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We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and
primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from
astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational
waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore
show that the spectrum of primordial gravitational waves in principle contains detailed information about
the properties of dark matter. However, depending on the wavelength, the effects are either suppressed
because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy
density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves

in practice also appear too small to be detectable.
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I. INTRODUCTION

The direct observation [1] of gravitational waves from
distant sources immediately heightened interest in the
propagation of these waves from source to detector.
Calabrese, Battaglia, and Spergel [2] considered the future
use of gravitational wave source counts as a probe of
gravitational wave propagation. They did not assume any
specific model for intervening matter, supposing instead
that by some mechanism the wave intensity falls off as a
power of distance. In contrast, Goswami, Chakravarty,
Mohanty, and Prasanna [3] considered the intervening
matter to be an imperfect fluid, using an old result of
Hawking [4], that the intensity of a gravitational wave falls
off in an imperfect fluid at a rate 16zGy, where 7 is the
viscosity. They set an upper limit on # by adopting the
estimate of Ref. [1], that the source is at a distance of
410 Mpc. This limit would be valid if the source distance
really were 410 Mpc, but the source distance was estimated
in [I] from the observed signal strength, under the
assumption that the gravitational wave is not damped.
The observations in [1] do not rule out a viscosity greater
than the upper bound given in Ref. [3]; if the viscosity were
greater, it would just mean that the distance to the source is
less than 410 Mpc. In order to use the observed intensity
of detected gravitational waves to set an upper limit on the
viscosity, we would need an independent measure of
the distance of the source, other than the intensity of the
gravitational wave.
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But even so, a fundamental question would remain: Is it
reasonable to calculate the effect of cosmic matter on the
propagation of gravitational waves by treating this matter as
an imperfect fluid? It is clear that the treatment of a gas as a
fluid, perfect or imperfect, must break down at some
sufficiently small collision frequency. The coefficients of
viscosity and heat conduction in the theory of imperfect
fluids are proportional to the mean free path, and so would
become infinite for zero collision frequency, which is
absurd. The issue whether a particular medium can be
treated as an imperfect fluid, characterized by coefficients
of viscosity and heat conduction, depends on the scales of
distance and time of the process under study. As argued
briefly in Sec. I1l, in the propagation of a gravitational wave
through some medium, collisions are effective only if the
mean free path in the medium is smaller than the wave-
length. This is certainly not the case for observed gravi-
tational waves. The observed wavelengths are in the range
of 300 to 15000 km, and there is nothing in interstellar
space with free paths that short. (For hydrogen atoms in our
galaxy, with cross sections of the order of a square
Angstrom and a density of the order of 1 cm~3, the mean
free path is of order 10!'" km. The mean free path of warm
ionized gas is somewhat shorter, about 5 x 107 km, but still
much longer than the observed wavelengths. Mean free
paths are of course longer outside galaxies, and longer for
WIMPs everywhere.) The wavelength of observed gravi-
tational waves is so much smaller than interstellar and
intergalactic mean free paths that it is more appropriate to
treat cosmic matter as collisionless than as a fluid, perfect
or imperfect. For this reason, and also with an eye to
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possible cosmological applications, this paper will explore
the effect on a gravitational wave of its passage through
cold dark matter.

The general formalism for calculating the effect of
collisionless neutrinos on gravitational waves has already
been laid out in [5]. The perturbation of the neutrinos due to
the gravitational wave was calculated using the collision-
less Boltzmann equation; the result of this calculation was
then used to evaluate the effect of the perturbation back on
the wave. This formalism was applied in [5] to cosmo-
logical gravitational waves in the radiation-dominated
era, in which case the effects were found to be substantial.
Here we are instead concerned with the effects of massive
particles. Our calculations will follow the same track as in
Ref. [5], but the presence of nonzero mass will make them
somewhat more complicated.

In Secs. II through V we develop the general formalism
for calculating those aspects of the effects of massive
collisionless particles on gravitational radiation that are
relevant to both astrophysical and cosmological sources.
After stating our assumptions in Sec. II, a general result for
the anisotropic inertia in the presence of massive collision-
less matter is given in Sec. III for a general Robertson-
Walker scale factor a(¢). In Sec. IV we apply these results
to the case of nonrelativistic matter, and give the gravita-
tional wave equation in this case. Section V deals with a
special cases of relevance to both astrophysical and
cosmological sources, of a wave frequency much larger
than the rate of cosmic expansion.

We then consider specific applications. In Sec. VI
we evaluate the effect of intervening dark matter on the
gravitational waves whose detection was reported in [1]. It
will be a surprise to no one that the effect turns out to be
much too small to be observed. In Sec. VII we turn to the
calculation of the effects of cold dark matter on primordial
gravitational waves. Because primordial gravitational waves
with wavelengths accessible at interferometers enter the
horizon before kinetic decoupling of the dark matter or even
when the dark matter is still relativistic, in this section we
extend our discussion to include the effects of collisions. We
show that the spectrum of primordial gravitational waves in
principle contains valuable information about the dark matter
like the temperature of kinetic decoupling and the nature of
the interactions of dark matter particles. Unfortunately, the
effects appear too small to be detectable in the foreseeable
future. We summarize our findings in Sec. VIIL

II. ASSUMPTIONS

We consider gravitational waves in transverse-traceless
gauge in a spatially flat Robertson—Walker background, so
that the spacetime line element takes the form'

"We take i, J, k, etc. to run over the spatial coordinate indices 1,
2, 3; repeated indices are summed; and we set the speed of light
equal to unity.

di* = di* — g;;(x, t)dx'dx/, (1)
with
gij(X, 1) = az(l)[5ij + hy(x,1)], (2)
where |h;;| < 1 and

e 0. (3)

Since the background Robertson-Walker metric is invariant
under time-independent coordinate-space translations, we
can restrict our attention to superpositions of plane waves
with space-dependence

hij(X, 1) o e'4%, (4)

where q is a time-independent comoving wave number.
As is well known, the propagation of the wave repre-
sented by h;; is governed by the wave equation

. 2
hij + (3—a)h,.j+q—2hi, = 167G, (5)
a a
where ¢”> = ¢,q;, and m;j is the anisotropic part of the
spatial components of the energy-momentum tensor 7#,:
T',(x,t) = m;(X, 1) 4 §;; terms, mi(x,1)=0.  (6)
We assume that the wave passes through a medium
consisting of collisionless particles of mass m # 0,
with an isotropic unperturbed coordinate-space density
4rp*dpi(p) of particles with \/p;p; between p and
p + dp. In particular, our treatment will not include the
more familiar effect of gravitational lensing of the gravi-
tational waves by intrinsic density perturbations in the dark
matter distribution. Our first task is then to calculate
7;;(x, t). The general result for collisionless dark matter

found in the following section is given below in Eq. (22).
Collisions are included in Sec. VII.

III. CALCULATION OF 7.

For a line element of the general form (1) the four-
momentum of a particle of rest-mass m is

dx*
Pt = m—_ (7)
S0
dx’ .
i p'/r°, (8)

123506-2



GRAVITATIONAL WAVES IN COLD DARK MATTER

PHYS. REV. D 97, 123506 (2018)

and

p’=\/m* +g;p'p. 9)

It turns out that the covariant components p; satisfy a simpler
equation of motion than the contravariant components

dp; d ~_ 0g;; . 0gip*pl . prpY
=—(g.:p)=—"HLp/ + T = _ g TV,
dt  dt (9:;P) o P +8xk p° G m P°
and therefore for any metric of form (1)
dp; 10 kp?
Pi _109upP P (10)

dt  20x pb
With the spatial components of the metric of the form (2),
this is
dp; _a®Ohy p*p” _ia>, q;p*p’ ()
dt — 2 0x p0 — 2 M po

so the changes in the covariant components are of first order
in the perturbation ;.

For a gas of such particles with n(p, x, t)[[,dp;];dx'
particles in a momentum-space volume [[;dp; around p
and in a coordinate-space volume [];dx’ around x, the
space-components of the energy-momentum tensor are

. 1 / p'(p. X, 0)p;
T (x,1) = ——— [ Epn(p.x,1)——2,
i) v/Detg(x, 1) ( ) po(p.x. 1)

(12)

where d®p = [],dp;. The phase space density n is subject
to the collisionless Boltzmann equation, which according
to Egs. (8) and (11) takes the form

; q;p*p” On
PO Op;

on p'on ia®
o=t pon 1
8t+p0(9x’+2

(13)

We assume that in the absence of the gravitational wave
represented by /,; the density 7 is some function 7(,/p; p;),
which is a trivial solution of Eq. (13) for h;; = 0. As an
initial condition, we suppose that at some initial time #; the
density in the presence of h;; is the same in locally
Cartesian spatial coordinate frames:

n(p.x, 1) = 7 (a(t)y/g(x. 0)pip;). (14)

To first order in #; s this 1s
_ 1,
n(p.x, 1) = i(p) - ke (P)hij(x,t1)pip;/p.  (15)

where again p = ,/p,;p;. At any later time ¢ there is a
dynamical correction én induced by the gravitational wave,
so that

n(p,x,t) = a(p) — 7' (p)hyj(x, )p;p;/p + én(p, X, 1),
(16)

with initial value Sn(p, x, #;) = 0. Since On/dx' is already
of first order in 4;;, in Eq. (13) we can use the zeroth order

expressions for p’ and p°:
0= [ m? + p2/aP.

Like all other first-order perturbations, én has a space-
dependence 6n o exp(ig;x’). The first-order terms in
Eq. (13) then give

pl=ap;,

9on(p.x.1) W e
TN TN
i'(p) .
=2 .0, (17)

We return to this in detail in Sec. VII, but let us pause at
this point and consider the effect of collisions. In general,
collisions will drive the phase-space distribution back to the
equilibrium form (14), for which én = 0, so their effect can
be simulated in Eq. (17) by adding a term —I"6n to the right-
hand side, where I is the decay rate of departures from
equilibrium in the absence of field perturbations. Collisions
can be ignored if this term is much less than the transport
term in the left-hand side of Eq. (17)—that is, if ' < v /4,
where v = p/a\/m? + p*/a® is a typical proper velocity
and A=~ a/q is the proper wavelength. The decay rate I"
varies inversely as the mean free path £, so on dimensional
grounds we expect that I' ~ v/¢. Hence the condition for
neglecting collisions is that £ > A. As remarked in Sec. I,
this condition is well satisfied for detected gravita-
tional waves.

Returning now to the collisionless Boltzmann equa-
tion (17), the solution is

Lo
on(p.x. 1) = PP (p)/ dr
S

2p
t 1a:D:
X exp {—/ dr’ ibi
p az(t//) m2 + p2/a2([//)
X ]:lk[(X, l/). (18)

In calculating the space components (12) of the energy-
momentum tensor, we use the first-order expressions
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P =

i

pl=a’

Pi = hiypil.

and Eqs. (16) and (18). To first order in &;;

PiP;

hupip:
\/m?* + p*/a* - K , (19
2a>\/m* + p*/a* )

the spatial components of the energy-momentum tensor are then

hig (X, 1) pp; piP;PkPih(X, 1)

1 - B
_“5(f>/dp ) [¢m2+p2/a2(t> Vm? + p?la (1)

PiPiPkPihi (X, 1)

_|_
2a*(1)(m* + p*/a*(1))*
PiPjPkPi

1 =/
——Zas(t)/dﬂvn (p)p

m?* + p*/a’(t)

1 —/
+as(t)/d3pn (p) >

m?* + p*/a’(t)

t . t
X dt'h,(x, 1) ex [— / dt’
jl (X, 1) exp ; (")

9ipi ] (20)

m2+p2/a2(t//) :

The next-to-last term of Eq. (20) can be calculated by setting 7#'(p)p;/p = On(p)/Op; and integrating by parts in
momentum space. In this way we find that all the terms in Eq. (20) cancel, except for a term proportional to §;; and the last

term in Eq. (20):

; 1 / _ PiPjPkPi ' q:D:
T (x,t)= & pir' ( ] dt’h x,t')exp |:—l/ dr" o +6;; terms. (21
J( ) as(l‘) 2pw/m —|—p2/a kl ) p az(t”) m2+p2/02(t//) J ( )

The momentum space volume element in Eq. (21) may
be written as d°p = p’dpdzdep, where z = q;p;/qp is
the cosine of the angle between the wave vector q and the
momentum p, and ¢ is the azimuthal angle of the
momentum around the wave vector. The integral of
piP;pkPi/ p* over ¢ must take the form of a linear
combination of symmetric terms formed from Kronecker
deltas and ¢ = q/ ¢, with coefficients that depend only on z

2
/) dopip;pkpi/P* = A(2)4:4;414; + B(2)[9:4,;61

+ 4:41051 + 496k + 4;qx6u

+ 44164 + 4xq:6;]

+ C(2)[0;011 + 601 + 6116 ]
Because ,; is transverse and traceless, terms proportional
to g, or g, or d;; do not contribute in Eq. (21), so all we
need is C(z), which by taking various contractions is easily
calculated to be C(z) = x(1 —z%)?/4. Discarding terms

proportional to &;;, Eq. (21) finally gives the anisotropic
stress tensor for collisionless particles

)= [y

t .
X/ (l—Z )2dZ/ dt’hij(X,t')
-1 t

‘ .
X eXp [—/ dr’ 19px .
7 a2<t”) m2+p2/a2(t”)

This is traceless and transverse because /;; is.

(22)

As a check on Eq. (22), let us briefly consider the special
case of massless collisionless particles such as neutrinos,
or at any rate particles that have p/a(f) > m during the
period of interest. Here Eq. (22) becomes

myx.0) = i [T tdpit () [ 0= 2

x/tdt’h,-j(x,t’)exp [—/ dr" lqz]
zl % (")

The argument of the exponential does not depend on p, so
if we integrate over p by parts we have

_a4L(r)/0w pdpi(p) /_?1(1 - 2%)%dz

t . t lqz
x[l dt'h;;(x, 1) exp {—j dt/,a(t”)]'

To zeroth order in h;

JT,-/-(X, t) —

ij» the proper volume of a coordinate
space volume d°x is a’d’x, and the energy of a massless

particle is given by Eq. (9) as p° = a='\/p;p; = a”'p, so
the total energy per proper volume is

pl1) = / & pi(p)p/a () = 4 / ™ pdpi(p)/a(0).

For m = 0 Eq. (22) therefore gives:
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t +1 t .
mi(x, 1) = _’%/ (1- Z2)2dz/ dr'hi;(x. 1)
_ 1

1

t qu
_ dt”— ,
<o Lot

which is the same result as given for neutrinos by Eqgs. (16)
and (17) of Ref. [5].

IV. NONRELATIVISTIC MATTER

For a general nonzero particle mass m, our result (22)
for z;; is much more complicated than for m = 0. We can
regain some of the simplicity of the zero mass case by
specializing to the opposite limit, of nonrelativistic matter.
We will now assume (as is likely for dark matter) that the
matter through which the gravitational wave passes is
nonrelativistic, in the sense that i(p) is non-negligible
only for p small enough so that

pla(t) < m, (23)
over the whole time ¢ from emission of the gravitational

wave at ¢ =1, to direct or indirect detection of the
gravitational wave at ' = r. Then Eq. (22) becomes

+1

ﬂij(x,;):mlmﬂdpﬁ’(p)/_l

oo, !
x/ dt'h;j(x,t')exp [—i(p/m)z/ dr” 2q// }
f I a*(1")

(24)

(1-2%)%dz

If the dark matter particles move less than the wavelength
of the mode between ¢’ = ¢, to ¢’ = ¢, the argument of the
exponential in Eq. (24) is small. The integral over ¢ is then
trivial; the integral of (1 —z%)? over z just gives a factor
16/15; and the integral over p can be done by parts, so that

2&
mii(x, 1) = T30 [hij(x,1) = hij(x,t,)],  (25)
where
o 5 ]92
5:A 4zp*a(p)dp x " (26)

(Note that £/a>(¢) is the proper kinetic energy density at
time t.) The wave equation (5) can thus be written as

hij(x,1) +3 <%> hij(X, 1) + @?(1)hy(x, 1)

3272GE
= (X, 1),

3a(t) 27)

2
where

(28)

In general, matters are more complicated. The non-
relativistic assumption (23) does not automatically allow us
to set the argument of the exponential in Eq. (24) equal to
zero. Even nonrelativistic particles will travel a distance
large compared to the wavelength if given enough time,
making the argument of the exponential in Eq. (24) much
larger than unity. We will see in Sec. V that this is likely the
case for the gravitational waves reported in [1]. However,
under the relativistic assumption the rate of oscillation of
the exponential in Eq. (24) is much smaller the rate of
oscillation of /;;, which is of order g/a. So we can take the
'-derivative in Eq. (24) to act on the whole integrand of the
integral over ¢

hij(x’ r)exp [_j ar’ maz(t”)]

0 ! igpz
=5 {h,-j(x, 1) exp [—[ dr” maZ(t”)} } (29)

The integral over ¢ is then trivial, and we find

mij(x, 1)

T

s | ) [ -2

x {h,.,(x,t) — hy(x. 1) exp [—i/h'dﬂ' m;’f(zt)} }
(30)

~

To see what sort of error is introduced in this approxi-
mation, consider for a moment a case in which the original
¢ integral can be done explicitly for general mass without
the approximation (29). Suppose that a(z) is a constant,
which can be taken as a(t) =1, and suppose that the
gravitational wave has a simple-harmonic time-dependence

hij(x, t) = Cy exp(iq - x) exp(tiow(t —1;)),

with C;; constant, and @ a constant frequency, of order g.
The integral over ¢ in Eq. (24) is then straightforward

Notice that the modification of the dispersion relation comes
with definite sign, and that the phase velocity is greater than the
speed of light so that there can be no gravitational Cherenkov
radiation.
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T 4 + 242
mij(x.1) =7 ; p*vdpi(p) 1 (1 —z2%)%dz

x Cy;exp(iq - X) [exp(Lio(t—1,))

o F v7q
—exp(—igqvz(t — 1)),

where v = p/m. Comparison with Eq. (30) shows that in
this case, the approximation (29) just amounts to supposing
that » is small enough to allow us to replace the factor
o/(w F vzq) with unity.

Coming back to Eq. (30), the wave equation (5) may now
be written

.. a(t)\ -
]’ll'j(X, [) + 3(%) hij(X’ t) + a)z(l‘)hij(x, Z) = Sij(X’ t),
(31)
where again
2 32 GS
w*(t) = q + i
E= 4 )dp x — 32
/ zp*f(p)dp x 2m (32)
and §;; is 162G times the second term in z;;:
472G [ 5.
Sij(x, 1) = _hij(x’tl)m/o p>dpi’(p)
+1 . t qu
x/_l dz(1 —z*)*exp {—1[1 dl”maz(t”) :
(33)

We write the wave equation in this form because the
right-hand side S is a transient that goes to zero exponen-
tially with mcreasmg ¢t after the dark matter particles
have traveled a distance larger than the wavelength of
the mode. More concretely, if for some #, we have
gp/m [;>di"/a®(f") > 1; then for any smooth density
function 72(p) of p, S;; becomes exponentially small
for t > t,.

To illustrate this, let us take i2(p) to have the Maxwell-
Boltzmann form

i(p) = Nexp(—p?/2P?), (34)

with N and P any positive constants. The z and p integrals
are then straightforward, and we find that the wave
equation (31) takes the form

hij(x, 1) +3 (%) hij(X,1) + @?(1)h;;(x, 1)

where £ is again given by Eq. (26), and v> = P?/m? is the
mean square coordinate velocity for the distribution (34).
Our assumption that v?/a?(¢") < 1 makes the argument of
the exponential in Eq. (35) negligible in the case of few
oscillations, so that in this case the wave equation (35)
agrees with our earlier result (27), and we can take Eq. (27)
as a fair approximation to the wave equation for all times.
But S;;(x, 1) is exponentially small for late times when the
dark matter particles have traveled far compared to the
wavelength of the mode and the number of oscillations
becomes so large that

e

At these late times, the memory of the gravitational field at
the time of emission in the distribution of momenta is
erased, and the wave equation (35) simply becomes

a(r)
(1)

But to find the coefficients of the two independent solutions
of the homogeneous equation (36) we need to use the
inhomogeneous wave equation, Eq. (35).

h,](x 1) +3< )h,j(x 1)+ @ ()h;(x,1) =0.  (36)

V. SHORT WAVELENGTHS

It is not possible to find analytic solutions of either
Eq. (35) or Eq. (36) for an arbitrary time-dependence of
the Robertson—Walker scale factor a(z). But we can find
solutions when the frequency w(7) is much larger than the
fractional time-dependence H(t) = a(t)/a(t) of the scale
factor, and hence also much larger than the fractional time-
dependence of w(#) itself. This of course includes the case
of constant a(z), which is a good approximation for the
gravitational waves reported in [1], and to which we shall
return in Sec. VL.

In the short-wavelength case, the familiar WKB approxi-
mation (neglecting second time derivatives of the coeffi-
cients of the cosine or sine) yields approximate solutions of
the homogeneous equation (36), with time-dependence

cos [ [T a()dl
sin[ " w(1')dr
Knowing these homogeneous solutions, it is easy to

construct a Green’s function that allows us to solve the
inhomogeneous equation (35)

a3 (™ 12(1) x
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a3/2(t’)a)“/2(t’)

T { / tw(t”)dt”} o(t—1),

for which, within the WKB approximation,

Lf—; +3 (%) % - wz(t)] G(t.1) = (1= 1).

G(1,7) =

The general solution of Eq. (35) is therefore

32z2GE toodt a0 () t V2 ([ qdf’ \?
hi(x,0) = h%(x,t h;i(x,t / i / ")dt" - /— ,
a0 =y 00+ | @ty @Pe ) T L WO P72, @)

l(»?) (x, t) is some solution of the homogeneous equation (36). The lower bound ¢, on the integral over ¢ is arbitrary,

because the difference in the integral between two possible choices of ¢, is a solution of the homogeneous equation (36),
and so far 2(%) is an arbitrary solution of the homogeneous equation. The one condition that must be satisfied by ¢, is that the
WKB approximation must be valid from ¢, to z. This may or may not allow us to choose ¢, = t;, depending on the context.
Whatever we choose for ¢,, the inhomogeneous term in Eq. (37) and its first time-derivative both vanish for t = ¢,, so the
homogeneous term by itself must satisfy the initial conditions at ¢t = ¢,, and therefore takes the form

where h

WO (x.1) = % {hij(x, £,) cos < / 'a)(z')dz') 4 uy(x. 1, )07 ) (1,) sin < / ’w(z/)dﬂﬂ TS

We are now in a position to evaluate the coefficients of the solutions of the homogeneous equation after many
oscillations. We write the argument of the sine in Eq. (37) as

t t t’
/ o(")dt" = / wo(1")dt" - / o(t")dr".
4 1, [

Then Egs. (37) and (38) become

a3/2(t*)a)1/2(t*)

hij(x. 1) = N [cos u’w(ﬂ/)dﬂ/)(h,,(x, £) + A(Dhy(x, 1))
+sin ( / 'w(ﬂ/)dﬂf> (7 (£, )hij (%, 1) + B(£)hy;(x, t,))], (39)

[

where

322GE [t di &) V(1) v v ([t qdl” \?
Alt) = — 3 Mdt" _ I et ,
0= ey o] oo -5 ([ )
322GE [t df &) VA(Y) 4 v? ! gdt” \?
B(t) = ")dt" -— —— ] |- 40
0= [ e [ oo -5 ([ )] o
If at some time ' = f, the argument of the exponentials in Eq. (40) becomes much larger than unity, the integrals of ¢ are

effectively cut off for # > 1,, and A(¢) and B(¢) approach finite 7-independent values for 7 > t,. The solution (39) then
becomes a linear combination of solutions of the homogeneous equation.

+sin tw(t”)dt”) (@7 (&) (x, %) + B(oo)hyj(x, 11)) | (41)
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VI. OBSERVED GRAVITATIONAL WAVES

As a first application of our results for m # 0, let us
consider the effect of intervening dark matter on observed
gravitational waves [1], believed to be produced by coa-
lescing black holes. Since the source of these waves is at a
fairly small redshift z < 0.1, we can greatly simplify our
calculations by taking the Robertson—Walker scale factor
a(t) to be constant during the time elapsed from production
to detection of the waves. Without loss of generality we can
normalize our spatial coordinates so that a(r) = 1.

For a(r) = 1, the gravitational wave equation (35) in the
presence of collisionless nonrelativistic matter here takes
the form

hl‘j(X, t) + a)2h,»j(x, t)

327GE 2q*(t—1,)?

o [Py

where now the frequency (28) is a constant

= hi(x, 1)

3272GE
3

o* = q* + 2, Q= . (43)
and & is the proper density of kinetic energy.

With a(r) constant we can use the results of the previous
section, with no need for the WKB approximation. Since
we are not relying here on the WKB approximation, there is
no obstacle to taking the lower bound ¢, in Eqgs. (39) and
(40) to be equal to the emission time #;. The solution (39) of
Eq. (42) is now exact, and takes the form

hij(x, 1) = cos (@(t — 1)) (1 + A(2)) by (X, 1)

+ sin (@ (- tl))(w_lhij(xv )+ B(t)h;;(x. 1)),
(44)

3272GE
3w

t 2 2044 \2
/ dr'sin[w(' —1;)]exp [—M} ,
1

(45)

2204 2
B(t) = 32ﬂG€/tdt’ cos[w(? — ;)] exp [_”q(ttl)]
f

3w 2

(46)

The gravitational waves with the lowest observed frequen-
cies have wavelength about 15000 km, so if their source
is at a distance 410 Mpc,” the quantity ¢(7 — t,) is of order

The values here correspond to those in Ref. [1] because much
of the paper was written shortly after the discovery of gravita-
tional waves. The conclusions remain the same for the more
recent observations of gravitational wave events.

5x 10'8. Hence the argument of the exponentials in
Egs. (45) and (46) is already much larger than unity even
for # much less than ¢, provided that the rms velocity of the
dark matter is much larger than 2 x 10~'°¢, which we shall
assume to be the case. In this case the dark matter particles
travel a distance long compared to the wavelength of the
gravitational wave, and the exponentials in Egs. (45)
and (46) therefore cut off the integrals already for # much
less than ¢, and we can take t = oo in A(¢) and B(t). The
integral for B(o0) is easy

322GE [ ?
B = —— - = . 47
() 3wg \ 24? P [ 2U2q2] 1)

The integral for A(co) is more complicated. It can be
expressed in terms of a confluent hypergeometric function
of the first kind

32z2GE ? 13 2
A(o0) = — ~ exp(——g >1F1 (—,—,—g >,
3q2 v2 21)2q2 22 21}2q2

with [6]

1 Fi <—,%,z> =273/2 /_1(1 + 1)1 2 exp (z(1 + 1) /2)dt.
(49)

Of particular interest is the limit »> — 0, with @/q of
order unity. In this limit B(co) is exponentially small,
while A(co0) — —Q?/w?, a result that can be obtained more
simply by writing sinw(r—1t) in Eq. (45) as
(1/w)(d/dt) cosw(t — t;) and integrating by parts. In this
limit Eq. (44) becomes

2

hij(x,t) = cos (w(t —1;)) <1 - %) hij(x, 1)
+ o sin (w(f — 1))k (x, 1) (50)

One effect of the modified relation (43) between ¢ and @
is a frequency-dependence of the group velocity

vg:g—i]): \/1=Q%/w?.

After the gravitational wave has traveled for a distance D,
two components of the wave of different frequency will
arrive at times separated by At = DA(1/v,). In addition to
the shift in frequency, the presence of the correction term
proportional to Q?/w? in the relation (50) between the
observed gravitational wave and the initial conditions leads
to some distortion of the gravitational waveform.
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But if dark matter is composed of WIMPs, these effects
are extremely small. Even if we were to suppose that dark
matter particles have moderate velocities, and dominate
the cosmic energy density p,, the quantity € would be no

greater than Hy, = \/87Gpy/3, which of course is tiny
compared with @ for observed gravitational waves, so
Q?/w? is negligible. The correction to the group velocity
has a larger effect, but one that is still very small. After the
gravitational wave has traveled for a distance D, two
components of the wave with frequency differing by Aw
will arrive at times separated by

DQ? 1
At =—A(—= ],
2 <a)2)

which even for D of order 1/H, and Aw of order w is less
than the period 27/ of the oscillation by a factor of order
H,/w. It appears that WIMPs can have no detectable effect
on the gravitational waves observed from sources at
moderate redshift.

VII. PRIMORDIAL GRAVITATIONAL WAVES

As asecond application, we consider the effect of cold dark
matter on primordial gravitational waves. In much of what
follows we will consider WIMP dark matter for concreteness,
but the discussion generalizes to more general models of dark
matter. Let us begin by summarizing the key events during
cosmic history that are important for our treatment of the
effects of WIMP dark matter on primordial gravitational
waves. At early times WIMPs are relativistic and are in
thermal equilibrium with the particles of the standard model.
As the universe cools, the dark matter particles become
nonrelativistic. Shortly after this time, when the temperature
of the medium has dropped to ~1/30 of the WIMP mass,
inelastic processes are no longer efficient enough to keep the
dark matter particles in chemical equilibrium and the comov-
ing number density of dark matter particles becomes constant.
However, elastic scattering still occurs rapidly and keeps the
WIMPs in kinematic equilibrium with the standard model. As
the universe cools further, elastic scattering between the dark
matter particles and standard model particles becomes ineffi-
cient as well, WIMPs kinetically decouple and become free-
streaming. Astrophysical sources emit gravitational waves
long after kinetic decoupling when the dark matter is already
free-streaming. In contrast, depending on their frequency,
primordial gravitational waves may propagate during earlier
epochs when the dark matter was still in kinetic equilibrium or
even relativistic.

We will refer to gravitational waves that enter the horizon
after kinetic decoupling as long modes. For typical WIMPs,
these have frequencies of at most a few times 10712 Hz
today, and can only be accessed through measurements of
the polarization of the cosmic microwave background. We
call modes that enter the horizon before kinetic decoupling

but after the dark matter has become nonrelativistic
intermediate modes. These modes have frequencies
between 107!2 and ~1073 Hz, and fall into the frequency
range observable with pulsar timing arrays. Modes acces-
sible with DECIGO [7] or BBO [8] enter the horizon when
the dark matter particles are still relativistic, and we refer to
them as short modes.

A. Long modes

We first discuss effects on modes with wavelengths
that can be accessed through measurements of the polari-
zation of the cosmic microwave background. In linear
perturbation theory primordial gravitational waves generate
B-mode polarization whereas density perturbations do not.
So the search for B-mode polarization of the CMB is an
indirect search for gravitational waves. Lensing of the
CMB by large scale structure between us and the surface of
last scattering also generates B-mode polarization and in
practice limits the multipoles for which we can extract
information about primordial gravitational waves to less
than a few hundred.

The contribution to the CMB anisotropies at multipole #
is dominated by gravitational waves with wave number
k = a;?/d;, where a; is the value of the scale factor at last
scattering, and d; is the angular diameter distance to the
surface of last scattering. For a flat geometry

d, = ~ 13 Mpc™!.

(51)

So the CMB allows us to access gravitational waves with
comoving wave numbers k <0.03 Mpc~!. These modes
entered the horizon at a redshift of z < 10* long after
kinetic decoupling of the dark matter. The anisotropic stress
for the modes of interest is then well approximated by
equation (24). Furthermore, by this time these modes have
at most undergone a few oscillations so that the anisotropic
stress for the modes accessible in the CMB further
simplifies to (25) and (26).

In Secs. V and VI we found analytic solutions to the field
equations in the presence of nonrelativistic collisionless
matter for wave frequencies much greater than the Hubble
expansion rate, either using the WKB approximation to deal
with general expansion rates, or in the special case of constant
a(t), where this approximation is unnecessary. We are now
concerned with gravitational wave frequencies comparable to
the expansion rate. Unfortunately there is no way to find
analytic solutions of the field equations for Robertson-Walker
scale factors a(t) with arbitrary time-dependence. However,
we can find solutions during the matter and radiation
dominated eras most relevant to the CMB.

To treat the time evolution during the matter and
radiation dominated eras, it is convenient to introduce

1 /1 dx
Ho(1+21) Jij(42) @ + Qux + Qpx*
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the independent variable y = a/a.q, where a, is the scale
factor at matter-radiation equality, and write Eq. (27) as’

d? 2 5\ d
(1) o)+ (343) 5 o0 + 52,0
4
=—;%mxxo—hwxn», (52)

with e = &/ agqpmeq the fraction of the energy density of
the dark matter particles stored in kinetic energy at matter-
radiation equality, and »x = v/2¢/ aeqHeq- The solution to
this equation cannot be written in closed form, but we can
find solutions for x < 1 and » > 1.

Let us first consider modes that enter the horizon after
matter-radiation equality for which »x <« 1. For modes
outside the horizon at last scattering h;;(X. 1) = h;;(X, 1))
and the anisotropic stress vanishes. So we expect the
evolution of the gravitational waves to be unaffected by
the presence of cold dark matter. To be more quantitative,
we can treat both the gradients and the anisotropic stress as
a perturbation. Introducing the mode expansion

mix) = Y [ @apladen@nhnes. (53)
A=%2

the general solution to the homogeneous equation is given
by a linear combination of

hy(y)=1 and hé(y)z(lln Pyl 1—|—y>'

2V Tiy—1
(54)

The second solution diverges like 1/y for small y and it is
the first the solution that is of interest in the context of
primordial gravitational waves. With help of the Green’s
function

<
Gy,z2) =———( 2z/1 +y+2yV1 +z+yz
(y.2) wm( V14y+2yv y

VIity+1l | JT+z+1
+1n —In 0y — 2).
VIity-1 T+ z-1

(55)

we can write the solution at leading order in »x? as

252
h (v) = he [1 15 <8 —8y/1+y—3y?

+4y<1 +1n§+ln%)>]- (56)

“This equation is valid after electrons and positrons have
frozen out.

The leading contribution from anisotropic stress also arises
at order »? and is given by

(0) 0

y hg'(z) —h
W) =) = de [ azG,) ST (57
y

*

where y, is late enough for collisions to be negligible but
early enough so the mode is far outside the horizon, and

hgl)(y*) is the contribution generated by up to this point.
We will compute it in Sec. VIL, for now we simply give the
result

2
WD (y,) = kg (1 + €”3y L Ca,), (58)

where C,, is negative and describes a small amount of
damping generated by collisions around the time of kinetic
decoupling. It is of order ex’ayy/ aeq and is suppressed
relative to the terms of interest by ayq/a.q < 1, where a4 is
the scale factor at kinetic decoupling, and we can safely
neglect it.

The result cannot be written in closed form for general y
but becomes simple in the radiation and matter dominated
epochs

1 2
h,(y) = hg(l —gxzyz —i—?) fory<l1, (59)

2

hy(y) = b <1 2y GCE3) 2 T)

15 > for y > 1.

(60)

Since 8¢(3) — 7~ 2.6 > 0, we see that modes outside the
horizon during last scattering receive a small scale-depen-
dent boost. Since last scattering occurs for y =~ 3, this
simple limiting form does not capture the effect on the
CMB accurately, but we can expand the result to higher

orders, and find that the solution is given by h,(y) =

hgo) (y) + h(({l)(y) with h(({o) (y) given by Eq. (56) and the
leading effect due to collisionless matter given by

(1 - v 8¢(3)—-7 4 8(15+ 27‘[2)
hfl (y) - 46}{2]1‘]( 15 - 5 135y3/2
+4(7+21n(y/4)) 4(15 4 27%)
15y? 225y°/2
32(2 +1In(y/4))
-_—— O(y7/? 61
135y° +0(™"?) (61)

The limiting form (60), the approximation (61), and the
result at order »” and linear in e based on Eq. (57) are
compared to the numerical result in Fig. 1 for » = 1/10.
The difference between the numerical result and our
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FIG. 1. The effect of collisionless matter on the time evolution

of a mode with » = 1/10. We show the limiting form given in
Eq. (60) (green), the approximation given in Eq. (61) (orange),
the full expression based on Eq. (57) (dashed red), and the
difference between the numerical solutions of the equation of
motion with and without anisotropic stress (black).

approximation for large y arises because the mode is about
to enter the horizon.

We see that the effect is highly suppressed and unob-
servably small for any upcoming or planned CMB experi-
ment both because the fraction of the energy density stored
in kinetic energy density of the dark matter is very small
and because for these modes » < 1.

Let us now turn to modes with »x > 1. These modes
enter the horizon at a time when the energy density of the
universe is dominated by radiation. To find their time
evolution, we will first find the solution during radiation
domination and then match it onto the WKB solution (39)
to extend it to late times.

In the radiation dominated period, y < 1, the equation of
motion for gravitational waves (52) simplifies and the mode
functions will only depend on y through u = xy. It is then
convenient to write the equation of motion as

2 EX
() 42 )+ () = = (g ) = ).

du2 q
(62)

The general solution of the homogeneous differential equa-
tion is a superposition of the solutions

h;(u) _ sinLEu) , (63)
() = ) (64)

The second solution diverges for small # and consequently
decays outside the horizon so that the first solution is
relevant for primordial gravitational waves. It is normalized

so that h}(0) = 1. In this case we can write the Green’s
function as

vsin(u — v)

G(u,v) = O(u —v)

u

= v?[hg(u)hG(v) = hg(w)hg(v)0(u —v).  (65)

and we can formally write the solution to the inhomogeneous
equation as

hq(”) - hq(”l) )

h,(u) = h;())(u) - 46}{/u dvG(u,v) <

*

(66)

The integral and its derivative vanish at u#, so the homo-
geneous solution must be chosen to satisfy the desired initial
conditions. We can write it as

h (u) = AhL(u) + B2 (u), (67)
with
A = h,(u,)(cos(u,) + u, sin(u,)) + hy(u,)u, cos(u,),
(68)
B = hy(u,)(u, cos(u,) — sin(u,)) — hy(u, )u, sin(u, ).
(69)
To first order in ex we can write the solution as a super-
position of the two solutions of the homogeneous solution,

albeit with time dependent coefficients

hy(u) = A[(1 + C(u))hy(u) + D(u)hg(u)]
+ BIE(u)h}(u) + (1 + F(u))h2(w)].  (70)

with

Clu) = =dex [ R (R (0) = ko). (1)
D(u) = 461/"%;1;(@)(/1;(@) — hl(n)), (72)

E(u) = —4611”%113(1))(@(1)) —R(n).,  (73)

*

Flu) =dex ["TH@UGW - Rw). (74

*

These integrals can all be expressed in terms of trigonometric
functions, sine and cosine integrals, but we will not give the
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general formulae and work in various limits. For primordial

gravitational waves we expect hg))(u) = h9hj(u) so that
hg(u) = hy(1 + C(u))hy(u) + hgD(u)hg(u).  (75)
or
1 o o
) (1) = hoC(u)hl(u) + heD(u)h2(u),  (76)
and we only need the behavior of C(«) and D(u). As we will
see, this is not entirely accurate because a small departure
from A =1 and B =0 is generated around the time of

kinetic decoupling, and as we will see

2 2
A=1+ex Z*+Cw and B:—ex%. (77)

The amount of damping generated around kinetic decou-
pling, C,, is calculated below. For now, it suffices to know
that it is of order ex?ayy/ @eq, Where ayy is the scale factor at
kinetic decoupling (defined more precisely below). Since C,,,
is suppressed not only by e but also by ayq/acq e can safely
neglect it in our discussion here. This implies that we have

D () = he (C(u) +ex 2;’) hi ()

+ h (D(u) —ex Lf:) hZ(u), (78)

For small u it is easy to see that we can drop the additional
terms provided we set u#, = 0 in equations (71) and (72),
and we will do so in what follows. For modes that are far
outside the horizon when the particles become nonrelativistic
v1 < 1. The leading correction is quadratic in v, and we
will take v; — 0. We will need the limiting forms for 1 <« 1
and u > 1. For small arguments we find

C(u) - ez%” + O(u?), (79)

2
D(u) - —ex— + O(u?), (80)

whereas for large arguments

sin(u)

C(u) — dex " +O(1/u?), (81)

ZCOS(I/;)Z— 1/2) L 0(1)4),

(82)

D(u) - 26}{(1 —2In2+

This leads to a solution for the mode function far outside the
horizon of

1 2
h,(y) = h;(l —g}fzyz +?> +00G?%), (83)

in agreement with Eq. (59). Once the mode is deep inside the
horizon, it approaches

o) = 1 () 2ex ooy 21n2 - 1)

+ O(x3y™3). (84)

We see that the dark matter has no effect on the amplitude
(besides the small effect generated around kinetic decoupling
we neglected) but introduces a small phase shift. Since we
will need it later, let us also record its derivative

2€ex si 2In2 -1
W (y) = e (cos(}fy) 4 2ex sin(xy)(21n )>
ny ny

+ 00 2y73). (85)

The behavior of the functions C(u) and D(u) and the
comparison to the limiting forms (81), (82) are shown
in Fig. 2.

This solution is valid deep inside the horizon and during
the radiation dominated era. To find the solution at later
times, we can match it to the WKB approximation we
derived in Sec. V. Equation (39) becomes

hy(y) = hy(¥)[hy(y.) + hy(y1)A()]
+ hg)[w(y.) " 1y (v.) + hy(y1)B(Y)].  (86)

with
x + %
w(y) = t——, 87
0) =Y (57)
1.0
[\
00 1 \ D ——
| N
=
S -05}
~ 7
-10¢} \
-1.5 ~
-20
0 5 10 15 20

FIG. 2. C(u) and D(u) as defined in Egs. (71), (72). We show
the exact results for C(u) (orange) and D(u) (red), and the
limiting forms (81), (82) valid for u > 1 for C(u) (dashed blue)
and D(u) (dashed green).
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the functions
hi(y) = yjcos (2}{(\/1 +y—+/1 +y*))
——sin (2(VI+y-VI+3.)).  (88)

HYY«

h,zi()’) :);—*Sin (2}{(\/1 +y— \/1 —i—y*))
—l—}{yey cos (2}‘(\/1"‘)’—\/1—!-)7*)), (89)

*

and to leading order in ¢
|

de(1+y)cos2x(vT+y=vT+y.)) _4e(l+y.)
xy? B
(90)

Ay)=

de(1 +y)sin(2x(/T+y—/1+y,))
X2y2 :

B(y) =

©n

So to first order in € and deep inside the horizon, we obtain
the solution

A _ popl sin(xcy,)  2ecos(xy,)(1—=2In2) 4de(l+y,) 4e(l1+y)cosx(v/T+y—+1+y,))
q(Y) = Ny q(y) % + - 2.2 + 2.2
y* y* 4 y* }( y
wi2 o cos(xy,)  2esin(xy,)(1 =21In2) 4e(l+y,)sin(2x(v/T+y—=+1+y,))
+ hqhQ(y) xy - y + %2))2

Working to leading order in e, the dependence on y,
disappears as it had to and the evolution inside the horizon
valid during both radiation and matter dominated eras is
given by

[sin (2x(VTFy - 1))
q xy

_ 2ex(2In2 = 1)cos 2x (VI +y—1))

ny

hq(y) =h

(93)

We see that the gravitational waves acquire a small phase
shift ¢ = —2ex(21n2 — 1). The analytic solution is com-
pared to a numerical calculation in Fig. 3 for » = 100. We

Y

FIG. 3. The effect of collisionless matter on the time evolution
of a mode with x = 100. We show the term of order € of the
approximation to the mode function given in equation (93)
(dashed orange) and the difference between the numerical
solutions of the equation of motion with and without anisotropic
stress (black).

] . (92)

I
see that the effect on modes that enter the horizon during
the radiation dominated period is larger than the effect on
modes that enter at later times, but since the fraction of the
density in the kinetic energy of the dark matter is rather
small, its effect on the degree scale polarization of the
cosmic microwave background is also too small to be
observed with upcoming or planned CMB experiments.

B. Intermediate modes

We now turn to modes that enter the horizon when the
dark matter is still in kinetic equilibrium but has already
become nonrelativistic. For a typical WIMP this corre-
sponds to a gravitational wave frequency today below
~1073 Hz.

As we briefly discussed after Eq. (17), we expect
collisions to be negligible if the collision term in the
Boltzmann equation is much less than the transport term.
The wavelength of the primordial gravitational waves, 4,
redshifts like one power of the scale factor, the velocity of
the dark matter particles, v redshifts like a~' after and
a~'/? before kinetic decoupling. The rate @, at which
energy is exchanged between standard model particles
and the dark matter redshifts at least like a like the
number density of standard model particles. So at late
times when @, < v/A collisions are negligible, but they
become important at early times. As a consequence we
see that the anisotropic stress is no longer given by (24)
and we will have to revisit the derivation in the presence
of collisions.

If the standard model particles interacting with the dark
matter are much lighter than the dark matter particles,
are relativistic and are in local thermal equilibrium, the
Boltzmann equation becomes
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lagkzp"p’ )
2 0x p° Op;

neq(pv X, t)neq(x’ t)]

on(p,x, 1) Kin( )

ot ploxt
= —2(o0)[n(p, X, )n(x,) —

0
oy

n(p.x,1)

0
T_
pin(p.x.t) +g;;(x.t)m ap]n(p x,1)|,

(94)

where T is the temperature of the standard model degrees
of freedom, (ov) is the thermally averaged dark matter
annihilation cross section, @, is the rate at which the
standard model particles and dark matter particles exchange
energies of order k7, and as before

p'=d"(x.0)p;.
0 __ 2 ij ~ gij(x7t>pipj
P =fm 4 gl (X )pip; mm T (95)
and
1
n(x,t) :7/d3pn(p,x,t). (96)
v/detg(x, 1)

In general, we expect the temperature to be a function of
position and expect a small position dependent velocity of
the medium, but because we are interested in tensor
perturbations we will not need to include this.

In writing Eq. (94), we have assumed that the dark matter
only participates in interactions with the standard model
particles, both in the form of the inelastic processes
responsible for setting the freeze-out abundance, and in
the form of the elastic processes required by crossing
symmetry, but have neglected self-interactions. Of course,
we only have very weak constraints on dark matter self-
interactions, and these interactions may, in fact, well be
significantly stronger than the interactions with the standard
model that are included here, at least for some range of
temperatures. However, we will see that our treatment of the
effects of the minimal interactions that must be present for
any WIMP included here will also allow us to understand the
effects of self-interacting dark matter on gravitational waves.

Close to local thermal equilibrium the scattering rate is
much higher than the rate of change in the temperature or
the metric. We can thus neglect time derivatives acting on
the metric or the temperature and see that the equilibrium
distribution is

1\~ 9’ (x.0)pip,
neq(p,x,t):neq W exXp —T .

(97)

Away from thermal equilibrium we should in general
consider an Ansatz in which the temperature of the dark
matter particles depends on position, but because we are

interested in tensor perturbations we can consider an
Ansatz in which it is only a function of time

1 3/2 g9’ (x.0)pip,
n(p.x.1) = n(r) <m) exp <_ W)
-|-6n(p,X,l‘). (98)

The first term on the right-hand side is a solution to the
Boltzmann equation in the absence of tensor perturbations
provided the dark matter temperature and density obey

(@ Ta) = 20T = Ta). (99
L4 wn) = 2lomo ). (100

So as expected dn(p,x, 1) is of first order in the metric
perturbation, and consistent with equation (16) we have

1
n(p.x. 1) = ii(p) = 5 hij(x, t)piaipjﬁ(p) + én(p.x, 1),
(101)
with 7ii(p, 1) given by
1 3/2 pz
a(p.)=a’*n(t)| ———— —F 1. (102
A(p.1) an()<27zma2Tdm) exp{ 2ma2Tdm] (102)

The equation for a plane wave, dn(p, X, t) « exp(iq - x),
with wave vector q then becomes

oén(p,x,1) ip-q
ot a’m

= 2w, (1)én(p,x,1)

. x.0) = (x.)pib 57

0
pion(p,x,t) +a*mT

0
+wr(t>_ 8[7-

o on(p,x,1)|,

(103)
where we denoted the annihilation rate by

(ov)n(1), (104)

wa(t) =

and we have used

/d3p5n(p,x, t) =0, (105)

because gravitational waves do not generate fluctuations in
the number density.5

*We will see a more rigorous justification for this below.
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Before we consider the general case, let us consider
wavelengths for which the medium behaves like a viscous
fluid. At leading nontrivial order in the derivative expan-
sion, taking H < w,, ¢/a < w, and using w, < @, the
perturbation to the phase space density must satisfy

aip,. pion(p,x,t) + azmTaii

on(p, x, 1)

1. 0 _
= —Z—G)Ihij(X, f)Pia—pj"(P, 7). (106)

Because h;; is traceless, we can commute p; with the
derivative and the first integration is trivial. Remembering

that the perturbation must vanish as the gravitational wave
amplitude is taken to zero, we have

0
pion(p,x, 1) + azmTa on(p,x,1t)

Pi

1 . _

T
Since én(p, x,t) is a scalar that vanishes as the gravita-
tional wave is taken to zero, and the metric perturbation is
transverse and traceless we consider an Ansatz of the form
on(p.x.1) = hi;(x,0)p;p;A(g. p.1).  (108)
Introducing the shorthand notation / = hk,(x, )PPy the
resulting equation is

.o a*mT [ . . -
pih Ag, p, 1) +? [Zh,-jij(q,p, )

T 0
+ pih <—2A(61, p.t)+ p%A(q, 22 t))]

1 .

= —Ehijf’jﬁ(l?’ 1.

(109)

The coefficients of p; and hl- ;P j must vanish independently
and from the term proportional to izi ;Pj we can read off

2_
3 p°a(p, 1)
Alg,p,t) = ——F—. 110
(¢.p.1) dora®mT (110)
Equation (99) leads to

H
Tomn=T[1- , 111
dm ( 2wr> ( )

so that for H < w, the dark matter temperature is well
approximated by that of the standard model particles,
Tym ~ T, and we see that the terms proportional to p; also
vanish for A(q, p. t) given by (110). The perturbation to the
phase space density in this approximation is then

25(p.1) - 2
me@:—ﬂﬂﬂlm@ﬁmm+oQij.

4w,a*mT a’w?

(112)

Substituting back into the Boltzmann equation (103), we
see that the terms we are neglecting are indeed of order
q/aw, and H/w, relative to the terms we are keeping. To
compute the anisotropic stress, recall that the space-space
components of the stress tensor are given by Eq. (12). For
the Ansatz (101), the contribution linear in the metric
perturbation simplifies to

; 1 DiDj
oT';(x, 1) —;/d3p5n(l),x,t) m’,

(113)

and the anisotropic stress is simply the transverse traceless
part of this expression. We can perform the angular
integrals with the identity

&p . ... 1
/Epipjpkpl =15 60k + 0udj1 + 640, (114)
and the integral over the magnitude by recalling
O ap.) Ap.r).  (119)
S _np,l)=— np,it),
dp P a’mT g, P

integrating by parts and using the definition of comoving
kinetic energy density of the dark matter particles

p? 3 3
E(r) = /d3p%ﬁ(p,t) = EaSanm %iaSnT. (116)
This leads us to the anisotropic stress
E) . nT .
i, H=———"h.. =———h.. t 117
(00 = =g 00 = sy, (117)

with the number density n set by the usual freeze-out
calculation. The equation of motion for gravitational waves
before then simply becomes

2

i, (1) + (3H (1) + D)y (1) + a;’—(t)hq@) =0 with
I'= SﬂGZ)—T,

(118)

so that the presence of the dark matter leads to some
amount of damping of the gravitational waves. Repeating
the above computation for a velocity gradient, we find that
the shear viscosity of the medium is given by = nT/2w,,
so that the damping rate is given by I' = 162Gz consistent
with [4]. However, because
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E(1) H
— < —H<«H,
3w, (t)M?

(119)
p @

the Hubble rate during this epoch is orders of magnitude
larger than I'. The effect is highly suppressed both because
the energy density in dark matter particles is a subdominant
contribution to the total energy density during radiation
domination, and because H < @, before kinetic decoupling.

We know that o, % H during kinetic decoupling so that
the approximation does not allow us to follow modes
through kinetic decoupling, and we can only use it to study
the behavior of modes before kinetic decoupling while
q/aw, <1 and H/w, < 1. To follow modes through
decoupling, we return to equation (103) and rewrite it as
a hierarchy of coupled ordinary differential equations.
Recalling the mode expansion (53), we see that the
equation only depends on the direction of the momentum
of the dark matter particles through u = p-¢ and
e;;(g.2)p'p’. In general, additional directional dependence
could arise from the initial conditions, but we are interested
in isotropic initial conditions so that the perturbation to the
phase space density must be of the form

Given that the polarization tensor is transverse and trace-
less, we see that this Ansatz justifies equation (105). As we
show in Appendix, expanding the perturbation to the phase
space density in terms of orthonormal polynomials

n(p.x.1) = Z /d3qﬁ q.4)e;;(§.4)pip et
X Z(—

)20 +1)Au(q.1)

ffiﬁ...oo
J _
* Lo (2)Pe(u)p 7 -lp. 1), (121)
p
where
P2
Pe(u) f(mz and
l—p
Loo(z) = 2L 2 (2)  where
2
14
= _— 122
¢ 2a°mT g, (122)

3 iq-x
on(p.x.1)= / & qp(Q.A)ex(3.2) PrbiB(q. p.pus1)e' ™. LY are generalized Laguerre polynomials and P7 are
associated Legendre polynomials, allows us to diagonalize
(120) " the collision term and leads us to the Boltzmann hierarchy
|
A q 2Tdm 1/2 3
A,(q.1) + 27+ Da\ m (+2)(n++ 3 Bpri(gt) =n(€+2)A,1741(q.1) + (€ =2)Au 41021 (g. 1)
1 T ngq
—(£=2)8-i(q.t)| = ~30 — Iy (1)5,28,0 — 2n + &), (1) ﬁAmﬂ(Cl» 1) = 2w,(t) ?Anf(qv 1), (123)
and the anisotropic stress A j,q(;) 55
o1 - , 1
7 (1) = 30n(1) T (1) A2 (q. 7). (124)
We see that for nonrelativistic dark matter particles the A,-(g.1) > 0 for all others. (126)

collision term is dominated by the elastic scattering proc-
esses as expected. Dark matter self-interactions introduce
another source of damping on the right hand side. Assuming
they are generated by an operator with comparable coef-
ficient to that responsible for the interactions between the
dark matter and the standard model, their effect would be
suppressed just like that of annihilations because the dark
matter is nonrelativistic and its number density is small
compared to that of light standard model degrees of freedom.

To find the initial conditions for Eq. (123), let us consider
the system at a time when scattering is efficient and
q/aw, < 1 and H/w, < 1. We see that in this limit all
modes but the mode with n =0 and Z = 2 are rapidly
driven to zero. Recalling that in this limit T4, = T, we find

The expansion (121) together with Lg(z) =1 and
P,(u) = 3 then implies

2 -
pn(p.i) .
7( )hiJ'(X,t)

127
4w.a*mT (127)

on(p,x,t) = — Pibjs

in agreement with our earlier result (112). As a further
consistency check consider gravitational wave emission
at some time #; long after decoupling. Provided we are
interested in the anisotropic stress at a time ¢ that is not too
long after emission so that we still have
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(128)

Lo g (2Ta(1))3?
dr <1,
/zl a() ( m

all couplings between modes are negligible and we simply
have

Apy(g.1) = (129)

so that

mij(X, 1) = =n(0)T g (1) (hjj (X, 1) (130)
consistent with Eq. (25) in Sec. IV since the comoving
kinetic energy density is given by & = 3a°nT g, /2.

As long as the particles move a distance that is short
compared to the wavelength of the gravitational wave on
the time scale on which the dark matter and the standard
model exchange energy, we have (¢/a)v < w, so that the
higher multipole moments are driven to zero and the

hierarchy reduces to

(1)
Tdm<t>

All that remains is to find the initial conditions, but
provided ¢/aw, < 1 around the time of freeze-out when
o, > H, we know that the initial conditions are given by
Eq. (125), and the solution is

— hij(x, 1)),

Aoz(fl’ 1)+ 20(t) —— < Apa(g, 1) = (131)

_%hq( )

Ap(q.t)= —%exp [—2 [1 "t o, (1) Tj,it(lt)/)]
310 t di'h (t)exp[ 2/; dr'w,(1") d<(?/)}
(132)

Intermediate modes enter the horizon when the dark matter
is nonrelativistic, and we can take #; early enough so the
mode is outside the horizon. In this case we can neglect the
first term on the right hand side so that the time evolution
for gravitational waves is governed by

h'q(t)+3th(t)+Z—th(t)

t . t Tt
=—162GnTyy, / dt'h,(t)exp {—2 / dt"w (") ()
’/

4

(133)

For modes that enter the horizon after kinetic decoupling
the argument of the exponential is small and as expected the
equation reduces to that studied in Sec. IV.

As an additional check, let us also consider modes that
enter the horizon before kinetic decoupling when w, > H.

Tam (1))

For modes whose wave numbers satisfy ¢/a < w,, we see
that the integral is dominated by times # that differ from ¢
by ~1/w,. Since the mode function varies on much longer
time scales set by ¢/a and H, we can approximate its
argument by ¢ =~t and recover an anisotropic stress
consistent with Eq. (124) with Ay, given by Eq. (125).
As we saw, this leads to an additional friction term, but the
effect is much too small to be observable.

As the universe expands, the rate @, eventually drops
below ¢/a. For modes that entered significantly before
kinetic decoupling this happens while w, > H so that
q/a > w,> H. At this time Ty, ~# T and we can write the
anisotropic stress as

7,(1) = nT [ "dth, (1) exp [-2 / [dt”a)r(t”)]. (134)

We can break up the integral into a contribution from the
initial time 7, to some time 7, when g/a > w, > H and a
contribution from #, to the time of interest ¢

oo 1,
m,(1) —nT/ dt'h, (1) exp [—2/ dt”a)r(t”)]
A I
t
X exp {—2/ dt”a)r(t”)]
A

t . t
+nT / di'h,(7') exp [—2 / dt”a)r(t”)], (135)
t, t’

The first term on the right hand side is then exponentially
suppressed by the last factor provided ¢ is at least a few
1/w, after ¢,, and we can use the same trick as in Eq. (29)
to perform the integral on the second line because g/a >
w, > H for all ¥. The equation of motion of the gravita-
tional waves is then

hy(t) + 3Hh, (1) +

(136)

As long as w, > H, collisions rapidly erase the second
term on the right-hand side and the equation simplifies to
the homogeneous equation

Iy (1) + 3Hh, (1) + @?h, (1) =0  with

2 322GE
w? =L L 2

a? 3

(137)

where £ is the proper density of kinetic energy £ = 3nT /2.
So once ¢/a> w,, the only effect is the modified
dispersion relation. We can then compute the phase shift
caused by this modification throughout cosmic history as
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apH,

<1, (138)

f 1
Ap = / " 4r 1676E
Ia 3q/a(t)

where #, denotes the present time. We see that even for
primordial gravitational waves that entered the horizon
before kinetic decoupling the modification to the dispersion
relation has no observable effect.

From this discussion, we see that modes are not signifi-
cantly affected either at early times when ¢/a < w, or once
g/a> w,. What remains is to compute the effect of
collisions around the time when ¢/a = ®;,. For this purpose
it is convenient to introduce the independent variable x =
a/ayy and to define the Hubble rate at kinetic decoupling
such that Hyy = H(tq) = 2w,(tq). In this case Eq. (133)
becomes

2
hy(x) + ;hﬁ] (x) + K2h,(x)
T 2 fx X
= —M/ dzh,(z) exp [—/ dz’z’d)(z’)],
Zz

Pxd x|
(139)

where @(y(1)) = o (t)/r(tia), kK = q/axgHya and pq is
the energy density when H(#,q) = 2w, (fq). This equation
neglects the effect introduced by the change in the number of
relativistic degrees of freedom on the expansion rate studied
in [9] because we are interested in small corrections
introduced to the standard calculation of the gravitational
wave spectrum by the velocity dispersion of the dark matter
particles. We have set T = T, in the exponential because
as we will see the effect of collisions on modes that enter
before kinetic decoupling are most significant around the
time when the wave number of the gravitational wave is
comparable to @,, which occurs before kinetic decoupling
when T =~ T4,. The integral on the right-hand side receives
negligible contributions at early times when the modes are
frozen and we can set x; = 0.

We will keep @(y) general for now, but it may be helpful
to know what behavior we expect. If the interactions
between the dark matter particles and the standard model
are controlled by a single operator, the dark matter is
nonrelativistic and the standard model particles are rela-
tivistic, the rate scales like @, « T%*#. The value of S is
determined by the form of the interactions between dark
matter and the standard model. An interaction between a
nonrelativistic scalar or fermionic dark matter particle and
a relativistic scalar through a dimension four and five
operator, respectively, would correspond to =0, =2
would describe a nonrelativistic, fermionic dark matter
particle interacting with a relativistic fermion through a
dimension six operator, etc.

The anisotropic stress is proportional to the fraction of
the energy density stored in kinetic energy of the dark
matter particles, which is small both because the dark

matter particles are nonrelativistic at the time of interest and
because the universe is radiation dominated, justifying a
perturbative treatment. Using the mode functions (63), (64),
and the Green’s function (65), the leading order solution is
given by

hy(x) = ho(1 4 C(x))hl(x) + hgD(x)hZ(x),  (140)

with the functions

x 6nT gyt
Clx) = - / dych? (y) L amY

. Pkd

X Ay dzhy (z) exp {— /Zy dz’z’cb(z’)}, (141)

x 6nT gy
D(x) :/ dychiy(y) —"—
X1 Pxd

X Ay dzh}/(z) exp {— /Zy dz’z’cb(z’)} (142)

Introducing the dark matter kinetic energy density at
kinetic decoupling &4 and recalling that the temperature of
the dark matter particles obeys Eq. (99), we find

4(€de
Pxd

X Ay dzhll (z) exp {— /Zy dz’z/é)(z’)}, (143)

C(x) =

/ " dyyram(0)R2(y)

o 4gde
Pxd

D() / *dyyeam() ()

x A " dzhY (z) exp {— / ’ dz’z’c?)(z’)}, (144)

where 745 = Tam/Ta 1S the solution of the differential
equation

1
3

d (1
S (P () :w(;—rdm), (145)

that approaches 74y (y) — y~! before kinetic decoupling
when y <« 1. After kinetic decoupling the right-hand side
of the equation is negligible and the temperature of the dark
matter particles redshifts like y~2. Notice that here Ty is
the temperature of the standard model particles at kinetic
decoupling so that £,y = n(fq) Ty differs from the kinetic
energy density in the dark matter particles at decoupling by
a factor 74, (1).

We can think of C(x) as a change to the amplitude of the
mode caused by collisions whereas D(x) corresponds to the
phase shift generated by them. Writing £y = 3pmiavig/2.
we see that the effect is suppressed both because the
velocity at decoupling for cold dark matter is of order
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1072-1073 and because decoupling typically happens deep
in the radiation dominated era so that p, 14 < piq.

For modes that enter the horizon long before kinetic
decoupling k > 1, and we already know from our earlier
discussion that C and D do not receive significant con-
tributions from very early or late times and we are
interested in their behavior when (g/a) ~ @, or yd ~ k
when y® > 1 and y < 1. In this case the integral over z is
dominated by z~y. Provided (y&) < (y&)*> we can
change variables to z = y + u and approximate the integral
by expanding the argument of the exponential to leading

order in u
y y
/ dzhl/ (z) exp [—/ dz/z'ﬁ)(zl)]
0 z

< [ dunl -+ wexp ().

[Se]

(146)

Expanding everywhere but in the trigonometric functions in
hj/(z) to leading order in u this leads to the following
expression for x > 1

A ’ dzhl (z) exp [— /Z ' dz’z’cb(z’)}

k(1 4 y*®) cos(ky) + y(k* — @) sin(xy)
~ 5555 . (147)
Ky* (k% + y*@?)

For large enough y an additional constant contribution
arises from a saddle point. However, this contribution
decays rapidly for large x and in any case does not
contribute once integrated against the oscillatory mode
functions. So we will ignore it and work with (147).

Given equation (147) we can easily find the dominant
contributions to C(x) and D(x). Neglecting the suppressed
oscillatory contributions, before kinetic decoupling when
Tam ~ y~!, we find

0.000 F

-0.002

—-0.004

C(x)pra/4 Exa

-0.006

-0.008 |

00 05 10 15 20 25 30
X

4gkd /X 1 + y2&)2
Clx)~— dy . (148
() Pra Joo 203 (2 + yRa?) (148)
4gkd X K'2 —_ (?)
Dx)m—X [Ty~ " 149
) pra Joo 7 2693 (k% + y0?) (149)

As expected, the dominant contribution to the integrals
arises when « ~ y® or equivalently ¢/a ~ w,.

Let us first consider the phase shift. Provided & decays
more rapidly than y~!, the phase shift at late times, when
Ky > 1 behaves like

4& x 1
r—< [ dy 53
Pxd

D(x) g

(150)

independent of the detailed behavior of @ and consistent
with the definition of the phase shift in Eq. (138) valid
for g/a > w,.

Turning to the effect on the amplitude, the sign of C(x) is
negative so that gravitational waves are damped around the
time when ¢g/a ~ w, as expected. We show a comparison of
a numerical computation with these results in Fig. 4 for a
representative wave number of k = 40 and for a rate that
scales like a power law @(y) = y~“*#) with g = 2.

Continuing with @ (y) = y~#*#) for concreteness, we see
that the amount of damping experienced around the time
when ¢/a ~ o, scales like k= >*#)/G+P) for p = 2 we, for
example, find that gravitational waves with x> 1 are
damped by an amount

Zﬂgkd @ . - 1 +
N_—55/4fﬂ1/2/7kd’<4/5 { —l—m with ¢ = >

(151)

1S

Co

This result is compared with a numerical calculation
in Fig. 5. We see that the power spectrum of primordial
gravitational waves carries information both about when

0.015}

0.010F

D(x)pra/4 Exa

0.005F

0.000}:

FIG. 4. Left: Comparison of Eq. (148) (red) with the results of a numerical calculation (orange). Right: Comparison of Eq. (149) (blue)
with the results of a numerical calculation (green). The small oscillatory contributions were neglected in the analytic calculation because

we were interested in the asymptotic behavior.
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FIG. 5. Top: Numerical calculation of the damping (left) and

phase shift (right) acquired by gravitational waves around the
time of kinetic decoupling of the dark matter particles from the
standard model. Bottom: Comparison of the numerical compu-
tation (orange) with the analytic results described in the text for
k < 1 (dashed green) and for x > 1 (dashed red).

kinetic decoupling occurs and about the type of interactions
of the dark matter with the standard model.

Our discussion did not crucially rely on the assumption
that the collisions are between dark matter particles and
standard model particles and readily extends to models of
interacting dark matter. In the presence of dark matter self-
interactions, @ in the exponentials of Eqs. (143) and (144)
should be replaced by the total rate at which collisions
transfer energy between dark matter particles, either by
collisions with the standard model particles or by self-
interactions. Elastic self-interactions do not affect the
temperature evolution, and the rate in Eq. (145) that
controls the dark matter temperature evolution remains
the rate associated with elastic interactions with the
standard model unless there are number changing inter-
actions in the dark sector, such as 3 — 2 processes, or the
dark sector contains several degrees of freedom.

Self-interactions lead to additional collisions which will
isotropize the distribution function of dark matter particles
more rapidly. This reduces the anisotropic stress and the
effect of dark matter on gravitational waves. Besides this
general expectation, any discussion of dark matter self-
interactions is highly model-dependent, and we will not
attempt to classify all possible models. Instead, we content
ourselves with a simple concrete example to illustrate that
self-interactions may also leave imprints on the gravitational
wave spectrum, and imagine a scenario in which the dark
matter undergoes elastic self-interactions. The thermally
averaged cross section for elastic scattering of nonrelativistic

particles is constant, leading to a contribution to the
relaxation rate that redshifts like the density of dark matter
particles, y~>. As we saw earlier, the contribution to the
relaxation rate from interactions with standard model par-
ticles redshifts faster by at least one power of y. For example,
if interactions between the dark matter and the standard
model are controlled by a four-fermion interaction, they lead
to a contribution to the relaxation rate that redshifts like y~°.
Here three powers of the scale factor arise because the
density of standard model particles redshifts like y~3, two
powers arise from the thermally averaged cross section, and
the last power of the scale factor arises because it takes m/T
collisions to transfer energies of order 7 in collisions of the
nonrelativistic dark matter with the relativistic dark matter
particles. After the dark matter has frozen out, the number
density of standard model particles is exponentially larger
than the number density of dark matter particles so that the
relaxation rate would presumably initially be dominated by
scattering of the dark matter particles with standard model
particles. However, because the contribution to the relaxation
rate from collisions with the standard model particles red-
shifts more rapidly as the universe expands, the contributions
from dark matter self-interactions would dominate below a
certain temperature. The power spectrum of primordial
gravitational waves would then contain information about
the interactions with the standard model particles or the
self-interactions depending whether ¢/a~ @ when the
interactions with the standard model particles or the self-
interactions dominate the relaxation rate. In this example the
evolution of the dark matter temperature remains unchanged,
and our results such as (148), (149) directly apply. As long as
@ is a superposition of power laws, away from the transition
region even the scaling of C,, with k we derived for a single
power law can be used. In models that modify the evolution
of the dark matter temperature some additional work is
required, but this is in principle straightforward as well. We
see that gravitational waves carry a great deal of information
about the properties of dark matter. The only problem is that
the effects are hopelessly small.

We are now also in a position to justify the statement we
made in our discussion of long modes for which x < 1,
namely that the change in amplitude and phase acquired
around the time of kinetic decoupling are much smaller
than the contributions acquired after kinetic decoupling. To
see this we consider the behavior of the amplitude and
phase at a time after kinetic decoupling, but early enough so
that the modes are still outside the horizon because this is
when we started the computation for the long modes. At
this time the arguments of the trigonometric functions for
long modes are small and Egs. (143) and (144) become

4412 [x y y
C(x)~ kaX / dytgm(y) / dzzexp [— / dz’z’é)(z’)},
x 0 z

- 3pxa )

(152)
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4(€de3 /x
- | 4yytam(y
3pa X d ( )

X /oy dzzexp [— /zy dz’z’cb(z’)]. (153)

To make contact with our discussion of long modes, we
need C(x) and D(x) sufficiently long after decoupling but
before horizon entry. We can write them as

D(x) ~

2 2
Clx) = C, + 28Tk
3pkd
3
D(x) = D,(x) — ST 12 (154)
3pra

where C,, and D, (x) are given by

4E 4K [x y y
C,= LK/ dyrdm(y)/ dzzexp {—/ dz’z/&)(z’)}
3pxa Jx 0 z

2(€dede2
- 155
3pa ( )
4E gk [
D, (x) = ——— / dyyzam(y)
3pkd x|
y & 3
X /y dzzexp {— /‘ dZ/Z/&)(Z/):| _,_Lkd’(x;
0 z 3pa
(156)

Here 7,4 is defined through the behavior of the dark matter
temperature at late times, which according to Eq. (145) is

am(¥) = & for y> 1. (157)
y

To see that C,, is indeed independent of x, note that as the
argument of the exponential after kinetic decoupling
approaches unity, the terms linear in x cancel, and the
remainder is finite. As we mentioned in our discussion of
long modes, the term in C(x) linear in x ensures that there is
no dependence on the time at which we match onto the
collisionless description. Unlike for intermediate modes for
which the dominant contribution to C,, arises when g¢/a ~ w,,
the dominant contribution here arises around kinetic decou-
pling, and we see that C,, universally scale like k.

The additional factor of y in the integral for D, (x),
introduces a logarithmic dependence on x that is absent in
the collisionless description. As a consequence, unlike C,,,
the phase receives contributions until horizon crossing.
Equation (156) implies that the contribution from the time
around kinetic decoupling universally scales like «°. The
presence of two powers of k in the denominators of the
mode functions in (144) implies that the contribution from
horizon entry scales like k and dominates.

In the model with & = y~**#), the solution to Eq. (145)
can be found explicitly in terms of incomplete I'-functions
and by taking the late time limit we see that the constant in
Eq. (157) is given by

Tig = (2 +ﬁ)_ﬁr<ﬂ>-

s (158)

Approximating the integrand of the y-integral in C,, by its
asymptotic forms

y*? fory <y, and

2 B
1 2 +ﬁ 5[ P
—de<1 - ( ) 2 (2+ﬂ)> for y > y,, (159)
2 y
with
1
Tkd \ 37
= (=< , 160
(%) (160
we find

C — _ngdidKz [3 +[} (de>#ﬁ

3pkd 4+ﬁ 7

+ Q2+ p) <%>7r<2f%ﬁ>] . (161)

The phase D, (x) can be evaluated in the same way, but as
we discussed the contribution from kinetic decoupling is
suppressed by two powers of k compared to the dominant
contribution arising at horizon crossing and we will not
give it here.

The variables used here and in the discussion of the long
modes are related according to

_ ExaTrak
Pxd

€x (162)

For u, = xx, < 1 the constants A and B in Eq. (67) can
then be written as

2

2
U and B=x —ex%.

Ax1
+ex 3

+C, (163)

For modes that obey (¢/a)v/H < 1 around the time of
kinetic decoupling so that k¥ < 1/v,4, equations (143) and
(144) and our discussion here are valid throughout. For a
typical WIMP this corresponds to frequencies of below
~10~° Hz today. For modes with shorter wavelengths we
must understand whether higher multipoles may become
excited. To gain some intuition we will make the simplify-
ing assumption that the relaxation rates for all n and ¢ are
identical to those for n = 0 and # = 2. This is equivalent to
working in the relaxation time approximation. In this case
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the derivation from Sec. III goes through essentially
unchanged and the anisotropic stress is given by

T %) +1
f) = —r— Sdpi’ 1—u?)2d
7y (1) 4ma5(t)/) p>dpn (p)/_1 (1= u?)*du
t e , t , lqp//t
x/t] dt'h, (1) exp {—[ dr’ az(z‘”)m]

! /! Y T(t//)
X exp [—2/{/ dt" w(t )Tdm(t”)i|‘

As before, the equation of motion at late times when
q/a > w,, H is given by Eq. (137), and we only have to
follow the evolution of the mode until ¢/a > w, > H to
find the appropriate initial conditions for this equation.
To find the expression for the anisotropic stress valid
from horizon entry until ¢/a > w, > H, we can proceed
as before and approximate the second line of Eq. (164) as

/y th;/(Z) exp |:_ IKpU lnz _ /y dZ/Z/é\)(Z/):|
0 z

mayy 2
~ /_oo duh}/(y + u) exp [ e ] exp [uyd(y)]. (165)

(164)

The integral on the right-hand side only receives significant
contributions for |u| < 1/« so that the argument of the first
exponential is of order the dark matter velocity v around the
time when ¢g/a =~ w,. Furthermore, because of the integra-
tion over y in Eq. (164) only even powers in u contribute so
that the leading correction occurs at second order in the
dark matter velocity, implying that the damping of the
amplitude and the phase shift for all intermediate modes are
well approximated by Eqgs. (148) and (149). Furthermore,
for all modes that enter after the dark matter particles have
become nonrelativistic, ¢/a ~ @, occurs after freeze-out so
that annihilations can be neglected around this time.

C. Short modes

We now turn to modes that enter the horizon when the
dark matter is still relativistic. While detailed modeling of
the collision terms describing the scattering of relativistic
dark matter particles with the standard model is possible, it
is significantly more tedious than in the nonrelativistic
limit, and we continue with the simplifying assumption that
relaxation rates for all n and ¢ are equivalent to those for
n =0 and £ = 2. In this case the anisotropic stress is

(1= / /+1 224
& \/m +p2/a #
o iqpy

x [ dt'h,(f')exp|— [ dt”
A q( ) Xp|: ‘4 a2(t//) m2+p2/a2(t//):|
X eXp {—z / tdt”a)(t”)} , (166)
t/

with @(#) now the collision rate including both elastic an
inelastic processes.

Short modes naturally subdivide into two classes, one
for which the dark matter is still relativistic and one for
which it is nonrelativistic when ¢/a ~ w. For a typical
WIMP, the boundary between these classes corresponds to
modes with a frequency of 10* Hz today, so that for all
planned interferometer experiments it is sufficient to focus
on modes for which the dark matter is already nonrelativ-
istic when ¢g/a ~ w. As we will see, the dominant con-
tributions for these modes arise during two periods, the first
around the time when the dark matter becomes nonrela-
tivistic, and the second when ¢/a ~ w. Scattering is very
rapid during both periods and we expect (166) to provide a
very good approximation.

From the discussion of intermediate modes, we know that
the equation of motion for gravitational waves when
q/a> w, qv/a is given by Eq. (137). What remains is
to find the initial conditions for this equation or equivalently
the amplitude and phase shift. As before we will make use of
the fact that the dark matter distribution approaches its
equilibrium value on time scales short compared to the
expansion of the universe and the integral over ¢’ receives its
dominant contribution near the upper limit. Using the same
notation as for the intermediate modes, we can approximate

IKpU

y y
dzhl(z) exp [—i/ dz
A 1) : Zdagg/m? + p/]a},

/Z 27z )} (167)
w/_(; duhl (y + u) exp [i a\/%pz/az] exp [uyd(y)].
(168)

The integral over u only receives significant contributions
for |u| of order 1/y@(y), which is of order 1/x when
q/a ~ w. This implies that the argument of the argument of
the exponential is of order the dark matter velocity at this
time and hence small for the modes of interest. The
integration over u implies that the leading contribution
arises at second order in the velocities and we will ignore
these corrections. At earlier times y@(y) > k so that the
argument is further suppressed then, and we can approxi-
mate the anisotropic stress by

477 * 5 (P, )
B5e@h " e
x / a5 + e (o0 (169)

7y (1) =

As long as y@ > k, which is the case for the short modes of
interest until the dark matter has become nonrelativistic, we

123506-22



GRAVITATIONAL WAVES IN COLD DARK MATTER

PHYS. REV. D 97, 123506 (2018)

can neglect u in hé’ and the equation of motion for
gravitational waves becomes

hy(x) + ()2( + y(x))h;(x) + k*h,(x) =0, (170)

with
2 &dp p*(4E* +m?) _
y(x) = 3 / 3 513 i(p,t),
sp(x)ca() ] 2n)7 (xa)E
(171)
where p(x) is the total energy density and E =

\/m? + p*/a’. Either treating the additional damping term
as a perturbation and using the Green’s function (65) or
using the WKB approximation, we find that the damping
of the amplitude is independent of wave number and is
given by

C(x) = 5[) dyyp(y) th
1 p2(4E2+m2)ﬁ
fun0) = o5y [ 0 e ). (172)

At early times when the dark matter is relativistic, fg4, is
time-independent and corresponds to the fraction of the
energy density stored in dark matter. As the temperature
drops below the mass of the dark matter particles, fgm(y)
decreases rapidly and cuts off the integral. In general, 7i(p, ¢)
follows from the freeze-out calculation based on Eq. (100).
For scattering rates that do not drop too rapidly, we can
approximate 7i(p, ) by its equilibrium abundance and write

funl) =20 [ LR
amlY) = 9.(y) 7 Jo 2x° (Sz + 22)3/2 eV e 1]
m m
ith s=—-=—y. 173
Wi s T dey (173)

with g, counting the number of degrees of freedom in the
dark matter, and g, (y) the usual effective number of degrees
of freedom.

If the interactions between the dark matter particles and
the standard model are controlled by a single operator, we
expect @(y) = (m/Tyq)y ). In this case the amount of
damping experienced around the time when the dark matter
becomes nonrelativistic is given by

o 4 g4 (T \*?
Cu= =32 (1))

(174)

where g, ,, is the effective number of relativistic degrees of
freedom around the time when the dark matter particles
become nonrelativistic, and F(f) is a function that only
depends on f and can readily be evaluated numerically. In our
example of = 2, it takes the value F(2) = 12. For larger

values of 3, ii( p, t) should be obtained using Eq. (100). Since
Tiq/m is the square of the dark matter velocity at kinetic
decoupling, we see that the effect is rather small.

We now know the mode functions for short modes at a
time when ¢/a is still small compared to @ but the dark
matter has already become nonrelativistic. We can proceed
just like for the intermediate modes to evolve the modes until
q/a > w and Eq. (137) describes their evolution. The only
difference is that for intermediate modes the lower limit of
the integral in Eq. (147) was zero whereas it is now nonzero.
However, the integral is dominated by the contribution near
the upper limit so that this difference is negligible and the
damping and phase shift acquired around the time when
q/a ~ w, are still given by Egs. (148) and (149).

As long as the two events are separated, the total amount
of damping is simply given by C,,+ C,. For high
frequencies the first term dominates, for low frequencies
it is the second. Up to order one factors, the transition
between the regime occurs at

CNCRONC AT
K‘ ~ _— _ —_ 1 - s
9a 9 kd m Ty

with frequency independent damping above this wave
number and an amount of damping that scales like
k=(+A)/G+) for smaller wave numbers.

VIII. CONCLUSIONS

We have analyzed the effects of cold dark matter on the
propagation of gravitational waves of astrophysical and
primordial origin. Our analysis does not suggest any way of
detecting the effect of cold dark matter on the propagation
of gravitational waves from astrophysical gravitational
waves in the near future.

Primordial gravitational waves in principle contain a
wealth of information about dark matter and its interactions
such as coupling strengths and the nature of the inter-
actions. However, in practice the effects of cold dark matter
on primordial gravitational waves also appear too small to
be detectable. For the longest modes that enter after matter
radiation equality, the anisotropic stress is small because
the cold dark matter is highly nonrelativistic by the time
of horizon entry. The effects are largest for intermediate
modes that enter the horizon around the time of kinetic
decoupling, but even then the effects are highly suppressed
because the cold dark matter is nonrelativistic at this time
and because the contribution to the energy density from
dark matter is small compared to that in radiation at the time
of kinetic decoupling. For shorter modes, the effects are
suppressed because collisions rapidly drive the system
toward local equilibrium.

Unlike cold dark matter, particles that decouple when
they are relativistic have a significant effect on primordial
gravitational waves. Modes that enter after Kkinetic
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decoupling are damped [5]. The spectrum of primordial
gravitational waves on scales that enter the horizon around
the time of kinetic decoupling contains information about
the interactions. However, for neutrinos, the only particles
known to decouple relativistically, kinetic decoupling is
imprinted on modes with frequencies that are too high to be
accessible in the CMB and too low for pulsar timing arrays.
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Note added.—After our paper was nearly finished, we
encountered a recent paper [10] that covers much the same
ground as ours regarding gravitational waves from astro-
physical sources, finding as we have that damping of these
waves is negligible. In addition to damping, our discussion
pays close attention to the modification of the propagation
speed of these waves in cold dark matter, and includes a
detailed treatment of the effects of cold dark matter on
primordial gravitational waves, which is not considered
in [10].

APPENDIX: BOLTZMANN HIERARCHY

In this Appendix we provide the derivation of the
Boltzmann hierarchy (123) from the linearized
Boltzmann equation (103). As we explained in Sec. VII,
the form of the mode expansion for the gravitational field
given in Eq. (53) implies that Eq. (103) only depends on the
direction of the momentum of the dark matter particles
through p = p - ¢ and e;;(3,4)p'p’. For isotropic initial
conditions, the perturbation to the phase space density of
the dark matter particles introduced by the gravitational
wave must then be of the form (120). For this Ansatz
Eq. (103) becomes a differential equation for A(q, p, u, 1)

ipgp
Ag, p. 1) +—
a~m

~ 1. 0 _
A(q. p.p.t) —th(t)pan(p, 1)
= —2w,(1)A(q, p.p. 1) + o, (1) {35(61, P 1)
0 - o2 2 0 1
ZA pr( 22 2
+p5‘p (4. ppe. 1) - am <3p2+p3p p? )
x A(q. p. . f)} (A1)

with the operator D? given by

? 0

D2 = —(1 = 1) —— + 6u— +6. A2
( ﬂ)aﬂﬁ ﬂ8ﬂ+ (A2)

We will eventually expand in terms of eigenfunctions of D?
and the differential operator appearing on the right-hand
side. Since it involves T instead of T4, one would have to
keep a large number of the eigenfunctions when Ty, < T.
In an attempt to ameliorate this, we will work with the
fractional perturbation A(gq, p, u, t) defined by

N B
A(g, p.pu.t) = A(q, p, s t)p%ﬁ(n ). (A3)

For simplicity, let us drop the first term on the right-hand
side because w, < @, when the dark matter particles are
nonrelativistic. We will restore it later. In this case the
equation becomes

: ipqu
A(q.p.u.t) +—
a-m

1.
A(g.p.gi 1) =y 1)

2T 2T 19}
= t ——A 2 ,t - _1 _A LY 4] 7t
o) |~ Ala )= (=1 ) 5" Mg
0 60 6 1
+a2mT<—+——+———D2>A ,p,/,t,t}
op* pop p* p? 4 )

(A4)

Our goal will be to turn this partial differential equation
into a hierarchy of coupled ordinary differential equations
by constructing the eigenfunctions of the differential
operator on the right hand side and rely on the orthogon-
ality of eigenfunctions with different eigenvalues. The
eigenfunctions of the operator D? with appropriate boun-
dary conditions are

_ P

Prlu) = 1 _quv

(AS)

where P (u) are associated Legendre polynomials. These
functions are eigenfunctions of D? with eigenvalue £(£ + 1)

D*Py(u) = (¢ + 1)Py(u). (A6)
and obey the orthogonality relation
[t =P = g A 2 e
(A7)
For # = 2 we simply have
Palu) =3, (A8)

so that the orthogonality relation also implies
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1 16
[ an =P = o0 (a9
Furthermore, they obey the recurrence relation
£+1 ‘-
WP (1) = il —1(u )+Zf+ 1Pf+l( u).  (A10)
Expanding
A(g.p.pt) =Y (=) 20+ 1)As(q.p.0)Ps(n). (Al

¢

and using the recurrence relation (A10), the orthogonality
relations (A7) and (A9), Eq. (A4) becomes

prq
26+ 1)a*m

1.
—(¢=2)As_1(q.p.1)] +%hq(t)5f,2

As(g.p.t)+ [(£+2)As41(q.p.1)

= w,(1) {—2—TAf(q p.1)— <2—T—1> ;Af(q,p,t)

Tdm Tdm
P60 L(C+1)-6
T 22T EA .
+d®m <a it > f(q,p,t)}
(A12)

It would seem natural to work with the eigenfunctions of the
operator on the right-hand side. However, it turns out to be
convenient to instead work with the eigenfunctions

T 9, (& 60 £f+1)-6
_ T T c
Ton 0p 4" <3 oy P ne(2)

Lnf(z)

——n+£-2)— (A13)

Tdm

withn = 0...00 and £ = 2...00, which are given in terms of
generalized Laguerre polynomials L by

2

Emﬂ(Z):Zf/2_1Li+l/2(Z) with Zzzpi'
2a dem

(A14)
As we will see, the advantage of this basis is that z is also the
argument of the exponential in 7(p, ). These functions obey
the orthogonality relation

I(n+7¢+3/2)

n! 0

nn'>

/oo dZZS/Ze_Zﬁnf(Z)En'f(Z) =
0
(A15)

which contains the special case

1
SV

/oo dZZS/ze_Zan(Z) = T 10+ (A16)
0

To make use of the orthogonality relation (A15) when
deriving the hierarchy, we will have to use the relations

Lop-1(z) = 272 Lo (2), (A17)
Ly =" (A

3
Lm’-‘rl (Z) = (n+£+§> Z_l/z‘cnf(z> - (n+ 1>Z_1/2£n+1f(z)’

(A19)
Lopo1(2) = 27V2L,p(2) =27V2L,1p(2) forn>1,
(A20)
d 2n+7¢ -2
az ne(2) I R ne(2)
£+ 1
e (e) fornz 1, (A21)

which directly follow from the relations for associated
Laguerre polynomials

LG() = 157, (A22)
d _si10
— =0, A23
LI (A23)

) = (nek e 30V - ok DL

(A24)

7@ =L@ - L) fornx 1l (A25)
d

L) =L @) fornz1. (A26)

Expanding A,(g, p,t) in terms of these eigenfunctions

ZAmf qv nf

substituting the expansion into Eq. (A12), using the ortho-
gonality relation and identities in the appendix, as well as
Eq. (99) in the form

we arrive at the following hierarchy of equations

/(4. p.1) (A27)

(A28)
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A q

A(g, 1)+ 27+ Da (27’;“1> " {(f +2) (n +7+ %) Aprir(q, 1) =n(@ +2)A,_1741(q,1)

(=2 Bmre(@1) = (€ = 2)Angr (4 r)} -

g (08128,0 — (20 + E)0,(1) o A (q. 1),

L A29
30 Tom (A29)

The derivation in the presence of annihilations proceeds in the same way, and keeping them one arrives at

A q
A Jt
mf(q )+(2f+1

= (=D 4.0)] = =5 h(DsBa = 21+ o)

T n
T_Anf(Q7 1) = 2w,(t) iqunf(Q7 ).
dm n

() e 2 (0 043 @) =16 + D00+ (€= Dnr(a.)

2

(A30)
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