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We conduct large scale numerical simulations of gravitational wave production at a first-order vacuum
phase transition. We find a power law for the gravitational wave power spectrum at high wave number
which falls off as k−1.5 rather than the k−1 produced by the envelope approximation. The peak of the power
spectrum is shifted to slightly lower wave numbers from that of the envelope approximation. The envelope
approximation reproduces our results for the peak power less well, agreeing only to within an order of
magnitude. After the bubbles finish colliding, the scalar field oscillates around the true vacuum. An
additional feature is produced in the UV of the gravitational wave power spectrum, and this continues to
grow linearly until the end of our simulation. The additional feature peaks at a length scale close to the
bubble wall thickness and is shown to have a negligible contribution to the energy in gravitational waves,
providing the scalar field mass is much smaller than the Planck mass.
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I. INTRODUCTION

The first direct detection of gravitational waves [1,2] has
brought in a new era of gravitational wave astronomy.
Future space based gravitational wave observatories such
as LISA [3] hold great promise for cosmology [4]. LISA’s
planned sensitivity band peaks at lower frequencies than
ground based detectors. It therefore will have much greater
sensitivity to gravitational waves originating from process
in the very early Universe. Cosmological first-order phase
transitions are one such process, and LISA’s sensitivity
window allows it to probe electroweak phase transitions in
many extensions of the Standard Model [5,6].
In a cosmological first-order phase transition, the

Universe changes from a metastable high energy (sym-
metric) phase to a stable lower energy (broken) phase. This
occurs through the quantum or thermal nucleation of
bubbles of the broken phase [7–9], separated from the
surrounding unbroken phase by a thin wall. These bubbles
then expand, collide and eventually coalesce. This process
generates shear stresses which in turn source gravitational
waves [10,11].
Early work focused on characterizing the signal from a

phase transition that occurs in vacuum [12]. In such a

transition, the bubble wall quickly accelerates to ultra-
relativistic velocities.
A model of such a scenario was developed, termed the

envelope approximation [13]. In this model, the shear
stresses are assumed to be concentrated in an infinitesi-
mally thin shell located at the bubble wall. Upon the
collision of the bubble walls, the shear stress is assumed to
dissipate, and so any regions where bubbles overlap are
ignored. The characteristic gravitational wave power spec-
trum from the envelope approximation is a broken power
law in wave number k, where the spectrum rises as k3 from
the low-wave-number (IR) direction and falls off as k−1 in
the high-wave-number (UV) direction. The peak of the
broken power law is associated with the length scale of the
average bubble separation R�.
Although the envelope approximation was originally

created for bubbles expanding in vacuum it was quickly
applied to thermal first-order phase transitions, in which the
scalar bubbles expand in a hot plasma [14–16]. In this case,
frictional effects from the plasma typically cause the bubble
wall to approach a terminal speed vw. which is not
generally ultrarelativistic. Then the majority of the energy
liberated from the phase transition is deposited into heat or
the bulk motion of the plasma, and the gravitational waves
sourced from the shear stress in the scalar field are
negligible. It was argued that, providing the shear stress
in the plasma is assumed to be in an infinitesimally thin
envelope at the bubble wall, the envelope approximation
can once again be applied [14]. Later modeling of bubble
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collisions introduced a thick fluid shell, and proposed that
the velocity field should be Gaussian [17].
Large scale three-dimensional hydrodynamical simula-

tions [18–20] have dramatically changed the picture. They
show that the shear stresses do not disappear with the
bubbles, and persist for long after the transition completes,
in the form of sound waves. The envelope approximation is
not a good description of total gravitational wave produc-
tion, and predicts incorrectly both the amplitude and shape
of the gravitational wave power spectrum. A better picture
of the postcollision phase is one of many overlapping
counterpropagating sound shells [21].
On the other hand, the envelope approximation does

correctly describe the sub-dominant contribution to the
power spectrum from the scalar field [22], and analytic
studies within the envelope approximation have
confirmed the broken power laws found from numerical
simulations [23]. The envelope approximation can also
accommodate the idea that fluid shells persist after colli-
sion [16,24].
It is therefore widely believed that the envelope approxi-

mation describes the gravitational power in cases where the
energy-momentum of the system is dominated by the scalar
field, where the system is close to its vacuum state. In this
paper, we investigate the quality of the envelope approxi-
mation with three-dimensional numerical simulations of a
first-order vacuum phase transition.
Classical lattice simulations of a vacuum phase transition

have been used to study the power spectrum produced from
bubble collisions before [12,25]. A one-dimensional sim-
ulation of the collision of two scalar field bubbles was
carried out in Ref. [12]. and used to motivate the envelope
approximation in Ref. [26].
In Ref. [25], it was claimed that the power spectrum

produced from collisions in three-dimensional simulations
with several bubbles was several orders of magnitude
smaller than that predicted by the envelope approximation.
Furthermore, after the bubbles had finished colliding there
appeared to be an additional phase of the transition in
which the scalar field continued to oscillate around the true
vacuum. During this oscillation phase the power spectrum
continued to grow and the peak of the spectrum shifted
towards a higher frequency.
Our numerical simulations adopt similar techniques.

However, we are able to perform simulations with many
more bubbles and higher wall velocities than Ref. [25].
The simulations solve the field equations for a scalar

field sourcing gravitational waves in the linear approxima-
tion. The transition is modeled by introducing bubbles of
the broken phase as initial conditions for the scalar field.
This is done in three different ways, modeling three
different histories of bubble nucleation. In simultaneous
nucleation, we introduce all bubbles at the very start of the
simulation. In exponential nucleation simulations, we
introduce the bubbles with an exponentially increasing

rate per unit volume. In constant nucleation, we introduce
the bubbles at a constant rate.
We show power spectra for both the scalar field itself and

also the resulting gravitational wave power spectrum for all
nucleation types. We find that as we increase the wall
velocity to ultrarelativistic speeds, the slope of the gravi-
tational wave power spectrum towards the UV becomes
steeper than k−1, and approaches k−1.5. The peak amplitude
and peak location are similar to those predicted by the
envelope approximation. We provide a fit for the power
spectrum generated from bubble collisions.
We also confirm the existence of a phase after the bubble

collisions have finished, during which the scalar field
oscillates around the true vacuum and continues to source
gravitational waves. This creates an additional bump in the
power spectrum that is associated with the mass scale of the
scalar field. This continues to grow linearly until very late
times, but we show that it has a negligible contribution to
the power spectrum in comparison that of bubble collisions,
providing that the mass of the scalar field is smaller than the
Planck mass.
In the following section, we recap the dynamics of the

scalar field during a vacuum phase transition. This includes
the physics of the scalar field during bubble nucleation,
expansion, and the eventual collision and oscillation phases
of the transition. In Sec. III, we describe how the scalar field
sources gravitational waves, and also describe the envelope
approximation. The numerical methods used to perform our
simulations are discussed in Sec. IV. Our results are split
into two parts; in Sec. V, we present the behavior of the
scalar field within our simulations, and in Sec. VI, we
analyze the gravitational wave power spectra from our
simulations and compare them to the envelope approxi-
mation. Our conclusions are listed in Sec. VII.

II. DYNAMICS OF VACUUM TRANSITIONS

A. Scalar field dynamics

In a first-order vacuum transition, bubbles of a new phase
of a scalar field nucleate and then expand at ultrarelativistic
speeds. At the interface between the two phases a bubble
wall forms. In this region, the scalar field varies smoothly
between the two vacuum expectation values. Upon the
collision and subsequently merger of the bubbles the shear
stress of the system will source gravitational waves. The
shear stress in a vacuum transition is predominantly due to
gradients in the scalar field ϕ.
In this work, we study transitions in which the duration

of the phase transition is much shorter than the Hubble time
H−1� when the transition takes place. For such transitions,
the expansion of the Universe can be neglected, and the
equation of motion for the scalar field is simply given by

□ϕ − V 0ðϕÞ ¼ 0; ð1Þ
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where VðϕÞ is the effective potential of the scalar field. This
is sufficient to investigate the envelope approximation, but
may not give accurate results for transitions in which the
Universe enters an inflationary phase before bubbles start
nucleating.
For these purposes it is sufficient to adopt a simple

quartic form for the effective potential,

VðϕÞ ¼ 1

2
M2ϕ2 þ 1

3
δϕ3 þ 1

4
λϕ4; ð2Þ

where the presence of a cubic term allows us to ensure the
transition is first order. The value of the scalar field in the
broken phase is then

ϕb ¼
−δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4M2λ

p

2λ
; ð3Þ

with mass

Mb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−δϕb − 2M2

q
; ð4Þ

The potential difference between the two minima is given
by

ρvac ¼
1

12λ
ðM4

b −M4Þ: ð5Þ

By varying the couplings M2, δ and λ we are able to
change the potential difference ρvac between the two
minima of our potential, and also the height of the potential
barrier.
The total energy density in the scalar field ρϕ can be split

into three components,

ρϕ ¼ ρK þ ρV þ ρD; ð6Þ

with the kinetic energy density,

ρK ¼ 1

2
_ϕ2; ð7Þ

the gradient energy density,

ρD ¼ 1

2
ð∇ϕÞ2; ð8Þ

and the potential energy density,

ρV ¼ VðϕÞ − VðϕbÞ: ð9Þ

B. Bubble nucleation

In a first-order vacuum transition, bubbles nucleate by
quantum tunneling through a potential barrier. This means
that they nucleate as critical bubbles, O(4)-symmetric

solutions to the Euclidean field equations [7,8]. When
the radius of the critical bubble is much larger than the
thickness of the bubble wall the bubble is said to be in the
thin wall limit. This occurs when ρvac is much smaller than
the height of the potential barrier, or equivalently when the
minima are close to degenerate. For our potential the
minima are degenerate for

δ ¼ −
3ffiffiffi
2

p M
ffiffiffi
λ

p
: ð10Þ

When ρvac is much larger than the height of the potential
barrier, the critical bubble is of a similar size to the radius.
We leave the study of such bubbles to a later work.
The thin wall solution can be calculated analytically as a

function of Euclidean radius, rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ τ2

p
, where r is the

spatial radius, and τ the Euclidean time. In the thin wall
limit, the scalar field profile of the critical bubble is
given by

ϕcðrÞ ¼
ϕb

2

�
1 − tanh

�
r − Rtw

c

ltw0

��
; ð11Þ

where l0 is thickness of the bubble wall, which is given in
the thin wall limit by

ltw0 ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðϕbÞ

p ; ð12Þ

and Rtw
c is the radius of the critical bubble. The radius of the

critical bubble can be estimated by extremizing the
approximate expression for the Euclidean action

S4 ¼ 2π2R3σtw −
π2

2
R4ρvac; ð13Þ

where

σtw ¼ M3

3λ
; ð14Þ

is interpreted as the surface tension of the bubble. Then the
critical radius is

Rtw
c ¼ 3σtw

ρvac
: ð15Þ

At the point of time symmetry τ ¼ 0, the energy liberated
from the vacuum is equal to the energy in the wall.
Furthermore, the outward force on the bubble wall due
to the pressure difference ρvac is equal and opposite to that
caused by the surface tension.
Once the bubble has nucleated, the solution is found by

the analytic continuation to Minkowski space, so that
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ϕðr; tÞ ¼
�
ϕcð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p
Þ; r > t;

ϕb; r ≤ t:
ð16Þ

The probability of nucleating a bubble per unit volume
per unit time pðtÞ is given by [8]

pðtÞ ¼ pn expð−S4Þ: ð17Þ
Very often the Euclidean action decreases slowly in time
due to a change in temperature or a background field. Then
we may write

pðtÞ ¼ pf exp½βðt − tfÞ�; ð18Þ

where β ¼ −d lnpðtÞ=dtjtf and tf is the time at which the
fraction of the Universe in the symmetric phase is hðtfÞ ¼
1=e [27]. The bubble number density can be shown to be

nb ¼
1

8π

β3

v3w
; ð19Þ

where in the vacuum case vw is very close to unity. We will
refer to this case as exponential nucleation.
It is also possible that S4ðtÞ has a minimum which is

reached at time t0 before a transition completes. Then the
probability of nucleating a bubble per unit volume could be
approximated by

pðtÞ ¼ p0 exp

�
−
1

2
β22ðt − t0Þ2

�
; ð20Þ

where β2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
S00ðt0Þ

p
. Nucleation is then concentrated

around time t0 [28]. The bubble density is

nb ¼
ffiffiffiffiffiffi
2π

p p0

β2
: ð21Þ

We will refer to this case as simultaneous nucleation.
The last possibility we consider is if S4ðtÞ tends to a

constant (for a model with a constant nucleation rate see
Ref. [29]). We would then expect bubbles to nucleate at a
constant rate

pðtÞ ¼ pc; ð22Þ
for which

nb ¼
1

4

�
3

π

�
1=4

Γ
�
1

4

��
pc

vw

�
3=4

: ð23Þ

We will refer to this as constant nucleation.

C. Bubble growth

If we consider a thin wall bubble then we can obtain an
expression for the evolution of the bubble simply by
considering energy conservation. The energy in the static

bubble wall per unit area is simply σtw. Then if the bubble
wall is expanding at some velocity vw, the energy per unit
area is given by σtwγ where γ is the wall’s Lorentz factor.
The total energy of an expanding bubble with radius R is
then [7,8]

Ebub ¼ 4πR2σtwγ −
4

3
πR3ρvac; ð24Þ

where we can define R to be the point in the scalar field
profile such that ϕðRÞ ¼ ϕb=2. As we are considering
vacuum decay, we expect Ebub ¼ 0. We therefore obtain
that, for a bubble of radius R, the Lorentz factor of the
bubble wall is given by

γðRÞ ¼ Rρvac
3σtw

¼ R
Rtw
c
: ð25Þ

We expect Eq. (25) to apply outside the thin wall limit by
recalling that the solution of the classical field equations is
simply the analytic continuation of the O(4)-symmetric
bounce solution [7]. Then any point in the field profile of
the critical bubble we define to be the critical radius Rc will
expand out with a hyperboloid motion satisfying

R2ðtÞ − t2 ¼ R2
c ; ð26Þ

which is equivalent to Eq. (25).

D. Bubble collision and oscillation phase

For bubbles with thin walls, after collision part of the
overlap region rebounds and returns towards the false
vacuum [30,31]. In Fig. 1, we plot the variation during a
collision of the scalar field along the collision axis con-
necting two bubble centers. At the collision point it can be
seen that the scalar field oscillates between the true and
false vacuum. These large amplitude oscillations are the
source of scalar radiation moving at close to the speed of

FIG. 1. Values of the scalar field along the collision axis during
a two bubble collision where RcM ¼ 7.15. Here the x axis is the
collision axis which connects the two bubble centers. The y axis
is time since the nucleation of the bubbles. The bubbles are
separated by a distance D. This figure can be compared with
Fig. 1 of [30] and Fig. 7 of [31].
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light, and can also induce rapid production of light particles
through parametric resonance [32]. This rebounding and
oscillation phase is something that is not accounted for
within the envelope approximation. Away from the thin
wall limit, the scalar field in the overlap region is not able to
return to the false vacuum, and instead will just oscillate
around the true vacuum [31].
After this stage, the scalar field continues to oscillate

around the true vacuum with large amplitude oscillations.
In the absence of other interactions, scalar fields take a
substantial time to thermalize [33–35].

III. GRAVITATIONAL WAVES
FROM A PHASE TRANSITION

In order to calculate the gravitational wave power
spectrum, we need to find the transverse traceless (TT)
metric perturbations hTTij where

□hTTij ¼ 16πGTTT
ij ; ð27Þ

and TTT
ij is the transverse traceless projection of the energy-

momentum tensor,

Tμν ¼ ∂μϕ∂νϕ − ημν

�
1

2
ð∂ϕÞ2 þ VðϕÞ

�
; ð28Þ

where ημν is the Minkowski metric. The energy density in
the gravitational waves can be defined as

ρgwðx; tÞ ¼
1

32πG
_hTTij _hTTij : ð29Þ

Note that an average over many wavelengths and periods
may be needed in order to reduce fluctuations in this
quantity.
We introduce an auxiliary tensor uij which satisfies [36]

□uij ¼ 16πGð∂iϕÞð∂jϕÞ: ð30Þ

To obtain hTTij we use the projector Λij;lm on uij in
momentum space,

hTTij ðk; tÞ ¼ Λij;lmðkÞulmðk; tÞ; ð31Þ

where

Λij;lmðkÞ ¼ PimðkÞPjlðkÞ −
1

2
PijðkÞPlmðkÞ; ð32Þ

and

PijðkÞ ¼ δij − k̂ik̂j: ð33Þ

We then define the spectral density of the time derivative of
the metric perturbations P _h as

h _hTTij ðk; tÞ _hTTij ðk0; tÞi ¼ P _hðk; tÞð2πÞ3δðkþ k0Þ: ð34Þ

Therefore the power spectrum of gravitational wave energy
density is

dρgw
d lnðkÞ ¼

1

32πG
k3

2π2
P _hðk; tÞ; ð35Þ

and by dividing through by the critical energy density ρc we
obtain the power spectrum of the gravitational wave energy
density parameter

dΩgw

d lnðkÞ ¼
1

32πGρc

k3

2π2
P _hðk; tÞ: ð36Þ

A. Collision phase: Envelope approximation

In the envelope approximation [13], the bubble walls are
treated as infinitely thin, expanding with speed vw, and
containing all the vacuum energy released by the transition.
The overlap region of collided bubbles are ignored, and the
gravitational waves from shear stress “envelope” calcu-
lated. The resulting spectrum was re-computed with many
more bubbles in Ref. [15], and again in Ref. [16], for an
exponential nucleation rate in both cases.
The gravitational wave power spectrum is well approxi-

mated by a broken power law

dΩenv
gw

d lnðkÞ ¼ Ωenv
p

ðaþ bÞk̃bka
bk̃ðaþbÞ þ akðaþbÞ ; ð37Þ

with power law exponents a and b, peak amplitude Ωenv
p

and peak wave number k̃. The peak amplitude was found
to be

Ωenv
p ≃

0.44v3w
1þ 8.28v3w

�
H�
β

�
2

ðκϕΩvacÞ2; ð38Þ

where the Hubble rate at the time of the transition H�, the
vacuum energy density parameter Ωvac ¼ ρvac=ρc and the
bubble wall velocity vw. The peak frequency was estimated
to be

k̃=β ≃
1.96

1 − 0.051vw þ 0.88v2w
: ð39Þ

The efficiency factor κϕ measures the fraction of vacuum
energy that is converted to stress energy localized at the
bubble wall. We define it as

κϕ ¼ 2ρD
ρvac − ρV

: ð40Þ

For a vacuum phase transition κϕ ≃ 1.
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The exponent for the broken power law on the low
frequency side is expected to be a ¼ 3 due to causality
[37]. In Ref. [16], the power law exponents were found to
be a ¼ 2.9 and b ¼ 0.9 for vw ≃ 1 and a ¼ 2.95 and b ¼ 1
for vw ≪ 1. Furthermore, in Ref. [22], the envelope
approximation was compared to lattice simulations of a
scalar field with frictional effects chosen such that the
bubble walls asymptotes a constant speed vw ¼ 0.44. The
gravitational wave power spectrum generated by stress
energy in the scalar field was found to agree well with the
envelope approximation. The power law exponents for the
envelope approximation in this study were found to be
a ¼ 2.98� 0.02 and b ¼ 0.62� 0.05 [22].
There is also some analytical understanding of the power

spectrum produced under the envelope approximation. In
Ref. [23], it is shown that the two point correlator of the
energy-momentum tensor can be expressed as a one-
dimensional integral under the envelope approximation,
also producing a broken power law with exponents a ¼ 3
and b ¼ 1.
It should be noted that while typically in a thermal phase

transition friction effects from the plasma cause vw to
approach a constant, in a vacuum phase transition the
bubble wall accelerates until collision with vw → 1 and
γ → ∞. In this current work, we shall check whether the
formula is a good fit in the case where the bubble wall
continues to accelerate until collision, reaching ultrarela-
tivistic velocities.

B. Oscillation phase

Previous simulations of a vacuum first-order phase
transition have observed that after all the bubble collisions
have completed, the scalar field continues to oscillate, and
the production of gravitational radiation continues [25].
The contribution to the gravitational wave power spec-

trum from this oscillation phase was seen to dominate that
of the bubble collisions by more than an order of magni-
tude. The peak frequency moved towards the UV by an
order of magnitude during the oscillation phase.
Providing the oscillations in the scalar field are nonlinear

[38] we would expect them to be a continuous source of
gravitational waves, similar to acoustic waves in a thermal
phase transition [19]. Eventually Hubble friction would
damp out the oscillations.
A further goal of the current work is to investigate if we

also see the growth of the gravitational wave power
spectrum during an oscillation phase in our simulations.

IV. METHODS

To perform our study we perform a series of simulations
solving the partial differential equations (1) and (30) on a
three-dimensional lattice, using code built on the open
source C++ library LATfield2 [39]. To compute derivatives
we use a central finite difference method. For the Laplacian

we use the minimal 7-point stencil made up of a central
point and then an additional 2 points in each dimension. We
choose our timestep Δt and lattice spacing Δx such that
Δt ¼ 0.2Δx. We advance in timestep by using the leapfrog
algorithm.
Our simulations are on a cubic grid with total volume

V ¼ ðLΔxÞ3, and periodic boundary conditions. We begin
each simulation by nucleating at least one bubble at the
simulation time t ¼ 0. The total number of bubbles
nucleated by the end of the simulation is given by Nb.
We use a shooting method to find the critical profile for

specific values of M2, δ and λ. We choose three profiles to
simulate and give the parameters for these in Table I. The
resulting field profiles are modeled well by Eq. (11) with
values for Rc and l0 given in the first two columns. Note
that they differ from the thin wall values due to the finite
size of the bubble.
The value of Rc is given by the location in the numerical

profile at which

ϕcðRcÞ ¼
ϕb

2
: ð41Þ

Similarly, l0 ¼ rþ − r− where

ϕcðr�Þ ¼
ϕb

2
ð1 − tanh ð�1=2ÞÞ: ð42Þ

We nucleate bubbles with a critical profile inside our
numerical simulation. Before nucleating the Nth bubble,
we check that, for all n < N, the distance between the Nth
and nth bubble centers rn obeys the following relation

rsepn > Rc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
c þ ðt − tnÞ2

q
; ð43Þ

where tn is the time at which the nth bubble nucleated.
Providing this is satisfied for all bubbles, we nucleate a
bubble by modifying ϕ → ϕ0, where

ϕ0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2ðrÞ þ ϕ2

cðrÞ
q

: ð44Þ

We evolve the auxiliary metric tensor uij in real space at
every timestep. At routine intervals we perform a Fourier

TABLE I. Critical radii Rc and wall thicknesses l0 that are used
in our simulations. For each of these we give the potential
parameters δ and λ used to derive them, the broken phase value of
the scalar field ϕb and the vacuum energy density ρvac. We also
list the surface tension σtw, wall thickness ltw0 and critical radius
Rtw
c as derived from the thin wall approximation.

RcM l0M δ=M λ ϕb=M ρvac=M4 σtw=M3 ltw0 M Rtw
c M

7.15 1.71 −1.632 0.5 2.45 0.495 2=3 1.42 4.04
14.3 1.83 −1.56 0.5 2.22 0.189 2=3 1.65 10.6
28.8 1.91 −1.528 0.5 2.11 0.0809 2=3 1.81 24.7
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transform of _uij, and then project the result according to
Eq. (31) to find _hTTij ðk; tÞ. From this we then calculate the
gravitational wave power spectrum. It should be noted that
in our unitsG ¼ 1, though in general we plot quantities that
do not depend on G.
We can nucleate bubbles simultaneously at the start of

the simulation, or indeed with a nucleation rate throughout
its duration. In order to compare with earlier studies using
the envelope approximation, we nucleate bubbles with an
exponentially increasing nucleation rate, using the algo-
rithm given in Ref. [27]. Then the probability of nucleating
a bubble per unit volume and time is given by Eq. (18). The
parameters of the simultaneous nucleation runs are listed in
Table II, and those of the exponential nucleation runs in
Table III. We also perform two constant nucleation runs to
check that this type of nucleation is consistent with our
other results. The parameters of the constant nucleation
runs are given in Table IV.
We also wish to study the gravitational wave power

spectrum produced after the bubble collision phase is
completed. In order to do this, we can simply turn on
the evolution of uij once the bubbles have finished

colliding. We employ this approach for a series of simulta-
neous nucleation simulations listed in Table V.
There are a number of length scales within our simu-

lation. The largest physical length scale within our system
is the average separation between bubbles R�. This is
simply given by

R� ¼
�
V
Nb

�
1=3

: ð45Þ

Much smaller than this length scale is the radius of the
critical bubble Rc, and the critical bubble wall width l0. The
critical bubble wall width is associated with the scalar field
mass in the broken phase. Smaller still is the length scale of
the Lorentz contracted bubble walls. We define γ� ¼
R�=2Rc which is the expected Lorentz factor for a bubble
with diameter R�, and then define l� ¼ l0=γ� as the width of
the Lorentz contracted bubble wall with a diameter of R�. It
is crucial that we have a good resolution of the bubble walls
up until they collide, and as such we need our lattice
spacing Δx ≪ l�. Note that by obtaining different values of
Rc we can vary R� while keeping γ� the same.
In most vacuum phase transitions we expect bubbles to

expand to many times the size of the critical bubble, and
therefore up to very high Lorentz factors. We also would
like to have many bubbles within our simulation box to
obtain an accurate ensemble. Hence, we need sufficiently
large lattices to separate the scales

Δx ≪ l� ≪ l0 ≲ Rc ≪ R� ≪ LΔx: ð46Þ

It is not possible to perform a simulation in which we
achieve a realistic value for γ� and a correct separation
of scales. Instead, we perform multiple simulations with

TABLE II. Parameters of the simultaneous nucleation simu-
lations used within this paper. Listed here for each run is the
critical radius Rc, typical Lorentz factor at collision γ�, average
bubble seperation R�, number of bubbles Nb, number of lattice
points L3, lattice spacing Δx, and effective γ� as found on the
lattice γlat� . Not given here are simulation runs where the metric
perturbations are turned on after the bubbles have finished
colliding, see Table V.

RcM γ� R�M Nb LΔxM L ΔxM γlat�
7.15 1.97 28.2 8 56.32 128 0.44 1.85
7.15 1.97 28.2 64 112.64 256 0.44 1.85
7.15 1.97 28.2 512 225.28 512 0.44 1.85
7.15 1.97 28.2 4096 450.56 1024 0.44 1.85
7.15 3.94 56.3 8 112.64 512 0.22 3.37
7.15 3.94 56.3 64 225.28 1024 0.22 3.37
7.15 3.94 56.3 512 450.56 2048 0.22 3.37
7.15 3.94 56.3 4096 901.12 4096 0.22 3.37
7.15 7.88 113. 8 225.28 2048 0.11 5.65
14.3 1.97 56.3 512 450.56 1024 0.44 1.87
28.8 1.96 113. 512 901.12 2048 0.44 1.89

TABLE III. Parameters of the exponential nucleation simula-
tions used within this paper.

RcM γ� β=M R�M Nb LΔxM L ΔxM γlat�
7.15 1.97 0.180 28.2 8 56.32 128 0.44 1.85
7.15 1.92 0.180 27.5 69 112.64 256 0.44 1.81
7.15 1.96 0.180 28.0 522 225.28 512 0.44 1.84
7.15 3.94 0.0625 56.3 8 112.64 512 0.22 3.37
7.15 4.09 0.0625 58.5 57 225.28 1024 0.22 3.55
7.15 7.57 0.0290 108. 9 225.28 2048 0.11 5.58

TABLE IV. Parameters of the constant nucleation simulations
used within this paper.

RcM γ� pc=M4 R�M Nb LΔxM L ΔxM γlat�
7.15 3.94 1.50 × 10−7 56.3 64 225.28 1024 0.22 3.37
7.15 4.09 1.50 × 10−7 56.3 510 450.56 2048 0.22 3.37

TABLE V. Parameters of the simultaneous nucleation simu-
lations where the metric perturbations are turned on at t=R� ¼ 2.0
at which point most of the bubbles have finished colliding. This is
in order to see the shape of the power spectrum due to scalar field
radiation during the oscillation phase.

RcM γ� R�M Nb LΔxM L ΔxM γlat�
7.15 3.94 56.3 64 225.28 1024 0.44 3.37
14.3 1.97 56.3 512 450.56 1024 0.44 1.87
14.3 3.94 113. 8 225.28 1024 0.22 3.34
28.8 1.96 113. 64 450.56 1024 0.44 1.89
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increasing values of γ� to attempt to identify a trend
as γ� → ∞.
For simulations with a given nucleation rate, we typically

expect the first bubble nucleated to grow to a larger size
than bubbles nucleated later, and so the wall of the first
bubble when it collides will have γ greater than γ�. Its
bubble wall at collision will therefore be thinner than l�.
This effect is particularly pronounced for simulations with
an exponential nucleation rate where the first bubble
nucleated often grows to be many times larger than the
subsequent bubbles at collision time. For a simultaneous
nucleation run the diameters of the bubbles will be more
closely distributed around R�, and so the thinnest wall at
collision will be much closer to l�.

For an exponential nucleation rate simulation we need a
much finer lattice spacing in comparison to a simultaneous
nucleation simulation with the same l�. In practice, reduc-
ing the lattice spacing is too expensive and for large
volumes we become unable to trust our results due to
bad energy conservation.

V. RESULTS: SCALAR FIELD

As described in the previous section, the scalar field
evolution can roughly be split into three stages, expansion,
collision, and oscillation. Slices through a simultaneous
nucleation simulation volume are shown in Fig. 2. During
collision, we see many regions in which the scalar field is

(a) (b)

(c) (d)

FIG. 2. Slices through a simultaneous nucleation simulation with parameters RcM ¼ 7.15, Nb ¼ 64 and R�M ¼ 56.32 showing the
expansion (a), collision (b), and oscillatory (c and d) phase of the scalar field. The scalar field value is shown in blue, and the
gravitational wave energy density is shown in red. Note that the range of the colorbar for the gravitational wave energy density changes
for each plot. During the oscillatory phase the gravitational wave energy density becomes very uniform and the “hotspots” are deviations
on the sub percent level. The full set of parameters for this run is shown in Table II. A movie based on this simulation is included in the
supplemental material [[40]].
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rebounding into the symmetric phase as described in
Sec. II D. During the oscillation phase the scalar field
becomes more homogeneous on large scales while the
scalar field continues to oscillate on small wavelengths.
This persists as long as the simulations run, for times that
are many multiples of R�.
In order to test for lattice effects, we study single

bubbles, whose Lorentz factors should be related to their
radius through Eq. (25). We find the volume by counting
the number of lattice sites with ϕ > ϕb, and then from this
we are able to deduce the bubble radius R and the Lorentz
factor of the wall γ.
We plot γ against R in Fig. 3. The lattice effects are easy

to see, as γ is highly sensitive to small changes in velocity
when vw → 1. The bubble wall is stopped from contracting
beyond a width which is representable on the lattice, and
the bubble wall is unable to increase its velocity. The
energy that is lost is transferred to small wavelength
oscillations that follow behind the bubble wall. This effect
has been seen previously in accelerating kinks on a
lattice [41,42].
If the deviation of γ from its theoretical value becomes

sufficiently large then this can be associated with loss of
energy conservation.
We plot the energy densities over time for a simultaneous

nucleation phase transition in Fig. 4. As the bubbles expand
the potential energy drops steeply and the kinetic and
gradient energies increase. Initially, the gradient energy and
kinetic energy are roughly equal but when the bubbles
begin to collide the kinetic energy becomes larger than the
gradient energy. Shortly after the phase transition enters the
oscillation stage, with ρV ≠ 0.
The energy conservation for a series of simulations with

LΔx ¼ 225.28 is given in Fig. 5. We can see that energy
conservation is substantially better in the simultaneous

nucleations in comparison to the exponential nucleation
runs. This is what we expected due to the biggest bubble/
thinnest wall effect mention in Sec. IV. These are the largest
volume simulation runs for exponential nucleation, and so
have the worst energy violation of all simulations per-
formed. Even in the worst case, energy conservation
violation is still kept to ≲5%.
To monitor energy conservation in our multibubble

simulations, we define a new parameter γlat� which is the
numeric value found for γ on the lattice when the bubble
radius is R ¼ R�. This new parameter is listed for all
simulation runs in their respective tables.
The power spectrum of the scalar field Pϕ can inform us

about the length scales of the shear stresses sourcing
gravitational waves. We plot Pϕ during the expansion,
collision and oscillation phases for both a simultaneous and
exponential nucleation run in Fig. 6. During expansion and
collision Pϕ is peaked around R�. During the oscillation

FIG. 3. The Lorentz factor γ of the bubble wall for different
values lattice spacings plotted against the radius of the bubble in
units of the critical radius. This is for a bubble with RcM ¼ 7.15.
The dashed black line shows γ ¼ R=Rc.

FIG. 4. Energy densities in the scalar field over time for a
simultaneous nucleation run with RcM ¼ 7.15, R�M ¼ 56.3 and
Nb ¼ 4096. The full set of parameters for this run is shown in
Table II.

FIG. 5. Energy conservation for several simulations of the same
physical volume. Runs with exponential nucleation are plotted
with dashed lines, and simultaneous nucleation runs are shown
with solid lines. See Tables II and III for the full set of parameters
of each run.
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phase Pϕ shifts so that its maximum is at a higher
wavelength, closer to the scale associated with l0. This
can be understood as the structure of bubbles disappearing
and being replaced with oscillating features around the
mass scale of the scalar field.
The main differences in Pϕ between the simultaneous

and exponential nucleation runs are during the expansion
and collision phases. Identical bubbles are all spawned at
the start of the simultaneous nucleation run, and soPϕ has a
larger magnitude at t=R� ¼ 0.0, and shows the character-
istic “ringing” of the single-bubble power spectrum. These
bubbles then expand in a uniform way, their geometries
differentiating from each other only upon collision with
another bubble. Comparatively, as more bubbles are
spawned during the exponential nucleation run Pϕ

becomes smoother on large scales and noisier on small

scales as bubbles of varying sizes appear. The collision
phase also lasts longer, and the distribution of bubbles is
not as homogeneous as in a simultaneous nucleation run.
If we plot the late time scalar field power spectrum

together on the same graph we can clearly see that during
the oscillation phase the simultaneous and exponential
nucleation runs settle into similar states. We do this for
several values of γ� in Fig. 7. In all cases, the scalar power
spectra settle into similar states apart from lattice effects in
the UV.

VI. RESULTS: GRAVITATIONAL WAVES

A. Simultaneous nucleation

In Fig. 2, we also show in shades of red the gravitational
wave energy density ρgwðx; tÞ sourced by the scalar field.
To obtain ρgw in real space we first perform the Fourier
transform of _uij, then project this to obtain _hTTij in k-space.
Finally we perform the inverse Fourier transform to find
_hTTij in real space. From this we then calculate ρgwðx; tÞ
using Eq. (29).
We can clearly see from Fig. 2 that during the collision

phase hotspots in ρgw are located in regions where bubbles
are colliding. These are the locations where the spherical
symmetry of the expanding bubbles is broken. During the
oscillation phase the gravitational wave energy density
becomes largely homogeneous with fluctuations on the
percent level, though gravitational waves continue to be
sourced.
In Fig. 8, we plot the gravitational wave power spectrum

at several times over the duration of a simultaneous
nucleation simulation with γ� ≃ 4. As the bubbles begin
to collide we begin to see a peak in the spectrum emerging
near k ¼ 2π=R�, with a power law fall-off towards the UV.
For this simulation we do not have a sufficient separation

(a) (b)

FIG. 6. Scalar power spectra for simultaneous (left) and exponential (right) nucleation runs. Both simulations have RcM ¼ 7.15. The
left plot has Nb ¼ 512 and γ� ¼ 1.97, while the right plot has Nb ¼ 522 and γ� ¼ 1.96. The full set of parameters of each run can be
extracted from Tables II and III. The initial configuration of the scalar field is seen at t=R� ¼ 0. The bubble expansion phase is seen for
t=R� ¼ 0.47. The spectrum during bubble collision is seen at t=R� ¼ 1.0. The late time power spectrum after bubbles have collided is
then shown at t=R� ¼ 4.0 and t=R� ¼ 8.0. The vertical black dotted line denotes k ¼ 2π=R�.

FIG. 7. Comparison of the late time scalar power spectrum at
t=R� ¼ 8.0 for both simultaneous (solid lines) and exponential
(dashed lines) nucleation runs. All runs use bubbles with
RcM ¼ 7.15. See Tables II and III for the full set of parameters
of each run.
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between R� and LΔx to estimate the power law towards the
IR. As the collision phase completes this peak and the
power law towards the IR persists, but a second peak
associated with a much smaller length scale continues to
grow. This second peak is due to gravitational waves
sourced from oscillations in the scalar field with wave-
lengths close to the inverse mass of the scalar field.
In the same figure, we also plot the results of a numerical

calculation in the envelope approximation, as detailed in
[22], using the same bubble nucleation locations. The peak
power in our simulation is closely reproduced by the
envelope calculation, although the envelope calculation
predicts that the peak is at higher frequency. The power law
towards the UV is somewhat steeper in the numerical
simulations than in the envelope calculation.
We can show that the frequency of peak power is

associated with the length scale of R�, whereas the bump
in the UV is associated with the length scale l0. In Fig. 9, we
plot the power spectra for three runs with different values of
Rc and R� but the same γ�. It can be seen that the power
peaks at kR� ≃ 3, with a secondary peak at kl0 ≃ 3.
In a realistic transition, the separation between R� and l0

will be many orders of magnitude, and we would expect the
UV peak will be greatly suppressed due to the fall-off of the
power spectrum with increasing k. We will estimate how
large it can grow below.
Note that the power spectrum fluctuates due to the

oscillations in the individual Fourier modes. In order to
minimize this effect, in some plots we average over power
spectra produced during an interval spanning several t=R�.
On these occasions the details are given in the caption of the
figure.
We show the runs with RcM ¼ 7.15 from Table II in

Fig. 10. By increasing Nb while keeping R� the same we
are able to see further into the IR for a given γ�. Apart from
this increasing, Nb does not have a significant effect on the

shape of the power spectrum, implying that Nb ¼ 8 is
sufficient to measure the slope of the power law towards the
UV. Increasing γ� does not change the location or ampli-
tude of the IR peak in respect to R�. While the slope of the
power spectrum towards the IR is in agreement with k−1 for
γ� ≃ 2, it appears steeper for γ� ≃ 4 and γ� ≃ 8. Between
γ� ≃ 4 and γ� ≃ 8 the slope appears consistent.

B. Exponential and constant nucleation

In Fig. 11, we show the evolution of the power spectra
for an exponential nucleation run with γ� ≃ 4. Similar to in
Fig. 8 we plot the results of a simulation using the envelope
approximation as detailed in [22] using the same bubble
nucleation locations and times.

FIG. 8. The gravitational wave power spectrum for the simul-
taneous nucleation run with RcM ¼ 7.15, Nb ¼ 64 and γ� ¼
3.94 listed in Table II. The vertical black dotted line marks where
k ¼ 2π=R�. The black data points are the results for running a
simulation with the envelope approximation with the same
bubble locations and nucleation times.

FIG. 9. Gravitational wave power spectrum for several
runs with different critical radius Rc and R�. For each simulation
the power spectra have been averaged over the interval
2.5 ≤ t=R� ≤ 8.0. All simulations shown have the same number
of bubbles Nb ¼ 512 and γ� ≃ 2, with the full set of parameters
listed in Table II. We also plot the length scale associated with R�
as the vertical black dotted line, and the corresponding length
scale for the initial wall width l0 for each simulation as colored
dashed lines.

FIG. 10. Gravitational wave power spectrum for all simulta-
neous bubble runs with RcM ¼ 7.15. The parameters for these
runs are given in Table II. For each simulation the power spectra
have been averaged over the interval 2.5 ≤ t=R� ≤ 8.0. The solid
black line shows a power law of k−1. We plot as a vertical black
dotted line the wave number k ¼ 2π=R�. See Table II for the full
set of parameters of each run.
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For the exponential nucleation run we see that the
envelope simulation gives an overestimate of peak ampli-
tude, but is still within an order of magnitude. From the full
scalar field simulation we obtain a similar peak amplitude
as in the simultaneous nucleation run shown in Fig. 8. This
indicates that the scaling of gravitational wave production
for our simulations is governed by R� rather than β. Once
again the peak location is shifted slightly into the IR in
comparison to the envelope simulation.
The power spectra for all exponential simulation runs are

shown in Fig. 12. For similar γ�, we see convergence to the
resulting slope of the power spectra for even small numbers
of bubbles, implying that even Nb ¼ 8 creates a satisfac-
tory ensemble.
All simulations seem to be consistent regarding the

location and height of the peak in the IR and there is even
agreement with the simultaneous nucleation runs. The

slope of the power spectrum towards the IR is steeper
than k−1 for γ� ≃ 4 and γ� ≃ 8, and appears consistent
between them.
The two constant nucleation runs listed in Table IV are

found to produce power spectra that are consistent with the
simultaneous and exponential nucleation runs. We plot the
power spectra for the constant nucleation runs along with
the other γ� ≃ 4 runs in Fig. 15.

C. Late time power spectrum

We are able to see the shape of the power spectrum
generated during the oscillation phase by setting uij ¼ 0
after the collision phase has completed. We chose a time
t=R� ¼ 2 to set uij ¼ 0. However for some simulations
there appears to have been regions in which bubbles were
still colliding at this time, and so a later time should have
been chosen. For these simulations there is an uptick in the
power spectrum in the IR, which can contribute signifi-
cantly to the energy density. As the IR bins consist of only a
few modes, there can be large oscillations in Ωgw.
The evolution of the power spectrum from the oscillation

phase is shown in Fig. 13. The spectrum consists of a bump
in the UV corresponding to the length scale of l0 and also a
plateau extending from the bump up to just before the
length scale of R� in the IR. A similar shape can perhaps be
discerned in Ref. [25], where the contribution to the total
power spectrum from the oscillation phase appears to
dominate. In the aforementioned study, the gravitational
power spectrum from collisions was estimated to be
between 2 and 3 orders of magnitude smaller than that
predicted by the envelope approximation. The reason for
this deficit is unclear. There was also a relatively small
scale separation between R� and l0, as γ� ranges between
γ� ≃ 2 and γ� ≃ 3. Together these may explain why the

FIG. 11. Gravitational wave power spectrum for the exponen-
tial nucleation run with RcM ¼ 7.15, Nb ¼ 57 and γ� ¼ 4.09
listed in Table II. The vertical black dotted line marks where
k ¼ 2π=R�. The black data points are the results for running a
simulation with the envelope approximation with the same
bubble locations and nucleation times.

FIG. 12. Gravitational wave power spectrum for all exponential
nucleation runs with RcM ¼ 7.15. The parameters for these runs
are given in Table III. For each simulation the power spectra have
been averaged over the interval 2.5 ≤ t=R� ≤ 8.0. The solid black
line shows a power law of k−1. Also plotted as a vertical black
dotted line is kR� ¼ 2π.

FIG. 13. Late time power spectrum from gravitational waves
generated from the oscillation stage. Metric perturbations are
only turned on after t=R� ¼ 2. This is for the run with
RcM ¼ 14.3, Nb ¼ 512 and γ� ¼ 3.94 listed in Table V, where
the full set of parameters of this run are given. The vertical black
dotted line designates where k ¼ 2π=R� and the dashed red line
shows where k ¼ 2π=l0.
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contribution from the oscillation phase dominated that of
bubble collisions.
We can see that the power spectrum continues to grow

during the oscillation phase. One might conclude that the
contribution from the oscillation phase would eventually
dominate that from the bubble collisions. We therefore plot
Ωgw for a set of simulations where the metric perturbations
are turned on after t=R� ¼ 2.0 in Fig. 14. We are able to
estimate the growth of Ωgw during the oscillation phase
from these simulations. We find that

dΩosc
gw

dt
∼ 10−1

ðH�l0ΩvacÞ2
R�

: ð47Þ

The largest amount of time that Ωosc
gw can grow before the

growth is cut off by expansion [19] is one Hubble timeH−1� .
From our earlier plots we can estimate the contribution to

Ωgw from the bubble collision phase is

Ωcoll
gw ∼ 10−3ðH�R�ΩvacÞ2: ð48Þ

Therefore the ratio between these two contributions is

Ωcoll
gw

Ωosc
gw

∼ 10−2ðR�H�Þ3
1

ðl0H�Þ2
; ð49Þ

∼10−3
H3�
nb

ðMbmPlÞ2
ρc

; ð50Þ

where mpl is the Planck mass. For a vacuum dominated
phase transition ρc ∼ ρvac < 1

12λM
4
b.

Ωcoll
gw

Ωosc
gw

≳ 10−1
H3�
nb

�
mPl

Mb

�
2

: ð51Þ

Providing that the mass scale of the phase transition is
sufficiently smaller than the Planck scale, the contribution
from the collision phase should dominate.

D. Fitting

In Fig. 15, we plot gravitational wave power spectra from
all simultaneous, exponential and constant nucleation runs
with γ� ≃ 4. We can see that they seem to be consistent,
indicating that nucleation rate makes little difference to the
power spectra as a function of kR�. We can therefore
provide a fit for the gravitational wave power spectrum
from collisions, applying to all nucleation histories.
The first two bins of the numerical power spectra contain

very few modes and are expected to be significantly
affected by finite size effects. To produce our fit we shall
use the largest simultaneous nucleation simulation for
γ� ≃ 4 with Nb ¼ 4096 as this provides us with the largest
dynamic range. This is the only simulation in which we can
resolve the peak location after removing the first two bins.
Even so, we do not have sufficient dynamic range to be

able to estimate the power law towards the IR. On causal
grounds, though, it is expected that the IR power goes as k3

[37]. Our peak is somewhat broader than previously seen in
the envelope approximation.
We find a fit of the following form

dΩfit
gw

d ln k
¼ Ωfit

p
ðaþ bÞck̃bka

ðbk̃ðaþbÞ=c þ akðaþbÞ=cÞc ; ð52Þ

where we fix a ¼ 3. Then we find that

Ωfit
p ¼ ð3.22� 0.04Þ × 10−3ðH�R�ΩvacÞ2; ð53Þ

k̃R� ¼ 3.20� 0.04; ð54Þ
b ¼ 1.51� 0.04; c ¼ 2.18� 0.15; ð55Þ

FIG. 14. Total Ωgw from gravitational waves generated after
t=R� ¼ 2 for a series of simulations with different Rc, Nb and γ�,
see Table V. The oscillations are due to ringing in the IR of the
power spectrum. The dashed black line is a fit for the rate of
increase ofΩgw, with a slope of dΩgw=dt ¼ 0.06ðH�l0ΩvacÞ2=R�.

FIG. 15. Scaled gravitational wave power spectrum for all
simulations with γ� ≃ 4. For each simulation the power spectra
have been averaged over the interval 2.5 ≤ t=R� ≤ 8.0. Simulta-
neous nucleation runs are plotted in red, exponential nucleation in
blue, and constant nucleation in green. From these simulation
runs we make a fit for the gravitational wave power spectrum
from bubble collisions given R�, which is shown as the black
solid line. The envelope approximation fit as given in [16] is
shown as the dashed black line, where we have used Eq. (56) to
convert between β and R�.
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with errors taken from the covariance matrix of the fit. We
plot our fit in Fig. 15.
We provide the fit in terms of the mean bubble separation

R�, which has a clear definition in all nucleation histories,
and is related to the nucleation probability through equa-
tions (21), (19) and (23), and the definition of R� ¼ n−1=3b .
For example, for exponential nucleation,

β ¼ ð8πÞ1=3vw
R�

: ð56Þ

Using Eq. (56) with vw ¼ 0.97 we find that

Ωfit
p

Ωenv
p

¼ 0.55; ð57Þ

and

k̃fit
k̃env

¼ 1.0: ð58Þ

We plot both our fit and also the fit from the envelope
approximation in Fig. 15.

VII. CONCLUSIONS

We have performed the largest scale lattice simulations
of a pure vacuum transition to date. In doing so, we have
been able to test the envelope approximation’s description
of the resulting gravitational wave power spectrum, at high
bubble wall Lorentz factors γ� and for many bubbles. We
have simulated three different bubble nucleation histories,
where bubbles are either nucleated simultaneously, with an
exponentially increasing nucleation rate, or with a con-
stant rate.
In our simulations, the peak gravitational wave power

has approximate agreement with the most recent envelope
approximation fit [16], to within a factor of two. The peak
frequency in the envelope approximation fit has very good
agreement with our results.
When the gravitational wave power is calculated using

the envelope approximation’s model of the actual bubbles
of our simulation, the peak location is shifted towards
slightly higher frequencies.
As we increase γ� beyond γ� ≃ 2 we find that the power

law on the high frequency side of the peak becomes
approximately k−1.5, steeper than the k−1 predicted by
the envelope approximation.1 The power law on the low

frequency side is consistent with the k3 predicted by
causality [37,43], but we do not have sufficient dynamic
range for an independent estimate. We provide a
3-parameter fit to our results Eq. (52).
In our simulations, the overlap regions where bubbles

have recently collided have extended regions in which the
scalar field has large amplitude oscillations around the true
vacuum, even returning to the false vacuum. These regions
are not accounted for in the envelope approximation, and
may be a source of its inaccuracy. Large amplitude non-
linear oscillations with wavelength of order the bubble wall
width l0 continue long after the bubbles finish colliding,
which is also not included in the envelope approximation.
These oscillations source gravitational waves which lead to
an additional bump in the UV of the power spectrum at a
frequency of order l−10 .
In the early Universe, the gravitational wave source will

eventually diminish due to thermalization and Hubble
expansion. We find that even if the bump continues to
grow for as long as a Hubble time,H−1� , the power spectrum
from the oscillation phase will be subdominant to that of
bubble collisions providing that the mass of the scalar field
is much less than the Planck mass.
In testing the envelope approximation and investigating

the oscillatory phase of the scalar field, we have neglected
the expansion of the Universe, and therefore the fit we
provide strictly applies only to transitions in which the
duration is much shorter than the Hubble time H−1� .
There is more work to do to study the case where the
Universe enters an inflationary phase before bubbles start
nucleating.
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1This steeper power law is closer to the k−1.8 reported for two-
bubble collisions [12,13], widely taken to be the envelope
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