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Given observations of the B-mode polarization power spectrum of the cosmic microwave background
(CMB), we can reconstruct power spectra of primordial tensor modes from the early Universe without
assuming their functional form such as a power-law spectrum. The shape of the reconstructed spectra can
then be used to probe the origin of tensor modes in a model-independent manner. We use the Fisher matrix
to calculate the covariance matrix of tensor power spectra reconstructed in bins. We find that the power
spectra are best reconstructed at wave numbers in the vicinity of k ≈ 6 × 10−4 and 5 × 10−3 Mpc−1, which
correspond to the “reionization bump” at l≲ 6 and “recombination bump” at l ≈ 80 of the CMB B-mode
power spectrum, respectively. The error bar between these two wave numbers is larger because of the lack
of the signal between the reionization and recombination bumps. The error bars increase sharply toward
smaller (larger) wave numbers because of the cosmic variance (CMB lensing and instrumental noise). To
demonstrate the utility of the reconstructed power spectra, we investigate whether we can distinguish
between various sources of tensor modes including those from the vacuum metric fluctuation and SU(2)
gauge fields during single-field slow-roll inflation, open inflation, and massive gravity inflation. The results
depend on the model parameters, but we find that future CMB experiments are sensitive to differences in
these models. We make our calculation tool available online.

DOI: 10.1103/PhysRevD.97.123511

I. INTRODUCTION

Primordial gravitational waves from the very early
Universe generate B-mode polarization in the cosmic
microwave background (CMB) [1,2]. Usually, we calculate
the angular power spectrum of B-mode polarization by
assuming a specific form (e.g., a power law) of the power
spectrum of gravitational waves (tensor perturbations) in
the early Universe and numerically evolving tensor per-
turbations forward with a linear Boltzmann code such as
CMBFAST

1 [3], CAMB
2 [4], and CLASS

3 [5].
It is also possible to reconstruct initial tensor power

spectra in bins of wave numbers from an observed CMB

B-mode power spectrum. This is possible when the transfer
function that relates the initial (primordial) tensor power to
that at late times depends only on the standard cosmologi-
cal parameters and not on the nature of initial tensor
perturbations. In this paper, we use inflation [6–11] as
an example.
Inflation can produce primordial tensor perturbations

from either the vacuum fluctuation in the metric [12] or
matter fields (see, e.g., Ref. [13] and references therein).
The vacuum metric fluctuation in single-field slow-roll
inflation models typically yields a nearly scale-invariant
tensor power spectrum [14], whereas the sourced tensor
modes can be strongly scale dependent [13]. In addition,
tensor perturbations from open inflation [15] and massive
gravity inflation (see, e.g., Ref. [16] and references therein
and also see Appendix A) can produce scale-dependent
tensor perturbations. It is always possible to test these

1https://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm.
2https://camb.info/.
3http://class-code.net/.
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models individually by assuming a functional form of the
initial tensor power spectrum, evolving it forward, and
comparing to the observed B-mode power spectrum;
however, reconstructing the tensor power spectrum from
the observed B-mode power spectrum allows us to directly
test various sources of the tensor perturbation. In addition,
as the reconstruction does not depend on the nature of
initial tensor perturbations, it may reveal unexpected
features in the initial tensor power spectrum in a model-
independent manner. In this paper, we demonstrate this
point using the Fisher matrix formalism.
The rest of the paper is organized as follows. In Sec. II,

we describe our methodology. In Sec. III, we obtain the
covariance matrix of the reconstructed tensor power spec-
trum and show how to distinguish between various models.
We conclude in Sec. IV.

II. METHODOLOGY

We parametrize the primordial tensor power spectrum by
N bins in logarithmic intervals,

PhðkÞ¼
�
Pfid

h ðkÞþδPi for ki−1≤k<ki with 1≤ i≤N;

Pfid
h ðkÞ for k<k0 and kN ≤k;

ð1Þ

where PhðkÞ ¼ ðk3=2π2ÞPhðkÞ is the dimensionless ampli-
tude of the tensor power spectrum, δPi’s are constants, and
kn ¼ αnk0 with a constant α controlling the logarithmic
interval. In this paper, we shall take a power-law spectrum
as the fiducial power spectrum Pfid

h ðkÞ,

Pfid
h ðkÞ ¼ rPR0

�
k

kpivot

�
nT
; ð2Þ

where r is the tensor-to-scalar ratio and PR0 is the
amplitude of curvature perturbations at the pivot
scale, k ¼ kpivot ¼ 0.002 Mpc−1.
We use the Fisher matrix to compute the covariance

matrix of δPi given measurement uncertainties in the
B-mode observations. The Fisher matrix is given by

Fij ¼ fsky
Xlmax

l¼2

2lþ 1

2

1

N 2
l

�∂CBB
l

∂δPi

��∂CBB
l

∂δPj

�
; ð3Þ

where fsky is a fraction of the sky observed, and

∂CBB
l

∂δPi
¼ 4π

Z
ki

ki−1

TðTÞ2
Bl ðkÞ dk

k
; ð4Þ

with the tensor B-mode transfer function TðTÞ
Bl .

As for the noise contributions, we use

N l ¼ CBB;fid
l þ λCBB;lens

l þ Nl expðl2σ2bÞ: ð5Þ

Here, CBB;fid
l is the angular power spectrum of B-mode

polarization from the fiducial tensor power spectrum:

CBB;fid
l ¼ 4π

Z
TðTÞ2
Bl ðkÞPfid

h ðkÞ dk
k
: ð6Þ

We use CMB2ND to compute the transfer function with the
cosmological parameters from the Planck 2015 results
(TT;TE;EEþ lowPþ lensingþ ext in Ref. [17]), which
are tabulated in Table I. We have checked that the results of
CMB2ND and CAMB agree precisely.
The second term in Eq. (5), CBB;lens

l , is the contribution
from CMB lensing [18]. The parameter λ is a “delensing
factor,” being 0 if the lensing effect is completely removed.
The lensing B mode induced by the scalar perturbations is
given by (e.g., see Ref. [19] and references therein)

CBB;lens
l ¼ 1

2lþ 1

Xl0max

l0L

ðSð−Þ
ll0LÞ2CEE

l0 C
ϕϕ
L ; ð7Þ

where CEE
l is the angular power spectrum of the E mode

induced by scalar perturbations and Cϕϕ
l is that of the

lensing potential [20]. To obtain CBB;lens
l for l ≤ 500 with

sufficient accuracy, we sum the right-hand side up to
l0
max ¼ 2000. We find that our CBB;lens

l agrees with that
of CAMB to within 0.2% accuracy at l ¼ 120, and the error

exceeds 1% for l ≥ 1208. The factor Sð−Þ
ll0L is defined as

Sð−Þ
ll0L ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

16π

r

× ½−lðlþ 1Þ þ l0ðl0 þ 1Þ þ LðLþ 1Þ�

×

�
l l0 L

2 −2 0

�
: ð8Þ

TABLE I. Fiducial cosmological parameters provided by
Planck 2015 results (TT;TE;EEþ lowPþ lensingþ ext in
Ref. [17]).

Amplitude of curvature perturbation PR0 2.441 × 10−9

Pivot scale kpivot 0.002 Mpc−1

Spectral index ns 0.9667
Reduced Hubble parameter h 0.6774
Dark matter fraction h2ΩCDM 0.1188
Baryon fraction h2Ωb 0.02230
Effective number of neutrinos Neff 3.046
Photon’s temperature Tγ;0 2.7255 K
Optical depth τ 0.066
Helium abundance Yp 0.24667

HIRAMATSU, KOMATSU, HAZUMI, and SASAKI PHYS. REV. D 97, 123511 (2018)

123511-2



Note that Sð−Þ
ll0L is zero unless lþ l0 þ L is odd. Finally,

the third term in Eq. (5), Nl, is the instrumental noise
multiplied by the effect of beam smearing with a width of
σb. Here, we assume that Nl is white noise given by [21]

Nl ¼
�

π

10800

w−1=2
p

μKarc min

�2

μK2 str: ð9Þ

In the actual observations, Nl depends on l because of,
e.g., 1=f noise and residual foreground emission. The
foreground contribution can be included partially by
increasing Nl from the instrumental noise level. The
l-dependent foreground residual can be incorporated by
following, e.g., Appendix C of Ref. [22]; however, we shall
ignore the l-dependent noise in this paper.
We truncate the summation at lmax ¼ 500. We have

confirmed that the main results are not sensitive to the exact
choice of lmax as long as we have lmax > 100. This is
because the primordial B mode decays at l≳ 80, whereas
the noise and lensing B mode dominate at large l.
In this paper, we assume a 0.5 degree full width at half

maximum (FWHM) beam (e.g., LiteBIRD [23]),
σb ¼ 0.5π=180

ffiffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p ¼ 3.7 × 10−3. We define three
noise models: (a) a low-noise model with
ðw−1=2

p ; λÞ ¼ ð1 μK · arc min; 1Þ; (b) a high-noise model
with ðw−1=2

p ; λÞ ¼ ð10 μK · arc min; 1Þ; and (c) a delensed
model with ðw−1=2

p ; λÞ ¼ ð1 μK · arc min; 0Þ. As the lensed
B-mode power spectrum at l ≪ 103 is approximately the
same as that of white noise with 5 μK · arc min [20], the
variance at high multipoles for case (a) is dominated by
lensing, whereas that for case (b) is dominated by noise.
Case (c) is nearly an ideal case with complete delensing,

which would be unrealistic but should serve as a useful
reference. The amplitudes of each noise source in Eq. (5)
are shown in Fig. 1.
The inverse of the Fisher matrix gives a covariance

matrix of the reconstructed tensor power spectra. The
diagonal elements give 1σ uncertainties of δPi at each bin,

σ2δPi
¼ ðF−1Þii; : ð10Þ

III. RESULTS

Throughout this paper, we set fsky ¼ 1. In Fig. 2, we
show σδPi

[Eq. (10)] for ðr; nT; k0; kN; N; αÞ ¼ ð0.01; 0;
10−4 Mpc−1; 3 × 10−2 Mpc−1; 8; 2.04Þ. The solid line
shows the fiducial spectrum Pfid

h . Each box shows the
1σ region around the fiducial spectrum. On large scales, the
uncertainty is mainly due to the cosmic variance. On small
scales, the contributions from noise and lensing dominate.
The covariance matrix including off-diagonal terms is
given in Table II.
We find that the tensor power spectra are best recon-

structed at two wave number bins around k ≈ 6 × 10−4 and
5 × 10−3 Mpc−1. While the precise wave numbers at which
the spectra are best constrained depend on the choice of bin
sizes, we can understand these values analytically. The B-
mode power spectrum of CMB polarization has two
characteristic scales: the so-called reionization bump at l≲
6 and the recombinatiom bump at l ≈ 80. The wave
number that gives the former is kreion ≈ 3=½rL − rðzreionÞ�
[24], where rL ¼ 14 Gpc and rðzreionÞ ≈ 9 Gpc are the
comoving distances to the surface of last scatter and the
epoch of reionization, e.g., zreion ≈ 8. We thus obtain
kreion ≈ 6 × 10−4 Mpc−1. The wave number that gives the
latter is krecomb ≈ 80=rL ≈ 6 × 10−3 Mpc−1.
Usually, the 1σ regions shrink as we go to higher wave

numbers at which the number of modes is greater; however,
we find in Fig. 2 an unusual feature that the 1σ regions
shrink first, increase at k ≈ 10−3 Mpc−1, and shrink again at
k≳ 2 × 10−3 Mpc−1. This is due to a gap (i.e., lack of the
signal) between the reionization and recombination bumps.
The transfer function leaves only a small B-mode signal
here, making reconstruction of the initial tensor power
spectrum noisy. With these, we understand all the features
in Fig. 2.
Can we distinguish between various models of

the source of tensor modes from inflation? In Fig. 2,
we show some theoretical predictions of the tensor
power spectrum from an SU(2)-axion model with
ðr�; kp; σÞ ¼ ð0.05; 2.0 × 10−3 Mpc−1; 0.4Þ, from a mas-
sive gravity inflation model with ðα; β; TR; g�S; N�; nT�Þ ¼
ð0.7; 1.0; 1010 GeV; 100; 47; 0Þ (see Appendix A), and
from a red-tilted spectrum on large scales with PðkÞ ¼
ðk=k1ÞnT1 for k < k1 and PhðkÞ ¼ Pfid

h for k ≤ k1, which
resembles predictions of an open inflation model associated

FIG. 1. Noise sources assumed in Eq. (5) for which we consider
the cosmic variance (green), lensing effect of scalar perturbations
(purple), and the white noise with w−1=2

p ¼ 1 (cyan), 10 (orange),
and 63.1 μK · arc min (red), dubbed as “low-noise,” “high-
noise,” and “Planck noise” models, respectively.
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with a bubble nucleation [25]. For an example, we show the
spectrum with ðk1; nT1Þ ¼ ð10−3 Mpc−1;−1Þ. We empha-
size that these parameter choices are not at all robust
predictions of the models but serve only as examples.
To quantify how well we can distinguish models, we

calculate the χ2 statistic including the off-diagonal elements
of the full covariance matrix. To this end, we calculate χ2 as

χ2 ¼
XN
i≤j

½Pfid
h ðkiÞ−Pmodel

h ðkiÞ�Fij½Pfid
h ðkjÞ−Pmodel

h ðkjÞ�;

ð11Þ

and the probability to exceed (PTE) is defined as

Pðχ2 > a;NÞ ¼
Z

∞

a
Pðχ2; NÞdχ2: ð12Þ

Here, Pðx; nÞ is the χ2 distribution function for n degrees of
freedom,

Pðx; NÞ ¼ 1

2N=2ΓðN=2Þ x
N=2−1e−x=2: ð13Þ

The PTE provides the probability to confuse the theoreti-
cally predicted models mentioned above with the fiducial
power spectrum. For simplicity, we fix the theoretical
model parameters and do not include them in the degrees
of freedom.

FIG. 2. Uncertainty of the reconstructed tensor power spectrum from B-mode observations. The fiducial model has r ¼ 0.01 and
nT ¼ 0, and the reconstruction parameters are k0 ¼ 10−4 Mpc−1, kN ¼ 3 × 10−2 Mpc−1, and N ¼ 8. (Top left) low-noise case. (Top
right) high-noise case. (Bottom left) low noise with complete delensing. (Bottom right) Planck noise case. The solid line shows the
fiducial spectrum; the dashed line is an example spectrum from the SU(2)-axion model with r� ¼ 0.05, kp ¼ 2.0 × 10−3 Mpc−1, and
σ ¼ 0.4 [13]; the dotted line shows a massive gravity inflation model with ðα; β; N�; TrehÞ ¼ ð0.7; 1.0; 47; 1010 GeVÞ; and the dot-
dashed line shows a red-tilted spectrum on large scales with ðk1; nT1Þ ¼ ð10−3 Mpc−1;−1.0Þ.
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The values of χ2 and PTE with N ¼ 8 are tabulated in
Table III. For reference, we also compute them for the
Planck observation with the corresponding white noise,
w−1=2
p ¼ 63.1 μK · arc min, which is obtained by averaging

the noise band powers in 70, 100, and 148 GHz [26]. In the
last row in Table III, we also show χ2 for the null
hypothesis, which is calculated by setting Pmodel

h ðkiÞ ¼ 0

in Eq. (11). We find that Planck cannot detect the fiducial
spectrum, and furthermore cannot distinguish the three
theoretical predictions from it, since χ2 is of order unity and
the corresponding PTE is also unity. On the other hand, the
future observations with w−1=2

p ¼ 1 μK · arc min can dis-
tinguish the SU(2)-axion model and the massive gravity
inflation model with high statistical significance, whereas
the open inflation model is distinguished with moderate
significance because of the cosmic variance at small wave
numbers.

One may be surprised that we can distinguish the models
despite the fact that the error bars appear larger than the
differences between some models and the fiducial spectrum
in Fig. 2. This is due to large correlations between the bins
(see Table II). Indeed, ignoring the off-diagonal elements,
i.e., σ2 ¼ P

N
i Fii½Pfid

h ðkiÞ − Pmodel
h ðkiÞ�2, we find that for

N ≥ 8 bins σ2 ≪ χ2. We also find that the values of σ2

depend sensitively on the number of bins used, whereas
those of χ2 with off-diagonal terms do not. Only when the
size of the bins is sufficiently large (see N ¼ 4 in Table IV)
do χ2 and σ2 agree because the bin-to-bin correlation is be
suppressed in this case; thus, including the off-diagonal
elements is essential.
So far, we have fixed the cosmological parameters. How

would varying them change our results? Varying ΩM and
H0 changes the distance to the last-scattering surface,
shifting the B-mode power spectrum in the l space.
This would change the relationship between k and l,

TABLE II. Covariance matrix ðF−1Þij for low-noise model withN ¼ 8 and fsky ¼ 1. The values enclosed in the boxes are the diagonal
elements. The wave number of each bin is given by kn ¼ αnk0, where α ¼ ðkN=k0Þ1=N ¼ 2.04; see Eq. (1). One can obtain the
covariance matrix with fsky < 1 by multiplying all the elements by 1=fsky.

δP1 δP2 δP3 δP4 δP5 δP6 δP7 δP8

δP1 4.9 × 10−19 −3.0 × 10−20 2.9 × 10−21 −2.7 × 10−21 2.6 × 10−22 −2.8 × 10−23 5.2 × 10−23 −8.8 × 10−22

δP2 −3.0 × 10−20 2.2 × 10−21 −2.5 × 10−22 2.5 × 10−22 −2.6 × 10−23 3.1 × 10−24 −5.6 × 10−24 9.5 × 10−23

δP3 2.9 × 10−21 −2.5 × 10−22 1.1 × 10−22 −1.7 × 10−22 2.7 × 10−23 −3.5 × 10−24 6.2 × 10−24 −1.0 × 10−22

δP4 −2.7 × 10−21 2.5 × 10−22 −1.7 × 10−22 6.7 × 10−22 −1.8 × 10−22 2.5 × 10−23 −4.2 × 10−23 6.9 × 10−22

δP5 2.6 × 10−22 −2.6 × 10−23 2.7 × 10−23 −1.8 × 10−22 6.5 × 10−22 −1.8 × 10−22 2.8 × 10−22 −4.3 × 10−21

δP6 −2.8 × 10−23 3.1 × 10−24 −3.5 × 10−24 2.5 × 10−23 −1.8 × 10−22 1.7 × 10−22 −4.8 × 10−22 8.4 × 10−21

δP7 5.2 × 10−23 −5.6 × 10−24 6.2 × 10−24 −4.2 × 10−23 2.8 × 10−22 −4.8 × 10−22 2.1 × 10−21 −3.9 × 10−20

δP8 −8.8 × 10−22 9.5 × 10−23 −1.0 × 10−22 6.9 × 10−22 −4.3 × 10−21 8.4 × 10−21 −3.9 × 10−20 7.5 × 10−19

TABLE III. χ2 and PTE for various noise models, low noise, high noise, delensed, and Planck, which correspond to
ðw−1=2

p ; λÞ ¼ ð1.0; 1.0Þ, (10.0,1.0), (1.0,0.0), and (63.1,1.0), respectively.

Low noise High noise Delensed Planck

χ2 PTE χ2 PTE χ2 PTE χ2 PTE

SU(2) axion 1.5 × 102 9.3 × 10−28 1.2 × 101 1.4 × 10−1 6.3 × 102 1.6 × 10−131 4.9 × 10−1 1.0
Massive 1.2 × 102 1.4 × 10−21 3.4 × 101 3.3 × 10−5 3.6 × 102 7.7 × 10−73 1.3 1.0
Red tilted 2.0 × 101 1.1 × 10−2 1.6 × 101 4.3 × 10−2 2.1 × 101 6.0 × 10−3 1.7 9.9 × 10−1

Null hypothesis 3.1 × 102 1.1 × 10−61 2.1 × 101 7.0 × 10−3 1.4 × 103 9.0 × 10−295 5.7 × 10−1 1.0

TABLE IV. Dependence of χ2 and σ2 on the number of bins for low-noise model.

χ2 σ2

N ¼ 4 N ¼ 8 N ¼ 12 N ¼ 16 N ¼ 4 N ¼ 8 N ¼ 12 N ¼ 16

SU(2) axion 2.2 × 103 1.5 × 102 2.8 × 102 2.4 × 102 7.2 × 102 2.4 × 101 3.5 × 101 1.6 × 101

Massive 1.4 × 102 1.2 × 102 1.1 × 102 1.0 × 102 6.5 × 101 2.1 × 101 7.1 1.5
Red tilted 3.0 × 101 2.0 × 101 1.6 × 101 1.5 × 101 2.5 × 101 4.2 5.5 × 10−1 1.9 × 10−2

Null hypothesis 3.2 × 102 3.1 × 102 2.8 × 102 2.7 × 102 7.5 × 101 1.1 × 101 4.6 1.9
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shifting features in the reconstructed tensor power spectra
in the k space. Varying the optical depth τ changes
the height of the reionization bump, which affects the
amplitude of the reconstructed power at k ¼ kreion≈
6 × 10−4 Mpc−1. However, in the era when we can make
precise measurements of the B-mode power spectrum,
these parameters will be determined so precisely that their
impacts will not be the dominant uncertainty in the
reconstructed power spectra.
We have also fixed our fiducial tensor power spectrum at

a power-law power spectrum with nT ≈ 0. This is because
this spectrum is motivated by single-field slow-roll infla-
tion models, and detecting the difference from it would be a
major discovery. Of course, we are free to use any spectra
as the fiducial power spectrum.

IV. CONCLUSION

Reconstruction of the initial tensor power spectrum is
complementary to the usual approach of forward modeling
(i.e., to calculate the B-mode CMB power spectrum from a
given initial tensor power spectrum) because we can test
various models of the early Universe directly at the initial
power spectrum level, without having to run Boltzmann
solvers. In this paper, we have calculated the covariance
matrix of the reconstructed tensor power spectra in bins of
wave numbers. The χ2 statistic [Eq. (11)] computed with
this covariance matrix (given in Table II for the fiducial
power spectrum with r ¼ 0.01 and nT ¼ 0 and 1 μK ·
arc min noise) can be used to distinguish the tensor power
spectra of one’s favorite early Universe models from a
power-law power spectrum. We find that reconstructed
power spectra in bins of wave numbers are highly corre-
lated and thus including the off-diagonal elements in χ2 is
essential in obtaining the correct answer.
We have tested our algorithm for threemodels, the SU(2)-

axion model [13], massive gravity inflation (Appendix A),
andopen inflation [25], and found that future observations of
CMB polarization by, e.g., LiteBIRD [23], should be able to
distinguish the theoretical predictions of SU(2)-axion, open
inflation, and massive gravity inflation models from a scale-
invariant tensor power spectrum, depending on the model
parameters. While we did not perform comprehensive
parameter search for various models in this paper, we
developed an interactive web tool to calculate χ2 for any
parameter values specified by users. This application is
available online at http://numerus.sakura.ne.jp/research/
open/srec/srec.php. We describe this tool in Appendix B.
Theweb tool returns the covariancematrix, theχ2 values, and
the PTE and draws figures such as Fig. 2.
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APPENDIX A: MASSIVE GRAVITY INFLATION

We consider the inflationary massive gravity theory with
the mass term that depends on dynamics of inflation,

m2
g ¼ fðϕ; _ϕÞ: ðA1Þ

Depending on the form of the function f, it may vary
substantially during inflation.
The equation of motion for the tensor perturbation takes

the form

γ̈ þ 3H_γ þ
�
k2

a2
þm2

g

�
γ ¼ 0: ðA2Þ

Assuming a very small slow-roll parameter ϵ ¼ − _H=H2,
we obtain

d2γ
dn2

þ 3
dγ
dn

þ
�

k2

a2H2
þ m2

g

H2

�
γ ¼ 0; ðA3Þ

where dn ¼ Hdt. We set n ¼ nf at the end of inflation. On
superhorizon scales, assuming m2

g=H2 ≪ 1, the above
equation is solved to give the amplitude at the end of
inflation as

γkðnfÞ ¼ γkðnkÞ exp
�
−
Z

nf

nk

m2
g

3H2
dn

�
; ðA4Þ

where nk is the time at which the mode crosses the horizon,
k2=a2 ¼ H2, the rms amplitude of which is hγ2kðnkÞi ∝ H2

as usual. Thus, the spectrum at the end of inflation is given
by

PTðk; nfÞ ∝ exp

�
−
Z

nf

nk

2m2
g

3H2
dn

�
; ðA5Þ

where nf − nk ¼ lnðkf=kÞ and kf ¼ aðnfÞH.
Now, let us assume the time dependence of m2

g as

2m2
g

3H2
¼ nT� þ βα

sinh αn
cosh2αn

; ðA6Þ
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where we assume α≲ 1 but β is arbitrary. We can then
easily integrate it to find

exp

�
−
Z

nf

nk

m2
g

3H2
dn

�
¼ exp

�
−nT�Nk þ

β

cosh αðNk − N�Þ

−
β

cosh αN�

�
; ðA7Þ

where Nk ¼ nf − nk ¼ − lnðk=kfÞ is the number of e-folds
counted backward from the end of inflation and N� ¼ nf is
the time at which the feature in the spectrum appears. Since
we assumed α≲ 1 and we want N� to be fairly large N� ≳
40–50 to have an observable feature, the last term in the
exponent is completely negligible. Thus, we obtain

PTðk; nfÞ ∝ exp

�
−nT�Nk þ

β

cosh αðNk − N�Þ
�

¼
�
k
kf

�
nT�

exp

�
β

cosh αðNk − N�Þ
�
: ðA8Þ

Thus, the spectrum is the product of a power-law compo-
nent and a factor peaked at N ¼ N�. The enhancement
factor is eβ relative to the baseline.

APPENDIX B: USER’S MANUAL OF
SPECTRUM RECONSTRUCTOR

We developed a web tool, SPECTRUM RECONSTRUCTOR,4

to compute the Fisher matrix of reconstructed initial tensor
power spectra. In this section, we provide a brief instruction
of this tool.
SPECTRUM RECONSTRUCTOR assumes the cosmological

parameters given in Table I. It returns a Fisher matrix and a
covariance matrix and makes a plot of the fiducial power
spectrum of tensor perturbations with error bars where the

fiducial spectrum is assumed to be a power law given
in Eq. (2).
The covariance matrix is then used to compute χ2 and the

PTE for various early Universe models. Three kinds of
model power spectra that are introduced in the main
text are provided in the tool as built-in models. One can
also upload numerical data of a power spectrum as a
custom model.
In the main page of the tool, we define the parameters

controlling the Fisher analysis and plots, which are cat-
egorized into four tabs: “Basic,” “Drawing,” “Built-in
models,” and “Custom models.” One can get information
on each parameter in these tabs when one hovers over
parameter names. In the Basic tab, one can specify the
amplitude and the spectral index of the fiducial spectrum,
the number of bins, and noise sources. In the Drawing tab,
one can adjust the vertical and horizontal axes of the plot as
well as the scale (logarithmic or linear). In the Built-in
models tab, one can set the model parameters of SU(2)-
axion, open inflation, and the massive gravity models that
are introduced in the main text and also select the presence
or absence of each model spectrum in the plot. Finally, in
the Custom models tab, one can upload one’s favorite
power spectrum data in a simple text format.
After setting the parameters, clicking the “MAKE

PLOT” button generates a plot in the portable network
graphics (PNG) format. If one selects the presence of some
model spectra, the corresponding χ2’s and PTEs are also
tabulated below the plot. The Fisher and covariance
matrices are provided in the text format at the link below
the plot. This text file contains four blocks: the first two
blocks are the Fisher matrices with and without the cosmic
variance, and the remaining ones are the corresponding
covariance matrices. The parameters and results including
the uploaded spectrum, if it exists, are preserved for a few
days on the system.
Note that the specifications and appearance of our web

tool are subjected to change without prior notice for
improvement.
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