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The cosmological principle is one of the cornerstones in modern cosmology. It assumes that the universe
is homogeneous and isotropic on cosmic scales. Both the homogeneity and the isotropy of the universe
should be tested carefully. In the present work, we are interested in probing the possible preferred direction
in the distribution of type Ia supernovae (SNIa). To our best knowledge, two main methods have been used
in almost all of the relevant works in the literature, namely the hemisphere comparison (HC) method and
the dipole fitting (DF) method. However, the results from these two methods are not always approximately
coincident with each other. In this work, we test the cosmic anisotropy by using these two methods with the
joint light-curve analysis (JLA) and simulated SNIa data sets. In many cases, both methods work well, and
their results are consistent with each other. However, in the cases with two (or even more) preferred
directions, the DF method fails while the HC method still works well. This might shed new light on our
understanding of these two methods.
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I. INTRODUCTION

As is well known, the cosmological principle is one of
the cornerstones in modern cosmology [1,2]. It assumes
that the universe is homogeneous and isotropic on cosmic
scales. In fact, the cosmological principle has been
observed to be approximately valid across a very large
part of the universe (e.g., [3,4]). However, it is not born to
be true, and this assumption should be strictly tested by
using the cosmological observations. As its two main parts,
both the homogeneity and the isotropy of the universe
should be probed carefully.
In fact, the cosmological principle has not yet been well

proven on cosmic scales ≳1 Gpc [5]. On the other hand,
the local universe is obviously inhomogeneous and aniso-
tropic on small scales. In particular, the nearby sample has
been examined for evidence of a local “Hubble bubble” [6].
If the cosmological principle can be relaxed, it is possible to
explain the apparent cosmic acceleration discovered in
1998 [7,8], without invoking dark energy [9] or modified
gravity [10]. For instance, giving up the cosmic homo-
geneity, it is reasonable to imagine that we are living in a
locally underdense void. One of such models is the
well-known Lemaître-Tolman-Bondi (LTB) void model
[11–20]. In this model, the universe is spherically sym-
metric and radially inhomogeneous, and we are living in
a locally underdense void centered nearby our location.

The Hubble diagram inferred from lines of sight originating
at the center of the void might be misinterpreted to indicate
cosmic acceleration [13–20]. In fact, the LTB-like models
violating the cosmological principle have been extensively
considered in the literature nowadays.
In the literature, the cosmic homogeneity has been tested

by using, e.g., type Ia supernovae (SNIa) [16,18,21], cosmic
microwave background (CMB) [5,22–26], time drift of
cosmological redshifts [27,28], baryon acoustic oscillations
[29–31], integrated Sachs-Wolfe effect [32], galaxy surveys
[33], kinetic Sunyaev Zel’dovich effect [34–38], ages of old
high-redshift objects [20], observational HðzÞ data [19],
and growth of large-scale structure [16]. However, the debate
on the inhomogeneous universe has not been settled by now.
In contrast to the LTB-like models giving up the cosmic

homogeneity, there is another kind of models violating the
cosmological principle, in which the universe is not
isotropic. For example, the well-known Gödel solution
[39] of the Einstein field equations describes a homo-
geneous rotating universe. Although the Gödel universe
has some exotic features (see, e.g., [40]), it is indeed an
interesting idea that our universe is rotating around an axis.
In fact, this idea can be completely independent of the
Gödel universe. In addition, there are other kinds of
anisotropic models in the literature. For instance, most
of the well-known Bianchi type I–IX universes [41,42] are
anisotropic in general.
In fact, some hints of the cosmic anisotropy have been

claimed in the literature. For example, it is found that there
exists a preferred direction in the CMB temperature map
(known as the ‘axis of evil” in the literature) [43–45], the
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distribution of SNIa [46–56], gamma-ray bursts (GRBs)
[57–59], rotationally supported galaxies [60,61], quasars
and radio galaxies [62,63], and the quasar optical polari-
zation data [64,65]. In addition, using the absorption
systems in the spectra of distant quasars, it is claimed that
the fine structure “constant” α is not only time varying
[66,67] (see also, e.g., [68–70]) but also spatially varying
[71,72]. Precisely speaking, there is also a preferred
direction in the data of Δα=α. It is found in [48] that
the preferred direction inΔα=αmight be correlated with the
one in the distribution of SNIa. Up to date, the hints of the
cosmic anisotropy are still accumulating.
In the present work, we are interested in probing the

possible preferred direction in the distribution of SNIa
[46–54]. To our best knowledge, two main methods have
been used in almost all of the relevant works in the
literature (e.g., [46–54]), namely the hemisphere compari-
son (HC) method proposed in [46] and then improved by
[47] (see also, e.g., [49,51,52]), and the dipole fitting (DF)
method proposed in [48] (see also, e.g., [51–54,58,60,61]).
In the HC method, the data points are randomly divided
into many pairs of hemispheres according to their positions
in the sky, and then these pairs of hemispheres are
compared until the preferred direction with a maximum
anisotropy level is found. In the DF method, the data points
are directly fitted to a dipole (or dipole plus monopole in
some cases). We refer to the next sections for the details of
these two methods.
It is natural to expect that the preferred directions found

by these two methods are approximately coincident with
each other. Of course, in many cases the answer is “yes.”
However, it is not always “yes” unfortunately. For example,
the preferred direction in the Union2 SNIa data set found
by the DF method is approximately opposite to the one
found by the HC method [52]. On the other hand, a
preferred direction in the Union2.1 SNIa data set was found
by the DF method, but there is a null signal for the HC
method [51]. In addition, the DF method failed to find the
preferred direction in the joint light-curve analysis (JLA)
SNIa data set [53,54]. To our best knowledge, the HC
method has not been used to find the preferred direction in
the JLA SNIa data set up to now, and hence we do this in
the present work. In contrast to the failure of the DF method
[53,54], the HC method works well in the JLA SNIa data
set (see below). Therefore, it is of interest to compare these
two methods carefully, and we will do this by using several
simulated SNIa data sets. In fact, this might shed new light
on our understanding of these two methods.
The rest of this paper is organized as follows. In Sec. II,

we briefly review the key points of the HC method and the
DF method, and then we use them to find the possible
preferred direction in the JLA SNIa data set. In Sec. III, we
compare these two methods by using several simulated
SNIa data sets. In Sec. IV, some brief concluding remarks
are given.

II. THE PREFERRED DIRECTION IN THE JLA
SNIA DATA SET

As mentioned above, to our best knowledge, the HC
method has not been used to find the preferred direction in
the JLA data set consisting of 740 SNIa [73] up to now. We
will do this here. At first, we briefly review the key points
of the HC method following [47]. Its goal is to identify the
direction of the axis of maximal asymmetry for the
corresponding data set. Usually, the physical quantity to
be compared is the accelerating expansion rate, namely the
deceleration parameter q0 [1,2] (note that q0 < 0 means
that the universe is accelerating). As is well known, in the
spatially flat ΛCDM model, the deceleration parameter q0
is related to the fractional density of the pressureless matter
Ωm0 according to q0 ¼ −1þ 3Ωm0=2. So, it is convenient
to use Ωm0 instead [47], as we consider the spatially flat
ΛCDM model throughout this work. Following [47], the
main steps to implement the HC method are (i) Generate a
random direction r̂rnd indicated by ðl; bÞ with a uniform
probability distribution, where l ∈ ½0°; 360°Þ and b ∈
½−90°;þ90°� are the longitude and the latitude in the
galactic coordinate system, respectively. (ii) Split the data
set under consideration into two subsets according to the
sign of the inner product r̂rnd · r̂dat, where r̂dat is a unit
vector describing the direction of each SNIa in the data set.
Thus, one subset corresponds to the hemisphere in the
direction of the random vector (defined as “up”), while the
other subset corresponds to the opposite hemisphere
(defined as “down”). Noting that the position of each
SNIa in the data set is usually given by right ascension (ra)
and declination (dec) in degree (equatorial coordinate
system, J2000), one should convert r̂rnd and r̂dat to
Cartesian coordinates in this step. (iii) Find the best-fit
values on Ωm0 in each hemisphere (Ωm0;u and Ωm0;d), and
then obtain the so-called anisotropy level (AL) quantified
through the normalized difference [47],

AL≡ ΔΩm0

Ω̄m0

¼ 2 ·
Ωm0;u − Ωm0;d

Ωm0;u þΩm0;d
: ð1Þ

(iv) Repeat for N random directions r̂rnd and find the
maximum AL, as well as the corresponding direction of
maximum anisotropy. (v) Obtain the 1σ error σAL asso-
ciated with the maximum AL [47],

σAL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Ωmax

m0;u
þ σ2Ωmax

m0;d

q
Ωmax

m0;u þΩmax
m0;d

: ð2Þ

Note in [47] that σAL is the error due to the uncertainties of
the SNIa distance moduli propagated to the best-fit Ωm0

on each hemisphere and thus to AL. One can identify all
the test axes corresponding to an AL within 1σ from the
maximum AL, namely AL ¼ ALmax � σAL. These axes
cover an angular region corresponding to the 1σ range of
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the maximum anisotropy direction. We refer to [47] for
more details of the HC method.
Inmanyof the relevantworks following [47],Mathematica

was commonly used, and the number of random directions
in step (iv) are taken to be approximately equal to the number
of data points as suggested by [47]. In this work, we use
MATLAB instead, and the number of randomdirections in step
(iv) can be N ∼Oð104Þ or even more.
Here, we implement the HC method to the JLA data

set consisting of 740 SNIa [73]. We first repeat 10000
random directions ðl; bÞ across the whole sky and find that
the directions with the largest ALs concentrate around two
directions, namely ð300.6575°; 28.1678°Þ and ð23.4274°;
1.7021°Þ. Then, we densely repeat 5000–20000 random
directions from the Gaussian distributions with the means in
these two preliminary directions, respectively. Finally, we
find that the 1σ angular region with the maximum AL is in
the direction

ðl; bÞJLAHC;max¼ ð23.4893°þ21.6274°
−12.8318° ; 2.2524°

þ3.7961°
−22.6837°Þ; ð3Þ

and the correspondingmaximumAL (with 1σ uncertainty) is

ALJLA
max ¼ 0.3132� 0.1003: ð4Þ

In addition, we also find a submaximum AL in the direction
(with 1σ uncertainty)

ðl; bÞJLAHC;sub ¼ ð299.4711°þ46.1314°
−23.3855° ; 28.3912°

þ6.5202°
−17.0096°Þ; ð5Þ

and the corresponding submaximum AL (with 1σ uncer-
tainty) is

ALJLA
sub ¼ 0.2873� 0.1110: ð6Þ

In fact, it is not so rare to find two preferred directions (see,
e.g., [60]). Note that the second preferred direction given in

Eq. (5) is consistentwith the one ðl; bÞ ¼ ð309°; 18°Þ found in
[47] for the Union2 SNIa data set within the 1σ region.
We present the pseudocolor map of ALðl; bÞ in Fig. 1. It is
clear to see the twopreferred directionswithin the red regions.
Next, let us turn to the DF method. It has already been

known that the DF method failed to find the preferred
direction in the JLA SNIa data set [53,54]. But here we
would like to generalize the main results. At first, we
briefly review the key points of the DF method following,
e.g., [48,51–54,58,60,61]. If the observational quantity
under consideration is denoted by ξ, the corresponding
χ2 is given by χ2 ¼ ðξ⃗obs − ξ⃗thÞTC−1ðξ⃗obs − ξ⃗thÞ, whereC is
the covariance matrix of ξ⃗. When C is a diagonal matrix, it
reduces to χ2 ¼ Pðξobs;i − ξth;iÞ2=σ2ξ;i. If ξ is anisotropic,
one can consider a dipole plus monopole correction,
namely ξth ¼ ξ̄th½1þ Bþ ADðn̂ · p̂Þ�, where B and AD
are the monopole term and the dipole magnitude, respec-
tively; n̂ is the dipole direction; p̂ is the unit 3-vector
pointing toward the data point; ξ̄th is the value predicted by
the isotropic theoretical model. Usually, the monopole term
B is negligible, and one can only consider the dipole
modulation, namely

ξth ¼ ξ̄th½1þ ADðn̂ · p̂Þ�: ð7Þ
In terms of the galactic coordinates ðl; bÞ, the dipole
direction is given by

n̂ ¼ cosðbÞ cosðlÞîþ cosðbÞ sinðlÞĵþ sinðbÞk̂; ð8Þ
where î, ĵ, k̂ are the unit vectors along the axes of Cartesian
coordinates system. The position of the ith data point with
the galactic coordinates ðli; biÞ is given by

p̂i ¼ cosðbiÞ cosðliÞîþ cosðbiÞ sinðliÞĵþ sinðbiÞk̂: ð9Þ
One can find the best-fit dipole direction ðl; bÞ and the
dipole magnitude AD as well as the other model parameters

FIG. 1. The pseudocolor map of ALðl; bÞ obtained by using the HC method to the JLA SNIa data set. The two preferred directions
ð23.49°; 2.25°Þ and ð299.47°; 28.39°Þ are within the red regions. See the text for details.
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by minimizing the corresponding χ2. Note that in practice ξ
can be various observational quantities, e.g., the distance
modulus μ of SNIa or GRBs [48,51–54,58], the centripetal
acceleration g† in the rotationally supported disk galaxies
[60,61], and the varying fine structure “constant” α [48].
We refer to, e.g., [48,51–54,58,60,61] for more details of
the DF method.
In our case of the JLA SNIa data set, ξ in Eq. (7) is the

distance modulus μ of SNIa. The theoretical μ̄th predicted
by the isotropic flat ΛCDM model is given by [1,53,54,
73,74]

μ̄th ¼ 5log10
dL
Mpc

þ 25; ð10Þ

where the isotropic luminosity distance reads

dLðzcmb; zhelÞ ¼
cð1þ zhelÞ

H0

Z
zcmb

0

dz̃
Eðz̃Þ ; ð11Þ

in which zcmb and zhel are the CMB frame redshift
and heliocentric redshift, respectively; c is the speed of
light; H0 is the Hubble constant; and

EðzÞ ¼ ½Ωm0ð1þ zÞ3 þ ð1 −Ωm0Þ�1=2: ð12Þ

We can constrain the dipole direction ðl; bÞ and the dipole
magnitude AD as well as the flat ΛCDM model parameter
Ωm0 by fitting them to the JLA data set consisting of
740 SNIa [73]. Notice that the Markov chain Monte Carlo
(MCMC) code COSMOMC [75] is used, and the nuisance
parameters H0, α, β in the distance estimate can be
marginalized [73]. Following [53], we first require AD≥0
and fix Ωm0 ¼ 0.295, since the JLA SNIa data set has
constrained Ωm0 ¼ 0.295� 0.034 for the isotropic flat
ΛCDM model [73]. In Fig. 2, we show the marginalized
probability distributions of the dipole magnitude AD and the
dipole direction ðl; bÞ. It is easy to see that both the
distributions of l and b are quite flat. This implies that no

FIG. 2. The marginalized probability distributions of the dipole magnitude AD and the dipole direction ðl; bÞ, obtained by using the DF
method to the JLA SNIa data set with the priorsΩm0 ¼ 0.295 and AD ≥ 0. Note that AD is given in units of 10−3. See the text for details.

FIG. 3. The marginalized probability distributions of Ωm0, the dipole magnitude AD, and the dipole direction ðl; bÞ, obtained by using
the DF method to the JLA SNIa data set without any prior on Ωm0 and AD. See the text for details.
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preferred direction is found. In fact, the constraints with 1σ
uncertainties are l ¼ 185°þ175°

−185° , b ¼ 5.9°þ84.1°
−95.9° , and AD <

3.124 × 10−3. That is, the 1σ region of l and b is the whole
sky (0° ≤ l ≤ 360°, −90° ≤ b ≤ 90°), and indeed no pre-
ferred direction is found. Then, we would like to generalize
these results by removing the priorsΩm0 ¼ 0.295 and AD≥0
adopted in [53]; namely they are completely free now. In this
case, we show the marginalized probability distributions
of Ωm0, the dipole magnitude AD and the dipole direction
ðl; bÞ in Fig. 3. Both the distributions of l and b are still very
flat. The constraints with 1σ uncertainties are Ωm0 ¼
0.2952þ0.0339

−0.0386 , AD ¼ ð0.0þ3.17
−3.25Þ × 10−3, and l ¼ 179°þ181°

−179° ,
b ¼ 1.5°þ88.5°

−91.5° . Again, the 1σ region of l and b is the whole
sky (0° ≤ l ≤ 360°, −90° ≤ b ≤ 90°), and no preferred
direction is found by using the DF method.

III. COMPARING TWO METHODS BY USING
SIMULATED SNIA DATA SETS

As is shown in, e.g., [51–54] and the previous section,
the results from the HC method and the DF method are not
always approximately coincident with each other. If these
two methods find significantly different preferred direc-
tions, which one can be trusted? Both or none? If one
method finds a preferred direction (or more) and the other
method finds none, is the universe anisotropic or not? In
this section, we try to shed new light on these questions.
Our idea is to test these two methods by using several
simulated anisotropic SNIa data sets with a preset preferred
direction or more. Wewant to see which method can find out
the preset direction(s), and whether the found direction(s)
is/are close to the preset direction(s). In particular, we try to
understand the results in Sec. II, namely why the DF method
fails in the JLA SNIa data set while the HC method works.

A. Methodology to generate the simulated
SNIa data sets

For simplicity, and without loss of generality, we
generate the simulated SNIa data sets like the Union2 or
Union2.1 SNIa data sets; namely the simulated data tables
are given directly in terms of the distance modulus μ (with
1σ uncertainty) versus the redshift z of SNIa. Although the
JLA/SNLS-like simulated SNIa data sets are more com-
plicated mainly due to the extra parameters α, β in the
distance estimate, the results obtained in this work can be
easily extended to such kind of simulated data sets.
We take the future SNIa projects in the next decade as a

reference to generate the simulated SNIa data sets. In this
regard, the Wide Field Infrared Survey Telescope (WFIRST)
[76–79] to be launched in the mid-2020s might be a suitable
reference. According to, e.g., [79], about 3000–8000 SNIa at
z ≤ 1.7 will be available from WFIRST. So, in the present
work, we will generate ∼5000 simulated SNIa in each data
set. Of course, the redshift distribution of SNIa tilts to the
low-redshift range, and we can use a suitable F distribution

[80] [say, fðz; 50; 0.5Þ] to mimic the one expected in,
e.g., [79]. According to, e.g., [77], the expected aggregate
precision of these SNIa is 0.20% at z < 1 and 0.34% at
z > 1. Therefore, we assign the simulated 1σ relative
uncertainty of the distance modulus μ to be 0.20% at
z < 1 and 0.35% at z ≥ 1 reasonably.
We generate the distance modulus μ of the simulated

SNIa by taking a random number from a Gaussian
distribution with the mean determined by a flat ΛCDM
model,

μmean ¼ 5log10
dL
Mpc

þ 25;

dL ¼ cð1þ zÞ
H0

Z
z

0

dz̃
Eðz̃Þ ;

EðzÞ ¼ ½Ωm0ð1þ zÞ3 þ ð1 −Ωm0Þ�1=2; ð13Þ

where c is the speed of light, and the value of Ωm0 will
be specified in the particular generating description.
The Hubble constant H0 ¼ 70 km=s=Mpc is adopted as
a fiducial value, but it does not significantly affect other
parameters since H0 will be marginalized in fact.
The standard deviation of this Gaussian distribution is
equal to the 1σ uncertainty of μ mentioned above for the
particular SNIa, namely 0.20% of μmean at z < 1 and 0.35%
of μmean at z ≥ 1.
Finally, the galactic coordinates ðl; bÞ of the simulated

SNIa will be specified in the particular generating descrip-
tion (see below). In fact, the position of the simulated SNIa
and the value of Ωm0 mentioned above will play an
important role.

B. The cases of “pole-centralized” simulated
SNIa data sets

Let us generate the first simulated SNIa data set. Here,
we briefly describe the main steps:

(P1) Construct a Gaussian distribution with the mean at
the North Pole, and a suitable standard deviation
(say, 30°). Assign a random number taken from this
Gaussian distribution to a simulated SNIa as its
galactic latitude b, and assign a random number
uniformly taken from [0°,360°) to this simulated SNIa
as its galactic longitude l.

(P2) Assign a random redshift from a suitable F
distribution [say, fðz; 50; 0.5Þ] to this simulated SNIa
as described in Sec. III A.

(P3) Generate a distance modulus μ with 1σ uncertainty
for this simulated SNIa by using a flat ΛCDM model
with a relatively large Ωm0 (say, 0.45), as described in
Sec. III A.

(P4) Repeat steps (P1)–(P3) for 2500 times to generate
2500 simulated SNIa in the north hemisphere.
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(P5) Generate 2500 simulated SNIa in the south hemi-
sphere with a relatively small Ωm0 (say, 0.15), similar
to the previous steps.

(P6) By using a suitable coordinate transformation,
rotate the whole celestial sphere (and all the 5000
simulated SNIa adhered to it) to any preset direction
[say, ðl; bÞ ¼ ð120°; 45°Þ].

When steps (P1)–(P5) are finished, the sky looks like the
left panel of Fig. 4. Clearly, most of the simulated SNIa
centralize around the North and South Poles. So, we say
such kind of simulated SNIa data set is “pole-centralized”.
The degree of centralization is controlled by the specified
standard deviation in step (P1). We call the simulated SNIa
data set with the specified parameters in the above steps
as “PC1.”
We implement the HC method to the simulated SNIa

data set PC1, and repeat 15000 random directions ðl; bÞ
across the whole sky. We find the 1σ angular region with
the maximum AL is in the direction

ðl; bÞPC1HC ¼ ð138.4632°þ25.0076°
−49.2667° ; 48.5212°

þ19.7711°
−25.9446°Þ; ð14Þ

and the correspondingmaximumAL (with 1σ uncertainty) is

ALPC1
max ¼ 1.0150� 0.0080: ð15Þ

Obviously, the direction given in Eq. (14) found by the HC
method is approximately coincident with the preset direction
ð120°; 45°Þ, but the 1σ uncertainties are fairly large.
Next, we consider the DF method. Noting that

ADðn̂ · p̂Þ ¼ −ADð−n̂ · p̂Þ in Eq. (7), a positive AD with
a direction n̂ is equivalent to a negative AD with an opposite
direction −n̂. Actually, we have already implemented the
DF method for many times in various cases, and indeed
found two peaks in the results, but they are equivalent to
each other in fact. Therefore, in the rest of this work,

without loss of generality, we require AD ≥ 0 following,
e.g., [53].
We implement the DF method with the prior AD ≥ 0 to

the simulated SNIa data set PC1, and show the margin-
alized probability distributions of Ωm0, the dipole magni-
tude AD, and the dipole direction ðl; bÞ in Fig. 5. The
constraints with 1σ uncertainties are given by

Ωm0 ¼ 0.2771þ0.0031
−0.0031 ; AD ¼ ð8.4164þ0.6831

−0.8011Þ × 10−3;

ð16Þ

ðl; bÞPC1DF ¼ ð98.4333°þ14.6610°
−18.3059° ; 48.4438°

þ10.5712°
−10.5792°Þ: ð17Þ

Although the 1σ uncertainties are relatively small, the
direction given in Eq. (17) found by the DF method
deviates from the preset direction ð120°; 45°Þ beyond 1σ
[notice that l ¼ 120° is out of the 1σ region given in
Eq. (17)]. Nonetheless, it is still close to the preset direction
within the 2σ region.
Noting that in the simulated SNIa data set PC1, the preset

AL ∼ 2ð0.45 − 0.15Þ=ð0.45þ 0.15Þ ¼ 1 is fairly high, it is
natural to see what will happen in the case of lower preset
AL. So, we generate the second pole-centralized simulated
SNIa data set PC2, by replacing the values of Ωm0 in steps
(P3) and (P5) with 0.36 and 0.24, respectively. In this case,
the preset AL ∼ 2ð0.36 − 0.24Þ=ð0.36þ 0.24Þ ¼ 0.4.
We implement the HC method to the simulated SNIa

data set PC2, and repeat 15000 random directions ðl; bÞ
across the whole sky. We find the 1σ angular region with
the maximum AL is in the direction

ðl; bÞPC2HC ¼ ð116.9953°þ51.9794°
−44.0647° ; 44.7026°

þ34.6490°
−23.2385°Þ; ð18Þ

and the correspondingmaximumAL (with 1σ uncertainty) is

ALPC2
max ¼ 0.4057� 0.0076: ð19Þ

FIG. 4. Demonstration of the spatial distributions of the “pole-centralized” (left panel) and “equator-centralized” (right panel)
simulated SNIa, before they are rotated to a preset direction. The blue and red points are the SNIa generated with a relatively large and
small Ωm0, respectively. See the text for details.
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Again, the direction given in Eq. (18) found by the HC
method is approximately coincident with the preset direction
ð120°; 45°Þ, but the 1σ uncertainties are very large.
Then, we implement the DFmethodwith the priorAD ≥ 0

to the simulated SNIa data set PC2 and show the margin-
alized probability distributions ofΩm0, the dipole magnitude
AD, and the dipole direction ðl; bÞ in Fig. 6. The constraints
with 1σ uncertainties are

Ωm0¼0.2979þ0.0031
−0.0032 ; AD¼ð3.6069þ0.6765

−0.8190Þ×10−3; ð20Þ

ðl; bÞPC2DF ¼ ð116.0269°þ30.2393°
−47.2547° ; 49.3230°

þ30.5256°
−20.4601°Þ: ð21Þ

It is easy to see that the direction given in Eq. (21) found by
the DF method is approximately coincident with the preset
direction ð120°; 45°Þ, but the 1σ uncertainties are also very
large.
The common feature in the pole-centralized simulated

SNIa data sets is that the uncertainties of the preferred
direction are fairly large. One can understand this from the
left panel of Fig. 4. Since the simulated SNIa centralize

FIG. 5. The marginalized probability distributions of Ωm0, the dipole magnitude AD, and the dipole direction ðl; bÞ, obtained by using
the DF method to the simulated SNIa data set PC1. See the text for details.

FIG. 6. The same as in Fig. 5, except for the simulated SNIa data set PC2. See the text for details.
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around two poles, the SNIa located in the “up hemisphere”
and the “down hemisphere” are almost the same for, e.g.,
the directions A, B, and N in the left panel of Fig. 4,
although these directions are far from each other.
Therefore, the values of AL for the directions A, B, and
N are fairly close. As a natural consequence, the preferred
directions found by both the HC and the DF methods can
deviate from the preset direction, and the 1σ angular region
must be fairly large. Of course, the preset direction is still
within the 1σ (2σ) angular region found by the HC (DF)
method, while the results of these two methods are
consistent with each other at the 1σ level.

C. The cases of “equator-centralized” simulated
SNIa data sets

As is discussed above, the uncertainties of the preferred
direction in the pole-centralized simulated SNIa data sets
are commonly large. So, we consider another kind of
simulated SNIa data sets, which are generated in a
significantly different way. The main steps are

(E1) Construct a Gaussian distribution with the mean at
the equator (i.e., b ¼ 0), and a suitable standard
deviation (say, 10°). Assign a random number taken
from this Gaussian distribution to a simulated SNIa as
its galactic latitude b, and assign a random number
uniformly taken from ½0°; 360°Þ to this simulated SNIa
as its galactic longitude l.

(E2) Assign a random redshift from a suitable F
distribution [say, fðz; 50; 0.5Þ] to this simulated SNIa
as described in Sec. III A.

(E3) Generate a distance modulus μ with 1σ uncertainty
for this simulated SNIa by using a flat ΛCDM model
with a relatively large Ωm0 (say, 0.36) if its galactic
latitude b ≥ 0, or with a relatively small Ωm0 (say,
0.24) if its galactic latitude b < 0, as described in
Sec. III A.

(E4) Repeat steps (E1)–(E3) for 5000 times to generate
5000 simulated SNIa in the whole celestial sphere.
Notice that the galactic latitudes b >;¼; < 0 corre-
spond to the north hemisphere, the equator, the south
hemisphere, respectively.

(E5) By using a suitable coordinate transformation,
rotate the whole celestial sphere (and all the 5000
simulated SNIa adhered to it) to any preset direction
[say, ðl; bÞ ¼ ð120°; 45°Þ].

When steps (E1)–(E4) are finished, the sky looks like the
right panel of Fig. 4. Clearly, most of the simulated SNIa
centralize around the equator. Thus, we say such kind of
simulated SNIa data set is “equator-centralized”. The
degree of centralization is controlled by the specified
standard deviation in step (E1). We call the simulated
SNIa data set with the specified parameters in the above
steps as “EC1.”
In contrast to the pole-centralized simulated SNIa data

set, since the equator-centralized simulated SNIa centralize

around the equator, the SNIa located in the “up hemi-
sphere” and the “down hemisphere” for, e.g., the directions
A and B in the right panel of Fig. 4 are significantly
different from the ones for the direction N. Noting that the
blue and red points have different Ωm0, it is easy to imagine
that the directions significantly deviating from the direction
N will have a much lower AL than the one of the direction
N. As a natural consequence, the preferred direction found
by both the HC and the DF methods cannot significantly
deviate from the preset direction, and the 1σ angular region
must be very small.
We implement the HC method to the simulated SNIa

data set EC1, and first repeat 15000 random directions
ðl; bÞ across the whole sky. We find that the directions with
the largest ALs concentrate around ð121.4857°; 44.7463°Þ,
but the test random directions within the 1σ region are fairly
few. As is discussed above, this is not surprising due to the
very small 1σ angular region expected in the cases of
equator-centralized simulated SNIa data sets. Similar to
the case of the JLA SNIa data set, we densely repeat 5000
random directions from a Gaussian distribution with the
mean in this preliminary direction. Finally, we find the 1σ
angular region with the maximum AL is in the direction

ðl; bÞEC1HC ¼ ð120.2120°þ0.5732°
−1.2585° ; 44.8209°

þ0.9175°
−0.2926°Þ; ð22Þ

and the correspondingmaximumAL (with 1σ uncertainty) is

ALEC1
max ¼ 0.4138� 0.0076: ð23Þ

Obviously, the direction given in Eq. (22) found by the HC
method is excellently coincident with the preset direction
ð120°; 45°Þ, and the 1σ uncertainties are very small, as
expected above.
We implement the DF method with the prior AD ≥ 0 to

the simulated SNIa data set EC1 and show the marginalized
probability distributions of Ωm0, the dipole magnitude AD,
and the dipole direction ðl; bÞ in Fig. 7. The constraints
with 1σ uncertainties are given by

Ωm0 ¼ 0.3022þ0.0032
−0.0032 ; AD ¼ ð1.0991þ0.3668

−0.3250Þ × 10−2;

ð24Þ

ðl;bÞEC1DF ¼ð124.7959°þ5.0194°
−6.7571° ; 43.8235°þ4.6989°

−3.9193°Þ: ð25Þ

Again, the direction given in Eq. (25) found by the DF
method is approximately coincident with the preset direc-
tion ð120°; 45°Þ, and the 1σ uncertainties are fairly small, as
expected above.
It is easy to see that both the HC and the DF methods

work very well in the cases of equator-centralized simu-
lated SNIa data sets. They can find the preset direction
correctly, and their results are consistent with each other at
the 1σ level.
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D. The cases of simulated SNIa data sets with
double preset directions

It is suggestive to ponder on the JLA SNIa data set,
where the HC method works but the DF method fails. The
most noticeable feature of the JLA SNIa data set is that
there are two (or even more) preferred directions, as is
shown in Sec. II. Therefore, we turn to consider the
simulated SNIa data sets with double preset directions,
which can be easily generated by combining two simulated
SNIa data sets with different preset directions.
As is discussed in Sec. III C, the 1σ uncertainties of the

preferred direction are fairly small in the case of the equator-
centralized simulated SNIa data sets. So, we choose to
combine two equator-centralized simulated SNIa data sets,
namely 2500 simulated SNIa with the preset direction
ð300°; 45°Þ and another 2500 simulated SNIa with the preset
direction ð30°; 0°Þ. Note that the relevant parameters take
the same values specified in steps (E1)–(E3). We call the
resulting simulated SNIa data set “EC2d,” which consists of
5000 simulated SNIa.
We implement the HC method to the simulated SNIa

data set EC2d, and first repeat 15000 random directions
ðl; bÞ across the whole sky. We find that the directions
with the largest ALs concentrate around two directions,
i.e., ð298.9182°; 45.2628°Þ and ð30.2720°; 0.2312°Þ.
Again, we densely repeat 5000þ 5000 random directions
from the Gaussian distributions with the means in these
two preliminary directions, respectively. Finally, we find
the 1σ angular region with the maximum AL is in the
direction

ðl; bÞEC2dHC;max ¼ ð29.8852°þ0.4980°
−0.3569° ;−0.1492°

þ0.3091°
−0.2171°Þ; ð26Þ

and the corresponding maximum AL (with 1σ uncer-
tainty) is

ALEC2d
max ¼ 0.2206� 0.0078: ð27Þ

In addition, we also find a submaximum AL in the
direction (with 1σ uncertainty)

ðl; bÞEC2dHC;sub ¼ ð299.9246°þ1.0814°
−1.4783° ; 44.5268°

þ0.7310°
−1.3538°Þ; ð28Þ

and the corresponding submaximum AL (with 1σ uncer-
tainty) is

ALEC2d
sub ¼ 0.1538� 0.0077: ð29Þ

Clearly, these two preferred directions given in Eqs. (26)
and (28) found by the HC method are excellently
coincident with the two preset directions ð30°; 0°Þ and
ð300°; 45°Þ, while the 1σ uncertainties are very small, as
expected above. The HC method works very well.
We implement the DF method with the prior AD ≥ 0

to the simulated SNIa data set EC2d and show the
marginalized probability distributions of Ωm0, the dipole
magnitude AD, and the dipole direction ðl; bÞ in Fig. 8.
The constraints with 1σ uncertainties are given by

Ωm0 ¼ 0.2927þ0.0032
−0.0032 ; AD ¼ ð2.3638þ1.0354

−1.0541Þ × 10−3;

ð30Þ

ðl; bÞEC2dDF ¼ ð183.4706°þ176.5294°
−183.4706° ; 64.1008°

þ25.8992°
−4.1372° Þ:

ð31Þ

FIG. 7. The same as in Fig. 5, except for the simulated SNIa data set EC1. See the text for details.
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Obviously, the DF method cannot correctly find out any
one of the two preset directions (300°,45°) and (30°,0°),
while the 1σ uncertainties are very large. In fact, the 1σ
regions of l and b are 0° ≤ l ≤ 360° and 59.9636° ≤
b ≤ 90°, respectively. That is, it “finds” a very wide 1σ
angular region, which is not true in fact. The DF method
fails in this case.
Further, we consider a fairly different case, in which the

simulated SNIa are more centralized around the equator.
We generate another simulated SNIa data set EC3d, which
is the same as EC2d but the specified standard deviation in
step (E1) is replaced with 2°.
We implement the HC method to the simulated SNIa

data set EC3d, and first repeat 15000 random directions
ðl; bÞ across the whole sky. We find that the directions with
the largest ALs concentrate around two directions, i.e.,
ð299.5397°; 45.6902°Þ and ð30.7204°;−0.5147°Þ. Again,
we densely repeat 5000þ 5000 random directions from the
Gaussian distributions with the means in these two pre-
liminary directions, respectively. Finally, we find the 1σ
angular region with the maximum AL is in the direction

ðl; bÞEC3dHC;max ¼ ð30.1148°þ0.1339°
−0.3388° ;−0.1085°

þ0.1916°
−0.2465°Þ; ð32Þ

and the corresponding maximum AL (with 1σ uncertainty)
is

ALEC3d
max ¼ 0.2058� 0.0076: ð33Þ

In addition, we also find a submaximumAL in the direction
(with 1σ uncertainty)

ðl; bÞEC3dHC;sub ¼ ð299.9898°þ0.2998°
−0.1614° ; 44.9113°

þ0.3212°
−0.0486°Þ; ð34Þ

and the corresponding submaximum AL (with 1σ uncer-
tainty) is

ALEC3d
sub ¼ 0.1738� 0.0076: ð35Þ

In this case, these two preferred directions given in
Eqs. (32) and (34) found by the HC method are still
excellently coincident with the two preset directions
(30°,0°) and (300°,45°), while the 1σ uncertainties are very
small. The HC method still works very well.
We implement the DF method with the prior AD ≥ 0 to

the simulated SNIa data set EC3d, and show the margin-
alized probability distributions of Ωm0, the dipole magni-
tude AD, and the dipole direction ðl; bÞ in Fig. 9. The
constraints with 1σ uncertainties are given by

Ωm0 ¼ 0.2992þ0.0032
−0.0032 ; AD ¼ ð1.2781þ0.3608

−1.2707Þ × 10−3;

ð36Þ

ðl; bÞEC3dDF ¼ ð181.1659°þ100.9199°
−100.0070° ; 42.6214°

þ47.3786°
−7.9784° Þ: ð37Þ

Again, the DF method cannot correctly find out any one of
the two preset directions ð300°; 45°Þ and ð30°; 0°Þ, while the
1σ uncertainties are very large. In fact, the 1σ regions of l
and b are 81.1589° ≤ l ≤ 282.0858° and 34.6430° ≤
b ≤ 90°, respectively. That is, it “finds” a very wide but
wrong 1σ angular region. The DF method fails once more.
Clearly, the DF method cannot find any preset directions

in the above two cases. Thus, we conclude that the DF
method cannot properly work in the SNIa data sets with
two (or even more) preferred directions, while the HC
method still works well. In particular, this might help us to
understand the results in the JLA SNIa data set (see Sec. II).

FIG. 8. The same as in Fig. 5, except for the simulated SNIa data set EC2d. See the text for details.
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Briefly, as is found in Sec. II, there exist at least two preferred
directions ð23.49°; 2.25°Þ and ð299.47°; 28.39°Þ in the JLA
SNIa data set, and hence it is not surprising that the DF
method fails in this case. The JLA SNIa data set is indeed a
realistic example to show the shortcoming of the DFmethod.

IV. CONCLUDING REMARKS

The cosmological principle is one of the cornerstones in
modern cosmology [1,2]. It assumes that the universe is
homogeneous and isotropic on cosmic scales. Both the
homogeneity and the isotropy of the universe should be
tested carefully. In the present work, we are interested in
probing the possible preferred direction in the distribution
of SNIa. To our best knowledge, two main methods have
been used in almost all of the relevant works in the
literature, namely the HC method and the DF method.
However, the results from these two methods are not
always approximately coincident with each other. In this
work, we test the cosmic anisotropy by using these two
methods with the JLA and simulated SNIa data sets. In
many cases, both methods work well, and their results are
consistent with each other. However, in the cases with two
(or even more) preferred directions, the DF method fails
while the HC method still works well. This might shed new
light on our understanding of these two methods.
In Table I, we summarize the preferred directions ðl; bÞ

found in various observational data sets. We also plot them
in Fig. 10. Most of them (including the two preferred
directions of the JLA SNIa data set found in this work) are
located in a relatively small part (about a quarter) of the
north galactic hemisphere, as is shown by the red points in
Fig. 10. In some sense, they are in agreement with each

other. However, the three preferred directions found in the
SPARC Galaxies are significantly different from the others,
as is shown by the green points in Fig. 10. Note that these
preferred directions in the SPARC Galaxies are found by
using the centripetal acceleration g† [60,61]. This is differ-
ent from the others and might be responsible for the
difference. Nevertheless, we stress that the two preferred
directions of the JLA SNIa data set found in this work are
clearly in agreement with the other ten preferred directions.
Several remarks are in order. In this work, we only

consider the spatially flat ΛCDM model. In fact, one can

FIG. 9. The same as in Fig. 5, except for the simulated SNIa data set EC3d. See the text for details.

TABLE I. Preferred directions ðl; bÞ found in various observa-
tional data sets.

Data set Preferred direction ðl; bÞ Ref.

Union2 SNIa (HC) ð309°; 18°Þ [47]
Union2 SNIa (DF) ð309°;−15°Þ [48]
Union2.1 SNIa (DF) ð307°;−14°Þ [51]
CMB dipole ð264°; 48°Þ [81]
Velocity flows ð282°; 6°Þ [82]
Quasar alignment ð267°; 69°Þ [64]
GRBsþ Union2.1 SNIa
(DF)

ð309°;−8.6°Þ [58]

Δα=α ð330°;−13°Þ [71,72]
CMB quadrupole ð240°; 63°Þ [83,84]
CMB octopole ð308°; 63°Þ [84]
SPARC Galaxies
(HC max.)

ð175.5°;−6.5°Þ [60]

SPARC Galaxies
(HC submax.)

ð114.5°; 2.5°Þ [60]

SPARC Galaxies (DF) ð171°;−15°Þ [61]
JLA SNIa (HC max.) ð23.49°; 2.25°Þ This work
JLA SNIa (HC submax.) ð299.47°; 28.39°Þ This work
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generalize our discussions to other cosmological models,
such as wCDM, CPL models. Of course, one can also
consider model-independent parametrizations. It is reason-
able to expect that our results do not change significantly in
these generalized cases.
In the HC method, we have used Ωm0 (equivalent to the

accelerating expansion rate, namely the deceleration
parameter q0, in the spatially flat ΛCDM model) to define
AL, as in Eq. (1). In fact, one can instead define AL by
using other quantities characterizing the cosmic expansion,
e.g., the deceleration parameter q0 directly [49] and the
Hubble rate H0 [52].
Here, we have only considered the SNIa data sets. In

fact, one can extend our work to the data of other
observations, such as GRBs [57–59,85], rotationally sup-
ported galaxies [60,61], quasars and radio galaxies [62],
quasar optical polarization data [64,65], and the varying
fine structure “constant” α [48].
In this work, we have only considered two kinds of

simulated SNIa data sets, which are “pole-centralized” and
“equator-centralized”, respectively. In fact, one can further
consider other kinds of simulated SNIa data sets. The
distribution of simulated SNIa can be more general. On the
other hand, one can further consider the simulated SNIa
data sets with three or four preset directions to test both the
HC method and the DF method.
Here are further discussions on the failure of the DF

method in the cases with two (or even more) preferred
directions. Since the DFmethod onlymodels a single dipole,
this failure is not surprising in fact. It is of interest to test the
DFmethod and the HCmethod by using the simulated SNIa
data sets with multiple dipoles of different amplitudes (we
thank the anonymous referee A for pointing out this issue).
However, we admit that it is fairly difficult to generate such
kind of simulated SNIa data sets, and some smart ideas are
needed to this end. We leave it to future work. On the other

hand, the DF method might be improved by adding a
quadrupole term in Eq. (7), or by simply generalizing the
angular dependent function, e.g., replacing n̂ · p̂ with a
function of n̂ · p̂ (we thank the anonymous referee B for
pointing out this issue). In addition, although the monopole
term does not encode the information of anisotropy and is
indeed negligible in most of the relevant works, it is still of
interest to identify the corresponding effect in the context of
the DFmethod (we thank again the anonymous referee B for
pointing out this issue). Since both improvements will
remarkably extend the length of this paper, we hope to
consider these issues in future work.
Although we have shown that the HC method works

well while the DF method might fail in some complicated
cases, it does not mean that one should not continue to
use the DF method in the relevant works. Actually, the DF
method works well in most cases and the corresponding
results are approximately coincident with the ones of the
HC method. Most importantly, the DF method is more
efficient than the HC method; namely, it consumes less
computational power and time. In the HCmethod, in order
to find the preferred direction precisely, one needs to
significantly increase the number of the random directions
in searching the direction with the maximum AL. For
example, it took more than 1 week to calculate the ALs for
∼40000 random directions in the JLA SNIa data set (see
Sec. II) by using our computer. However, employing the
MCMC code COSMOMC [75] instead, the DFmethod only
took∼10 hours to obtain the satisfactory result by using the
same computer. The algorithm of the DF method makes it
more efficient than the HC method, and hence the DF
method is still a valuable tool in the relevant works.
Since they have been used extensively in the literature,

we consider that both the HC method and the DF method
need to be improved. Further corrections or even com-
pletely new methods are desirable. New ideas are welcome.

FIG. 10. Preferred directions ðl; bÞ found in various observational data sets (see Table I). Note that the three preferred directions in the
SPARC Galaxies are labeled by the green points, while the others are labeled by the red points. See the text and Table I for details.
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