correspondingly a highly oscillatory quantum state for
gravity. Such an approach is very different from the more
conventional method of considering the semiclassical limit
for gravity and then studying the evolution of the wave
function for the inflaton field. In particular, the latter
approach naturally leads to the emergence of time which
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can be associated with the (quasi) classical trajectory of the
scale factor. Still in [8] we showed that time evolution can
be associated with the (quantum) probability flux even in
the absence of a well defined classical trajectory (the
homogeneous scalar field being quasi-classical, that is
highly peaked, and time independent). Let us examine
this approach in detail.

In what follows, we consider the BO factorization (16)
and the generic factor ordering [17]

∂2
a → a−i∂aa−j∂aa−k with iþ jþ k ¼ 0 ð17Þ

leading from Eq. (14) to the following homogeneous WdW
equation:

χ0ða;ϕ0Þ∂2
aψðaÞ þ 2∂aχ0ða;ϕ0Þ∂aψðaÞ þ ψðaÞ∂2

aχ0ða;ϕ0Þ

þ kð1þ jþ kÞ
a2

ψðaÞχ0ða;ϕ0Þ −
jþ 2k

a
½χ0ða;ϕ0Þ∂aψðaÞ þ ψðaÞ∂aχ0ða;ϕ0Þ�

þ 2M̃2
PψðaÞĤIχ0ða;ϕ0Þ ¼ 0. ð18Þ

We now note that the Hamiltonian of the homogeneous
inflaton, in the chaotic inflation framework, is that of an
harmonic oscillator

ĤIðaÞ≡
π̂2ϕ
2a2

þm2a4

2
ϕ̂2
0 ¼ ma

�
b†bþ 1

2

�
; ð19Þ

where

b ¼
ffiffiffiffiffiffiffiffiffi
ma3

2

r �
ϕ̂0 þ

i
ma3

π̂ϕ

�
;

b† ¼
ffiffiffiffiffiffiffiffiffi
ma3

2

r �
ϕ̂0 −

i
ma3

π̂ϕ

�
ð20Þ

and m is the inflaton mass.

A. Solution for a large

Let us now consider the following ansatz for the inflaton
state satisfying:

bjχ0i ¼ αðaÞjχ0i ð21Þ

with αðaÞ ¼
ffiffiffiffiffiffiffiffiffiffi
mϕ̄2a3

2

q
and ϕ̄ free parameter. The ansatz (21)

consists2 of a coherent state for the inflaton corresponding
to the following wave function

χ0ða;ϕ0Þ ¼
�
ma3

π

�1
4

exp

�
−
ma3

2
ðϕ0 − ϕ̄Þ2

�
; ð22Þ

which is a simple Gaussian peaked around ϕ̄ with a width
which decreases as ma3 increases. The dependence on
a is chosen so as to obtain hHiI ∼ a4m2ϕ̄2=2 (a large)
and a nearly constant energy density during inflation

ρI ∼m2hϕ̂2
0i=2. If we substitute the expression (22) into

Eq. (18) and calculate the contributions of the different
derivatives, we obtain

∂aχ0 ¼
3

4a
½1 − 2ma3ðϕ0 − ϕ̄Þ2�χ0; ð23Þ

∂2
aχ0 ¼ −

3

16a2
½1 − 28ma3ðϕ0 − ϕ̄Þ2

þ 12m2a6ðϕ0 − ϕ̄Þ4�χ0; ð24Þ

s
∂2

∂ϕ2
0

χ0 ¼ −ma3½1 −ma3ðϕ0 − ϕ̄Þ2�χ0: ð25Þ

For ma3 large

max ½ðma3Þnjϕ0 − ϕ̄j2nχ0ða;ϕ0Þ�
∼ð2nÞn exp ½−n�max ½χ0ða;ϕ0Þ�; ð26Þ

and the contributions (23)–(25) are

∂aχ0ða;ϕ0Þ ¼ Oða−1Þχ0ða;ϕ0Þ; ð27Þ

∂2
aχ0ða;ϕ0Þ ¼ Oða−2Þχ0ða;ϕ0Þ; ð28Þ

∂2

∂ϕ2
χ0ða;ϕ0Þ ¼ Oða3Þχ0ða;ϕ0Þ ð29Þ

and are, thus, subleading for a large. Upon just retaining the
leading contributions in (18), one finally has

½∂2
aψðaÞ þm2M̃2

Pϕ
2
0a

4ψðaÞ�χ0ða;ϕ0Þ ¼ 0; ð30Þ

where χ0ða;ϕ0Þ has support in a tiny region around ϕ̄,
due to the large values of a. Let us note that the result
obtained in the inflationary limit is independent of the
ordering as previously pointed out [15]. Finally, one may
rewrite (30) as

2Some motivations can be given for such a choice as being
associated with the random creation process of a large number of
inflaton quanta [8] around some mean (large) value.
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∂2
aψðaÞ þm2M̃2

Pϕ̄
2a4ψðaÞ ¼ 0: ð31Þ

A general solution in terms of the Bessel functions Nν and
Jν of Eq. (31) is

ψðaÞ ¼ ffiffiffi
a

p �
C1N1

6

�
mM̃Pϕ̄

3
a3
�
þ C2J1

6

�
mM̃Pϕ̄

3
a3
��

;

ð32Þ

and for a → ∞ with Di ¼ Ci

ffiffiffiffiffiffiffiffiffiffiffiffi
12

πmM̃Pϕ̄

q
,

ψðaÞ ∼ a−1
�
D1 sin

mM̃Pϕ̄

3
a3 þD2 cos

mM̃Pϕ̄

3
a3
�
; ð33Þ

where D1 and D2 are complex numbers. The oscillatory
behavior is encoded in ψ , even if at an approximate level
(the solution is not exact). Let us note that the Di (Ci) can
be determined by the initial conditions. For example,
C1 ¼ −i and C2 ¼ 1 corresponds to the Vilenkin initial
wave function of the Universe, while if C1 ¼ 1 andC2 ¼ 0,
one has the Hartle-Hawking choice [18].
The (approximate) solution of the homogeneous equa-

tion can then be found as the product of a Gaussian function
peaked on a constant ϕ̄ and a highly oscillating function of
the scale factor. In such a case, the wave function for a is
nonclassical but time can be still introduced.
Each mode of the MS fields is described by a wave

function χk which satisfies Eq. (15). On neglecting the rhs,
Eq. (15) has the form of a Schrödinger-like equation where
the time derivative is replaced by

1

M̃2
P

�
Ψ̃−1

0

∂Ψ̃0

∂a
�
∂aχkða; vkÞ

¼ 1

M̃2
P

�
ψ−1 ∂ψ

∂a þ χ−10
∂χ0
∂a
�
∂aχkða; vkÞ ð34Þ

and the contribution χ−10
∂χ0∂a is negligible.

In the semiclassical limit (WKB) with ψðaÞ ¼
ða0clÞ−1=2 exp½−i

R
a a

0
clda�, the probability density is inverse

proportional to the velocity calculated on the classical
trajectory and (34) has support on the classical trajectory
and no coarse graining is needed in order to connect the
solution to the classical regime. In such a case, one has

∂aψ

ψ
∼ −ia0cl ≡ −ihcla2; ð35Þ

which properly defines a “classical” time ηwith a0cl∂a ¼ ∂η

and the Hubble parameter hcl. For the general solution (33),
time emerges after coarse graining over one period Δa ∼

2π
mM̃Pϕ̄a2

and one finds

∂aψ

ψ
∼�imM̃Pϕ̄a2 ð36Þ

or zero depending on the values of the integration constants
D1 and D2. Let us note that, on coarse graining the full
matter equation over one (short) period of oscillation of the
gravitational wave function, one neglects small contribu-
tions which arise due to the dependence of the matter wave
function on a. Coarse graining is not even necessary if
D1=D2 ¼ �i as oscillation disappears and one obtains (36)
without averaging the matter equation.
The presence of an effective time evolution for matter

arises from a mechanism similar to one already observed in
the analysis of the classical limit of quantum systems, such
as the hydrogen atom [15], in the sense that the quantum
probability as a function of a is similar to the measure of
temporal density in a classical orbit. This fact has been
studied for the stationary quantum eigenstates of the
hydrogen atom (with two particular fixed values of the
angular momenta and large principal quantum number n)
some of which presents a radial highly oscillatory behavior.
On course graining (in particular on applying the Riemann-
Lebesgue Lemma) one is able to recover the classical
trajectory related to the given angular momenta. Indeed, the
classical trajectory is related to a classical spatial proba-
bility distribution of a particle in terms of the inverse of its
speed (the fraction of time spent in a spatial interval is a
measure of the probability density).
We note that different choices for operator ordering in

the WdW equation may lead to effects at the beginning of
the inflationary phase and could modify correspondingly
quantum gravitational contributions to the power spectrum
[11], we hope to return to this.

B. Solution for a small

We have found a solution to our homogeneous system
for a large. Let us, nonetheless, use it also for a small. If we
add the additional hypothesis that the exponent of our
Gaussian (22) tends to zero for a small, implying that ϕ0 is
never too large (no random creation of too large a number
of inflaton quanta [8]) one just obtains, on retaining the
leading terms,

∂2
aψ þ 1

a

�
3

2
þ i − k

�
∂aψ

−
1

a2

�
3

16
þ kði − 1Þ þ 3

4
ði − kÞ

�
ψ ¼ 0: ð37Þ

At this point in analogy with Eq. (35) it is convenient to
introduce, for a small,

∂aψ

ψ
¼ c

a
¼ a2

�
c
a3

�
ð38Þ

where the term c=a3 is, for a large, replaced by �imM̃Pϕ̄
which is related to the value of the Hubble constant
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(see Eq. (36) and Ref. [8]) and determines it. From Eq. (37),
one obtains

a∂acþ c2 þ c

�
1

2
þ i − k

�

−
�
3

16
þ kði − 1Þ − 3

4
ði − kÞ

�
¼ 0: ð39Þ

and one has a solution for c constant and

c ¼ 1

2

�
−
�
1

2
þ i − k

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4kþ ðiþ kÞ2

q �
; ð40Þ

which of course is real for the simplest case i ¼ j ¼ k ¼ 0,
also for the Laplace-Beltrami choice i ¼ 1, j ¼ −1, k ¼ 0
and the Vilenkin choice i ¼ −1, j ¼ 1, k ¼ 0 [17]. The
result suggests that, as a becomes small, the Hubble
parameter eventually becomes imaginary, implying that
the Universe will stop contracting and is suggestive of a
bounce. Indeed, in Eq. (36) one has two possible signs for
the time: one associated with a contracting and the other
with and an expanding universe and presumably the two
“meet” for a small when the Hubble parameter (or time)
becomes imaginary. Admittedly the above approach to a
possible bounce is very heuristic, however its possible
occurrence, with the necessary presence of matter, should
not surprise us. Indeed, in the usual quantum mechanics for
potentials which are dominated by the centrifugal one near
the origin, there is no collapse and it is the latter that
determines the behavior of the wave function there (see, for
example, [19]).
Let us improve on the above approach by now making

the following again highly peaked ansatz for the matter
wave function,

uða;ϕ0Þ ¼
�

2β

M̃2
Pπ

�
1=4

exp

�
−

β

M̃2
P

ðϕ0 − ϕaÞ2
�
; ð41Þ

where ϕa is a function of a to be calculated. The full matter-
gravity wave function is Ψða;ϕ0Þ≡ ψðaÞuða;ϕ0Þ and the
WdW can be written as the sum of three contributions
which must be zero. The contribution proportional to ϕ2

0 is
given by

m2M̃2
Pa

4 −
4β2

M̃2
Pa

2
þ 4

β2

M̃P
4
ϕ02
a ¼ 0; ð42Þ

where the prime denotes the derivative with respect to a.
For β ≫ mM̃2

Pa
3 the first contribution can be ignored and

one finds an equation for ϕa with the following solution:

ϕa ¼ ϕ̄þ M̃P ln a=a0: ð43Þ

The second contribution is proportional to ϕ0 and must be
set independently to zero,

2β

M̃Pa2

�
2a

∂aψ

ψ
− j − 2k − 1

�
¼ 0; ð44Þ

leading to

ψ ¼ Ba
1
2
ð1þjþ2kÞ: ð45Þ

Finally, one is left with the third contribution

1

βa2
ðkþ jkþ k2Þ þ 2ð1þ jþ 2kÞϕa

a2M̃P

−
ψ 0

aψ
ðjþ 2kÞM̃P þ 4βϕa

βM̃P
þ 1

β

ψ 00

ψ
¼ 0; ð46Þ

where we divided the equation by β. Let us note that for β
large and, in particular, ϕa=M̃P ≫ 1=β, the leading con-
tributions in (46) are those proportional to β0. Given the
previously found constraints (43) and (45), Eq. (46) finally
becomes

−
1

4a2
ðk − 1Þ2 ¼ 0 ð47Þ

and is satisfied for each ordering with k ¼ 1. However, if
we leave the ordering unspecified and for β ≫ M̃P=ϕa, we
note that Eq. (46) is still satisfied to the leading order. We
conclude that the wave function

Ψ ¼ Ba
1
2
ð1þjþ2kÞ

�
2β

M̃2
Pπ

�
1=4

× exp

�
−

β

M̃2
P

ðϕ − ϕ̄ − M̃P ln a=a0Þ2
�

ð48Þ

is an approximate solution to the WdW equation in the
regime with β ≫ 1 ≫ mM̃2

Pa
3 and, thus, for a small. One

can finally merge the solution obtained for a small starting
from (41) and the one already proposed for a large (22).
Merging leads to an approximate solution which satisfies

the WdW homogeneous equation for a large and a small
starting from the following general ansatz for the matter
wave function,

uða;ϕÞ ¼
�
2αðaÞ
π

�
1=4

exp½−αðaÞðϕ − ϕaÞ2�

≡
�
2αðaÞ
π

�
1=4

exp½−αðaÞΔϕ2�; ð49Þ

where α ¼ β
M̃2

P
þ ma3

2
and ϕa ¼ ϕ̄þ ln a=ā. For a small, one

recovers the solution (48) with a nonevolving gravity wave
function (45), and for a large one finds (33) with ϕ̄ → ϕa.
We already discussed the emergence of time in the large a
regime. In such a context, the Hubble parameter is defined
contextually [see (35) and (36)] with ∂aψ=ψ being an
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imaginary function of a. For a small the same procedure
would lead to a real ratio ∂aψ=ψ or, correspondingly, to an
imaginary Hubble parameter. Classically, a complex
Hubble parameter results as the solution of some exotic
Friedmann equation describing a bouncing universe, its
imaginary part being different from zero in the region
which is classically not accessible. Analogously, at the
quantum level, the wave function satisfying the time-
independent Schrödinger equation in the classically for-
bidden region is real and decreasing while it is oscillatory in
the region classically accessible. We then argue that (41)
describes a bouncing universe and the different signs in
(36) are presumably associated with its contracting (plus)
and expanding (minus) phases. Unfortunately, within our
approach, we are not able to calculate the turning point with
precision. However we can estimate aB, namely the value
of the scale factor at the bounce, as the point where the
approximations used to obtain the small a solution break
down. This happens for β ∼mM̃2

Pa
3 and β ∼ M̃P=ϕa. Given

the constraint coming from the observed amplitude of
temperature fluctuations of the CMB h�=M̃P ∼ 10−5 where
h� ∼mϕ�=M̃P is the classical Friedmann equation during
inflation and assuming ϕa ∼ ϕ�, then we find

aBMP ∼ 2 × 10; ð50Þ

i.e., aB is of the order of a few times the Planck length.
In any case, we argue that the QGE from such a bouncing

scenario can be estimated by considering arbitrary super-
positions of the wave functions for gravity [different
choices of D1;2 in (33)]. The rest of this paper concentrates
on such estimates and their possible effects on the infla-
tionary spectra.
Let us comment on the significance of the presence

of a “bounce.” Its presence can be associated with a
time-symmetric expansion followed by a contraction or

vice-versa. It is only at the position of the bounce that
expanding and contracting universes interfere (see foot-
note 8 in [6,20]). Thus, the Hartle-Hawking no boundary
initial condition, leading to a real wave function of the
Universe, is associated with a time symmetric evolution,
whereas the Vilenkin choice corresponds to the choice of
one time branch with respect to the other or if we wish a
tunneling from nothing to de Sitter. Thus, on choosing a
“mixed” initial condition, we are introducing a “small”
measure of time-reversal invariance violation. Let us also
observe that a bounce (at Planck densities) has also been
observed in the context of loop space quantum gravity [13],
which, as we have previously noted [12] bears some
resemblance to our present approach.

V. QUANTUM GRAVITATIONAL EFFECTS

In the WdW framework, the homogeneous inflaton-
gravity system plays a central role in determining the
dynamics of the inflationary epoch and is also responsible
for the emergence of time which parametrizes the evolu-
tion of inhomogeneities (structures). The quantum origins
of time may then have observable effects on the primordial
spectra which one can evaluate. At the end of the previous
section we mentioned the possibility of nontrivial super-
positions in the gravitational wave function arising
because of the bounce or a small measure of time reversal
invariance violation. The equation governing the evolu-
tion of each k-mode of the MS field is (15) and in a series
of papers [11] we already studied the quantum gravita-
tional effects originated by the rhs of this equation. In this
article, these rhs contributions are neglected as a first
approximation and we limit ourselves to the analysis of
the effects arising from different choices of the gravita-
tional wave function.
Our starting point is then

½Ĥk − hχ̃kjĤkjχ̃ki�χ̃k ¼ −
1

M̃2
P

�∂aψ

ψ
þ ∂aχ0

χ0

� ∂χ̃k
∂a ∼ −

1

M̃2
P

∂aψ

ψ

∂χ̃k
∂a ð51Þ

where

∂aχ0
χ0

¼ Oða−1Þ ð52Þ

is negligible for a large and

∂aψ

ψ
¼ 3Ω3

0a
2
D1 cos ðΩ0aÞ3 −D2 sin ðΩ0aÞ3
D1 sin ðΩ0aÞ3 þD2 cos ðΩ0aÞ3

þOða−1Þ ð53Þ

with Ω0 ≡ ðmM̃Pϕ̄=3Þ1=3 and D1;2 are complex numbers. Let us note that if D1=D2 ¼ �i and we neglect the contributions
Oða−1Þ, one has

∂aψ

ψ
¼ �imM̃Pϕ̄a2; ð54Þ
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even without coarse graining and the minus sign corre-
sponds to a parametrization which associates an increasing
time to the expansion of the Universe. Let us now consider
the caseD1=D2 ¼ −iþ ϵwhich corresponds to a choice of
initial conditions being a superposition of Vilenkin and
Hartle-Hawking ones, thus introducing possible effects of
interference between contracting and expanding universes.
In such a case, if ϵ ≪ 1, one has a residual phase,

∂aψ

ψ
¼ −imM̃Pϕ̄a2

�
1þ ϵ exp

�
2

3
imM̃Pϕ̄a3

��
; ð55Þ

which encodes the effects arising from the quantum origin
of time. Further such effects can be treated perturbatively.
The leading-order contribution in (55) is responsible for the
emergence of time through

i
mϕ̄a2

M̃P
∂a ≡ i

d
dη

; ð56Þ

and we treat the additional (varying) phase as a perturba-
tion. This latter relation also determines the “classical
trajectory” for the scale factor aðηÞ. Finally, Eq. (51) takes
the following form:

i∂ηχs − Ĥkχs ¼ −ϵ exp
�
2

3
imM̃Pϕ̄a3

�
ði∂η − hĤisÞχs;

ð57Þ
where

χs ≡ χk exp

�
i
Z
η
hĤkðη0Þidη0

�
; hĤis ≡ hχsjĤkjχsi;

ð58Þ
and the “classical” dependence of a on η, defined implicitly
by (56), has been used. The rhs of this latter equation
encodes the QGE originated by a superposition of the
solutions of the Schrödinger-like equation for homo-
geneous gravity (31). Such effects were not studied in
our previous approach [11] and were neglected in [8],
where we made the assumption that, for large a, the rhs
simply averages to zero. Such an assumption, however,
must be verified a posteriori since for certain values of the
parameters or at some time during the evolution of the
primordial fluctuation these effects may have relevant
consequences on the shape of the primordial spectra
originating from inflation. Let us note that ϵ is simply
related to the integration constants D1;2 and can be
negligible. In such a case, these QGE are unobservable.
The state jχsi satisfying Eq. (57) can be evaluated by

standard perturbation theory: let j0i be the Bunch-Davies
(BD) vacuum [21] which satisfies the unperturbed equation
(ϵ → 0), then the perturbed vacuum can be written as the
superposition of the full set of solutions of the unperturbed
equation jni:

jχsi ¼ j0i þ ϵ
X
n≠0

cnðηÞjni: ð59Þ

Upon inserting this expression in (57) and just keeping the
first order in ϵ, one finds the following differential equation
for the amplitudes cnðηÞ:

i∂ηcn ¼ exp

�
2

3
imM̃Pϕ̄a3

�
hnjðĤk − h0jĤkj0iÞj0i: ð60Þ

A. The unperturbed case

Here we briefly review how the unperturbed equation
obtained in the ϵ → 0 limit of (57) can be formally solved in
terms of a time-dependent quantity called Pinney variable.
Such a treatment [15,22] is valid in general for Schrödinger-
like equations with a time-dependent Hamitonian Ĥ and
consists in finding an “invariant operator” satisfying the
equation

i
d
dη

Î þ ½Î; Ĥ� ¼ 0: ð61Þ

The properly rephased eigenstates of the invariant are
solutions of the Schrödinger equation. In particular, if one
is able to find two linear invariants Î and Î† satisfying the
usual algebra of the creation-annihilation operators, then
the complete set of the solutions can be built starting from
the invariant vacuum state defined as Îj0i ¼ 0. The complete
basis of solutions can then be generated by Î† and its
elements labeled by integer numbers.
In our case, the invariant has the following form,

Î ¼ eiΘffiffiffi
2

p
��

1

ρ
− iρ0

�
v̂þ iρπ̂

�
; ð62Þ

where v̂ is the MS variable, π̂ is its conjugate momentum
and Θ ¼ R η dη0

ρ2
. The Pinney variable ρ satisfies the follow-

ing nonlinear differential equation (the so-called Ermakov-
Pinney (EP) equation [22])

ρ00 þ ω2ρ ¼ 1

ρ3
ð63Þ

with ω2 ¼ k2 − z00=z for the scalar MS variable and ω2 ¼
k2 − a00=a for the tensor case. In the coordinate represen-
tation, the properly normalized BD vacuum, expressed in
terms of the Pinney variable, is

hvj0is ¼
1

ðπρ2Þ1=4 exp
�
−
i
2

Z
η dη0

ρ2
−
v2

2

�
1

ρ2
− i

ρ0

ρ

��
:

ð64Þ

Let us finally note that the two-point function p≡ h0jv̂2j0i
is given by
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pðηÞ ¼ ρ2

2
ð65Þ

in terms of the Pinney variable.

B. The Perturbed Case

In order to evaluate the matrix element hnjĤkj0i in
Eq. (60), one may conveniently express Ĥk in terms of the
invariants Î and Î†:

Ĥk ¼
1

4

���
ρ0 þ i

ρ

�
2

þ ω2ρ2
�
e2iΘðÎ†Þ2 þ

��
ρ0 −

i
ρ

�
2

þ ω2ρ2
�
e−2iΘÎ2 þ

�
ρ02 þ 1

ρ2
þ ω2ρ2

�
ð1þ 2N̂Þ

�
; ð66Þ

where N̂ ≡ Î†Î. This last expression can be then rewritten in terms of h0jĤkj0i≡ E0 in more compact form as

Ĥk ¼
��

E0−
1

2ρ2
þ i

ρ0

2ρ

�
e2iΘðÎ†Þ2þE0

�
N̂þ1

2

�
þH:c:

�
: ð67Þ

Eq. (60) then takes the form

i∂ηcn ¼ δn;2
ffiffiffi
2

p
exp

�
2

3
imM̃Pϕ̄a3

��
E0 −

1

2ρ2
þ i

ρ0

2ρ

�
e2iΘ ð68Þ

where δn;2 is the Kronecker delta. To the first order in ϵ, one is then left with a single contribution

c2 ¼
Z

η

η0

ffiffiffi
2

p �
E0 −

1

2ρ2
þ i

ρ0

2ρ

�
e2i½ΘþðΩ0aÞ3�dη0 ð69Þ

or

c2 ¼
ffiffiffi
2

p
M̃2

P

3Ω3
0

Z
a

a0

�
E0 −

1

2ρ2
þ 3i

Ω3
0ā

2

M̃2
P

∂ āρ

2ρ

�
e2i½ΘþðΩ0āÞ3�ā−2dā; ð70Þ

where η0 or, correspondingly a0, denotes the “beginning”
of inflationary phase or, in terms of the solution of the
homogenous WdW equation (49), that of the “a large
regime.” The function which must be integrated in order to
calculate c2 has an oscillatory behavior. If the frequency of
oscillation is high one expects that the integral averages to
zero (Riemann-Lebesgue). Consequently, in the interval
½a0; a�, the transition amplitude c2 receives the major
contributions when the frequency of oscillation has the
minimum value.
Given, at least formally, the expression for jχsi, one

finally must calculate the power of primordial spectra
which is proportional to the quantity hχsjv̂2jχsi. If we
express v̂2 in terms of Î, Î†, we finally obtain

hv̂2i ¼ 1

2

�
e−2iΘhÎ2i þ

	
N̂ þ 1

2



þ c:c:

�
; ð71Þ

where the averages are calculated in terms of the perturbed
jχsi. The result as a function of c2 is

hv̂2i ¼ ρ2

2
½1þ ϵ

ffiffiffi
2

p
ðc2e−2iΘ þ c�2e

2iΘÞ�≡ ρ2

2
½1þ Δk�:

ð72Þ

VI. DE SITTER CASE

In this last section, we shall estimate the QGC to the
inflationary spectra (72) in the de Sitter (dS) limit. Such a
limit represents a good approximation to the inflationary
phase when, at least at the semiclassical level, the Hubble
parameter is slowly varying (in the framework of slow-roll
inflation). Moreover the spectra of the scalar and the tensor
fluctuations are the same and obey the MS equation

v00 þ
�
k2 −

2

η2

�
v ¼ 0: ð73Þ

In the dS limit, both the MS and the EP equations can be
solved exactly. In particular, on assuming a Bunch-Davies
boundary condition for the vacuum state one has

ρ2 ¼ 1þ k2η2

k3η2
: ð74Þ

where the conformal time can be easily rewritten in terms
the scale factor as η ¼ ðahÞ−1 where h ¼ a0=a2 ¼ const.
With the above results, one can then calculate the dynami-
cal phase,
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Θ¼
Z

η

η0

dη0

ρ2
¼ kðη−η0Þ− arctanðkηÞþ arctanðkη0Þ; ð75Þ

and

A� ≡ E0 −
1

2ρ2
þ i

ρ0

2ρ
¼ ð1 − 2ikηÞðkη − iÞ

k3η4ðkηþ iÞ ð76Þ

with

A�e2iΘ ¼ kη0 − i
kη0 þ i

1 − 2ikη
k3η4

e2ikðη−η0Þ ≡ 1 − 2ikη
k3η4

e2iðkηþα0Þ:

ð77Þ
Combining the contributions in the integrand, we find

c2 ¼
ffiffiffi
2

p
e2iα0

Z
η

η0

1 − 2ikη̄
k3η̄4

e2ikη̄−4i
MP

2

h2
η̄−3dη̄; ð78Þ

where we used the classical Friedmann equation h2 ¼
m2ϕ̄2=M̃2

P (neglecting the kinetic term for the inflaton) in

the definition of Ω0. Let us note that the phase must also
contain a positive factor arising from the volume of the flat
3-space [see the discussion after Eq. (3)] which in principle
is unknown a priori. We reintroduce this factor in the
following expression for the phase of (78) as k̄3 ≡ L−3:

αðηÞ ¼ 2kη − 4
MP

2

h2
ðk̄ηÞ−3: ð79Þ

The total phase (79) is the sum of a negative dynamical
contribution (also present in the semiclassical approach)
and a positive quantum gravitational contribution generated
by the superposition of two different states of the gravi-
tational wave function. In what follows, we assume k̄ ¼ k�
where k� is the pivot scale, and the modes we are interested
in (those we observe today in the anisotropies of the
CMBR) are quite close to it (k ∼ k�). If one now redefines
the integration variable −kη ¼ x the integral (78) takes
the form

c2 ¼ −
ffiffiffi
2

p
e2iα0

 Z
x

x0

e−2ix̄þ4iMP
2

h2
k3

k̄3
x̄−3

x̄4
dx̄þ 2i

Z
x

x0

e−2ix̄þ4iMP
2

h2
k3

k̄3
x̄−3

x̄3
dx̄

!
; ð80Þ

where MP=h ∼ 105 (this is a conservative assumption valid in most single field inflationary models based on the slow-roll
paradigm) and k̄

k ∼ 1. Let x0 be the moment when perturbation modes are well inside the horizon and assume that they are in
the BD vacuum state with the dynamical phase much larger then the quantum gravitational one. In such a case, x0 ≫ 1.
When x decreases and the modes get closer to the horizon exit, at some time, given our hypothesis, the quantum
gravitational contribution in the total phase begins to dominate. The integral in (80) cannot be computed exactly but it can
be well approximated by an “integration by parts” method (see [23]) which, to the leading order, gives

Z
x

x0

e−2ix̄þ4iMP
2

h2
k3

k̄3
x̄−3

x̄n
dx̄ ≃

e−2ix̄þ4iMP
2

h2
k3

k̄3
1

x̄3
þiπ

2

2x̄nð1þ 6
x̄4

MP
2

h2
k3

k̄3
Þ

�����
x

x0

; ð81Þ

where contributions of order ð1þ 6
x4

MP
2

h2
k3

k̄3
Þ−2 have been neglected. In particular, the remaining integral

Z
x

x0

d
dx

�
2x̄n
�
1þ 6

x̄4
MP

2

h2
k3

k̄3

��−1
e−2ix̄þ4iMP

2

h2
k3

k̄3
1

x̄3
þiπ

2dx̄ ð82Þ

has been neglected. In order to verify this latter approxi-
mation in Fig. 1, we plotted

R ¼ log10

����xn d
dx

�
2x̄n
�
1þ 6

x̄4
MP

2

h2
k3

k̄3

��−1����; ð83Þ

i.e., the base 10 logarithm of the ratio between the modulus
of the complex integrand of (82) and the modulus of the
original integrand on the lhs of (81). Such a ratio has been
plotted for n ¼ 3, 4 over a large x interval and for different

choices of MP
2

h2 ¼ 104, 107, 1010, 1013 (and k=k̄ ¼ 1) and is
always much less then one, decreasing for increasing

values of MP
2

h2 .
The factor 1þ 6

x4
MP

2

h2
k3

k̄3
is order one for x4 ≳ MP

2

h2
k3

k̄3
≫ 1

and, in particular, is much grater than one for x4 ≪ MP
2

h2
k3

k̄3
.

Given our assumptions for k̄ and MP=h the contributions
we are neglecting are further suppressed for x large since
the amplitude of the oscillation is inversely proportional to
x3, x4. We then conclude that our estimate (81) is very
robust.
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For each k-mode, the amplitude c2 is then given by

cðdSÞ2 ¼ −
ffiffiffi
2

p
e2iα0

ð1 − 2ikη̄Þe2ikη̄þ4i
MP

2

h2
k3

k̄3
1

ð−kη̄Þ3þiπ
2

2ð−kη̄Þ4ð1þ 6
ð−kη̄Þ4

MP
2

h2
k3

k̄3
Þ

�����
η

η0

: ð84Þ

This result is the difference of an expression evaluated at
η̄ ¼ η → 0− (and correspondingly x → 0þ) and the same
expression at η̄ ¼ η0 (and x̄ ¼ x0). In particular, this latter
η0 can be the value of the conformal time at the moment
when the transition between quantum and classical gravity
begins and the QGE can be treated perturbatively (for
example at the beginning of inflation [6] or sufficiently
after the bounce). If we assume that at η0 the perturbations
are in the BD vacuum, well inside the horizon and in

particular x40 ≫
MP

2

h2
k3

k̄3
, then (84) becomes

cðdSÞ2 ≃ −i
ffiffiffi
2

p

12

h2

MP
2

k̄3

k3
e2iα0

�
e
4i

MP
2

h2
k3

k̄3
1

ð−kηÞ3 − 12i
MP

2

h2
e2ikη0

ð−k̄η0Þ3
�
:

ð85Þ
The modifications to the inflationary spectra are given by

Δk ¼ −2ϵ
kηþ i
kη − i

e2iα0
ð1 − 2ikηÞe4i

MP
2

h2
k3

k̄3
1

ð−kηÞ3þiπ
2

2ð−kηÞ4ð1þ 6
ð−kηÞ4

MP
2

h2
k3

k̄3
Þ
þ c:c:;

ð86Þ

which, in the long wavelength limit −kη → 0, becomes

ΔL
k ≃ −ϵ

i
6

h2

MP
2

k̄3

k3

�
e
4i

MP
2

h2
k3

k̄3
1

ð−kηÞ3−2ikη0 −
MP

2

h2
12i

ð−k̄η0Þ3
�
þ c:c:;

ð87Þ
where the oscillations left have a quantum gravitational
origin, and in the long wavelength limit average to zero.
The final correction is

ΔL
k ≃ ϵ

4

ðkη0Þ3
: ð88Þ

We observe that, depending on the sign of the epsilon, it can
lead either to an increase or a decrease of power for large
scales. Its value presumably originates from the dynamics
during the bouncing phase which is unknown. We can
finally evaluate the product kη0. Such a product is much
greater than one since its is well inside the horizon. If we
take η0 as the conformal time at the beginning of inflation
then h0 ∼ h� ∼ 10−5MP. Given our estimate (50), when
hB ∼ 0 ≪ h�, then a0 ≫ aB and

kη0 ≡ k
a0h0

≪
k

10MP
−1 × 10−5MP

¼ 104k; ð89Þ

leading to a correction k3Δk ≫ 10−12. Let us note that,
although the correction is small, its functional dependence
on k looks interesting since other QGE obtained from the
WdW equation have the same form. In [11], the same
dependence on k emerges from the QGE associated with
the quantum operators in the MS equation which lead to
nonadiabatic transitions. For this latter case, however, a
definite sign in front of the corrections was obtained and the
suppression of these effects was proportional to the ratio
h2�=MP

2. Further, the uncertainty related to the unknown k̄
scale was present. In contrast, in the approach presented
here, the dependence on k̄ simplifies and, given the
uncertainty associated with ϵ and aB, we argue that the
QGE may be larger than those calculated in [11].

VII. CONCLUSIONS

We studied QGE on the primordial spectra associated
with the emergence of time for a quantum inflationary
universe. Such effects are the consequence of the quantum
behavior of the gravitational sector (scale factor) and are
usually ignored in the standard approaches to the study of
the evolution of inflationary perturbations. The latter
approaches rely on the assumption that both the homo-
geneous scale factor and inflatonic d.o.f. follow a classical
trajectory and the perturbations evolve quantum mechan-
ically. The evolution of the perturbations then follows that
of the homogeneous sector, and a time parameter for them
is usually defined in terms of the (quasi) classical trajectory
of the scale factor. Our study, on the other hand, is based on

FIG. 1. In the figure above, we plotted the expression (83) for
n ¼ 3 (on the left) and n ¼ 4 (on the right). The dotted, dashed,
dot-dashed and solid lines represent the four different choices
MP

2

h2 ¼ 104, 107, 1010, 1013, respectively.
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the WdW canonical quantization scheme of the inflaton-
gravity system and takes into consideration the quantum
effects both for the inflaton and the scale factor. In
principle, without a classical limit for the scale factor even
the definition of time appears difficult. In our previous
article [8], we already studied the problem of the emer-
gence of time for the WdW approach to quantum cosmol-
ogy and addressed the case of a highly quantum state for
gravity. Correspondingly, a highly peaked state for the
homogeneous inflaton was considered.
The problem of the emergence of time is not a distinctive

feature of quantum cosmology but generically emerges in
closed quantum systems where the (quantum) evolution of
a part of such systems must be parametrized by that of their
remaining part which, usually, is supposed to evolve
classically. If such is not the case time can still be
introduced by means of the quantum probability which
can be associated with the inverse of a “velocity” [9] in
analogy with its classical counterpart. In [8], this latter
approach was followed. Furthermore, we eliminated the
residual quantum effects by coarse graining over trans-
Planckian oscillations of the gravitational wave function.
Such a procedure is justified if the quantum d.o.f., of which
we must study the evolution, have energies well below the
Planck one. The quantum fluctuations enhanced by infla-
tion have energies which are redshifted by many orders of
magnitude and are certainly trans-Planckian at some time
during their evolution. For these, we expect that QGE may
have some impact at some stage [24].
In the context illustrated above, the dynamics of infla-

tionary perturbations is calculated and the QGE associated
with the quantum behavior of gravity are evaluated as
perturbations to the standard evolution. Let us note that the
magnitude of such effect is related to the initial conditions
of the inflationary phase. In particular, we restricted our
analysis to the cases which can be studied by a perturbative

expansion. For these, the initial conditions involve a
coherent superposition of an incoming and an outgoing
wave and the (perturbatively small) incoming wave is
originated by a bounce dynamics which emerges from
the solution of the homogeneous WdWequation in the limit
for a small. Indeed, in the presence of a reflecting barrier
(or bounce), one can envisage the possibility of an
interference between incoming and outgoing universes
and a breakdown of time reversal invariance will appear
in our expanding universe [6]. Since the effect is larger for
small k this could be related to the observed power loss on
large scales of the spectrum of the temperature anisotropies
in CMB [25]. The QGE which are not associated with the
emergence of time are intentionally neglected, but they
were previously calculated in a series of articles [11] (they
are nonleading in the Planck mass squared).
Our method is finally applied to the de Sitter case for

simplicity, and we found corrections proportional to k−3.
This is a recurrent feature of the QGE calculated in this
framework as the same k dependence has been found in
[11] and other papers. In contrast with the results found
in [11], the QGE are not proportional to the ratio
h2=MP

2 ≪ 1, however they still are small. Better estimates
of their magnitude and their overall sign must be derived
from the solution of the homogeneous WdWequation or, at
least, from an improved description of the bouncing phase
(and the matching between small and large a solutions). If
more accurate solutions were known, higher-order effects
(slow roll) could be added and a more realistic scenario
studied in more detail; we hope to return to this in the
future.
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