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We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and
primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from
astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational
waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore
show that the spectrum of primordial gravitational waves in principle contains detailed information about
the properties of dark matter. However, depending on the wavelength, the effects are either suppressed
because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy
density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves
in practice also appear too small to be detectable.
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I. INTRODUCTION

The direct observation [1] of gravitational waves from
distant sources immediately heightened interest in the
propagation of these waves from source to detector.
Calabrese, Battaglia, and Spergel [2] considered the future
use of gravitational wave source counts as a probe of
gravitational wave propagation. They did not assume any
specific model for intervening matter, supposing instead
that by some mechanism the wave intensity falls off as a
power of distance. In contrast, Goswami, Chakravarty,
Mohanty, and Prasanna [3] considered the intervening
matter to be an imperfect fluid, using an old result of
Hawking [4], that the intensity of a gravitational wave falls
off in an imperfect fluid at a rate 16πGη, where η is the
viscosity. They set an upper limit on η by adopting the
estimate of Ref. [1], that the source is at a distance of
410 Mpc. This limit would be valid if the source distance
really were 410 Mpc, but the source distance was estimated
in [1] from the observed signal strength, under the
assumption that the gravitational wave is not damped.
The observations in [1] do not rule out a viscosity greater
than the upper bound given in Ref. [3]; if the viscosity were
greater, it would just mean that the distance to the source is
less than 410 Mpc. In order to use the observed intensity
of detected gravitational waves to set an upper limit on the
viscosity, we would need an independent measure of
the distance of the source, other than the intensity of the
gravitational wave.

But even so, a fundamental question would remain: Is it
reasonable to calculate the effect of cosmic matter on the
propagation of gravitational waves by treating this matter as
an imperfect fluid? It is clear that the treatment of a gas as a
fluid, perfect or imperfect, must break down at some
sufficiently small collision frequency. The coefficients of
viscosity and heat conduction in the theory of imperfect
fluids are proportional to the mean free path, and so would
become infinite for zero collision frequency, which is
absurd. The issue whether a particular medium can be
treated as an imperfect fluid, characterized by coefficients
of viscosity and heat conduction, depends on the scales of
distance and time of the process under study. As argued
briefly in Sec. III, in the propagation of a gravitational wave
through some medium, collisions are effective only if the
mean free path in the medium is smaller than the wave-
length. This is certainly not the case for observed gravi-
tational waves. The observed wavelengths are in the range
of 300 to 15000 km, and there is nothing in interstellar
space with free paths that short. (For hydrogen atoms in our
galaxy, with cross sections of the order of a square
Angstrom and a density of the order of 1 cm−3, the mean
free path is of order 1011 km. The mean free path of warm
ionized gas is somewhat shorter, about 5 × 107 km, but still
much longer than the observed wavelengths. Mean free
paths are of course longer outside galaxies, and longer for
WIMPs everywhere.) The wavelength of observed gravi-
tational waves is so much smaller than interstellar and
intergalactic mean free paths that it is more appropriate to
treat cosmic matter as collisionless than as a fluid, perfect
or imperfect. For this reason, and also with an eye to
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possible cosmological applications, this paper will explore
the effect on a gravitational wave of its passage through
cold dark matter.
The general formalism for calculating the effect of

collisionless neutrinos on gravitational waves has already
been laid out in [5]. The perturbation of the neutrinos due to
the gravitational wave was calculated using the collision-
less Boltzmann equation; the result of this calculation was
then used to evaluate the effect of the perturbation back on
the wave. This formalism was applied in [5] to cosmo-
logical gravitational waves in the radiation-dominated
era, in which case the effects were found to be substantial.
Here we are instead concerned with the effects of massive
particles. Our calculations will follow the same track as in
Ref. [5], but the presence of nonzero mass will make them
somewhat more complicated.
In Secs. II through V we develop the general formalism

for calculating those aspects of the effects of massive
collisionless particles on gravitational radiation that are
relevant to both astrophysical and cosmological sources.
After stating our assumptions in Sec. II, a general result for
the anisotropic inertia in the presence of massive collision-
less matter is given in Sec. III for a general Robertson-
Walker scale factor aðtÞ. In Sec. IV we apply these results
to the case of nonrelativistic matter, and give the gravita-
tional wave equation in this case. Section V deals with a
special cases of relevance to both astrophysical and
cosmological sources, of a wave frequency much larger
than the rate of cosmic expansion.
We then consider specific applications. In Sec. VI

we evaluate the effect of intervening dark matter on the
gravitational waves whose detection was reported in [1]. It
will be a surprise to no one that the effect turns out to be
much too small to be observed. In Sec. VII we turn to the
calculation of the effects of cold dark matter on primordial
gravitational waves. Because primordial gravitational waves
with wavelengths accessible at interferometers enter the
horizon before kinetic decoupling of the dark matter or even
when the dark matter is still relativistic, in this section we
extend our discussion to include the effects of collisions. We
show that the spectrum of primordial gravitational waves in
principle contains valuable information about the dark matter
like the temperature of kinetic decoupling and the nature of
the interactions of dark matter particles. Unfortunately, the
effects appear too small to be detectable in the foreseeable
future. We summarize our findings in Sec. VIII.

II. ASSUMPTIONS

We consider gravitational waves in transverse-traceless
gauge in a spatially flat Robertson–Walker background, so
that the spacetime line element takes the form1

dτ2 ¼ dt2 − gijðx; tÞdxidxj; ð1Þ

with

gijðx; tÞ ¼ a2ðtÞ½δij þ hijðx; tÞ�; ð2Þ

where jhijj ≪ 1 and

hii ¼ 0;
∂hij
∂xi ¼ 0: ð3Þ

Since the background Robertson-Walker metric is invariant
under time-independent coordinate-space translations, we
can restrict our attention to superpositions of plane waves
with space-dependence

hijðx; tÞ ∝ eiq·x; ð4Þ

where q is a time-independent comoving wave number.
As is well known, the propagation of the wave repre-

sented by hij is governed by the wave equation

ḧij þ
�
3_a
a

�
_hij þ

q2

a2
hij ¼ 16πGπij; ð5Þ

where q2 ≡ qiqi, and πij is the anisotropic part of the
spatial components of the energy-momentum tensor Tμ

ν:

Ti
jðx; tÞ ¼ πijðx; tÞ þ δij terms; πiiðx; tÞ ¼ 0: ð6Þ

We assume that the wave passes through a medium
consisting of collisionless particles of mass m ≠ 0,
with an isotropic unperturbed coordinate-space density
4πp2dpn̄ðpÞ of particles with

ffiffiffiffiffiffiffiffiffi
pipi

p
between p and

pþ dp. In particular, our treatment will not include the
more familiar effect of gravitational lensing of the gravi-
tational waves by intrinsic density perturbations in the dark
matter distribution. Our first task is then to calculate
πijðx; tÞ. The general result for collisionless dark matter
found in the following section is given below in Eq. (22).
Collisions are included in Sec. VII.

III. CALCULATION OF πij.

For a line element of the general form (1) the four-
momentum of a particle of rest-mass m is

pμ ¼ m
dxμ

dτ
; ð7Þ

so

dxi

dt
¼ pi=p0; ð8Þ

1We take i, j, k, etc. to run over the spatial coordinate indices 1,
2, 3; repeated indices are summed; and we set the speed of light
equal to unity.
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and

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ gijpipj

q
: ð9Þ

It turns out that the covariant components pi satisfy a simpler
equation of motion than the contravariant components

dpi

dt
¼ d

dt
ðgijpjÞ ¼ ∂gij

∂t pj þ ∂gij
∂xk

pkpj

p0
− gijΓ

j
μν
pμpν

p0
;

and therefore for any metric of form (1)

dpi

dt
¼ 1

2

∂gkl
∂xi

pkpl

p0
: ð10Þ

With the spatial components of the metric of the form (2),
this is

dpi

dt
¼ a2

2

∂hkl
∂xi

pkpl

p0
¼ ia2

2
hkl

qipkpl

p0
; ð11Þ

so the changes in the covariant components are of first order
in the perturbation hij.
For a gas of such particles with nðp;x; tÞQidpi

Q
idx

i

particles in a momentum-space volume
Q

idpi around p
and in a coordinate-space volume

Q
idx

i around x, the
space-components of the energy-momentum tensor are

Ti
jðx; tÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detgðx; tÞp

Z
d3pnðp;x; tÞp

iðp;x; tÞpj

p0ðp;x; tÞ ;

ð12Þ

where d3p≡Q
idpi. The phase space density n is subject

to the collisionless Boltzmann equation, which according
to Eqs. (8) and (11) takes the form

0 ¼ ∂n
∂t þ

pi

p0

∂n
∂xi þ

ia2

2
hkl

qipkpl

p0

∂n
∂pi

: ð13Þ

We assume that in the absence of the gravitational wave
represented by hij the density n is some function n̄ð ffiffiffiffiffiffiffiffiffi

pipi
p Þ,

which is a trivial solution of Eq. (13) for hij ¼ 0. As an
initial condition, we suppose that at some initial time t1 the
density in the presence of hij is the same in locally
Cartesian spatial coordinate frames:

nðp;x; t1Þ ¼ n̄
�
aðt1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijðx; t1Þpipj

q �
: ð14Þ

To first order in hij, this is

nðp;x; t1Þ ¼ n̄ðpÞ − 1

2
n̄0ðpÞhijðx; t1Þpipj=p; ð15Þ

where again p≡ ffiffiffiffiffiffiffiffiffi
pipi

p
. At any later time t there is a

dynamical correction δn induced by the gravitational wave,
so that

nðp;x; tÞ ¼ n̄ðpÞ − 1

2
n̄0ðpÞhijðx; tÞpipj=pþ δnðp;x; tÞ;

ð16Þ

with initial value δnðp;x; t1Þ ¼ 0. Since ∂n=∂xi is already
of first order in hij, in Eq. (13) we can use the zeroth order
expressions for pi and p0:

pi ¼ a−2pi; p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2

q
:

Like all other first-order perturbations, δn has a space-
dependence δn ∝ expðiqixiÞ. The first-order terms in
Eq. (13) then give

∂δnðp;x; tÞ
∂t þ iqipi

a2ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2ðtÞ

p δnðp;x; tÞ

¼ pkpln̄0ðpÞ
2p

_hklðx; tÞ: ð17Þ

We return to this in detail in Sec. VII, but let us pause at
this point and consider the effect of collisions. In general,
collisions will drive the phase-space distribution back to the
equilibrium form (14), for which δn ¼ 0, so their effect can
be simulated in Eq. (17) by adding a term −Γδn to the right-
hand side, where Γ is the decay rate of departures from
equilibrium in the absence of field perturbations. Collisions
can be ignored if this term is much less than the transport
term in the left-hand side of Eq. (17)—that is, if Γ ≪ v=λ,
where v ¼ p=a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2

p
is a typical proper velocity

and λ ≈ a=q is the proper wavelength. The decay rate Γ
varies inversely as the mean free path l, so on dimensional
grounds we expect that Γ ≈ v=l. Hence the condition for
neglecting collisions is that l ≫ λ. As remarked in Sec. I,
this condition is well satisfied for detected gravita-
tional waves.
Returning now to the collisionless Boltzmann equa-

tion (17), the solution is

δnðp;x; tÞ ¼ pkpln̄0ðpÞ
2p

Z
t

t1

dt0

× exp

�
−
Z

t

t0
dt00

iqipi

a2ðt00Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2ðt00Þ

p
�

× _hklðx; t0Þ: ð18Þ

In calculating the space components (12) of the energy-
momentum tensor, we use the first-order expressions

GRAVITATIONAL WAVES IN COLD DARK MATTER PHYS. REV. D 97, 123506 (2018)

123506-3



pi ¼ a−2½pi − hikpk�; p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2

q
−

hklpkpl

2a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2

p ; ð19Þ

and Eqs. (16) and (18). To first order in hij the spatial components of the energy-momentum tensor are then

Ti
jðx; tÞ ¼

1

a5ðtÞ
Z

d3pn̄ðpÞ
�

pipjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2ðtÞ

p −
hikðx; tÞpkpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2ðtÞ

p þ pipjpkplhklðx; tÞ
2a2ðtÞðm2 þ p2=a2ðtÞÞ3=2

�

−
1

2a5ðtÞ
Z

d3pn̄0ðpÞ pipjpkplhklðx; tÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2ðtÞ

p þ 1

a5ðtÞ
Z

d3pn̄0ðpÞ pipjpkpl

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2ðtÞ

p

×
Z

t

t1

dt0 _hklðx; t0Þ exp
�
−
Z

t

t0
dt00

iqipi

a2ðt00Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2ðt00Þ

p
�
: ð20Þ

The next-to-last term of Eq. (20) can be calculated by setting n̄0ðpÞpi=p ¼ ∂n̄ðpÞ=∂pi and integrating by parts in
momentum space. In this way we find that all the terms in Eq. (20) cancel, except for a term proportional to δij and the last
term in Eq. (20):

Ti
jðx;tÞ¼

1

a5ðtÞ
Z

d3pn̄0ðpÞ pipjpkpl

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2=a2ðtÞ

p
Z

t

t1

dt0 _hklðx;t0Þexp
�
−i

Z
t

t0
dt00

qipi

a2ðt00Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2=a2ðt00Þ

p
�
þδij terms: ð21Þ

The momentum space volume element in Eq. (21) may
be written as d3p ¼ p2dpdzdφ, where z ¼ qipi=qp is
the cosine of the angle between the wave vector q and the
momentum p, and φ is the azimuthal angle of the
momentum around the wave vector. The integral of
pipjpkpl=p4 over φ must take the form of a linear
combination of symmetric terms formed from Kronecker
deltas and q̂≡ q=q, with coefficients that depend only on z
Z

2π

0

dφpipjpkpl=p4 ¼ AðzÞq̂iq̂jq̂kq̂l þ BðzÞ½q̂iq̂jδkl
þ q̂iq̂kδjl þ q̂iq̂lδjk þ q̂jq̂kδil

þ q̂jq̂lδik þ q̂kq̂lδij�
þ CðzÞ½δijδkl þ δikδjl þ δilδjk�:

Because hkl is transverse and traceless, terms proportional
to q̂k or q̂l or δkl do not contribute in Eq. (21), so all we
need is CðzÞ, which by taking various contractions is easily
calculated to be CðzÞ ¼ πð1 − z2Þ2=4. Discarding terms
proportional to δij, Eq. (21) finally gives the anisotropic
stress tensor for collisionless particles

πijðx;tÞ¼
π

4a5ðtÞ
Z

∞

0

p5dp
n̄0ðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þp2=a2ðtÞ
p

×
Z þ1

−1
ð1−z2Þ2dz

Z
t

t1

dt0 _hijðx;t0Þ

×exp

�
−
Z

t

t0
dt00

iqpz

a2ðt00Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2=a2ðt00Þ

p
�
: ð22Þ

This is traceless and transverse because hij is.

As a check on Eq. (22), let us briefly consider the special
case of massless collisionless particles such as neutrinos,
or at any rate particles that have p=aðtÞ ≫ m during the
period of interest. Here Eq. (22) becomes

πijðx; tÞ ¼
π

4a4ðtÞ
Z

∞

0

p4dpn̄0ðpÞ
Z þ1

−1
ð1 − z2Þ2dz

×
Z

t

t1

dt0 _hijðx; t0Þ exp
�
−
Z

t

t0
dt00

iqz
aðt00Þ

�
:

The argument of the exponential does not depend on p, so
if we integrate over p by parts we have

πijðx; tÞ ¼ −
π

a4ðtÞ
Z

∞

0

p3dpn̄ðpÞ
Z þ1

−1
ð1 − z2Þ2dz

×
Z

t

t1

dt0 _hijðx; t0Þ exp
�
−
Z

t

t0
dt00

iqz
aðt00Þ

�
:

To zeroth order in hij, the proper volume of a coordinate
space volume d3x is a3d3x, and the energy of a massless
particle is given by Eq. (9) as p0 ¼ a−1

ffiffiffiffiffiffiffiffiffi
pipi

p ¼ a−1p, so
the total energy per proper volume is

ρðtÞ ¼
Z

d3pn̄ðpÞp=a4ðtÞ ¼ 4π

Z
∞

0

p3dpn̄ðpÞ=a4ðtÞ:

For m ¼ 0 Eq. (22) therefore gives:
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πijðx; tÞ ¼ −
ρðtÞ
4

Z þ1

−1
ð1 − z2Þ2dz

Z
t

t1

dt0 _hijðx; t0Þ

× exp

�
−
Z

t

t0
dt00

iqz
aðt00Þ

�
;

which is the same result as given for neutrinos by Eqs. (16)
and (17) of Ref. [5].

IV. NONRELATIVISTIC MATTER

For a general nonzero particle mass m, our result (22)
for πij is much more complicated than for m ¼ 0. We can
regain some of the simplicity of the zero mass case by
specializing to the opposite limit, of nonrelativistic matter.
We will now assume (as is likely for dark matter) that the
matter through which the gravitational wave passes is
nonrelativistic, in the sense that n̄ðpÞ is non-negligible
only for p small enough so that

p=aðt0Þ ≪ m; ð23Þ

over the whole time t0 from emission of the gravitational
wave at t0 ¼ t1 to direct or indirect detection of the
gravitational wave at t0 ¼ t. Then Eq. (22) becomes

πijðx;tÞ¼
π

4a5ðtÞm
Z

∞

0

p5dpn̄0ðpÞ
Z þ1

−1
ð1−z2Þ2dz

×
Z

t

t1

dt0 _hijðx;t0Þexp
�
−iðp=mÞz

Z
t

t0
dt00

q
a2ðt00Þ

�
:

ð24Þ

If the dark matter particles move less than the wavelength
of the mode between t00 ¼ t1 to t00 ¼ t, the argument of the
exponential in Eq. (24) is small. The integral over t0 is then
trivial; the integral of ð1 − z2Þ2 over z just gives a factor
16=15; and the integral over p can be done by parts, so that

πijðx; tÞ ¼ −
2E

3a5ðtÞ ½hijðx; tÞ − hijðx; t1Þ�; ð25Þ

where

E ≡
Z

∞

0

4πp2n̄ðpÞdp ×
p2

2m
: ð26Þ

(Note that E=a5ðtÞ is the proper kinetic energy density at
time t.) The wave equation (5) can thus be written as

ḧijðx; tÞ þ 3

�
_aðtÞ
aðtÞ

�
_hijðx; tÞ þ ω2ðtÞhijðx; tÞ

¼ 32πGE
3a5ðtÞ hijðx; t1Þ; ð27Þ

where2

ω2ðtÞ≡ q2

a2ðtÞ þ
32πGE
3a5ðtÞ : ð28Þ

In general, matters are more complicated. The non-
relativistic assumption (23) does not automatically allow us
to set the argument of the exponential in Eq. (24) equal to
zero. Even nonrelativistic particles will travel a distance
large compared to the wavelength if given enough time,
making the argument of the exponential in Eq. (24) much
larger than unity. We will see in Sec. V that this is likely the
case for the gravitational waves reported in [1]. However,
under the relativistic assumption the rate of oscillation of
the exponential in Eq. (24) is much smaller the rate of
oscillation of hij, which is of order q=a. So we can take the
t0-derivative in Eq. (24) to act on the whole integrand of the
integral over t0:

_hijðx; t0Þ exp
�
−
Z

t

t0
dt00

iqpz
ma2ðt00Þ

�

≃
∂
∂t0

	
hijðx; t0Þ exp

�
−
Z

t

t0
dt00

iqpz
ma2ðt00Þ

�

: ð29Þ

The integral over t0 is then trivial, and we find

πijðx; tÞ

≃
π

4a5ðtÞm
Z

∞

0

p5dpn̄0ðpÞ
Z þ1

−1
ð1 − z2Þ2dz

×

	
hijðx; tÞ − hijðx; t1Þ exp

�
−i

Z
t

t1

dt00
qpz

ma2ðt00Þ
�


:

ð30Þ

To see what sort of error is introduced in this approxi-
mation, consider for a moment a case in which the original
t0 integral can be done explicitly for general mass without
the approximation (29). Suppose that aðtÞ is a constant,
which can be taken as aðtÞ ¼ 1, and suppose that the
gravitational wave has a simple-harmonic time-dependence

hijðx; tÞ ¼ Cij expðiq · xÞ expð�iωðt − t1ÞÞ;

with Cij constant, and ω a constant frequency, of order q.
The integral over t0 in Eq. (24) is then straightforward

2Notice that the modification of the dispersion relation comes
with definite sign, and that the phase velocity is greater than the
speed of light so that there can be no gravitational Cherenkov
radiation.
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πijðx; tÞ ¼
π

4

Z
∞

0

p4vdpn̄0ðpÞ
Z þ1

−1
ð1 − z2Þ2dz

× Cij expðiq · xÞ ω

ω ∓ vzq
½expð�iωðt − t1ÞÞ

− expð−iqvzðt − t1ÞÞ�;

where v≡ p=m. Comparison with Eq. (30) shows that in
this case, the approximation (29) just amounts to supposing
that v is small enough to allow us to replace the factor
ω=ðω ∓ vzqÞ with unity.
Coming back to Eq. (30), the wave equation (5) may now

be written

ḧijðx; tÞ þ 3

�
_aðtÞ
aðtÞ

�
_hijðx; tÞ þ ω2ðtÞhijðx; tÞ ¼ Sijðx; tÞ;

ð31Þ

where again

ω2ðtÞ ¼ q2

a2ðtÞ þ
32πGE
3a5ðtÞ ;

E ≡
Z

∞

0

4πp2n̄ðpÞdp ×
p2

2m
; ð32Þ

and Sij is 16πG times the second term in πij:

Sijðx; tÞ≡ −hijðx; t1Þ
4π2G
a5ðtÞm

Z
∞

0

p5dpn̄0ðpÞ

×
Z þ1

−1
dzð1 − z2Þ2 exp

�
−i

Z
t

t1

dt00
qpz

ma2ðt00Þ
�
:

ð33Þ

We write the wave equation in this form because the
right-hand side Sij is a transient that goes to zero exponen-
tially with increasing t after the dark matter particles
have traveled a distance larger than the wavelength of
the mode. More concretely, if for some t2 we have
qp=m

R t2
t1 dt

00=a2ðt00Þ ≫ 1; then for any smooth density
function n̄ðpÞ of p, Sij becomes exponentially small
for t > t2.
To illustrate this, let us take n̄ðpÞ to have the Maxwell-

Boltzmann form

n̄ðpÞ ¼ N expð−p2=2P2Þ; ð34Þ

with N and P any positive constants. The z and p integrals
are then straightforward, and we find that the wave
equation (31) takes the form

ḧijðx; tÞ þ 3

�
_aðtÞ
aðtÞ

�
_hijðx; tÞ þ ω2ðtÞhijðx; tÞ

¼ hijðx; t1Þ
32πGE
3a5ðtÞ exp

�
−
v2

2

�Z
t

t1

qdt0

a2ðt0Þ
�

2
�
; ð35Þ

where E is again given by Eq. (26), and v2 ¼ P2=m2 is the
mean square coordinate velocity for the distribution (34).

Our assumption that v2=a2ðt00Þ ≪ 1 makes the argument of
the exponential in Eq. (35) negligible in the case of few
oscillations, so that in this case the wave equation (35)
agrees with our earlier result (27), and we can take Eq. (27)
as a fair approximation to the wave equation for all times.
But Sijðx; tÞ is exponentially small for late times when the
dark matter particles have traveled far compared to the
wavelength of the mode and the number of oscillations
becomes so large that

ffiffiffiffiffi
v2

q Z
t

t1

qdt0

a2ðt0Þ ≫ 1:

At these late times, the memory of the gravitational field at
the time of emission in the distribution of momenta is
erased, and the wave equation (35) simply becomes

ḧijðx; tÞ þ 3

�
_aðtÞ
aðtÞ

�
_hijðx; tÞ þ ω2ðtÞhijðx; tÞ ¼ 0: ð36Þ

But to find the coefficients of the two independent solutions
of the homogeneous equation (36) we need to use the
inhomogeneous wave equation, Eq. (35).

V. SHORT WAVELENGTHS

It is not possible to find analytic solutions of either
Eq. (35) or Eq. (36) for an arbitrary time-dependence of
the Robertson–Walker scale factor aðtÞ. But we can find
solutions when the frequency ωðtÞ is much larger than the
fractional time-dependence HðtÞ ¼ _aðtÞ=aðtÞ of the scale
factor, and hence also much larger than the fractional time-
dependence of ωðtÞ itself. This of course includes the case
of constant aðtÞ, which is a good approximation for the
gravitational waves reported in [1], and to which we shall
return in Sec. VI.
In the short-wavelength case, the familiar WKB approxi-

mation (neglecting second time derivatives of the coeffi-
cients of the cosine or sine) yields approximate solutions of
the homogeneous equation (36), with time-dependence

a−3=2ðtÞω−1=2ðtÞ × cos ½R t ωðt0Þdt0�
sin ½R t ωðt0Þdt0�:

Knowing these homogeneous solutions, it is easy to
construct a Green’s function that allows us to solve the
inhomogeneous equation (35)
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Gðt; t0Þ≡ a3=2ðt0Þω−1=2ðt0Þ
a3=2ðtÞω1=2ðtÞ sin

�Z
t

t0
ωðt00Þdt00

�
θðt − t0Þ;

for which, within the WKB approximation,
�
d2

dt2
þ 3

�
_aðtÞ
aðtÞ

�
d
dt

þ ω2ðtÞ
�
Gðt; t0Þ ¼ δðt − t0Þ:

The general solution of Eq. (35) is therefore

hijðx; tÞ ¼ hð0Þij ðx; tÞ þ
32πGE

3
hijðx; t1Þ

Z
t

t⋆

dt0

a5ðt0Þωðt0Þ
a3=2ðt0Þω1=2ðt0Þ
a3=2ðtÞω1=2ðtÞ sin

�Z
t

t0
ωðt00Þdt00

�
exp

�
−
v2

2

�Z
t0

t1

qdt00

a2ðt00Þ
�

2
�
;

ð37Þ

where hð0Þij ðx; tÞ is some solution of the homogeneous equation (36). The lower bound t⋆ on the integral over t0 is arbitrary,
because the difference in the integral between two possible choices of t⋆ is a solution of the homogeneous equation (36),
and so far hð0Þ is an arbitrary solution of the homogeneous equation. The one condition that must be satisfied by t⋆ is that the
WKB approximation must be valid from t⋆ to t. This may or may not allow us to choose t⋆ ¼ t1, depending on the context.
Whatever we choose for t⋆, the inhomogeneous term in Eq. (37) and its first time-derivative both vanish for t ¼ t⋆, so the
homogeneous term by itself must satisfy the initial conditions at t ¼ t⋆, and therefore takes the form

hð0Þij ðx; tÞ ¼
a3=2ðt⋆Þω1=2ðt⋆Þ
a3=2ðtÞω1=2ðtÞ

�
hijðx; t⋆Þ cos

�Z
t

t⋆
ωðt0Þdt0

�
þ _hijðx; t⋆Þω−1ðt⋆Þ sin

�Z
t

t⋆
ωðt0Þdt0

��
: ð38Þ

We are now in a position to evaluate the coefficients of the solutions of the homogeneous equation after many
oscillations. We write the argument of the sine in Eq. (37) as

Z
t

t0
ωðt00Þdt00 ¼

Z
t

t⋆
ωðt00Þdt00 −

Z
t0

t⋆
ωðt00Þdt00:

Then Eqs. (37) and (38) become

hijðx; tÞ ¼
a3=2ðt⋆Þω1=2ðt⋆Þ
a3=2ðtÞω1=2ðtÞ

�
cos

�Z
t

t⋆
ωðt00Þdt00

�
ðhijðx; t⋆Þ þ AðtÞhijðx; t1ÞÞ

þ sin

�Z
t

t⋆
ωðt00Þdt00

�
ðω−1ðt⋆Þ _hijðx; t⋆Þ þ BðtÞhijðx; t1ÞÞ

�
; ð39Þ

where

AðtÞ ¼ −
32πGE

3

Z
t

t⋆

dt0

a5ðt0Þ
a3=2ðt0Þω−1=2ðt0Þ
a3=2ðt⋆Þω1=2ðt⋆Þ

sin

�Z
t0

t⋆
ωðt00Þdt00

�
exp

�
−
v̄2

2

�Z
t0

t1

qdt00

a2ðt00Þ
�

2
�
;

BðtÞ ¼ 32πGE
3

Z
t

t⋆

dt0

a5ðt0Þ
a3=2ðt0Þω−1=2ðt0Þ
a3=2ðt⋆Þω1=2ðt⋆Þ

cos
�Z

t0

t⋆
ωðt00Þdt00

�
exp

�
−
v̄2

2

�Z
t0

t1

qdt00

a2ðt00Þ
�

2
�
: ð40Þ

If at some time t0 ¼ t2 the argument of the exponentials in Eq. (40) becomes much larger than unity, the integrals of t0 are
effectively cut off for t0 > t2, and AðtÞ and BðtÞ approach finite t-independent values for t > t2. The solution (39) then
becomes a linear combination of solutions of the homogeneous equation.

hijðx; tÞ →
a3=2ðt⋆Þω1=2ðt⋆Þ
a3=2ðtÞω1=2ðtÞ

�
cos

�Z
t

t⋆
ωðt00Þdt00

�
ðhijðx; t⋆Þ þ Að∞Þhijðx; t1ÞÞ

þ sin

�Z
t

t⋆
ωðt00Þdt00

�
ðω−1ðt⋆Þ _hijðx; t�Þ þ Bð∞Þhijðx; t1ÞÞ

�
: ð41Þ
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VI. OBSERVED GRAVITATIONAL WAVES

As a first application of our results for m ≠ 0, let us
consider the effect of intervening dark matter on observed
gravitational waves [1], believed to be produced by coa-
lescing black holes. Since the source of these waves is at a
fairly small redshift z < 0.1, we can greatly simplify our
calculations by taking the Robertson–Walker scale factor
aðtÞ to be constant during the time elapsed from production
to detection of the waves. Without loss of generality we can
normalize our spatial coordinates so that aðtÞ ¼ 1.
For aðtÞ ¼ 1, the gravitational wave equation (35) in the

presence of collisionless nonrelativistic matter here takes
the form

ḧijðx; tÞ þ ω2hijðx; tÞ

¼ hijðx; t1Þ
32πGE

3
exp

�
−
v̄2q2ðt − t1Þ2

2

�
; ð42Þ

where now the frequency (28) is a constant

ω2 ¼ q2 þ Ω2; Ω2 ¼ 32πGE
3

: ð43Þ

and E is the proper density of kinetic energy.
With aðtÞ constant we can use the results of the previous

section, with no need for the WKB approximation. Since
we are not relying here on theWKB approximation, there is
no obstacle to taking the lower bound t⋆ in Eqs. (39) and
(40) to be equal to the emission time t1. The solution (39) of
Eq. (42) is now exact, and takes the form

hijðx; tÞ ¼ cos ðωðt− t1ÞÞð1þAðtÞÞhijðx; t1Þ
þ sin ðωðt− t1ÞÞðω−1 _hijðx; t1Þ þBðtÞhijðx; t1ÞÞ;

ð44Þ
where

AðtÞ¼−
32πGE
3ω

Z
t

t1

dt0 sin ½ωðt0− t1Þ�exp
�
−
v̄2q2ðt0− t1Þ2

2

�
;

ð45Þ

BðtÞ ¼ 32πGE
3ω

Z
t

t1

dt0 cos ½ωðt0 − t1Þ� exp
�
−
v̄2q2ðt0 − t1Þ2

2

�
:

ð46Þ

The gravitational waves with the lowest observed frequen-
cies have wavelength about 15000 km, so if their source
is at a distance 410 Mpc,3 the quantity qðt − t1Þ is of order

5 × 1018. Hence the argument of the exponentials in
Eqs. (45) and (46) is already much larger than unity even
for t0 much less than t, provided that the rms velocity of the
dark matter is much larger than 2 × 10−19c, which we shall
assume to be the case. In this case the dark matter particles
travel a distance long compared to the wavelength of the
gravitational wave, and the exponentials in Eqs. (45)
and (46) therefore cut off the integrals already for t0 much
less than t, and we can take t ¼ ∞ in AðtÞ and BðtÞ. The
integral for Bð∞Þ is easy

Bð∞Þ ¼ 32πGE
3ωq

ffiffiffiffiffiffiffi
π

2v̄2

r
exp

�
−

ω2

2v̄2q2

�
: ð47Þ

The integral for Að∞Þ is more complicated. It can be
expressed in terms of a confluent hypergeometric function
of the first kind

Að∞Þ ¼ −
32πGE

3q2v̄2
exp

�
−

ω2

2v2q2

�
1F1

�
1

2
;
3

2
;

ω2

2v2q2

�
;

ð48Þ

with [6]

1F1

�
1

2
;
3

2
; z

�
¼ 2−3=2

Z
1

−1
ð1þ tÞ−1=2 exp ðzð1þ tÞ=2Þdt:

ð49Þ

Of particular interest is the limit v2 → 0, with ω=q of
order unity. In this limit Bð∞Þ is exponentially small,
while Að∞Þ → −Ω2=ω2, a result that can be obtained more
simply by writing sinωðt − t1Þ in Eq. (45) as
ð1=ωÞðd=dtÞ cosωðt − t1Þ and integrating by parts. In this
limit Eq. (44) becomes

hijðx; tÞ ¼ cos ðωðt − t1ÞÞ
�
1 −

Ω2

ω2

�
hijðx; t1Þ

þ ω−1 sin ðωðt − t1ÞÞ _hijðx; t1Þ: ð50Þ

One effect of the modified relation (43) between q and ω
is a frequency-dependence of the group velocity

vg ¼
∂ω
∂q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2=ω2

q
:

After the gravitational wave has traveled for a distance D,
two components of the wave of different frequency will
arrive at times separated by Δt ¼ DΔð1=vgÞ. In addition to
the shift in frequency, the presence of the correction term
proportional to Ω2=ω2 in the relation (50) between the
observed gravitational wave and the initial conditions leads
to some distortion of the gravitational waveform.

3The values here correspond to those in Ref. [1] because much
of the paper was written shortly after the discovery of gravita-
tional waves. The conclusions remain the same for the more
recent observations of gravitational wave events.
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But if dark matter is composed of WIMPs, these effects
are extremely small. Even if we were to suppose that dark
matter particles have moderate velocities, and dominate
the cosmic energy density ρ0, the quantity Ω would be no
greater than H0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρ0=3

p
, which of course is tiny

compared with ω for observed gravitational waves, so
Ω2=ω2 is negligible. The correction to the group velocity
has a larger effect, but one that is still very small. After the
gravitational wave has traveled for a distance D, two
components of the wave with frequency differing by Δω
will arrive at times separated by

Δt ¼ DΩ2

2
Δ
�

1

ω2

�
;

which even for D of order 1=H0 and Δω of order ω is less
than the period 2π=ω of the oscillation by a factor of order
H0=ω. It appears that WIMPs can have no detectable effect
on the gravitational waves observed from sources at
moderate redshift.

VII. PRIMORDIAL GRAVITATIONAL WAVES

As a second application,we consider the effect of cold dark
matter on primordial gravitational waves. In much of what
followswewill considerWIMP darkmatter for concreteness,
but the discussion generalizes tomore general models of dark
matter. Let us begin by summarizing the key events during
cosmic history that are important for our treatment of the
effects of WIMP dark matter on primordial gravitational
waves. At early times WIMPs are relativistic and are in
thermal equilibrium with the particles of the standard model.
As the universe cools, the dark matter particles become
nonrelativistic. Shortly after this time, when the temperature
of the medium has dropped to ≈1=30 of the WIMP mass,
inelastic processes are no longer efficient enough to keep the
dark matter particles in chemical equilibrium and the comov-
ingnumber density of darkmatter particles becomes constant.
However, elastic scattering still occurs rapidly and keeps the
WIMPs in kinematic equilibriumwith the standardmodel. As
the universe cools further, elastic scattering between the dark
matter particles and standard model particles becomes ineffi-
cient as well, WIMPs kinetically decouple and become free-
streaming. Astrophysical sources emit gravitational waves
long after kinetic decoupling when the dark matter is already
free-streaming. In contrast, depending on their frequency,
primordial gravitational waves may propagate during earlier
epochswhen the darkmatterwas still in kinetic equilibriumor
even relativistic.
Wewill refer to gravitational waves that enter the horizon

after kinetic decoupling as long modes. For typical WIMPs,
these have frequencies of at most a few times 10−12 Hz
today, and can only be accessed through measurements of
the polarization of the cosmic microwave background. We
call modes that enter the horizon before kinetic decoupling

but after the dark matter has become nonrelativistic
intermediate modes. These modes have frequencies
between 10−12 and ∼10−5 Hz, and fall into the frequency
range observable with pulsar timing arrays. Modes acces-
sible with DECIGO [7] or BBO [8] enter the horizon when
the dark matter particles are still relativistic, and we refer to
them as short modes.

A. Long modes

We first discuss effects on modes with wavelengths
that can be accessed through measurements of the polari-
zation of the cosmic microwave background. In linear
perturbation theory primordial gravitational waves generate
B-mode polarization whereas density perturbations do not.
So the search for B-mode polarization of the CMB is an
indirect search for gravitational waves. Lensing of the
CMB by large scale structure between us and the surface of
last scattering also generates B-mode polarization and in
practice limits the multipoles for which we can extract
information about primordial gravitational waves to less
than a few hundred.
The contribution to the CMB anisotropies at multipole l

is dominated by gravitational waves with wave number
k ¼ aLl=dL, where aL is the value of the scale factor at last
scattering, and dL is the angular diameter distance to the
surface of last scattering. For a flat geometry

dL ¼ 1

H0ð1þ zLÞ
Z

1

1=ð1þzLÞ

dx
Ωr þΩmxþΩΛx4

≈ 13 Mpc−1:

ð51Þ

So the CMB allows us to access gravitational waves with
comoving wave numbers k≲ 0.03 Mpc−1. These modes
entered the horizon at a redshift of z≲ 104 long after
kinetic decoupling of the dark matter. The anisotropic stress
for the modes of interest is then well approximated by
equation (24). Furthermore, by this time these modes have
at most undergone a few oscillations so that the anisotropic
stress for the modes accessible in the CMB further
simplifies to (25) and (26).
In Secs. V and VI we found analytic solutions to the field

equations in the presence of nonrelativistic collisionless
matter for wave frequencies much greater than the Hubble
expansion rate, either using the WKB approximation to deal
with general expansion rates, or in the special case of constant
aðtÞ, where this approximation is unnecessary. We are now
concernedwith gravitational wave frequencies comparable to
the expansion rate. Unfortunately there is no way to find
analytic solutions of the field equations for Robertson-Walker
scale factors aðtÞ with arbitrary time-dependence. However,
we can find solutions during the matter and radiation
dominated eras most relevant to the CMB.
To treat the time evolution during the matter and

radiation dominated eras, it is convenient to introduce

GRAVITATIONAL WAVES IN COLD DARK MATTER PHYS. REV. D 97, 123506 (2018)

123506-9



the independent variable y ¼ a=aeq, where aeq is the scale
factor at matter-radiation equality, and write Eq. (27) as4

ð1þ yÞ d2

dy2
hijðx; tÞ þ

�
2

y
þ 5

2

�
d
dy

hijðx; tÞ þ ϰ2hijðx; tÞ

¼ −
4ϵ

y3
ðhijðx; tÞ − hijðx; t1ÞÞ; ð52Þ

with ϵ ¼ E=a5eqρmeq the fraction of the energy density of
the dark matter particles stored in kinetic energy at matter-
radiation equality, and ϰ ¼ ffiffiffi

2
p

q=aeqHeq. The solution to
this equation cannot be written in closed form, but we can
find solutions for ϰ ≪ 1 and ϰ ≫ 1.
Let us first consider modes that enter the horizon after

matter-radiation equality for which ϰ ≪ 1. For modes
outside the horizon at last scattering hijðx; tÞ ≈ hijðx; t1Þ
and the anisotropic stress vanishes. So we expect the
evolution of the gravitational waves to be unaffected by
the presence of cold dark matter. To be more quantitative,
we can treat both the gradients and the anisotropic stress as
a perturbation. Introducing the mode expansion

hijðx; tÞ ¼
X
λ¼�2

Z
d3qβðq; λÞeijðq̂; λÞhqðtÞeiq·x; ð53Þ

the general solution to the homogeneous equation is given
by a linear combination of

h1qðyÞ ¼ 1 and h2qðyÞ ¼
�
1

2
ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
− 1

−
ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
y

�
:

ð54Þ
The second solution diverges like 1=y for small y and it is
the first the solution that is of interest in the context of
primordial gravitational waves. With help of the Green’s
function

Gðy; zÞ ¼ z

2y
ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
�
−2z

ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
þ 2y

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p þ yz

þ ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
− 1

− ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
− 1

�
θðy − zÞ:

ð55Þ

we can write the solution at leading order in ϰ2 as

hð0Þq ðyÞ ¼ hoq

�
1þ 2ϰ2

15y

�
8 − 8

ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
− 3y2

þ 4y

�
1þ ln

y
4
þ ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
− 1

���
: ð56Þ

The leading contribution from anisotropic stress also arises
at order ϰ2 and is given by

hð1Þq ðyÞ ¼ hð1Þq ðy⋆Þ − 4ϵ

Z
y

y⋆
dzGðy; zÞ h

ð0Þ
q ðzÞ − hoq

z3
; ð57Þ

where y⋆ is late enough for collisions to be negligible but
early enough so the mode is far outside the horizon, and

hð1Þq ðy⋆Þ is the contribution generated by up to this point.
We will compute it in Sec. VII, for now we simply give the
result

hð1Þq ðy⋆Þ ¼ hoq

�
1þ ϵϰ2y⋆

3
þ Cω

�
; ð58Þ

where Cω is negative and describes a small amount of
damping generated by collisions around the time of kinetic
decoupling. It is of order ϵϰ2akd=aeq and is suppressed
relative to the terms of interest by akd=aeq ≪ 1, where akd is
the scale factor at kinetic decoupling, and we can safely
neglect it.
The result cannot be written in closed form for general y

but becomes simple in the radiation and matter dominated
epochs

hqðyÞ → hoq

�
1 −

1

6
ϰ2y2 þ ϵϰ2y

3

�
for y ≪ 1; ð59Þ

hqðyÞ → hoq

�
1 −

2

5
ϰ2yþ 4ϵϰ2ð8ζð3Þ − 7Þ

15

�
for y ≫ 1:

ð60Þ

Since 8ζð3Þ − 7 ≈ 2.6 > 0, we see that modes outside the
horizon during last scattering receive a small scale-depen-
dent boost. Since last scattering occurs for y ≈ 3, this
simple limiting form does not capture the effect on the
CMB accurately, but we can expand the result to higher

orders, and find that the solution is given by hqðyÞ ¼
hð0Þq ðyÞ þ hð1Þq ðyÞ with hð0Þq ðyÞ given by Eq. (56) and the
leading effect due to collisionless matter given by

hð1Þq ðyÞ ¼ 4ϵϰ2hoq

�
8ζð3Þ − 7

15
−

4

5y
þ 8ð15þ 2π2Þ

135y3=2

þ 4ð7þ 2 lnðy=4ÞÞ
15y2

−
4ð15þ 2π2Þ
225y5=2

−
32ð2þ lnðy=4ÞÞ

135y3

�
þOðy−7=2Þ ð61Þ

The limiting form (60), the approximation (61), and the
result at order ϰ2 and linear in ϵ based on Eq. (57) are
compared to the numerical result in Fig. 1 for ϰ ¼ 1=10.
The difference between the numerical result and our

4This equation is valid after electrons and positrons have
frozen out.
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approximation for large y arises because the mode is about
to enter the horizon.
We see that the effect is highly suppressed and unob-

servably small for any upcoming or planned CMB experi-
ment both because the fraction of the energy density stored
in kinetic energy density of the dark matter is very small
and because for these modes ϰ ≪ 1.
Let us now turn to modes with ϰ ≫ 1. These modes

enter the horizon at a time when the energy density of the
universe is dominated by radiation. To find their time
evolution, we will first find the solution during radiation
domination and then match it onto the WKB solution (39)
to extend it to late times.
In the radiation dominated period, y ≪ 1, the equation of

motion for gravitational waves (52) simplifies and the mode
functions will only depend on y through u ¼ ϰy. It is then
convenient to write the equation of motion as

d2

du2
hqðuÞ þ

2

u
d
du

hqðuÞ þ hqðuÞ ¼ −
4ϵϰ

u3
ðhqðuÞ− hqðu1ÞÞ:

ð62Þ
The general solution of the homogeneous differential equa-
tion is a superposition of the solutions

h1qðuÞ ¼
sinðuÞ
u

; ð63Þ

h2qðuÞ ¼
cosðuÞ

u
: ð64Þ

The second solution diverges for small u and consequently
decays outside the horizon so that the first solution is
relevant for primordial gravitational waves. It is normalized

so that h1qð0Þ ¼ 1. In this case we can write the Green’s
function as

Gðu; vÞ ¼ v sinðu − vÞ
u

θðu − vÞ
¼ v2½h1qðuÞh2qðvÞ − h2qðuÞh1qðvÞ�θðu − vÞ; ð65Þ

and we can formally write the solution to the inhomogeneous
equation as

hqðuÞ ¼ hð0Þq ðuÞ − 4ϵϰ

Z
u

u⋆
dvGðu; vÞ hqðvÞ − hqðv1Þ

v3
:

ð66Þ

The integral and its derivative vanish at u⋆ so the homo-
geneous solution must be chosen to satisfy the desired initial
conditions. We can write it as

hð0Þq ðuÞ ¼ Ah1qðuÞ þ Bh2qðuÞ; ð67Þ

with

A ¼ hqðu⋆Þðcosðu⋆Þ þ u⋆ sinðu⋆ÞÞ þ h0qðu⋆Þu⋆ cosðu⋆Þ;
ð68Þ

B ¼ hqðu⋆Þðu⋆ cosðu⋆Þ − sinðu⋆ÞÞ − h0qðu⋆Þu⋆ sinðu⋆Þ:
ð69Þ

To first order in ϵϰ we can write the solution as a super-
position of the two solutions of the homogeneous solution,
albeit with time dependent coefficients

hqðuÞ ¼ A½ð1þ CðuÞÞh1qðuÞ þDðuÞh2qðuÞ�
þ B½EðuÞh1qðuÞ þ ð1þ FðuÞÞh2qðuÞ�; ð70Þ

with

CðuÞ ¼ −4ϵϰ
Z

u

u⋆

dv
v
h2qðvÞððh1qðvÞ − h1qðv1ÞÞ; ð71Þ

DðuÞ ¼ 4ϵϰ

Z
u

u⋆

dv
v
h1qðvÞðh1qðvÞ − h1qðv1ÞÞ; ð72Þ

EðuÞ ¼ −4ϵϰ
Z

u

u⋆

dv
v
h2qðvÞðh2qðvÞ − h2qðv1ÞÞ; ð73Þ

FðuÞ ¼ 4ϵϰ

Z
u

u⋆

dv
v
h1qðvÞðh2qðvÞ − h2qðv1ÞÞ: ð74Þ

These integrals can all be expressed in terms of trigonometric
functions, sine and cosine integrals, but we will not give the

0 10 20 30 40 50

1 h
1
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0.005

0.000

0.005

0.010

FIG. 1. The effect of collisionless matter on the time evolution
of a mode with ϰ ¼ 1=10. We show the limiting form given in
Eq. (60) (green), the approximation given in Eq. (61) (orange),
the full expression based on Eq. (57) (dashed red), and the
difference between the numerical solutions of the equation of
motion with and without anisotropic stress (black).
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general formulae and work in various limits. For primordial

gravitational waves we expect hð0Þq ðuÞ ¼ hoqh1qðuÞ so that

hqðuÞ ¼ hoqð1þ CðuÞÞh1qðuÞ þ hoqDðuÞh2qðuÞ; ð75Þ

or

hð1Þq ðuÞ ¼ hoqCðuÞh1qðuÞ þ hoqDðuÞh2qðuÞ; ð76Þ

and we only need the behavior ofCðuÞ andDðuÞ. As wewill
see, this is not entirely accurate because a small departure
from A ¼ 1 and B ¼ 0 is generated around the time of
kinetic decoupling, and as we will see

A ¼ 1þ ϵϰ
2u⋆
3

þ Cω and B ¼ −ϵϰ
u2⋆
3
: ð77Þ

The amount of damping generated around kinetic decou-
pling, Cω, is calculated below. For now, it suffices to know
that it is of order ϵϰ2akd=aeq, where akd is the scale factor at
kinetic decoupling (defined more precisely below). SinceCω

is suppressed not only by ϵ but also by akd=aeq we can safely
neglect it in our discussion here. This implies that we have

hð1Þq ðuÞ ¼ hoq

�
CðuÞ þ ϵϰ

2u⋆
3

�
h1qðuÞ

þ hoq

�
DðuÞ − ϵϰ

u2⋆
3

�
h2qðuÞ; ð78Þ

For small u it is easy to see that we can drop the additional
terms provided we set u⋆ ¼ 0 in equations (71) and (72),
and we will do so in what follows. For modes that are far
outside the horizonwhen the particles become nonrelativistic
v1 ≪ 1. The leading correction is quadratic in v1, and we
will take v1 → 0. We will need the limiting forms for u ≪ 1
and u ≫ 1. For small arguments we find

CðuÞ → ϵϰ
2u
3
þOðu3Þ; ð79Þ

DðuÞ → −ϵϰ
u2

3
þOðu4Þ; ð80Þ

whereas for large arguments

CðuÞ → 4ϵϰ
sinðuÞ
u2

þOð1=u3Þ; ð81Þ

DðuÞ → 2ϵϰ

�
1 − 2 ln 2þ 2 cosðuÞ − 1=2

u2

�
þOð1=u3Þ:

ð82Þ

This leads to a solution for the mode function far outside the
horizon of

hqðyÞ ¼ hoq

�
1 −

1

6
ϰ2y2 þ ϵϰ2y

3

�
þOðy3Þ; ð83Þ

in agreement with Eq. (59). Once the mode is deep inside the
horizon, it approaches

hqðyÞ ¼ hoq

�
sinðϰyÞ
ϰy

−
2ϵϰ cosðϰyÞð2 ln 2 − 1Þ

ϰy

�

þOðϰ−3y−3Þ: ð84Þ

We see that the dark matter has no effect on the amplitude
(besides the small effect generated around kinetic decoupling
we neglected) but introduces a small phase shift. Since we
will need it later, let us also record its derivative

h0qðyÞ ¼ ϰhoq

�
cosðϰyÞ

ϰy
þ 2ϵϰ sinðϰyÞð2 ln 2 − 1Þ

ϰy

�

þOðϰ−2y−3Þ: ð85Þ

The behavior of the functions CðuÞ and DðuÞ and the
comparison to the limiting forms (81), (82) are shown
in Fig. 2.
This solution is valid deep inside the horizon and during

the radiation dominated era. To find the solution at later
times, we can match it to the WKB approximation we
derived in Sec. V. Equation (39) becomes

hqðyÞ ¼ h1qðyÞ½hqðy⋆Þ þ hqðy1ÞAðyÞ�
þ h2qðyÞ½ϖðy⋆Þ−1h0qðy⋆Þ þ hqðy1ÞBðyÞ�; ð86Þ

with

ϖðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϰ2 þ 4ϵ

y3

q
ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p ; ð87Þ
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FIG. 2. CðuÞ and DðuÞ as defined in Eqs. (71), (72). We show
the exact results for CðuÞ (orange) and DðuÞ (red), and the
limiting forms (81), (82) valid for u ≫ 1 for CðuÞ (dashed blue)
and DðuÞ (dashed green).
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the functions

h1qðyÞ ¼
y⋆
y
cos

�
2ϰ

� ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y⋆

p ��

−
ϵ

ϰyy⋆
sin

�
2ϰ

� ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y⋆

p ��
; ð88Þ

h2qðyÞ ¼
y⋆
y
sin

�
2ϰ

� ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y⋆

p ��

þ ϵ

ϰyy⋆
cos

�
2ϰ

� ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y⋆

p ��
; ð89Þ

and to leading order in ϵ

AðyÞ¼4ϵð1þyÞcosð2ϰð ffiffiffiffiffiffiffiffiffiffi
1þy

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þy⋆

p ÞÞ
ϰ2y2

−
4ϵð1þy⋆Þ

ϰ2y2⋆
;

ð90Þ

BðyÞ ¼ 4ϵð1þ yÞ sinð2ϰð ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y⋆

p ÞÞ
ϰ2y2

: ð91Þ

So to first order in ϵ and deep inside the horizon, we obtain
the solution

hqðyÞ ¼ hoqh1qðyÞ
�
sinðϰy⋆Þ
ϰy⋆

þ 2ϵ cosðϰy⋆Þð1 − 2 ln 2Þ
y⋆

−
4ϵð1þ y⋆Þ

ϰ2y2⋆
þ 4ϵð1þ yÞ cosð2ϰð ffiffiffiffiffiffiffiffiffiffiffi

1þ y
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y⋆

p ÞÞ
ϰ2y2

�

þ hoqh2qðyÞ
�
cosðϰy⋆Þ

ϰy⋆
−
2ϵ sinðϰy⋆Þð1 − 2 ln 2Þ

y⋆
þ 4ϵð1þ y⋆Þ sinð2ϰð

ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y⋆

p ÞÞ
ϰ2y2

�
: ð92Þ

Working to leading order in ϵ, the dependence on y⋆
disappears as it had to and the evolution inside the horizon
valid during both radiation and matter dominated eras is
given by

hqðyÞ ¼ hoq

�
sin ð2ϰð ffiffiffiffiffiffiffiffiffiffiffi

1þ y
p

− 1ÞÞ
ϰy

−
2ϵϰð2 ln 2 − 1Þ cos ð2ϰð ffiffiffiffiffiffiffiffiffiffiffi

1þ y
p

− 1ÞÞ
ϰy

�
: ð93Þ

We see that the gravitational waves acquire a small phase
shift δφ ¼ −2ϵϰð2 ln 2 − 1Þ. The analytic solution is com-
pared to a numerical calculation in Fig. 3 for ϰ ¼ 100. We

see that the effect on modes that enter the horizon during
the radiation dominated period is larger than the effect on
modes that enter at later times, but since the fraction of the
density in the kinetic energy of the dark matter is rather
small, its effect on the degree scale polarization of the
cosmic microwave background is also too small to be
observed with upcoming or planned CMB experiments.

B. Intermediate modes

We now turn to modes that enter the horizon when the
dark matter is still in kinetic equilibrium but has already
become nonrelativistic. For a typical WIMP this corre-
sponds to a gravitational wave frequency today below
∼10−5 Hz.
As we briefly discussed after Eq. (17), we expect

collisions to be negligible if the collision term in the
Boltzmann equation is much less than the transport term.
The wavelength of the primordial gravitational waves, λ,
redshifts like one power of the scale factor, the velocity of
the dark matter particles, v redshifts like a−1 after and
a−1=2 before kinetic decoupling. The rate ωr at which
energy is exchanged between standard model particles
and the dark matter redshifts at least like a−3 like the
number density of standard model particles. So at late
times when ωr ≪ v=λ collisions are negligible, but they
become important at early times. As a consequence we
see that the anisotropic stress is no longer given by (24)
and we will have to revisit the derivation in the presence
of collisions.
If the standard model particles interacting with the dark

matter are much lighter than the dark matter particles,
are relativistic and are in local thermal equilibrium, the
Boltzmann equation becomes

1 h
1

0 1 2 3 4 5

4

2

0

2

4

FIG. 3. The effect of collisionless matter on the time evolution
of a mode with ϰ ¼ 100. We show the term of order ϵ of the
approximation to the mode function given in equation (93)
(dashed orange) and the difference between the numerical
solutions of the equation of motion with and without anisotropic
stress (black).
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∂nðp;x; tÞ
∂t þ pi

p0

∂
∂xi nðp;x; tÞ þ

1

2

∂gkl
∂xi

pkpl

p0

∂
∂pi

nðp;x; tÞ

¼ −2hσvi½nðp;x; tÞnðx; tÞ− neqðp;x; tÞneqðx; tÞ�

þωrðtÞ
∂
∂pi

�
pinðp;x; tÞ þ gijðx; tÞmT

∂
∂pj

nðp;x; tÞ
�
;

ð94Þ

where T is the temperature of the standard model degrees
of freedom, hσvi is the thermally averaged dark matter
annihilation cross section, ωr is the rate at which the
standard model particles and dark matter particles exchange
energies of order kT, and as before

pi ¼ gijðx; tÞpj;

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ gijðx; tÞpipj

q
≈mþ gijðx; tÞpipj

2m
; ð95Þ

and

nðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðx; tÞp

Z
d3pnðp;x; tÞ: ð96Þ

In general, we expect the temperature to be a function of
position and expect a small position dependent velocity of
the medium, but because we are interested in tensor
perturbations we will not need to include this.
In writing Eq. (94), we have assumed that the dark matter

only participates in interactions with the standard model
particles, both in the form of the inelastic processes
responsible for setting the freeze-out abundance, and in
the form of the elastic processes required by crossing
symmetry, but have neglected self-interactions. Of course,
we only have very weak constraints on dark matter self-
interactions, and these interactions may, in fact, well be
significantly stronger than the interactions with the standard
model that are included here, at least for some range of
temperatures. However, we will see that our treatment of the
effects of the minimal interactions that must be present for
anyWIMP included herewill also allow us to understand the
effects of self-interacting dark matter on gravitational waves.
Close to local thermal equilibrium the scattering rate is

much higher than the rate of change in the temperature or
the metric. We can thus neglect time derivatives acting on
the metric or the temperature and see that the equilibrium
distribution is

neqðp;x; tÞ ¼ neq

�
1

2πmT

�
3=2

exp
�
−
gijðx; tÞpipj

2mT

�
:

ð97Þ

Away from thermal equilibrium we should in general
consider an Ansatz in which the temperature of the dark
matter particles depends on position, but because we are

interested in tensor perturbations we can consider an
Ansatz in which it is only a function of time

nðp;x; tÞ ¼ nðtÞ
�

1

2πmTdmðtÞ
�

3=2
exp

�
−
gijðx; tÞpipj

2mTdmðtÞ
�

þ δnðp;x; tÞ: ð98Þ

The first term on the right-hand side is a solution to the
Boltzmann equation in the absence of tensor perturbations
provided the dark matter temperature and density obey

1

a2
d
dt

ða2TdmÞ ¼ 2ωrðtÞðT − TdmÞ; ð99Þ

1

a3
d
dt

ða3nÞ ¼ −2hσviðn2 − n2eqÞ: ð100Þ

So as expected δnðp;x; tÞ is of first order in the metric
perturbation, and consistent with equation (16) we have

nðp;x; tÞ ¼ n̄ðpÞ − 1

2
hijðx; tÞpi

∂
∂pj

n̄ðpÞ þ δnðp;x; tÞ;

ð101Þ

with n̄ðp; tÞ given by

n̄ðp;tÞ¼a3nðtÞ
�

1

2πma2Tdm

�
3=2

exp

�
−

p2

2ma2Tdm

�
: ð102Þ

The equation for a plane wave, δnðp;x; tÞ ∝ expðiq · xÞ,
with wave vector q then becomes

∂δnðp;x; tÞ
∂t þ ip ·q

a2m
δnðp;x; tÞ− 1

2
_hijðx; tÞp̂ip̂jp

∂
∂pn̄ðp;tÞ

¼−2ωaðtÞδnðp;x; tÞ

þωrðtÞ
∂
∂pi

�
piδnðp;x; tÞþa2mT

∂
∂pi

δnðp;x; tÞ
�
;

ð103Þ

where we denoted the annihilation rate by

ωaðtÞ ¼ hσvinðtÞ; ð104Þ

and we have used

Z
d3pδnðp;x; tÞ ¼ 0; ð105Þ

because gravitational waves do not generate fluctuations in
the number density.5

5We will see a more rigorous justification for this below.
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Before we consider the general case, let us consider
wavelengths for which the medium behaves like a viscous
fluid. At leading nontrivial order in the derivative expan-
sion, taking H ≪ ωr, q=a ≪ ωr and using ωa ≪ ωr, the
perturbation to the phase space density must satisfy

∂
∂pi

�
piδnðp;x; tÞ þ a2mT

∂
∂pi

δnðp;x; tÞ
�

¼ −
1

2ωr

_hijðx; tÞpi
∂
∂pj

n̄ðp; tÞ: ð106Þ

Because hij is traceless, we can commute pi with the
derivative and the first integration is trivial. Remembering
that the perturbation must vanish as the gravitational wave
amplitude is taken to zero, we have

piδnðp;x; tÞ þ a2mT
∂
∂pi

δnðp;x; tÞ

¼ −
1

2ωr

_hijðx; tÞpjn̄ðp; tÞ: ð107Þ

Since δnðp;x; tÞ is a scalar that vanishes as the gravita-
tional wave is taken to zero, and the metric perturbation is
transverse and traceless we consider an Ansatz of the form

δnðp;x; tÞ ¼ _hijðx; tÞp̂ip̂jΔ̃ðq; p; tÞ: ð108Þ

Introducing the shorthand notation _h ¼ _hklðx; tÞp̂kp̂l, the
resulting equation is

p̂i
_h Δ̃ðq; p; tÞ þ a2mT

p2

�
2_hijp̂jΔ̃ðq; p; tÞ

þ p̂i
_h

�
−2Δ̃ðq; p; tÞ þ p

∂
∂p Δ̃ðq; p; tÞ

��

¼ −
1

2ωr

_hijp̂jn̄ðp; tÞ: ð109Þ

The coefficients of p̂i and _hijp̂j must vanish independently

and from the term proportional to _hijp̂j we can read off

Δ̃ðq; p; tÞ ¼ −
p2n̄ðp; tÞ
4ωra2mT

: ð110Þ

Equation (99) leads to

Tdm ¼ T

�
1 −

H
2ωr

�
; ð111Þ

so that for H ≪ ωr the dark matter temperature is well
approximated by that of the standard model particles,
Tdm ≈ T, and we see that the terms proportional to p̂i also
vanish for Δ̃ðq; p; tÞ given by (110). The perturbation to the
phase space density in this approximation is then

δnðp;x; tÞ ¼ −
p2n̄ðp; tÞ
4ωra2mT

_hijðx; tÞp̂ip̂j þO
�

q2

a2ω2
r

�
:

ð112Þ

Substituting back into the Boltzmann equation (103), we
see that the terms we are neglecting are indeed of order
q=aωr and H=ωr relative to the terms we are keeping. To
compute the anisotropic stress, recall that the space-space
components of the stress tensor are given by Eq. (12). For
the Ansatz (101), the contribution linear in the metric
perturbation simplifies to

δTi
jðx; tÞ ¼

1

a5

Z
d3pδnðp;x; tÞpipj

m
; ð113Þ

and the anisotropic stress is simply the transverse traceless
part of this expression. We can perform the angular
integrals with the identity

Z
d2p̂
4π

p̂ip̂jp̂kp̂l ¼
1

15
½δijδkl þ δikδjl þ δilδjk�; ð114Þ

and the integral over the magnitude by recalling

∂
∂p n̄ðp; tÞ ¼ −

p
a2mTdm

n̄ðp; tÞ; ð115Þ

integrating by parts and using the definition of comoving
kinetic energy density of the dark matter particles

EðtÞ ¼
Z

d3p
p2

2m
n̄ðp; tÞ ¼ 3

2
a5nTdm ≈

3

2
a5nT: ð116Þ

This leads us to the anisotropic stress

πijðx;tÞ¼−
EðtÞ

3a5ωrðtÞ
_hijðx;tÞ¼−

nT
2ωrðtÞ

_hijðx;tÞ; ð117Þ

with the number density n set by the usual freeze-out
calculation. The equation of motion for gravitational waves
before then simply becomes

ḧqðtÞ þ ð3HðtÞ þ ΓÞ _hqðtÞ þ
q2

a2ðtÞ hqðtÞ ¼ 0 with

Γ ¼ 8πG
nT
ωr

;

ð118Þ

so that the presence of the dark matter leads to some
amount of damping of the gravitational waves. Repeating
the above computation for a velocity gradient, we find that
the shear viscosity of the medium is given by η ¼ nT=2ωr,
so that the damping rate is given by Γ ¼ 16πGη consistent
with [4]. However, because
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EðtÞ
3a5ωrðtÞM2

p
≪

H
ωr

H ≪ H; ð119Þ

the Hubble rate during this epoch is orders of magnitude
larger than Γ. The effect is highly suppressed both because
the energy density in dark matter particles is a subdominant
contribution to the total energy density during radiation
domination, and becauseH ≪ ωr before kinetic decoupling.
We know that ωr ≈H during kinetic decoupling so that

the approximation does not allow us to follow modes
through kinetic decoupling, and we can only use it to study
the behavior of modes before kinetic decoupling while
q=aωr ≪ 1 and H=ωr ≪ 1. To follow modes through
decoupling, we return to equation (103) and rewrite it as
a hierarchy of coupled ordinary differential equations.
Recalling the mode expansion (53), we see that the
equation only depends on the direction of the momentum
of the dark matter particles through μ ¼ p̂ · q̂ and
eijðq̂; λÞp̂ip̂j. In general, additional directional dependence
could arise from the initial conditions, but we are interested
in isotropic initial conditions so that the perturbation to the
phase space density must be of the form

δnðp;x;tÞ¼
X
λ¼�2

Z
d3qβðq;λÞeklðq̂;λÞp̂kp̂lΔ̃ðq;p;μ;tÞeiq·x:

ð120Þ

Given that the polarization tensor is transverse and trace-
less, we see that this Ansatz justifies equation (105). As we
show in Appendix, expanding the perturbation to the phase
space density in terms of orthonormal polynomials

δnðp;x; tÞ ¼
X
λ¼�2

Z
d3qβðq; λÞeijðq̂; λÞp̂ip̂jeiq·x

×
X
l¼2…∞
n¼0…∞

ð−iÞlð2lþ 1ÞΔnlðq; tÞ

× LnlðzÞPlðμÞp
∂
∂p n̄ðp; tÞ; ð121Þ

where

PlðμÞ ¼
P2
lðμÞ

1 − μ2
and

LnlðzÞ ¼ zl=2−1Llþ1=2
n ðzÞ where

z ¼ p2

2a2mTdm
; ð122Þ

Lk
n are generalized Laguerre polynomials and Pm

l are
associated Legendre polynomials, allows us to diagonalize
the collision term and leads us to the Boltzmann hierarchy

_Δnlðq; tÞ þ
q

ð2lþ 1Þa
�
2Tdm

m

�
1=2

�
ðlþ 2Þ

�
nþ lþ 3

2

�
Δnlþ1ðq; tÞ − nðlþ 2ÞΔn−1lþ1ðq; tÞ þ ðl − 2ÞΔnþ1l−1ðq; tÞ

− ðl − 2ÞΔnl−1ðq; tÞ
�
¼ −

1

30
_hqðtÞδl2δn0 − ð2nþ lÞωrðtÞ

T
Tdm

Δnlðq; tÞ − 2ωaðtÞ
n2eq
n2

Δnlðq; tÞ; ð123Þ

and the anisotropic stress

πqðtÞ ¼ 30nðtÞTdmðtÞΔ02ðq; tÞ: ð124Þ

We see that for nonrelativistic dark matter particles the
collision term is dominated by the elastic scattering proc-
esses as expected. Dark matter self-interactions introduce
another source of damping on the right hand side. Assuming
they are generated by an operator with comparable coef-
ficient to that responsible for the interactions between the
dark matter and the standard model, their effect would be
suppressed just like that of annihilations because the dark
matter is nonrelativistic and its number density is small
compared to that of light standard model degrees of freedom.
To find the initial conditions for Eq. (123), let us consider

the system at a time when scattering is efficient and
q=aωr ≪ 1 and H=ωr ≪ 1. We see that in this limit all
modes but the mode with n ¼ 0 and l ¼ 2 are rapidly
driven to zero. Recalling that in this limit Tdm ≈ T, we find

Δ02ðq; tÞ → −
_hqðtÞ

60ωrðtÞ
; ð125Þ

Δnlðq; tÞ → 0 for all others: ð126Þ

The expansion (121) together with L02ðzÞ ¼ 1 and
P2ðμÞ ¼ 3 then implies

δnðp;x; tÞ ¼ −
p2n̄ðp; tÞ
4ωra2mT

_hijðx; tÞp̂ip̂j; ð127Þ

in agreement with our earlier result (112). As a further
consistency check consider gravitational wave emission
at some time t1 long after decoupling. Provided we are
interested in the anisotropic stress at a time t that is not too
long after emission so that we still have
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Z
t

t1

dt0
q

aðt0Þ
�
2Tdmðt0Þ

m

�
3=2

≪ 1; ð128Þ

all couplings between modes are negligible and we simply
have

Δ02ðq; tÞ ¼ −
1

30
ðhqðtÞ − hqðt1ÞÞ; ð129Þ

so that

πijðx; tÞ ¼ −nðtÞTdmðtÞðhijðx; tÞ − hijðx; t1ÞÞ; ð130Þ

consistent with Eq. (25) in Sec. IV since the comoving
kinetic energy density is given by E ¼ 3a5nTdm=2.
As long as the particles move a distance that is short

compared to the wavelength of the gravitational wave on
the time scale on which the dark matter and the standard
model exchange energy, we have ðq=aÞv ≪ ωr so that the
higher multipole moments are driven to zero and the
hierarchy reduces to

_Δ02ðq; tÞ þ 2ωrðtÞ
TðtÞ
TdmðtÞ

Δ02ðq; tÞ ¼ −
1

30
_hqðtÞ: ð131Þ

All that remains is to find the initial conditions, but
provided q=aωr ≪ 1 around the time of freeze-out when
ωr ≫ H, we know that the initial conditions are given by
Eq. (125), and the solution is

Δ02ðq;tÞ¼−
_hqðt1Þ

60ωrðt1Þ
exp

�
−2

Z
t

t1

dt0ωrðt0Þ
Tðt0Þ
Tdmðt0Þ

�

−
1

30

Z
t

t1

dt0 _hqðt0Þexp
�
−2

Z
t

t0
dt00ωrðt00Þ

Tðt00Þ
Tdmðt00Þ

�
:

ð132Þ

Intermediate modes enter the horizon when the dark matter
is nonrelativistic, and we can take t1 early enough so the
mode is outside the horizon. In this case we can neglect the
first term on the right hand side so that the time evolution
for gravitational waves is governed by

ḧqðtÞþ3H _hqðtÞþ
q2

a2
hqðtÞ

¼−16πGnTdm

Z
t

t1

dt0 _hqðt0Þexp
�
−2

Z
t

t0
dt00ωrðt00Þ

Tðt00Þ
Tdmðt00Þ

�
:

ð133Þ

For modes that enter the horizon after kinetic decoupling
the argument of the exponential is small and as expected the
equation reduces to that studied in Sec. IV.
As an additional check, let us also consider modes that

enter the horizon before kinetic decoupling when ωr ≫ H.

For modes whose wave numbers satisfy q=a ≪ ωr, we see
that the integral is dominated by times t0 that differ from t
by ∼1=ωr. Since the mode function varies on much longer
time scales set by q=a and H, we can approximate its
argument by t0 ≈ t and recover an anisotropic stress
consistent with Eq. (124) with Δ02 given by Eq. (125).
As we saw, this leads to an additional friction term, but the
effect is much too small to be observable.
As the universe expands, the rate ωr eventually drops

below q=a. For modes that entered significantly before
kinetic decoupling this happens while ωr ≫ H so that
q=a ≫ ωr ≫ H. At this time Tdm ≈ T and we can write the
anisotropic stress as

πqðtÞ ¼ nT
Z

t

t1

dt0 _hqðt0Þ exp
�
−2

Z
t

t0
dt00ωrðt00Þ

�
: ð134Þ

We can break up the integral into a contribution from the
initial time t1 to some time t⋆ when q=a ≫ ωr ≫ H and a
contribution from t⋆ to the time of interest t

πqðtÞ ¼ nT
Z

t⋆

t1

dt0 _hqðt0Þ exp
�
−2

Z
t⋆

t0
dt00ωrðt00Þ

�

× exp

�
−2

Z
t

t⋆
dt00ωrðt00Þ

�

þ nT
Z

t

t⋆
dt0 _hqðt0Þ exp

�
−2

Z
t

t0
dt00ωrðt00Þ

�
; ð135Þ

The first term on the right hand side is then exponentially
suppressed by the last factor provided t is at least a few
1=ωr after t⋆, and we can use the same trick as in Eq. (29)
to perform the integral on the second line because q=a ≫
ωr ≫ H for all t0. The equation of motion of the gravita-
tional waves is then

ḧqðtÞ þ 3H _hqðtÞ þ
q2

a2
hqðtÞ

¼ −16πGnT
�
hqðtÞ − hqðt⋆Þ exp

�
−2

Z
t

t⋆
dt00ωrðt00Þ

��
:

ð136Þ

As long as ωr ≫ H, collisions rapidly erase the second
term on the right-hand side and the equation simplifies to
the homogeneous equation

ḧqðtÞ þ 3H _hqðtÞ þ ω2hqðtÞ ¼ 0 with

ω2 ¼ q2

a2
þ 32πGE

3
; ð137Þ

where E is the proper density of kinetic energy E ¼ 3nT=2.
So once q=a ≫ ωr, the only effect is the modified
dispersion relation. We can then compute the phase shift
caused by this modification throughout cosmic history as
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Δφ ¼
Z

t0

tkd

dt
16πGE
3q=aðtÞ ≪

a0H0

q
≪ 1; ð138Þ

where t0 denotes the present time. We see that even for
primordial gravitational waves that entered the horizon
before kinetic decoupling the modification to the dispersion
relation has no observable effect.
From this discussion, we see that modes are not signifi-

cantly affected either at early times when q=a ≪ ωr or once
q=a ≫ ωr. What remains is to compute the effect of
collisions around the time when q=a ≈ ωr. For this purpose
it is convenient to introduce the independent variable x ¼
a=akd and to define the Hubble rate at kinetic decoupling
such that Hkd ≡HðtkdÞ ¼ 2ωrðtkdÞ. In this case Eq. (133)
becomes

h00qðxÞ þ
2

x
h0qðxÞ þ κ2hqðxÞ

¼ −
6nTdmx2

ρkd

Z
x

x1

dzh0qðzÞ exp
�
−
Z

x

z
dz0z0ω̂ðz0Þ

�
;

ð139Þ

where ω̂ðyðtÞÞ ¼ ωrðtÞ=ωrðtkdÞ, κ ¼ q=akdHkd and ρkd is
the energy density when HðtkdÞ ¼ 2ωrðtkdÞ. This equation
neglects the effect introduced by the change in the number of
relativistic degrees of freedom on the expansion rate studied
in [9] because we are interested in small corrections
introduced to the standard calculation of the gravitational
wave spectrum by the velocity dispersion of the dark matter
particles. We have set T ¼ Tdm in the exponential because
as we will see the effect of collisions on modes that enter
before kinetic decoupling are most significant around the
time when the wave number of the gravitational wave is
comparable to ωr, which occurs before kinetic decoupling
when T ≈ Tdm. The integral on the right-hand side receives
negligible contributions at early times when the modes are
frozen and we can set x1 ¼ 0.
We will keep ω̂ðyÞ general for now, but it may be helpful

to know what behavior we expect. If the interactions
between the dark matter particles and the standard model
are controlled by a single operator, the dark matter is
nonrelativistic and the standard model particles are rela-
tivistic, the rate scales like ωr ∝ T4þβ. The value of β is
determined by the form of the interactions between dark
matter and the standard model. An interaction between a
nonrelativistic scalar or fermionic dark matter particle and
a relativistic scalar through a dimension four and five
operator, respectively, would correspond to β ¼ 0, β ¼ 2
would describe a nonrelativistic, fermionic dark matter
particle interacting with a relativistic fermion through a
dimension six operator, etc.
The anisotropic stress is proportional to the fraction of

the energy density stored in kinetic energy of the dark
matter particles, which is small both because the dark

matter particles are nonrelativistic at the time of interest and
because the universe is radiation dominated, justifying a
perturbative treatment. Using the mode functions (63), (64),
and the Green’s function (65), the leading order solution is
given by

hqðxÞ ¼ hoqð1þ CðxÞÞh1qðxÞ þ hoqDðxÞh2qðxÞ; ð140Þ

with the functions

CðxÞ ¼ −
Z

x

x1

dyκh2qðyÞ
6nTdmy4

ρkd

×
Z

y

0

dzh10q ðzÞ exp
�
−
Z

y

z
dz0z0ω̂ðz0Þ

�
; ð141Þ

DðxÞ ¼
Z

x

x1

dyκh1qðyÞ
6nTdmy4

ρkd

×
Z

y

0

dzh10q ðzÞ exp
�
−
Z

y

z
dz0z0ω̂ðz0Þ

�
: ð142Þ

Introducing the dark matter kinetic energy density at
kinetic decoupling Ekd and recalling that the temperature of
the dark matter particles obeys Eq. (99), we find

CðxÞ ¼ −
4Ekdκ

ρkd

Z
x

x1

dyyτdmðyÞh2qðyÞ

×
Z

y

0

dzh10q ðzÞ exp
�
−
Z

y

z
dz0z0ω̂ðz0Þ

�
; ð143Þ

DðxÞ ¼ 4Ekdκ

ρkd

Z
x

x1

dyyτdmðyÞh1qðyÞ

×
Z

y

0

dzh10q ðzÞ exp
�
−
Z

y

z
dz0z0ω̂ðz0Þ

�
; ð144Þ

where τdm ¼ Tdm=Tkd is the solution of the differential
equation

1

y3
d
dy

ðy2τdmðyÞÞ ¼ ω̂

�
1

y
− τdm

�
; ð145Þ

that approaches τdmðyÞ → y−1 before kinetic decoupling
when y ≪ 1. After kinetic decoupling the right-hand side
of the equation is negligible and the temperature of the dark
matter particles redshifts like y−2. Notice that here Tkd is
the temperature of the standard model particles at kinetic
decoupling so that Ekd ≡ nðtkdÞTkd differs from the kinetic
energy density in the dark matter particles at decoupling by
a factor τdmð1Þ.
We can think of CðxÞ as a change to the amplitude of the

mode caused by collisions whereasDðxÞ corresponds to the
phase shift generated by them. Writing Ekd ¼ 3ρm;kdv2kd=2,
we see that the effect is suppressed both because the
velocity at decoupling for cold dark matter is of order
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10−2–10−3 and because decoupling typically happens deep
in the radiation dominated era so that ρm;kd ≪ ρkd.
For modes that enter the horizon long before kinetic

decoupling κ ≫ 1, and we already know from our earlier
discussion that C and D do not receive significant con-
tributions from very early or late times and we are
interested in their behavior when ðq=aÞ ≈ ωr or yω̂ ≈ κ
when yω̂ ≫ 1 and y ≪ 1. In this case the integral over z is
dominated by z ≈ y. Provided ðyω̂Þ0 ≪ ðyω̂Þ2 we can
change variables to z ¼ yþ u and approximate the integral
by expanding the argument of the exponential to leading
order in u

Z
y

0

dzh10q ðzÞ exp
�
−
Z

y

z
dz0z0ω̂ðz0Þ

�

≈
Z

0

−∞
duh10q ðyþ uÞ exp ½uyω̂ðyÞ�: ð146Þ

Expanding everywhere but in the trigonometric functions in
h10q ðzÞ to leading order in u this leads to the following
expression for κ ≫ 1

Z
y

0

dzh10q ðzÞ exp
�
−
Z

y

z
dz0z0ω̂ðz0Þ

�

≈
κð1þ y2ω̂Þ cosðκyÞ þ yðκ2 − ω̂Þ sinðκyÞ

κy2ðκ2 þ y2ω̂2Þ : ð147Þ

For large enough y an additional constant contribution
arises from a saddle point. However, this contribution
decays rapidly for large κ and in any case does not
contribute once integrated against the oscillatory mode
functions. So we will ignore it and work with (147).
Given equation (147) we can easily find the dominant

contributions to CðxÞ and DðxÞ. Neglecting the suppressed
oscillatory contributions, before kinetic decoupling when
τdm ≈ y−1, we find

CðxÞ ≈ −
4Ekd

ρkd

Z
x

0

dy
1þ y2ω̂2

2y3ðκ2 þ y2ω̂2Þ ; ð148Þ

DðxÞ ≈ 4Ekd

ρkd

Z
x

0

dy
κ2 − ω̂

2κy2ðκ2 þ y2ω̂2Þ : ð149Þ

As expected, the dominant contribution to the integrals
arises when κ ≈ yω̂ or equivalently q=a ≈ ωr.
Let us first consider the phase shift. Provided ω̂ decays

more rapidly than y−1, the phase shift at late times, when
κy ≫ 1 behaves like

DðxÞ ≈ 4Ekd

ρkd

Z
x
dy

1

2κy2
; ð150Þ

independent of the detailed behavior of ω̂ and consistent
with the definition of the phase shift in Eq. (138) valid
for q=a ≫ ωr.
Turning to the effect on the amplitude, the sign of CðxÞ is

negative so that gravitational waves are damped around the
time when q=a ≈ ωr as expected. We show a comparison of
a numerical computation with these results in Fig. 4 for a
representative wave number of κ ¼ 40 and for a rate that
scales like a power law ω̂ðyÞ ¼ y−ð4þβÞ with β ¼ 2.
Continuing with ω̂ðyÞ ¼ y−ð4þβÞ for concreteness, we see

that the amount of damping experienced around the time
when q=a ≈ ωr scales like κ−ð2þβÞ=ð3þβÞ, for β ¼ 2 we, for
example, find that gravitational waves with κ ≫ 1 are
damped by an amount

Cω ≈ −
2πEkd

55=4φ1=2ρkdκ
4=5

�
1þ φ

κ4=5

�
with φ ¼ 1þ ffiffiffi

5
p

2
:

ð151Þ

This result is compared with a numerical calculation
in Fig. 5. We see that the power spectrum of primordial
gravitational waves carries information both about when
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FIG. 4. Left: Comparison of Eq. (148) (red) with the results of a numerical calculation (orange). Right: Comparison of Eq. (149) (blue)
with the results of a numerical calculation (green). The small oscillatory contributions were neglected in the analytic calculation because
we were interested in the asymptotic behavior.
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kinetic decoupling occurs and about the type of interactions
of the dark matter with the standard model.
Our discussion did not crucially rely on the assumption

that the collisions are between dark matter particles and
standard model particles and readily extends to models of
interacting dark matter. In the presence of dark matter self-
interactions, ω̂ in the exponentials of Eqs. (143) and (144)
should be replaced by the total rate at which collisions
transfer energy between dark matter particles, either by
collisions with the standard model particles or by self-
interactions. Elastic self-interactions do not affect the
temperature evolution, and the rate in Eq. (145) that
controls the dark matter temperature evolution remains
the rate associated with elastic interactions with the
standard model unless there are number changing inter-
actions in the dark sector, such as 3 → 2 processes, or the
dark sector contains several degrees of freedom.
Self-interactions lead to additional collisions which will

isotropize the distribution function of dark matter particles
more rapidly. This reduces the anisotropic stress and the
effect of dark matter on gravitational waves. Besides this
general expectation, any discussion of dark matter self-
interactions is highly model-dependent, and we will not
attempt to classify all possible models. Instead, we content
ourselves with a simple concrete example to illustrate that
self-interactions may also leave imprints on the gravitational
wave spectrum, and imagine a scenario in which the dark
matter undergoes elastic self-interactions. The thermally
averaged cross section for elastic scattering of nonrelativistic

particles is constant, leading to a contribution to the
relaxation rate that redshifts like the density of dark matter
particles, y−3. As we saw earlier, the contribution to the
relaxation rate from interactions with standard model par-
ticles redshifts faster by at least one power of y. For example,
if interactions between the dark matter and the standard
model are controlled by a four-fermion interaction, they lead
to a contribution to the relaxation rate that redshifts like y−6.
Here three powers of the scale factor arise because the
density of standard model particles redshifts like y−3, two
powers arise from the thermally averaged cross section, and
the last power of the scale factor arises because it takes m=T
collisions to transfer energies of order T in collisions of the
nonrelativistic dark matter with the relativistic dark matter
particles. After the dark matter has frozen out, the number
density of standard model particles is exponentially larger
than the number density of dark matter particles so that the
relaxation rate would presumably initially be dominated by
scattering of the dark matter particles with standard model
particles. However, because the contribution to the relaxation
rate from collisions with the standard model particles red-
shifts more rapidly as the universe expands, the contributions
from dark matter self-interactions would dominate below a
certain temperature. The power spectrum of primordial
gravitational waves would then contain information about
the interactions with the standard model particles or the
self-interactions depending whether q=a ≈ ω when the
interactions with the standard model particles or the self-
interactions dominate the relaxation rate. In this example the
evolution of the dark matter temperature remains unchanged,
and our results such as (148), (149) directly apply. As long as
ω̂ is a superposition of power laws, away from the transition
region even the scaling of Cω with κ we derived for a single
power law can be used. In models that modify the evolution
of the dark matter temperature some additional work is
required, but this is in principle straightforward as well. We
see that gravitational waves carry a great deal of information
about the properties of dark matter. The only problem is that
the effects are hopelessly small.
We are now also in a position to justify the statement we

made in our discussion of long modes for which κ ≪ 1,
namely that the change in amplitude and phase acquired
around the time of kinetic decoupling are much smaller
than the contributions acquired after kinetic decoupling. To
see this we consider the behavior of the amplitude and
phase at a time after kinetic decoupling, but early enough so
that the modes are still outside the horizon because this is
when we started the computation for the long modes. At
this time the arguments of the trigonometric functions for
long modes are small and Eqs. (143) and (144) become

CðxÞ≈4Ekdκ
2

3ρkd

Z
x

x1

dyτdmðyÞ
Z

y

0

dzzexp

�
−
Z

y

z
dz0z0ω̂ðz0Þ

�
;

ð152Þ
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FIG. 5. Top: Numerical calculation of the damping (left) and
phase shift (right) acquired by gravitational waves around the
time of kinetic decoupling of the dark matter particles from the
standard model. Bottom: Comparison of the numerical compu-
tation (orange) with the analytic results described in the text for
κ ≪ 1 (dashed green) and for κ ≫ 1 (dashed red).
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DðxÞ ≈ −
4Ekdκ

3

3ρkd

Z
x

x1

dyyτdmðyÞ

×
Z

y

0

dzz exp

�
−
Z

y

z
dz0z0ω̂ðz0Þ

�
: ð153Þ

To make contact with our discussion of long modes, we
need CðxÞ and DðxÞ sufficiently long after decoupling but
before horizon entry. We can write them as

CðxÞ ¼ Cω þ 2Ekdτkdκ
2

3ρkd
x and

DðxÞ ¼ DωðxÞ −
Ekdτkdκ

3

3ρkd
x2; ð154Þ

where Cω and DωðxÞ are given by

Cω ¼ 4Ekdκ
2

3ρkd

Z
x

x1

dyτdmðyÞ
Z

y

0

dzz exp

�
−
Z

y

z
dz0z0ω̂ðz0Þ

�

−
2Ekdτkdκ

2

3ρkd
x; ð155Þ

DωðxÞ ¼ −
4Ekdκ

3

3ρkd

Z
x

x1

dyyτdmðyÞ

×
Z

y

0

dzz exp

�
−
Z

y

z
dz0z0ω̂ðz0Þ

�
þ Ekdτkdκ

3

3ρkd
x2:

ð156Þ

Here τkd is defined through the behavior of the dark matter
temperature at late times, which according to Eq. (145) is

τdmðyÞ →
τkd
y2

for y ≫ 1: ð157Þ

To see that Cω is indeed independent of x, note that as the
argument of the exponential after kinetic decoupling
approaches unity, the terms linear in x cancel, and the
remainder is finite. As we mentioned in our discussion of
long modes, the term in CðxÞ linear in x ensures that there is
no dependence on the time at which we match onto the
collisionless description. Unlike for intermediate modes for
which thedominant contribution toCω ariseswhenq=a ∼ ωr,
the dominant contribution here arises around kinetic decou-
pling, and we see that Cω universally scale like κ2.
The additional factor of y in the integral for DωðxÞ,

introduces a logarithmic dependence on x that is absent in
the collisionless description. As a consequence, unlike Cω,
the phase receives contributions until horizon crossing.
Equation (156) implies that the contribution from the time
around kinetic decoupling universally scales like κ3. The
presence of two powers of κ in the denominators of the
mode functions in (144) implies that the contribution from
horizon entry scales like κ and dominates.

In the model with ω̂ ¼ y−ð4þβÞ, the solution to Eq. (145)
can be found explicitly in terms of incomplete Γ-functions
and by taking the late time limit we see that the constant in
Eq. (157) is given by

τkd ¼ ð2þ βÞ− 1
2þβΓ

�
1þ β

2þ β

�
: ð158Þ

Approximating the integrand of the y-integral in Cω by its
asymptotic forms

y3þβ for y ≤ yc; and

1

2
τkd

�
1 −

ð2þ βÞ− 2
2þβΓð β

2þβÞ
y2

�
for y > yc; ð159Þ

with

yc ¼
�
τkd
2

� 1
3þβ

; ð160Þ

we find

Cω ¼ −
2Ekdτkdκ

2

3ρkd

�
3þ β

4þ β

�
τkd
2

� 1
3þβ

þ ð2þ βÞ− 2
3þβ

�
2

τkd

� 1
3þβ

Γ
�

β

2þ β

��
: ð161Þ

The phase DωðxÞ can be evaluated in the same way, but as
we discussed the contribution from kinetic decoupling is
suppressed by two powers of κ compared to the dominant
contribution arising at horizon crossing and we will not
give it here.
The variables used here and in the discussion of the long

modes are related according to

ϵϰ ¼ Ekdτkdκ

ρkd
: ð162Þ

For u⋆ ¼ κx⋆ ≪ 1 the constants A and B in Eq. (67) can
then be written as

A ≈ 1þ ϵϰ
2u⋆
3

þ Cω and B ≈ −ϵϰ
u2⋆
3
: ð163Þ

For modes that obey ðq=aÞv=H ≪ 1 around the time of
kinetic decoupling so that κ ≲ 1=vkd, equations (143) and
(144) and our discussion here are valid throughout. For a
typical WIMP this corresponds to frequencies of below
∼10−9 Hz today. For modes with shorter wavelengths we
must understand whether higher multipoles may become
excited. To gain some intuition we will make the simplify-
ing assumption that the relaxation rates for all n and l are
identical to those for n ¼ 0 and l ¼ 2. This is equivalent to
working in the relaxation time approximation. In this case
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the derivation from Sec. III goes through essentially
unchanged and the anisotropic stress is given by

πqðtÞ ¼
π

4ma5ðtÞ
Z

∞

0

p5dpn̄0ðpÞ
Z þ1

−1
ð1 − μ2Þ2dμ

×
Z

t

t1

dt0 _hqðt0Þ exp
�
−
Z

t

t0
dt00

iqpμ
a2ðt00Þm

�

× exp

�
−2

Z
t

t0
dt00ωrðt00Þ

Tðt00Þ
Tdmðt00Þ

�
: ð164Þ

As before, the equation of motion at late times when
q=a ≫ ωr; H is given by Eq. (137), and we only have to
follow the evolution of the mode until q=a ≫ ωr ≫ H to
find the appropriate initial conditions for this equation.
To find the expression for the anisotropic stress valid

from horizon entry until q=a ≫ ωr ≫ H, we can proceed
as before and approximate the second line of Eq. (164) as

Z
y

0

dzh10q ðzÞ exp
�
−
iκpμ
makd

ln
y
z
−
Z

y

z
dz0z0ω̂ðz0Þ

�

≈
Z

0

−∞
duh10q ðyþ uÞ exp

�
i
κpμu
ma

�
exp ½uyω̂ðyÞ�: ð165Þ

The integral on the right-hand side only receives significant
contributions for juj < 1=κ so that the argument of the first
exponential is of order the dark matter velocity v around the
time when q=a ≈ ωr. Furthermore, because of the integra-
tion over μ in Eq. (164) only even powers in μ contribute so
that the leading correction occurs at second order in the
dark matter velocity, implying that the damping of the
amplitude and the phase shift for all intermediate modes are
well approximated by Eqs. (148) and (149). Furthermore,
for all modes that enter after the dark matter particles have
become nonrelativistic, q=a ≈ ωr occurs after freeze-out so
that annihilations can be neglected around this time.

C. Short modes

We now turn to modes that enter the horizon when the
dark matter is still relativistic. While detailed modeling of
the collision terms describing the scattering of relativistic
dark matter particles with the standard model is possible, it
is significantly more tedious than in the nonrelativistic
limit, and we continue with the simplifying assumption that
relaxation rates for all n and l are equivalent to those for
n ¼ 0 and l ¼ 2. In this case the anisotropic stress is

πqðtÞ¼
π

4a5ðtÞ
Z

∞

0

p5dp
n̄0ðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þp2=a2ðtÞ
p

Z þ1

−1
ð1−μ2Þ2dμ

×
Z

t

t1

dt0 _hqðt0Þexp
�
−
Z

t

t0
dt00

iqpμ

a2ðt00Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2=a2ðt00Þ

p
�

×exp

�
−2

Z
t

t0
dt00ωðt00Þ

�
; ð166Þ

with ωðtÞ now the collision rate including both elastic an
inelastic processes.
Short modes naturally subdivide into two classes, one

for which the dark matter is still relativistic and one for
which it is nonrelativistic when q=a ≈ ω. For a typical
WIMP, the boundary between these classes corresponds to
modes with a frequency of 104 Hz today, so that for all
planned interferometer experiments it is sufficient to focus
on modes for which the dark matter is already nonrelativ-
istic when q=a ≈ ω. As we will see, the dominant con-
tributions for these modes arise during two periods, the first
around the time when the dark matter becomes nonrela-
tivistic, and the second when q=a ≈ ω. Scattering is very
rapid during both periods and we expect (166) to provide a
very good approximation.
From the discussion of intermediate modes, we know that

the equation of motion for gravitational waves when
q=a ≫ ω, qv=a is given by Eq. (137). What remains is
to find the initial conditions for this equation or equivalently
the amplitude and phase shift. As before we will make use of
the fact that the dark matter distribution approaches its
equilibrium value on time scales short compared to the
expansion of the universe and the integral over t0 receives its
dominant contribution near the upper limit. Using the same
notation as for the intermediate modes, we can approximate

Z
y

0

dzh10q ðzÞ exp
�
−i

Z
y

z
dz0

iκpμ

z0akd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=z02=a2kd

p

−
Z

y

z
dz0z0ω̂ðz0Þ

�
ð167Þ

≈
Z

0

−∞
duh10q ðyþ uÞ exp

�
i

κpμu

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2

p
�
exp ½uyω̂ðyÞ�:

ð168Þ

The integral over u only receives significant contributions
for juj of order 1=yω̂ðyÞ, which is of order 1=κ when
q=a ≈ ω. This implies that the argument of the argument of
the exponential is of order the dark matter velocity at this
time and hence small for the modes of interest. The
integration over μ implies that the leading contribution
arises at second order in the velocities and we will ignore
these corrections. At earlier times yω̂ðyÞ ≫ κ so that the
argument is further suppressed then, and we can approxi-
mate the anisotropic stress by

πqðtÞ ¼
4π

15a5ðtÞ
Z

∞

0

p5dp
n̄0ðp; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2=a2ðtÞ
p

×
Z

0

−∞
duh10q ðyðtÞ þ uÞ exp ½uyðtÞω̂ðyðtÞÞ�: ð169Þ

As long as yω̂ ≫ κ, which is the case for the short modes of
interest until the dark matter has become nonrelativistic, we
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can neglect u in h10q and the equation of motion for
gravitational waves becomes

h00qðxÞ þ
�
2

x
þ γðxÞ

�
h0qðxÞ þ κ2hqðxÞ ¼ 0; ð170Þ

with

γðxÞ ¼ 2

5ρðxÞx3ω̂ðxÞ
Z

d3p
ð2πÞ3

p2ð4E2 þm2Þ
ðxakdÞ5E3

n̄ðp; tÞ;

ð171Þ
where ρðxÞ is the total energy density and E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2=a2

p
. Either treating the additional damping term

as a perturbation and using the Green’s function (65) or
using the WKB approximation, we find that the damping
of the amplitude is independent of wave number and is
given by

CðxÞ ¼ −
4

5

Z
x

0

dy
fdmðyÞ
y3ω̂ðyÞ with

fdmðyÞ ¼
1

4ρðyÞ
Z

d3p
p2ð4E2 þm2Þ
ðyakdÞ5E3

n̄ðp; tÞ: ð172Þ

At early times when the dark matter is relativistic, fdm is
time-independent and corresponds to the fraction of the
energy density stored in dark matter. As the temperature
drops below the mass of the dark matter particles, fdmðyÞ
decreases rapidly and cuts off the integral. In general, n̄ðp; tÞ
follows from the freeze-out calculation based on Eq. (100).
For scattering rates that do not drop too rapidly, we can
approximate n̄ðp; tÞ by its equilibrium abundance and write

fdmðyÞ ¼
gd

g⋆ðyÞ
30

π2

Z
∞

0

dz
2π2

z4ð5s2=4þ z2Þ
ðs2 þ z2Þ3=2

1

e
ffiffiffiffiffiffiffiffiffi
s2þz2

p
� 1

with s ¼ m
T
¼ m

Tkd
y; ð173Þ

with gd counting the number of degrees of freedom in the
dark matter, and g⋆ðyÞ the usual effective number of degrees
of freedom.
If the interactions between the dark matter particles and

the standard model are controlled by a single operator, we
expect ω̂ðyÞ ¼ ðm=TkdÞy−ð3þβÞ. In this case the amount of
damping experienced around the time when the dark matter
becomes nonrelativistic is given by

Cnr ¼ −
4

5

gd
g⋆;m

�
Tkd

m

�
2þβ

F ðβÞ; ð174Þ

where g⋆;m is the effective number of relativistic degrees of
freedom around the time when the dark matter particles
become nonrelativistic, and F ðβÞ is a function that only
depends on β and can readily be evaluated numerically. In our
example of β ¼ 2, it takes the value F ð2Þ ≈ 12. For larger

values of β, n̄ðp; tÞ should be obtained using Eq. (100). Since
Tkd=m is the square of the dark matter velocity at kinetic
decoupling, we see that the effect is rather small.
We now know the mode functions for short modes at a

time when q=a is still small compared to ω but the dark
matter has already become nonrelativistic. We can proceed
just like for the intermediate modes to evolve the modes until
q=a ≫ ω and Eq. (137) describes their evolution. The only
difference is that for intermediate modes the lower limit of
the integral in Eq. (147) was zero whereas it is now nonzero.
However, the integral is dominated by the contribution near
the upper limit so that this difference is negligible and the
damping and phase shift acquired around the time when
q=a ≈ ωr are still given by Eqs. (148) and (149).
As long as the two events are separated, the total amount

of damping is simply given by Cnr þ Cω. For high
frequencies the first term dominates, for low frequencies
it is the second. Up to order one factors, the transition
between the regime occurs at

κ ∼
�
g⋆;eq
gd

�3þβ
2þβ

�
g⋆;m
g⋆;kd

�3þβ
2þβ

�
Teq

m

�3þβ
2þβ

�
m
Tkd

�
3þβ

; ð175Þ

with frequency independent damping above this wave
number and an amount of damping that scales like
k−ð2þβÞ=ð3þβÞ for smaller wave numbers.

VIII. CONCLUSIONS

We have analyzed the effects of cold dark matter on the
propagation of gravitational waves of astrophysical and
primordial origin. Our analysis does not suggest any way of
detecting the effect of cold dark matter on the propagation
of gravitational waves from astrophysical gravitational
waves in the near future.
Primordial gravitational waves in principle contain a

wealth of information about dark matter and its interactions
such as coupling strengths and the nature of the inter-
actions. However, in practice the effects of cold dark matter
on primordial gravitational waves also appear too small to
be detectable. For the longest modes that enter after matter
radiation equality, the anisotropic stress is small because
the cold dark matter is highly nonrelativistic by the time
of horizon entry. The effects are largest for intermediate
modes that enter the horizon around the time of kinetic
decoupling, but even then the effects are highly suppressed
because the cold dark matter is nonrelativistic at this time
and because the contribution to the energy density from
dark matter is small compared to that in radiation at the time
of kinetic decoupling. For shorter modes, the effects are
suppressed because collisions rapidly drive the system
toward local equilibrium.
Unlike cold dark matter, particles that decouple when

they are relativistic have a significant effect on primordial
gravitational waves. Modes that enter after kinetic
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decoupling are damped [5]. The spectrum of primordial
gravitational waves on scales that enter the horizon around
the time of kinetic decoupling contains information about
the interactions. However, for neutrinos, the only particles
known to decouple relativistically, kinetic decoupling is
imprinted on modes with frequencies that are too high to be
accessible in the CMB and too low for pulsar timing arrays.
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Note added.—After our paper was nearly finished, we
encountered a recent paper [10] that covers much the same
ground as ours regarding gravitational waves from astro-
physical sources, finding as we have that damping of these
waves is negligible. In addition to damping, our discussion
pays close attention to the modification of the propagation
speed of these waves in cold dark matter, and includes a
detailed treatment of the effects of cold dark matter on
primordial gravitational waves, which is not considered
in [10].

APPENDIX: BOLTZMANN HIERARCHY

In this Appendix we provide the derivation of the
Boltzmann hierarchy (123) from the linearized
Boltzmann equation (103). As we explained in Sec. VII,
the form of the mode expansion for the gravitational field
given in Eq. (53) implies that Eq. (103) only depends on the
direction of the momentum of the dark matter particles
through μ ¼ p̂ · q̂ and eijðq̂; λÞp̂ip̂j. For isotropic initial
conditions, the perturbation to the phase space density of
the dark matter particles introduced by the gravitational
wave must then be of the form (120). For this Ansatz
Eq. (103) becomes a differential equation for Δ̃ðq; p; μ; tÞ

_̃Δðq; p; μ; tÞ þ ipqμ
a2m

Δ̃ðq; p; μ; tÞ − 1

2
_hqðtÞp

∂
∂p n̄ðp; tÞ

¼ −2ωaðtÞΔ̃ðq; p; μ; tÞ þ ωrðtÞ
�
3Δ̃ðq; p; μ; tÞ

þ p
∂
∂p Δ̃ðq; p; μ; tÞ þ a2mT

� ∂2

∂p2
þ 2

p
∂
∂p −

1

p2
D2

�

× Δ̃ðq; p; μ; tÞ
�
; ðA1Þ

with the operator D2 given by

D2 ¼ −ð1 − μ2Þ ∂2

∂μ2 þ 6μ
∂
∂μþ 6: ðA2Þ

Wewill eventually expand in terms of eigenfunctions ofD2

and the differential operator appearing on the right-hand
side. Since it involves T instead of Tdm, one would have to
keep a large number of the eigenfunctions when Tdm ≪ T.
In an attempt to ameliorate this, we will work with the
fractional perturbation Δðq; p; μ; tÞ defined by

Δ̃ðq; p; μ; tÞ ¼ Δðq; p; μ; tÞp ∂
∂p n̄ðp; tÞ: ðA3Þ

For simplicity, let us drop the first term on the right-hand
side because ωa ≪ ωr when the dark matter particles are
nonrelativistic. We will restore it later. In this case the
equation becomes

_Δðq;p;μ; tÞþ ipqμ
a2m

Δðq;p;μ; tÞ−1

2
_hqðtÞ

¼ωrðtÞ
�
−
2T
Tdm

Δðq;p;μ; tÞ−
�
2T
Tdm

−1

�
p

∂
∂pΔðq;p;μ; tÞ

þa2mT

� ∂2

∂p2
þ 6

p
∂
∂pþ 6

p2
−

1

p2
D2

�
Δðq;p;μ; tÞ

�
:

ðA4Þ

Our goal will be to turn this partial differential equation
into a hierarchy of coupled ordinary differential equations
by constructing the eigenfunctions of the differential
operator on the right hand side and rely on the orthogon-
ality of eigenfunctions with different eigenvalues. The
eigenfunctions of the operator D2 with appropriate boun-
dary conditions are

PlðμÞ ¼
P2
lðμÞ

1 − μ2
; ðA5Þ

where Pm
l ðμÞ are associated Legendre polynomials. These

functions are eigenfunctions ofD2 with eigenvalue lðlþ 1Þ

D2PlðμÞ ¼ lðlþ 1ÞPlðμÞ; ðA6Þ

and obey the orthogonality relation

Z
1

−1
dμð1 − μ2Þ2PlðμÞPl0 ðμÞ ¼

2ðlþ 2Þ!
ð2lþ 1Þðl − 2Þ! δll0 :

ðA7Þ

For l ¼ 2 we simply have

P2ðμÞ ¼ 3; ðA8Þ

so that the orthogonality relation also implies
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Z
1

−1
dμð1 − μ2Þ2PlðμÞ ¼

16

5
δl2: ðA9Þ

Furthermore, they obey the recurrence relation

μPlðμÞ ¼
lþ 1

2lþ 1
Pl−1ðμÞ þ

l − 1

2lþ 1
Plþ1ðμÞ: ðA10Þ

Expanding

Δðq;p;μ;tÞ¼
X
l

ð−iÞlð2lþ1ÞΔlðq;p;tÞPlðμÞ; ðA11Þ

and using the recurrence relation (A10), the orthogonality
relations (A7) and (A9), Eq. (A4) becomes

_Δlðq;p; tÞ þ
pq

ð2lþ 1Þa2m ½ðlþ 2ÞΔlþ1ðq;p; tÞ

− ðl− 2ÞΔl−1ðq;p; tÞ� þ
1

30
_hqðtÞδl;2

¼ ωrðtÞ
�
−

2T
Tdm

Δlðq;p; tÞ−
�
2T
Tdm

− 1

�
p

∂
∂pΔlðq;p; tÞ

þ a2mT

� ∂2

∂p2
þ 6

p
∂
∂p−

lðlþ 1Þ− 6

p2

�
Δlðq;p; tÞ

�
:

ðA12Þ

It would seem natural to work with the eigenfunctions of the
operator on the right-hand side. However, it turns out to be
convenient to instead work with the eigenfunctions

�
−

T
Tdm

p
∂
∂pþa2mT

� ∂2

∂p2
þ 6

p
∂
∂p−

lðlþ1Þ−6

p2

��
LnlðzÞ

¼−ð2nþl−2Þ T
Tdm

LnlðzÞ; ðA13Þ

with n ¼ 0…∞ and l ¼ 2…∞, which are given in terms of
generalized Laguerre polynomials Lk

n by

LnlðzÞ¼ zl=2−1Llþ1=2
n ðzÞ with z¼ p2

2a2mTdm
: ðA14Þ

As we will see, the advantage of this basis is that z is also the
argument of the exponential in n̄ðp; tÞ. These functions obey
the orthogonality relation

Z
∞

0

dzz5=2e−zLnlðzÞLn0lðzÞ ¼
Γðnþ lþ 3=2Þ

n!
δnn0 ;

ðA15Þ

which contains the special case

Z
∞

0

dzz5=2e−zLn2ðzÞ ¼
15

ffiffiffi
π

p
8

δn0: ðA16Þ

To make use of the orthogonality relation (A15) when
deriving the hierarchy, we will have to use the relations

L0l−1ðzÞ ¼ z−1=2L0lðzÞ; ðA17Þ

d
dz

L0lðzÞ ¼
l − 2

2z
L0lðzÞ; ðA18Þ

Lnlþ1ðzÞ¼
�
nþlþ3

2

�
z−1=2LnlðzÞ−ðnþ1Þz−1=2Lnþ1lðzÞ;

ðA19Þ

Lnl−1ðzÞ ¼ z−1=2LnlðzÞ − z−1=2Ln−1lðzÞ for n ≥ 1;

ðA20Þ

d
dz

LnlðzÞ ¼
2nþ l − 2

2z
LnlðzÞ

−
nþ lþ 1

2

z
Ln−1lðzÞ for n ≥ 1; ðA21Þ

which directly follow from the relations for associated
Laguerre polynomials

Llþ1=2
0 ðzÞ ¼ Llþ3=2

0 ðzÞ; ðA22Þ

d
dz

Llþ1=2
0 ðzÞ ¼ 0; ðA23Þ

zLlþ3=2
n ðzÞ ¼

�
nþ lþ 3

2

�
Llþ1=2
n ðzÞ − ðnþ 1ÞLlþ1=2

nþ1 ðzÞ;

ðA24Þ

Llþ1=2
n ðzÞ ¼ Llþ3=2

n ðzÞ − Llþ3=2
n−1 ðzÞ for n ≥ 1; ðA25Þ

d
dz

Llþ1=2
n ðzÞ ¼ −Llþ3=2

n−1 ðzÞ for n ≥ 1: ðA26Þ

Expanding Δlðq; p; tÞ in terms of these eigenfunctions

Δlðq; p; tÞ ¼
X
n

Δnlðq; tÞLnlðzÞ; ðA27Þ

substituting the expansion into Eq. (A12), using the ortho-
gonality relation and identities in the appendix, as well as
Eq. (99) in the form

_z
z
¼ −2ωrðtÞ

�
T
Tdm

− 1

�
; ðA28Þ

we arrive at the following hierarchy of equations
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_Δnlðq; tÞ þ
q

ð2lþ 1Þa
�
2Tdm

m

�
1=2

�
ðlþ 2Þ

�
nþ lþ 3

2

�
Δnlþ1ðq; tÞ − nðlþ 2ÞΔn−1lþ1ðq; tÞ

þ ðl − 2ÞΔnþ1l−1ðq; tÞ − ðl − 2ÞΔnl−1ðq; tÞ
�
¼ −

1

30
_hqðtÞδl2δn0 − ð2nþ lÞωrðtÞ

T
Tdm

Δnlðq; tÞ: ðA29Þ

The derivation in the presence of annihilations proceeds in the same way, and keeping them one arrives at

_Δnlðq; tÞ þ
q

ð2lþ 1Þa
�
2Tdm

m

�
1=2

�
ðlþ 2Þ

�
nþ lþ 3

2

�
Δnlþ1ðq; tÞ − nðlþ 2ÞΔn−1lþ1ðq; tÞ þ ðl − 2ÞΔnþ1l−1ðq; tÞ

− ðl − 2ÞΔnl−1ðq; tÞ
�
¼ −

1

30
_hqðtÞδl2δn0 − ð2nþ lÞωrðtÞ

T
Tdm

Δnlðq; tÞ − 2ωaðtÞ
n2eq
n2

Δnlðq; tÞ: ðA30Þ
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