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Motivated by the desire for highly accurate numerical computations of compact binary spacetimes in the
era of gravitational wave astronomy, we reexamine hyperbolicity and well-posedness of the initial value
problem for popular models of general relativistic fluids. Our analysis relies heavily on the dual-frame
formalism, which allows us to work in the Lagrangian frame, where computation is relatively easy, before
transforming to the desired Eulerian form. This general strategy allows for the construction of compact
expressions for the characteristic variables in a highly economical manner. General relativistic hydro-
dynamics, ideal magnetohydrodynamics, and resistive magnetohydrodynamics are considered in turn. In
the first case, we obtain a simplified form of earlier expressions. In the second, we show that the flux-
balance law formulation used in typical numerical applications is only weakly hyperbolic and thus does not
have a well-posed initial value problem. Newtonian ideal magnetohydrodynamics is found to suffer from
the same problem when written in flux-balance law form. An alternative formulation, closely related to that
of Anile and Pennisi, is instead shown to be strongly hyperbolic. In the final case, we find that the standard
forms of resistive magnetohydrodynamics, relying upon a particular choice of “generalized Ohm’s law,” are
only weakly hyperbolic. The latter problem may be rectified by adjusting the choice of Ohm’s law, but we
do not do so here. Along the way, weak hyperbolicity of the field equations for dust and charged dust is also
observed. More sophisticated systems, such as multifluid and elastic models, are also expected to be

amenable to our treatment.
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I. INTRODUCTION

The first multimessenger observation of gravitational
waves from a binary neutron star merger in Ref. [1] marks
the beginning of a new era in astronomy. One of the main
tasks of numerical relativity in the coming years will thus be
in the accurate construction and modeling of gravitational
waveforms from such spacetimes. This work is of course well
underway, see, for example, Ref. [2], but from the point of
view of accuracy suffers from a number of problems in
practice and in principle. As a consequence, numerical
relativity simulations of binary neutron star systems are less
accurate than those of binary black holes. The principal cause
of this difference is presumably the fact of shock formation in
the fluid. For this, sophisticated methods can be employed,
see, for example, Refs. [3,4] for introductions to shock-
capturing methods in numerical relativity, but ultimately
there is no avoiding the fact that a loss of differentiability
means forfeiting accuracy. Since shocks are only expected to
occur slightly before merger, we may expect that up until that
point the quality of the neutron star data would be comparable
to the vacuum case. This is also not the case, partially because
the additional computational cost of the fluid forces the use of
lower resolution but also because the singular nature of the
fluid equations at the stellar surface, and the numerical hacks
to treat this, serves as a constant source of error.
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A mathematically pure approach to the problem would
be to first give a proper analysis of the initial free boundary
value problem for the full system consisting of the Einstein
equations coupled to fluid matter. Unfortunately, such an
analysis has not been undertaken for the standard form of
the fluid equations in use in numerical relativity, although
see Refs. [5,6] for interesting work in this direction. Our
view is that this question deserves much more attention.
After all, no numerical approximation can converge if the
continuum partial differential equation (PDE) problem
being approximated is ill posed. Such an analysis is,
however, fiendishly difficult, not least because even the
standard expressions for the characteristics of the relativ-
istic Euler equations are complicated [7]. An alternative
approach would be to switch completely to smoothed-
particle hydrodynamics [8], although the mathematically
inclined might ask similar questions also in that context.

Therefore, as a first step in this direction, we reexamine
this basic question of hyperbolicity of general relativistic
hydrodynamics (GRHD) and, relying heavily on insights
from the dual-foliation and slightly more general dual-frame
(DF) formalisms, as presented in Refs. [9-11], exploit
structure in the field equations that simplify the resulting
expressions. Consequently, we use the same methodology to
give a characteristic analysis of the standard form of general
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relativistic magnetohydrodynamics (GRMHD) and resistive
general relativistic magnetohydrodynamics (RGRMHD) as
used in numerical relativity.

The paper is structured as follows. In Sec. II, for
motivation, we explain the basic treatment of the stellar
surface in numerical relativity and give examples of the
consequentissues. We then give a brief review of the relevant
PDEs theory and DF formalism as used in the paper.
Section III contains our hyperbolicity analysis of GRHD,
and Sec. IV contains that of GRMHD. In Sec. V, we
investigate the hyperbolicity of RGRMHD. We conclude
in Sec. VI. We work in 3 + 1 dimensions; geometric units
with ¢ = G =1 and the summation convention are used
throughout. The calculations were performed primarily with
xTensor for Mathematica [12]; our notebooks are available
in Ref. [13].

II. MOTIVATION AND THEORY OVERVIEW

A. Stellar surfaces

In most numerical approaches for the treatment of
relativistic hydrodynamics, the ‘“Valencia” formulation
[14] of the governing equations is employed [15-18].
This formulation is based on the use of two sets of variables:
the primitive variables, such as the rest mass density p, the
pressure p, and the fluid three-velocity v/, and the corre-
sponding conserved variables [3]. In practice, the flux-
balance law PDE for the latter set is used for the time
evolution. However, the primitive variables are also required
for the flux calculation. The conserved variables can be
expressed as simple functions of the primitives, whereas the
inverse is usually done by a numerical root finding pro-
cedure [15,19]. A fundamental problem of this approach is
that this mapping is singular for p — 0. Therefore, a low
density “atmosphere” is introduced as a threshold to avoid
p = 0 in numerical schemes. Typically, this floor value is
chosen to be around 8—12 orders of magnitude smaller than
the maximum density of the star. Although an artificial
atmosphere allows robust simulations of various neutron star
setups, it does not constitute a satisfactory solution to the
underlying problem. Furthermore, an artificial atmosphere
poses a new problem for high-order schemes. In Fig. 1, the
convergence results from the simulation of a single sta-
tionary, nonrotating neutron star [Tolman-Oppenheimer-
Volkoff (TOV) solution] are shown.

In this simulation, a discontinuous Galerkin (DG)
method of polynomial order N = 3 is employed. For the
top panel result, only the star interior with analytical outer
boundary conditions was evolved. Almost perfect pointwise
fourth-order convergence can be observed, as expected.
However, if stellar surface and artificial atmosphere are
added as in a realistic simulation of the entire star, the
convergence order rapidly decreases (middle panel), leaving
behind no clear systematic behavior. The application of
shock-capturing techniques, like the weighted essentially
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FIG. 1. Pointwise convergence order (color coding) for TOV
star simulations with a DG scheme. Top: Only the interior of the
star is simulated with a pure DG method and analytic outer
boundary conditions. The stellar surface (dashed line) is not
inside the numerical domain. Middle: Realistic setup of the entire
star including its surface. It is surrounded by a low density
atmosphere p,m = 1078p,uc. A pure DG method is used for the
simulation. Bottom: Realistic setup of the entire star including its
surface. The DG method is extended by a WENO-5 limiting
procedure.

non-oscillatory (WENO) limiting methodology [20-22],
partially cures this problem (bottom panel), and conver-
gence in the L norm does look somewhat better, although
still not satisfactory. In any case, this strategy can only be
seen as a workaround, which is clearly restricting the
potential of high-order methods. It is possible that with a
proper analysis it will turn out that full neutron star solutions
have only a very limited level of regularity and that high-
order schemes will never be of huge use in this context. In
any case, it would be desirable to know so, since then the
focus for developing numerical methods could be placed
squarely on obtaining at least low-order convergence while
maintaining perfect scalability.

As mentioned in the Introduction, such a “proper analy-
sis” would require a treatment of the general relativistic
initial free boundary value problem for the fluid models
treated in numerical relativity. Presently, we are unable to
do so, in part because of the algebraic complexity of the
expressions involved in even the simplest hyperbolicity
analysis of these models. This motivates us in what follows
to revisit that question and look for structure in the equations
that may not have been spotted or used in the past.

B. PDE analysis

In this subsection, we introduce our notation and explain
the key points in showing whether or not a system of PDEs
is strongly hyperbolic. We are concerned purely with first-
order PDE systems. The statements are taken primarily
from Ref. [23], with only slight adjustment for our needs.

1. Well-posedness of hyperbolic equations

We start by considering a quasilinear system of evolution
PDEs, with given time coordinate ¢, of the form
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oU = Ar(x*,U)0,U + S(x*,U), (1)

where in this subsection p stands for a spatial component
index. We call U the state vector, and A”(U,x*), the
coefficient matrices of the spatial derivatives, are referred to
as the principal matrix, although these are a number of
matrices equal to the spatial dimensionality. The initial
value problem (IVP) for (1) is called well posed if it admits
a unique solution that depends continuously, in a suitable
norm, on the initial data. The particular norm will not
concern us in the present work. The source vector S(x#, U)
contains all nonprincipal terms. These terms will not
contribute to our PDE analysis whatsoever and, when they
are included, are present only for completeness. From now
on, the dependence of the principal matrix on both the
solution and the coordinates x* will be suppressed in our
notation. Let s; be a spatial 1-form normalized so that
(m=")s;s; =1, with (m™")" an arbitrary symmetric uni-
formly positive definite matrix which is permitted to
depend upon the solution. Contracting the principal matrix
with s;, we call the resulting matrix

P =A' = A’s,, (2)

the principal symbol of the PDE system (1) (in the s;-
direction). At each point in spacetime, the system (1) is
called:

(1) weakly hyperbolic, if for each such s; the eigenval-
ues of P* are real;

(ii) strongly hyperbolic, if the system is weakly hyper-
bolic and for each such s; the principal symbol has a
complete set of eigenvectors written as columns in
a matrix T and there exists a constant K > 0,
independent of s;, such that,

IT,|+ |T;'| < K: (3)

(iii) strictly hyperbolic, if the system is weakly hyper-
bolic and if for each s; the eigenvalues are distinct;
(iv) symmetric hyperbolic, if there exists a symmetric
positive definite symmetrizer H, independent of s;,

such that HA? is symmetric for each p.
Note that if the eigenvectors depend continuously on s
then condition (3), which will typically be the case in
physical systems, with the matrix norm |-| is automatically
fulfilled. In that case, proving strong hyperbolicity at a
point requires then showing that the principal symbol P*
has only real eigenvalues and a complete set of eigenvec-
tors; i.e. P* is diagonalizable. If a system is strictly and/or
symmetric hyperbolic, it is also strongly hyperbolic
[23,24]. Since the principal symbol is solution dependent,
we note that the precise level of hyperbolicity is, too. For
linear constant coefficient problems, strong hyperbolicity
is equivalent to well-posedness of the IVP. In the more
general case, strong hyperbolicity at each point is a

necessary condition for well-posedness; additional smooth-
ness conditions are needed to guarantee well-posedness.
We are interested in the present study in establishing
hyperbolicity of relativistic fluid models in an efficient
manner.

2. Characteristic variables

Given a strongly hyperbolic system in the form of (1)
with principal symbol P* and matrix of right eigenvectors
T, the diagonalized form of P* with its eigenvalues on the
diagonal is given by

AS = T;'P'T,. (4)

We introduce the orthogonal projector to s;, that is,
M, =&, —(m")¥*s;s;, and, in this subsection, use
capital letters A, B, C to denote projected component
indices. We call the components of the transformed state
vector dﬂﬁ = TS‘IGMU the characteristic variables in direc-
tion s;. The d symbol here symbolizes the fact that the
matrix T;!, which is generally both position and solution
dependent, is not to be commuted with the partial deriva-
tive. In practice, we may think of the characteristic
variables as being constructed from perturbations to the
solution. When presenting them, we will employ a notation
like 6¢ to denote some derivative of a component ¢ of the
state vector. The characteristic variables have the property
that they satisfy particularly simple equations of motion if
we ignore derivatives transverse to §' = (m™")"s; and the
lower-order source terms,

d0=Ad0 + (T;'AT)d, U+ T;'S. (5)

In the linear constant coefficient approximation, dropping
the aforementioned terms leaves just decoupled advection
equations propagating with speeds determined by the
eigenvalues of P°.

3. General relativity with matter

In this paper, we will study different types of matter in
full general relativity (GR). We are interested in solutions to
the IVP for the Einstein equations,

G,y = 82T, (6)

which contain derivatives up to second order in space and
time for the metric components g, on the left-hand side
with the energy-momentum tensor 7', as a source term on
the right-hand side. These equations are supplemented
with additional evolution equations for the matter variables.
The latter may be fluid and/or electromagnetic variables,
depending on the physical system under consideration.
To treat the metric variables, we may proceed to use a
first-order reduction and construct a suitably hyperbolic
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reformulation of the Einstein equations. In this way, one
can write the principal symbol schematically as

P, P,
P~":( - ) (7)
meg Pm

with the principal symbols for the metric P; and matter
variables Pj,. If the evolution equations for the matter
variables contain no second-order derivatives of the metric,
the matrix Py, can be set to zero by replacing first
derivatives with reduction variables. If furthermore the
energy-momentum tensor contains no derivatives of the
fluid variables, the equations of motion of which we
assume to be first order, we have Py, =0, and the
statement above that 7', serves as a source term is justified
from the PDEs point of view. In such a case, we may
perform the characteristic analysis separately for Py and
P;,. Thus, taking a strongly hyperbolic first-order formu-
lation for the metric variables, one needs only to study the
properties of P},. In the following, the index m will be
dropped. We assume such a minimal coupling throughout
the work.

In the following sections, we write the equations of
motion in various forms similar to (1), but for convenience
instead of the partial derivative operator d,, we use the
spacetime covariant derivative V, the Lie derivative £,,, and
various other operators to be introduced momentarily. The
assumption of minimal coupling allows us to ignore first
derivatives of the metric that appear in these expressions by
implicitly assuming that they are replaced by the metric
reduction variables. This approach is appropriate for any
minimally coupled metric-based theory of gravity. Note
that care is sometimes needed in avoiding violating the
condition, which may render the analysis appropriate only
in the Cowling approximation, in which the metric is
simply given and only the matter variables must be evolved.

C. Dual-frame formalism

In this subsection, we give a brief review of the DF
approach of Refs. [9,10]. Since only some quantities and
relations of the formalism will be given, Ref. [9] is required
reading for deeper insights and a full understanding of the
construction. Note that, despite the naming of the formal-
ism, we will in fact here use two frames, only one of which
defines a coordinate tensor basis.

1. Index notation

Throughout the paper, we use the latin letters a — e as
abstract indices. We also use p as an abstract index, placing
it always on the spatial derivative appearing on the right-
hand side of our first-order PDE system. The inverse four-
metric ¢g°° is the only object permitted to raise and lower
indices. Greek indices run from O to 3 and denote the
components of tensors in the coordinate basis associated

with our coordinates x* = (¢, x'). Latin indices i — k run
from 1 to 3 and stand for the spatial components in the same
basis. The symbol 0, stands for the flat covariant derivative
naturally defined by x*. Indices n, N, u, V, S, Q1, O, S, q1,
4>, S, 41, o, and z label contraction in that slot with n or
n, and so on, respectively. We take capital latin letters A—C
as abstract indices denoting the application of the projec-
tion operators ©L or 9L, to be defined later. Similarly, we
use indices A — C and A — € to denote the application of
the projection operator 9L over a vector or dual vector,
respectively. This will become clear later. For products of
different projectors, we write for instance 919915 =
4] 4,Q| >  Please note that in our notebooks [13] the index
notation convention differs somewhat from that used here
(see README.txt accompanying the notebooks).

2. Basic idea and objects

The basic idea of the DF approach is to describe a region
of spacetime in two different frames, called the lower- and
the uppercase frames. In this paper, the lowercase frame is
Eulerian, that is, a coordinate frame associated with
coordinates x*, as is standard in numerical relativity. It
consists of the four vectors ;. The associated coframe
is V, x#. Associated with the lowercase frame is also the
usual future pointing timelike unit normal to spatial slices
of constant 7, which is, as usual, denoted by n“. Tensors
orthogonal to n“ are called lowercase spatial, or just
lowercase. The uppercase frame consists of a future
pointing timelike unit vector N, which in our application
will be identified with the fluid four-velocity u“, plus any
three linearly independent vector fields orthogonal to N.
The latter vectors will be chosen for convenience. Tensors
orthogonal to N? are called uppercase spatial, or just
uppercase. We also employ a further frame, consisting
of n® plus three linearly independent lowercase vectors
which are to be fixed as and when required. The future
pointing unit vectors of the lower- and uppercase frames
can be mutually 3 + 1 decomposed as

nt = W(N+ V), N =W(n*+v*), (8)
with the Lorentz factor W = (1 —VeV,)"1/2 =
(1 —v90,)"Y2 = (14 299,)"/2. The vectors v¢ = p9/W
and V¢ are the boost vectors orthogonal to n* and N¢,
respectively. We also define projection operators by

7ba = 5ba + I’lbl/la, <N)7ba = 5ba + NbNa’ (9)
which are obviously orthogonal to their associated normal
vectors, y?,n, =0, Ny N, = 0. The projection operator
y”, becomes the natural induced metric y,, on slices of
constant  when both indices are lowered. We call Wy, and
7. the upper- and lowercase spatial metrics, respectively.
Projecting the uppercase spatial metric with y”, yields
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TABLE L. Overview of the relationship between the upper- and
lowercase quantities.
Uppercase Lowercase
Unit normal N = W(n* + v%) nt = W(N* + V)
vector
Boost vector ve v =W
Lorentz factor ~ W = (1 —VeV,)"1/2 W=(1-v",)7"/2
Projector Ny, = g%, + NN, vy =gy +nny
Boost metric ~ N)g =N )Yah+W V.V  Qap=Yap+ a0y
Inverse boost ~ (N)(g=1)ab=N)yab_yayb (gl)ab —=yab_yapb
metric
Dap = 7ar s ™ cad = Vap + Dalys (10)
with inverse
(g]—l)ab :yub_vuvh’ (11)

which we call the boost metric and inverse boost metric,
respectively. In the same way but projecting the lowercase
projector y?, with Ny’ = we define the uppercase boost
metric and its inverse,

(N)g]ab = (N)yca<N)ydbycd = (N)yab + WZVaVb’
(N)(g]—l)ab — (N)yab _ Vavb. (12)
These various relations are collected in Table I.

The vector n“ is by construction hypersurface orthogo-

nal. The lapse function a, shift vector ¢, and time vector
1 = 0¢ are defined and related via

a = (=V, V), @ — _qVt,
pE=yit’ = 1% — an. (13)
The spacetime metric can be expanded in the lowercase
frame as
—a’ + Bf* B
G = : (14)
B j Vij
with inverse
TABLE II.

associated projection operators.

—a2 a2f
g’”’:( i i _ﬂz . > (15)

a2y —a
The intrinsic covariant derivative operator, defined by
projection of the spacetime covariant derivative acting on
spatial tensors, is denoted by D and has connection I
Finally, the extrinsic curvature K, is defined using the
standard numerical relativity sign convention, by

K.y = _ycavcnb- (16)

In the present work, we need not define any such connection
variables associated with the uppercase frame, since it will be
used exclusively in an algebraic manner to simplify the
various matrices that appear in our analysis. The key idea is
that by using the DF formalism we may express the equations
of motion in a Lagrangian frame that is, for fluid matter,
in some sense preferred. This allows us to exploit structure
in the field equations that is otherwise not obvious and
consequently makes the computation necessary to analyze
hyperbolicity relatively straightforward.

3. 2+1 decomposition

In our analysis, we not only split the equations in
a 3 + 1 manner against the future pointing unit timelike
vectors n and N, but we furthermore decompose the two
spatial projectors y%, and Ny%, against various arbitrary
unit spatial vectors. The spatial vectors and associated
orthogonal projectors are collected together in Table II.
Please note that g.,91%, is not symmetric. Therefore, we
distinguish between the abstract indices A and A of 9L
when applied on a tensor.

4. PDE notation and characteristic analysis

Starting from a four-dimensional formulation of a quasi-
linear first-order system,

A U+8 =0, (17)
we may 3 + 1 split the equations against N“ or n“ by

inserting 67, = Ny — N*N, =y, — n®n, between A“
and the derivative operator 0,. We then obtain two

Summary of the various unit spatial vectors appearing in our 2 + 1 decomposed equations, plus their

Uppercase Lowercase Lowercase
Unit normal vector N¢ n¢ n?
Spatial 1-form A\ S Sy
Spatial vector §¢ = (N)yabg, § = (g~")s, s =y%s,
Norm S,84=1 s.(g™! )‘”’sh =1 sa8t =1
Orthogonal projector Qb = Nyb _ gbg a b —=yb —sbs, b, =yt —sts,
Index notation Q1 8, alBy a] B,
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potentially equivalent evolution systems for U in terms of
n® and N“. These are

A"9,U = A% 9,U + S,
ANaNU = A“(N)}/ba@bU + S. (18)

To denote clearly the properties of the matrices, we make
the following definitions:

An = An’
AN = BN

Aayba = Ab,
Aa(N>7ba — Bb,

Abnb = 0,
BN, =0.  (19)

Let §¢ be an arbitrary unit uppercase spatial vector against
N so §?§, =1, SN, =0, and let s, be an arbitrary
lowercase spatial 1-form against n¢, s,n“ = 0, normalized
against the inverse boost metric s,(g~!)*s;, = 1. The
eigenvalue problems of these systems in directions s,
and S, read

I2((A")~'AS - 12) =0,
I ((BY)™'BS — 12y) =0, (20)

with principal symbols (A")~'AS and (BN)™'BS, left
eigenvectors 1} and lﬂ“N, and eigenvalues A and Ay for
lowercase and uppercase, respectively. Please note that we
place on the lowercase eigenvalues no index n. The
eigenvalues will in general depend on the spatial vector
chosen to obtain the principal symbol. Dependencies on
spatial vectors will sometimes be explicitly indicated by
square brackets.

Introducing the four-vectors ¢¢, ¢, we could also write
the eigenvalue problems as

1A%, =0, ¢, =—An, +s,,

1Y .A'p, =0, $o = —INN, + S, (21)

D. Frame independence of strong hyperbolicity

In Ref. [9], it is shown that strong hyperbolicity is
unaffected by a switch of coordinates, provided that the
boost vector is sufficiently small. Following that result, we
will prove that strong hyperbolicity is independent of the
choice of frame, provided that a specific estimate on
the boost vector is satisfied. This estimate will depend
on the maximum eigenvalue of the system. We start with
the system of equations for the state vector U in the
uppercase frame,

oyU = BP0,U + S, (22)

and suppose that it is strongly hyperbolic there, so that there
is a complete set of (left) eigenvectors in all uppercase
spatial directions. Expressing N, and Vy?  in terms of the
lowercase quantities, the same system can be written as

W(1+ BY)0,U
— (B, + 7V,) - (1+ BY)p]9,U+ 8. (23)

where we have to first investigate the invertibility of
A" = W(1 + BY). Let the uppercase boost vector be
written as V¢ = |V|S¢ with norm |V| = (VV,)"/? and
unit vector S§ in the direction of V. Since BV is
diagonalizable with diagonal form ASv, it has a complete
set of right eigenvectors written as columns in the matrix
Ts, and Tg, is invertible. Performing a similarity trans-
formation, we obtain

(Ts,)"'(1+BY)Ts, = 1+ [V|ASY, (24)

and invertibility of 1+ BY is guaranteed if for each
eigenvalue Ay[S}] the inequality

1+ |V[AN[SE] >0 (25)

for arbitrary unit S, holds. This condition will be guaran-
teed by assumption in the proof that follows.

Let S be an arbitrary unit uppercase spatial vector. The
eigenvalue problem in direction S corresponding to the
PDE system in (22) in the upper frame can be written as

1Y (BS - 1y[S) =0, (26)

where lf{; is the uppercase left eigenvector for the principal
symbol BS with eigenvalue Ay[S¢].

The eigenvalue problem for direction s, in the lower
frame for the PDE system (23) may be written as

(1 +BY)"[BS = (1+BY)(3°+ WA)] =0  (27)

for lowercase left eigenvector 1} with eigenvalue 4. The
associated principal symbol is

1
P = [(1+BY)'BS — 19°], (28)

and the lowercase spatial 1-form s, is related to the
uppercase one by s, =S, + W?VS(N, +V,); see also
Table III. The projectors given in Table II satisfy
LY = (g7")*“Leary

Introducing the modified lowercase left eigenvector
L2 =13(1 4+ BY)~! and collecting terms of B, we rewrite
Eq. (27) as

LD [BSVHWA _ 1(35 + WA)] = 0. (29)
By defining the new uppercase unit spatial vector

1

SYS. 4] =

(5% — V(° + WA)). (30)
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TABLEIII. The relationship between upper- and lowercase unit
spatial vectors.
Uppercase Lowercase
Unit normal vector N n¢
Boost vector ve v¢
Spatial vector §a = (N)yabg, 8¢ = (g ")s,
Spatial 1-form S, = S, =
sq + v°n, S, +W2VS(N, +V,)
(N)yab (g]_l )hc§c ybusb
with normalization,
= [(89 = V(D + WA)) (S, — V(DS + WA))]'/2
= \/W2 WVS + 1+ (VS)ZW2 -2,
= WA 0 1 (2= 22, (31)

we finally arrive at the eigenvalue problem
L
L} [Bsi -1 N (s +Wa)| =0, (32)

for the redefined lowercase left eigenvector LY, principal
symbol B5:, and eigenvalue (9 + WA)/N in the direction
of §¢. The relation WVS = —v° follows by using relations
given in Tables I and III. The lowercase eigenvalue problem
(32) for fixed 4 is the same eigenvalue problem as for the
uppercase system for eigenvalue (2°+ WA)/N in (26)
where the spatial direction $¢ is replaced by S¢. Therefore,

(6% + W2) = In[S}] (33)

2|~

must hold.

Equation (33) is a strong result, since we are now able to
calculate the lowercase frame eigenvalues from knowledge
of the uppercase results. Nevertheless, solving for A may be
hard since both N and Ay contain polynomials in A. The
lowercase left eigenvector to eigenvalue 4 is then simply
given by

Blsp] = L [S51(T + BY), (34)
and the right eigenvectors are given by
ri[s,) = r,lNN [S9]. (35)
The proof is as follows. We know that for arbitrary unit
spatial S¢ the principal symbol P® has:
(1) real eigenvalues Ay,

(2) acomplete set of left and right eigenvectors obeying
ITs| + |T5'| < K, where Ty is the matrix of right

(or left) eigenvectors written as columns (or rows)
and K is independent of S¢.
We assume furthermore that:
(3) all uppercase eigenvalues fulfill the inequality
1 — |Ax]|V| > 0, for all uppercase unit spatial S*.
This assumption automatically guarantees the condition
(25) for the invertibility of T + BV.
The lowercase eigenvalues are real—We start by
showing that the lowercase system is at least weakly
hyperbolic. By use of (33), we obtain

W3VS(1 = 2%) + W WA/1+2%(1/W? =1
W2(1 = 2%(1 = 1/W?))

L 5

(36)

for given Ay. The only danger is that the terms within the

square root are negative, but considering these, we have

LHAR (/W2 =14 (V9)2) = 1= R(IVP = (V%))
>1-2|V|* >0, (37)

where we have used assumptions (1) and (3). Therefore, all
lowercase eigenvalues are real.

The lowercase eigenvectors are linearly independent.—
Take a lowercase eigenvalue 4 with algebraic multiplicity .
Then, by Eq. (33), the corresponding uppercase eigenvalue
An[S4] has also algebraic multiplicity k. Thus, by assump-
tions (2), which ensures that we can find k linearly
independent eigenvectors to the associated eigenvalue
problem (32), and (3), which guarantees the invertibility
of T+ BY, and the use of Eq. (34), we know that we can
find k linearly independent lowercase left eigenvectors in
the eigenspace of 1. This statement holds also for the right
eigenvectors. Therefore, the lowercase principal symbol is
diagonalizable.

Show necessary regularity conditions.—Let us label the
left and right eigenvectors and eigenvalues, making dupli-
cates to account for their multiplicity if necessary, with an
index, writing 1,1(1_), L7 and AGis respectively. Please note
that only in this proof indices i, j label characteristic
quantities and do not stand for spatial tensor basis compo-
nents. We denote T as the matrix of lowercase right
vectors, where the ith column of T isr o . We order so that

the ith row of TZ! is l/*(f)' Thus, lﬁm 5, = o;;- By Egs. (34)

and (35), we can express for each i the lowercase

eigenvectors 1, .r; — as I [Sj()](]] + BY) and r [Sa ]
@ v

respectively. The uppercase principal symbol is dlagonahz—
able by assumption (2), so for each i, we may extend each
such left or right eigenvector with the remaining linearly
independent eigenvectors of the uppercase principal sym-
bol for spatial vector Sj{(i). We denote by T S the matrices
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of those completed sets of eigenvectors expanding the
chosen rﬂ"z) 55, ] (and li\%) (S, ) written as columns (rows).

The chosen ith right (left) eigenvector is placed in the ith
column (row). By assumption (2), we then have

5, | +ITs, | <K (38)

for each i.

Define now the square diagonal quadratic matrix Dy;),
which has in the ith entry of its diagonal 1 and otherwise
Zeros,

D, := diag(0,...,0,1,0,...,0);
(i) iag( )

i—1times

> Dy =1.

Their norm is [D;)| = maxyy_;|y(;)| = 1, where y(;) is the
ith component of y. Then, with the above definitions,

T, = ZT% D,

I s Ei (1) \ S/:(’,) ( ) ( )
and we can give the estimate

T3]+ [T < S(T5! |11+ BY] 4[5, |

<D (75! [+Ts, [)max{l,|1+B"]}
i

52K<i)max{1,|1] +BY|} =K. (40)

In the first step, we inserted (39) for the matrices and used
the submultiplicity of the norm. In the second, we estimated
the prefactors, and finally, in the last step, we used
assumption (2) given by (38) for each i. We thus arrive
at the inequality (3), which together with the above
properties gives strong hyperbolicity in the lowercase
frame.

Multiplicity and degeneracies.—The definition of strong
hyperbolicity does not require that the multiplicity of the
eigenvalues be constant as the spatial direction is varied.
In the literature on relativistic fluids, special cases in which
the algebraic multiplicity of a particular eigenvalue
increases when looking in particular special directions
are called degeneracies of the system. All such possible
degeneracies must be taken into account in the demon-
stration of strong hyperbolicity since diagonalizability
of the principal symbol is required in all directions.
Note that the relationship between the occurrence of
degeneracies in the uppercase and lowercase systems is,
however, not trivial. The key point is that when

transforming from the lowercase system to the associated
uppercase eigenvalue problem (32) we consider the latter
only for a fixed eigenvalue. For different eigenvalues, we
naturally assign different uppercase eigenvalue problems.
Therefore, it may be that, for example, uppercase degen-
eracies always occur in pairs, while the same is not true in
the lowercase frame. Indeed, we will see that this is the case
for a particular formulation of GRMHD. The relationship
between the degeneracies plays no role in the foregoing
proof of the equivalence of strong hyperbolicity across the
two frames.

Discussion.—All systems we study in relativistic phys-
ics will satisfy, by construction, that the boost velocities v,
are always smaller than the speed of light. We will
furthermore immediately reject any equation of state that
results in wave speeds, that is, eigenvalues of the principal
symbol, that are greater than the speed of light. This is
reasonable in the current study since we are concerned
exclusively with relativistic fluid models. On the other
hand, however, one should not get the false impression that
this must always be the case in relativistic physics. Theories
with gauge freedom, such as the electromagnetism and
GR, do admit hyperbolic formulations with superluminal
speeds. In GR, the obvious example of such a gauge is the
popular moving-puncture family. In that case, when the
boost vector becomes too large, uppercase strong hyper-
bolicity will not be sufficient to guarantee the same in the
lowercase frame, since the crucial inequality |Ay||V] < 1
can be violated. In fact, since GRMHD also inherits some
gauge freedom from the Maxwell equations, the same
could be said for that model. Such subtleties will not affect
us in practice.

E. Variable independence of strong hyperbolicity

Let U be a state vector for which the principal symbol Py;
is diagonalizable for each unit spatial 1-form s,. Let V be
another state vector of the same dimension, the components
of which depend smoothly on the components of U.
Derivatives of the two state vectors are then related by
the Jacobian J,

0,V=1Jo,U. (41)
The principal symbol for V is then
Py = JPyJ " (42)

Since this transformation is nothing more than a similarity
transformation, the eigenvalues remain the same, and the
(left) right eigenvectors for V are just modified by a matrix
multiplication with the (inverse) Jacobian. Thus, as is well
known, strong hyperbolicity is independent of the choice of
evolved variables. Note that, during the hyperbolicity
analysis, one choice of variables may make the practical
computations very much easier than another.
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F. Recovering the eigenvalues and eigenvectors
of the lowercase frame

In this subsection, we explain how we use the results of
Sec. IID. As mentioned before, the upper frame will be
chosen as the frame of a comoving observer with the fluid,
so we take

N =u“, Wy, = g%, + uuy, (43)
with the four-velocity of the fluid u“. Despite that we are in
the fluid frame or so-called Lagrangian frame, we never set
one of the boost vectors to zero.

Since we obtain all our results using computer algebra, it
is convenient to introduce a basis to obtain scalar quantities
as entries in the matrices. The various basis vectors are
given in Table IV. Given a spatial vector s¢ of unit
magnitude with respect to some metric, we consider a
set {s9, ¢\, ¢,*} forming a right-handed orthonormal basis
with respect to the same metric.

Let S“ be an arbitrary unit uppercase spatial vector.
Given a strongly hyperbolic system of PDEs in the form of
Eq. (22) with N“ = u“, we write the principal symbol as
PS5. We denote the known eigenvalues of PS by 4,[S¢] and
the known complete set of left eigenvectors, obtained by
Eq. (26), by 1j [S“]. Then, the lowercase eigenvalues are
given by Eq. (33), and the lowercase left eigenvectors I for
eigenvalue A are given by Eq. (34), that is, for a specific
choice of a basis,

1], =1 [S9)l4(1 + BYlg)
12 [54)lg T,(1 + BYg)

13 (541l (14 BY[g )T, (44)

and the lowercase right eigenvectors rj are obtainable by
e = 13,157l
S ORCAIN (45)

for given uppercase right eigenvector rj [S%]. We denote by

T, the transformation matrix between bases associated to
S¢ and S§ on the level of eigenvectors and matrices.

TABLE IV. Overview of the upper- and lowercase basis vectors.

Uppercase Lowercase
Unit normal vector N¢ N n¢ n¢
Spatial 1-form S* S, Sq Sq
Spatial vector Sq S §¢ 54

Orthogonal basis 1-forms 0%, 054 Q14 Q24 G1as W2a G114+ 924
Orthogonal basis vectors 0, 0> 014, Q> 4,45 1% ¢.°
Normalized/orthogonal via (Wb (wyab (g=lyab  yab

Two opportunities to obtain the lower eigenvectors are
possible: Either we take the uppercase principal symbol
BSi|g in a basis associated to S and calculate for given
A4[S5] the new uppercase eigenvectors or we take the
uppercase eigenvectors to BS|g in a basis associated to
§¢ and make the replacement S — S; = (5%, 0,¢, 0,$)"
which naturally defines a SO(3)-transformation R. Using
the first way, the left and right eigenvectors are given by the
formulas in the first line of Egs. (44) and (45). However, the
principal symbol might lose its easy form, which could be
especially crucial for a high number of evolved variables.
Therefore, we chose the second procedure in our notebooks
[13], where the second (and/or third) lines of Eqs. (44) and
(45) are used to obtain the lower eigenvectors.

The recovery will be explicitly shown for the system
of GRMHD in Sec. IV. For the analysis of GRHD, the
procedure is given in the corresponding notebook [13] but
not in the paper.

For the sake of clarity, we finally want to relate all
our explanations with the covariant form of characteristic
analysis using the vector ¢, and the eigenvalue problem as
in (21). Taking the four-vector of the form ¢, = —An, + s,
with A = A[s;] and writing the lowercase vectors in terms of
u¢, V4, and S¢, we obtain

¢, = —An, +s,
=—-AWu, + WV,) + S, + W?VS(u, + V,)
= (W2VS = W)u, + 8¢ + (W2VS —= W)V
= N(=4[S7]u, + S5)
o« =2, [SP]u, + SE. (46)

The last step is done since ¢, is defined up to an arbitrary
scalar factor and we always consider unit spatial vectors for
the characteristic analysis.

III. HYPERBOLICITY OF GRHD

We now start applying the formalism of the last section
to concrete examples of fluid matter models. We begin with
the simple case of an ideal fluid. Because a full character-
istic analysis has been nicely given in Ref. [7], the
calculations here serve first as a sanity check in a nontrivial
example but second as a proof of principle that the DF
approach to the analysis results in an economic treatment.
Thus, we consider the energy-momentum tensor of an
ideal fluid,

T = pohu®u® + pg?®, (47)

with the four-velocity of the fluid elements u“, rest mass
density p,, specific enthalpy A, and pressure p. The specific
enthalpy & can be expressed in terms of p,, p and the
specific internal energy € as
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h=1+e+L. (48)

Po

The evolution equations of the system are the conservation
of energy momentum

V. (T*) =0 (49)
and the conservation of particle number
Va(pou®) = 0. (50)

Projecting Eq. (49) along and perpendicular to the fluid
four-velocity u“, we get the equations

pohVu® +uV,(py +epy) =0 (51)
and
poh ¢ yuV ub + WyV, p = 0, (52)

respectively. We choose an arbitrary equation of state
(EOS) of the form

p = p(po€)- (53)

Equations (50)—(53) provide us with six equations for the
six unknown quantities (py, €, p, ?,). By (53), we only
need to evolve the state vector U= (p,#,,e)’. The
components of U, expanded in our lowercase (Eulerian)
tensor basis, may be viewed as a slightly modified version
of the primitive variables p,, €, v; commonly used in the
literature. The characteristic analysis will be performed on
the system of equations (50)—(52), the state vector U, in
particular in a non-flux-balance law form. Since there is no
gauge freedom in the system, the analysis applies unam-
biguously even after a change of variables, for example, to
the conservative variables D, 7, S; defined in, for example,
Ref. [15]. This is assured by the proof in Sec. II E.

A. Lowercase formulation

We split Egs. (50)—(52) now against n* and y“, to get a
system of first-order partial differential equations for the
variables (p, ?,, €). Doing so, it is easy to show that the
system of equations can be rewritten as

W2 A
‘cnp = (C% - 1)W%SUaDap - C%pOhWS (g]_l)abDavb

+ C?Pohwa (g7")*"K 4. (54)
}'ba'cn@b = - W,O()]’l (yca + C?W%S’l)c’l)a)l)cp - Uchﬁa

+ C%Wa Ua(g]_l)bcDbf]c - C%W%g (g]_1>bCKbcf}a

- WD,Ina, (55)

2 2
p Wc. a ch —1\ab A
e=——2v'D p———7">= @wp p
n p%h W2 aP 2 W (Q] ) a’b
- UaDag + p£ W%Y (g]_l)abKabv (56)
0

with W, = 1/4/1 = c2v?, where ¢, is the local speed of
sound and

1 P dp dp
2__ R — 0 — -
d=ilerie) o=(gn). (%), ©

Unless otherwise stated, we consider only matter or EOS
with speed of sound 0 < ¢, < 1. As one can see, we have
used the Lie derivative £, along the timelike unit normal
vector n¢ instead of O, and have written the covariant
derivative D, associated to the intrinsic metric y,;, instead
of 0;, but as discussed in Sec. II, this makes no difference to
our analysis. Writing the system (54)—(56) as a vectorial
equation of the form

A"L,U=A’D,U + S, (58)

we can identify

1 0 O
A"=10 y*, 0],

0 0 1

(G-DW2or  —cpoh(@) 0
AP = - W;ohfpa C?ng (g]_l )pcva - Upyca 0 s

W%‘ W%x - C
o 23 (g7h)? —vP

(59)

with shorthand f7, = y”, + c2W2 vPv, and can write the
source vector here as
C?Pohwgs(@_l)abKab
—c2W? (g7")*Kpedy — WD, Ina | . (60)
pﬁo W%X<g]_l)abKab

S:

Note that written in this form the principal parts of special
and general relativistic hydrodynamics take an almost
identical form. Let s, be an arbitrary lowercase spatial
1-form, normalized against the inverse boost metric so that
(g~ ")s,s, = 1,and let 917, == y*, — (g7")*¢s,s, be the
orthogonal projector. Recalling the definition of §% =
(g~ ")“bs, given in Table II, we write y¢, = §%s;, + 919,
Inserting this relation into (58) and expanding leads to

(EnU)gA ~P*(DsU) 3, (61)
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with the principal symbol P® = A® =

W2
W2 (c2—1)v° —==cipoh 0B 0
W22 (15 )2 W2 W2_2w2.
— V[;S ZL o WSZ s S 0B 0
Po (62)
_GWe s W2 vy —p59LB. 0;
Wooh VA sWe, VA A VYA
PWE s _PW%S B S
szgh v Wpq 0 v

The symbol “~” denotes equality up to transverse principal
and source terms. For any derivative operator 6 and vector
7%, we write (60). =z“6,, and for the state vector,
(8U)s 4 = (6p, (6D)4, (6D)4.6¢)". As explained earlier in
Sec. II C, we introduce here furthermore the indices A and
A, which are abstract but which indicate application of the
orthogonal projector 91°,, meaning z3 = 919z, and
A =917, 7" for any object z. Then, for example, we
get 79, (60), = $,(80)s + AL, (80) 4

Before we proceed with the characteristic analysis, a
comment should be made. By the use of ?, in the state
vector, the inverse boost metric arose in the principal part
(59). By taking s, normalized by (g~')“*, we were able to
get rid of this complication in the principal symbol, which
became “easy,” in the sense that it is highly structured. The
principal symbol as well as the eigenvalues and eigenvec-
tors for a state vector (p,wv,, &) can be found in the
Appendix. Since we normalize the spatial 1-form s, against
the inverse boost metric, the eigenvalues and vectors take a
form that is slightly modified in comparison with the
literature, but these differences are purely superficial.

Solving the characteristic polynomial, one gets the five
real eigenvalues

Ao.12) = =15,

1 Cs
Ay = T ((1 — s iW@)? (63)

with the shorthand v% = vAvj,.

Please note that all eigenvalues in this paper have the
opposite sign in comparison to the literature by our
definition of the principal symbol. In the one-dimensional
limit, i.e., v; = 0, the eigenvalues (. reduce to

v+ We,
Aoy =——" 2w >
1+ 57

which, as noted elsewhere [25], is just the special relativ-
istic addition of two velocities multiplied with W. Due to
our choice of a three-basis normalized by the inverse boost
metric, the eigenvalues are slightly different as compared to
the results in the Appendix.

The left eigenvectors of the principal symbol with our
variable choice for the respective eigenvalues {/1(0’1‘2), A(i)}
are

(<5 0 0 1) (e 0w o),
— 2.2
(j: VIS oA o), (64)
sP0
respectively. The associated right eigenvectors are
0 0 i
CsPo — 292
0 ’ OC ’ j;po 1 —c5v7 (65
OB il B C%/’o@
- B
1 0 g
1

respectively. Since there is a complete set of eigenvectors
for each s, which depend furthermore continuously on s,,
the system is strongly hyperbolic. The characteristic
variables corresponding to the speeds {4 12),4(x)} are
given by

N

Uy = de — -

B. Dust

A special case for the equation of state (53) is that of
dust, in which the pressure is identically zero everywhere,
p = 0, and the energy density coincides with the rest mass
density, ¢ = 0. It follows that the fluid elements then follow
timelike geodesics and that the conservation of the number
of particles (50) is automatically fulfilled by the conserva-
tion of energy momentum in equation (49). For the analysis
of hyperbolicity, we use in this subsection U = (p,, 7,,) as
the state vector.

Using Eqs. (51) and (52) with ¢ = p = 0 and splitting
the equations against n“ and y“,, the PDE system can be
written as

Po, _ A _
ﬁnpo = _vaDapO - W (g] 1>abDavb + PO(@ l)abKabv
¥’ L0y = —vPDyo, — WD, Ina. (67)

Using again an arbitrary spatial 1-form s, asin Sec. Il A,
one ends up with the principal symbol P for (6U); 4 as

—S _%} OB
PP=]| 0 —o° 08 , (68)
04 04 —vS“M_BA

which evidently contains a Jordan block. The principal
symbol is thus missing an eigenvector. The system is only
weakly hyperbolic, and hence the IVP is ill posed.
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C. Uppercase formulation

We start again with Egs. (50), (51), and (52) but split
them against #“ and (Wy? . Using the definition of the local
speed of sound (57), we derive after some algebra the
following PDEs for the components of the state vector:

V.p = =c2pohyt 4 (g4 V, b,
- waﬂohm}’bd(@_l)dcvb"c, (69)

A 1
(u>yab<g]_1)bcvuvc = __h<u)ybavbp

0
- W(U)Yab(g]_l)bcvunc’ (70)

Vie ==L 0 (g7 )1V 0,
Po

Wp —1\de
—E(U)Vbd(gl l)d Vyn. (71)

Here, we have used the relationship Wy ,(g!)b¢ =

@y (g"),,r". Proceeding as when splitting against the
lowercase frame, we write the system (69)—(71) as an
equation for the state vector U,

B'V,U=B’V,U+S, (72)
and identify
1 0 0
B =10 “p,(gh* 0 (73)
0 0
and
0 —c3poh™y? (g™ " 0
B’ = | =5 0 0. (74
0 —L(u)Ypd(Ql_])dc 0

Po

The source vector is written as

—2WpohWy? 4(g") 4V, n,.
_W(u)yab(g]_l )hcvunc . (75)
~Yp (u>}’hd(‘9]_l>dcvb”c

o

S —

It is straightforward to verify that 1 4+ BY is invertible for
all v,v* < 1. Therefore, as long as the various speeds in the
system are not superluminal, that is, |A| < 1, expected since
we are considering here a fluid model with no gauge
freedom, by the argument of Sec. II D, we may analyze
strong hyperbolicity equivalently in the upper- or lowercase
frames.

Let S, be an arbitrary uppercase spatial vector,
normalized against (YJy,, so that S,5¢ = 1, and let 2L?, =
Wy — SPS, be the orthogonal projector. Decomposing
(W4, against S¢ and using relations in Table III to s,, we
write Eq. (72) as

(VU4 = PS(VSU)@B’ (76)

with principal symbol

PS = BS = poh . (77
0, 0, 08, 0, 77
0 i 08 0

Po

Since the uppercase projector is pushed through the lower-
case inverse boost metric, we have S,S,(g~")"¢(69), =
S.8(60), = S,(60)s, and for the orthogonal projec-
tor, UL, (89) 4 = AWy (g7)(6D) -

By employing the uppercase frame, the principal symbol
has become much simpler than before, see (62), exhibiting
now essentially the same shape as that of a simple wave
equation. In the present example, the extra structure is not
required to complete the analysis, because in practice,
computer algebra tools can already manage the more
complicated form. In more sophisticated models, however,
additional structure may become crucial if we wish to
perform such an analysis. An obvious question to ask is:
why is the uppercase form of the principal symbol so much
cleaner? The reason, which in hindsight is obvious, is that
the four-dimensional form of the fluid equations of motion
contains the fluid four-velocity, and so any frame adapted
to that fact naturally annihilates many terms in the principal
symbol, uncovering the beautiful structure of (77). The five
eigenvalues of PS are

Ao12) =0, A=) = %y, (78)
with the corresponding left eigenvectors

__Pr_
cfpgh

1
( :F Csp()h

0 o 1), (0 0 e o),

1o 0); (79)

right eigenvectors

0 0 z?f/)gh
P
0 0 o
05 |’ e, |’ T 60
B B OB
1 0 |

and characteristic variables
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2 P A A
Uy = oe — op, Uy = (00);4,
0 2 c%pﬁh P A ( U)A
~ . op
0. = (00 F (81)

Using the recovery procedure described in Sec. II F gives
the same results for eigenvalues and eigenvectors and
characteristic variables as in our lowercase analysis. For
details, see the notebooks [13] that accompany the paper.

IV. HYPERBOLICITY OF GRMHD

In this section, we investigate whether or not two
different formulations of GRMHD are strongly hyperbolic.
The field equations will be expressed for a set of eight
variables corresponding to those evolved numerically.
The first characteristic analysis for RMHD was done by
Ref. [26]. They worked covariantly and considered an
augmented system of fen evolved variables, assuming
implicitly a “free-evolution” style [24] to treat the two
additional algebraic constraints, u“u, = —1,ub, =0,
thus introduced, as well as the Gauss constraint besides.
The analysis was then reviewed and expanded in Ref. [27].
The conclusion was that the augmented formulation of
RMHD is strongly hyperbolic. Another augmented system
for RMHD using ten variables was later derived in
Ref. [28]. On the basis of Ref. [26], several authors,
e.g., Refs. [29,30], reexamined the characteristic analysis
and treated degeneracies. In particular, a very detailed
discussion is given in Ref. [30].

For numerical implementation, a flux-balance law form
of the equations was needed, as shocks can arise, and used
in slightly different forms by, for example, Refs. [29-35].
A detailed overview is given in the review of Ref. [3]. In the
flux-balance law form considered here, a total of eight
variables including the magnetic field are evolved. It is
important to stress that changing the number of variables
can cause a breakdown of hyperbolicity, so in general, it is
not enough to know that there is some good form of the
system being treated. Rather, it is required that the
particular formulation being employed should itself be
at least strongly hyperbolic. The analysis of Ref. [27]
therefore does not necessarily apply to the system in use in
applications.

Our analysis begins with two observations that motivate
a careful reconsideration of GRMHD. First, when numeri-
cal schemes to treat GRMHD are constructed, one some-
times sees that the longitudinal component of the magnetic
field is ignored in evaluating the fluxes. This is ultimately
because the approximation works by repeated application
of a one-dimensional scheme, which is of course a
perfectly legitimate approach. It is, however, easy to
overlook the fact that when performing hyperbolicity
analysis we are not free to discard any variable and must
find a complete set of eigenvectors of the principal symbol,

including that associated with the Gauss constraint. We
must therefore be careful not to be misled by tricks that
apply only to the method, rather than the system of
equations itself.

Second, even if we can show strong hyperbolicity for a
formulation of GRMHD that requires the evolution of only
eight variables, we still may not claim that the flux-balance
law formulation used in applications satisfies the same
property. Like the field equations of GR and electrody-
namics, those of GRMHD have a gauge freedom, which,
from the free-evolution point of view is just the freedom to
add combinations of the constraint to the evolution equa-
tions. Different choices of this addition affect the level of
hyperbolicity of the formulation.

Neither of these subtleties has been completely taken
care of by the earlier analyses, and indeed a first indication
that the system of GRMHD used, for example, in
Refs. [33,36] differs from that used in the analysis of
Ref. [26] is the fact that the eigenvalues associated with the
Gauss constraint differ between the two systems. In
Ref. [26], the “entropy eigenvalue” is found with multi-
plicity 2. Of these, one corresponds to the Gauss constraint.
In Ref. [36], for the system of eight variables, the entropy
eigenvalue has only multiplicity 1, and the constraint
eigenvalue is zero. We suppose that the reason these points
have not been carefully unraveled before is chiefly that the
lowercase principal symbol of GRMHD is a complicated
matrix of which the structure is very difficult to spot.
Remarkably, there is enough structure in the symbol so that
the calculation of the eigenvalues and eigenvectors is
possible in closed form, but the expressions are very long.
For example, before developing the DF approach to the
problem, which we will see simplifies matters greatly, we
attempted a brute force treatment; the magnetosonic
eigenvalues arrived with more than 10* terms.

This section is structured as follows. In Sec. IVA,
we recapitulate the basic definitions and equations for
GRMHD following Refs. [27,30]. Afterward, we 3 + 1
decompose the PDEs and derive the evolution equations,
where in each multiples of the Gauss constraint are
manually added (see Sec. IV B). We then analyze the
characteristic structure of the principal symbol, taking all
constraint addition coefficients to zero, which forms a set of
PDEs that is in some sense analogous to the set of equations
in Ref. [26], but with their algebraic constraints explicitly
imposed; see Sec. [V C. In Secs. IV D and IV E, we do the
analysis in the upper- and lowercase frames and give some
comments about how the eigenvectors have to be rescaled
to take account of degeneracies. Finally, in Sec. IV F, we
take a different choice of constraint addition coefficients to
obtain a set of equations equal to the flux-balance law
system, comparing explicitly with Ref. [36], and show that
this formulation of GRMHD which is used in numerical
relativity is only weakly hyperbolic.
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A. Basics of GRMHD

In this subsection, we give a brief review about the
basic definitions and equations of GRMHD following
Refs. [27,30]. However, this will be done in a primarily
mathematical fashion, suppressing some important physi-
cal insights and statements. We use Lorentz-Heaviside units
for electromagnetic quantities with ¢y = py = 1 through-
out, where ¢, is the vacuum permittivity (or electric
constant) and p is the vacuum permeability (or magnetic
constant).

1. Faraday tensor and Ohm’s law

We start by introducing the Faraday electromagnetic
tensor field (or for short field strength tensor) F*°. For a
generic observer with four-velocity N, the field strength
tensor and its dual can be expressed via the electric and
magnetic four-vectors, E¢, BY, as

Fab — NaEb — NbEa _'_ €abL‘dNCBd’

*Fab — NaBb _ NbBa _ €adeNcEd7 (82)
with the Levi-Civita tensor,
etbed = — [abced], (83)
—9g

where ¢ is the determinant of the spacetime metric g,
[abcd)] is the completely antisymmetric Levi-Civita sym-
bol, and 2*F* = —e®<dF_, holds. We use here the sign
convention of Ref. [37]. Both the electric and magnetic
fields satisfy the orthogonality relations E“N, = BN, = 0.
Using the field strength tensor and its dual, Maxwell’s
equations are written as
Vi Ft =0, V,F = g9, (84)
According to Ohm’s law (see Sec. V), the electric four-
current J¢ can be expressed as

T = pau + cF*u, (85)

with the proper charge density p, measured by the
comoving observer with #“ and ¢ the electric conductivity.

2. Ideal MHD condition

In the limit of infinite conductivity ¢ but finite current,
the electric field e* measured by the comoving observer u¢,
has to vanish,

e = Faby, =0. 86
b

This equality holds by use of expression (82) taking
N* = u“, B = b* and E* = e“.

3. Energy-momentum tensor

The total energy-momentum tensor of magnetohydro-
dynamics (MHD) is expressed as the sum of the ideal
fluid part,

Tab. . = pohuub + g*®p, (87)

plus the standard electromagnetic energy-momentum tensor,
1
T = FacFb, — 1 GPF 4 Fc. (88)

Using the ideal MHD condition (86) and expressing the
field strength tensor via (82), the electromagnetic energy-
momentum tensor in terms of the magnetic field is

1
T = <u“ub +3 g“b> b2 — bbb, (89)

and the total energy-momentum tensor is given by
Tab — poh*uaub 4 p*gab _ babh, (90)

with i* = h + b*/p, and p* = p + b*>/2. In Eq. (89), we
used as a shorthand b%> = b“b,,.

4. Covariant PDE system of GRMHD

The equations of GRMHD are the conservation of the
number of particles

Va(pou®) = 0. o1
the conservation of energy-momentum
V,T% =0, (92)
and the Maxwell equations

Vv, F = 0. (93)

B. 3+1 decomposition of the PDE system

The 3 + 1 decomposition needs a bit more care since we
have a constrained system. For convenience, we will use
Wy u? to decompose the equations given in Sec. IVA 4.
Afterward, we will add to each equation some parametrized
combination of the Gauss constraint. A concrete choice
of the constraint addition parameters results in a set of
evolution equations which we call a formulation of
GRMHD. We will focus here on two specific formulations.
The first of these is essentially that of Ref. [26], but without
the artificial expansion of variables through the definition
of the algebraic constraints u“u, = —1 and u“b, =0,
which are satisfied a priori in our approach. The second
formulation corresponds to the flux-balance law system
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used in numerics by Refs. [30,36]. We arrive at the second
by matching the values of the formulation parameters
with the literature to obtain the desired form of the field
equations. We also want to stress that we neither consider in
this work formulations using the magnetic four-potential
instead of the magnetic field as in Refs. [38,39] nor systems
with divergence cleaning as in Ref. [35].

The eight equations determining the time evolution of
the GRMHD system are

vu(PO“a) = 07
l/tbchbC = 0,

(u>yabchb£ = 07
(u>7abvc*Fbc = O’ (94)

together with an equation of state p = p(po, €) and the
Gauss constraint

0 = u,V,*Fbc = Wybey,p.. (95)

The magnetic four-vector b can be split in the lowercase
as

ngb®* = —(v,b%), v, bt = b, (96)

and we have b¢ = (bv,)n*+b" with n,b*=0.
Furthermore, we introduce the Eulerian magnetic field
vector B as

Loy |
Wg]ab _W

B = W(g™")*b, = Wb* — (bD, )0, (97)

Ea = Ba+(Bb@h)Ua’

where the lowercase Gauss constraint reads
y“bVaBb =0. (98)

Taking Eq. (94), a straightforward calculation similar to
that for GRHD in Sec. III C provides evolution equations
for the pressure,

vup - sﬂoh c(g] )wvd@e + S(I’)

+ ) (Wyd (g71)eV, Lb, + S©);  (99)

beh (u)yd
a a v
= ) 7

the boost vector,

l)bcv

( 7ab<

2
+ * <u)y[babd] (u)}/hc (g]_l)cevdlbe
poh
+8+ 0V @)V Lb,+S5);

(100)

the magnetic field,

(u)}/ab( )bcvulb *2( )Yab ) (b bd( )Lev ve+S( >
+oi (g™ Vi Lbe +59);
(101)
and finally the specific internal energy,
_ _Pw,d (g-1\cew 7 ()
vu'S - 14 c(g] ) vdve +S
Po
+ ol (W (g7!) YV Lb, +5). (102)
By Eq. (95), we also obtain the Gauss constraint
WyaeV b, = Wyt (g)eV,Lb, + S©.  (103)

The sources are given by

S(p) = _CSW/)Oh( uyd (g]_l)cevdnw

v 2w
Sa) = =Wy (@) Vune + - O VbV in.
Po
S = 2W 0y, Wl b (g )oY gm,
+ 2w )}/ [aVb]b V.1,
50 = - XLy (g 1) m,.

Po

s — (Wdee _ W(bcvc)<u>}/de)Vdne-

The auxiliary magnetic vector _Lb,
relation

is defined by the

(u)yac( _])Cdvblbd _( yac(
+ Vubd(g]

“1)edV, by

4V, p,.  (104)
As usual, square brackets around indices denote antisym-
metrization, so that 2919p? = pp? — $Pb4. In the system
(99)-(102), we already added multiples of the Gauss
constraint (103) connected to coefficients w(?), a)gﬁ), wE,Lb),
and o),

C. Prototype algebraic constraint free formulation

In the following subsections, we proceed with the
characteristic analysis for the prototype algebraic constraint

free formulation of Egs. (99) (102) by setting w'P) =0,

a)g, =0, a)E,Lb =0, and @'©) = 0. The resulting system

is connected to the augmented system of equations in
Ref. [26] as follows: take the equations of Ref. [26], project
the momentum equation and the evolution equation for the
magnetic field with (“y%, orthogonal to the four-velocity of
the fluid, change the evolved variables to (p, d,, Lb,, €),
and replace the derivative of p in the evolution equation for
the magnetic field using the evolution equation for p. After
this, one obtains our principal symbol. The fact that Anile
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and Pennisi [26] work exclusively in RMHD is of no
consequence, since in our notation the principal symbol in
GRMHD is fundamentally the same as that of RMHD.

As previously mentioned, the equations become very
lengthy in the lowercase frame. As such, we were not able
to find a choice of variables in which the principal symbol
takes a nice and easy form. Nevertheless, by applying
the strategy of Sec. II F, we were able to derive for the
prototype system all lowercase characteristic quantities,
such as eigenvalues, eigenvectors, and characteristic var-
iables, which are displayed in Sec. IVE, including a
discussion of degeneracies that may occur. Our analysis
of the flux-balance law formulation of GRMHD is given
afterward in Sec. IVE

D. Uppercase formulation

Writing Egs. (99)-(102) with o =0, o’ =0,
a)g,lb) =0, and ®® =0 in a vectorial form with state
vector U = (p, d,, Lb,, €)7,

B'V,U=B’V,U+S, (105)
we identify
1 0 0 0
0 (u) ’ —1\bc 0 0
BY — Yab(97') . (106)
0 0 “ya(g™)? 0
0 0 0 1
and the uppercase spatial part
0 —cipoh™ye(gh)e 0 0
IPa 0 e, 0
P —
B7=1 0 2wy, b brgye 0 0| 1e7)
0 —ZWr (g 0 0
with shorthands
e, = 2 @yl prltwly, (g1yee,
a ﬂoh* a c
bPh (WP
fP, = _<p <+ *“> (108)
%hh poh

and source vector S = (S(”), SE,@) , Sglb), S<£>)T. A straight-
forward calculation shows that 1+ BY is invertible for
all Vev, < 1.

1. 2+ 1 decomposition

Let S, be an arbitrary unit spatial 1-form and 2L”, be
the associated orthogonal projector. Let s, and 91", be
their lowercase projected versions (see Tables II and III).

Decomposing Wy andy?, against S, and s,, respectively,
Eq. (105) can be written as

(VU4 = PS(VSU)g,[ﬁa’ (109)
with the principal symbol PS = BS =
0 —c2poh 08 0 08 0
(b +poh B b
- Whah g N
S s
- ;z)h”;* 0, 084 04 -Zeolfy o0,
0 0 08 0 08 0
0, —b, BSUB, 0, 08, 0,
0 -L 08 0 08 0
140]
(110)

The characteristic polynomial P, for the principal symbol
(110) can be written as

12
PA:WPAlfvéangsv (111)
with the quadratic polynomial for Alfvén waves
Painven = —(b%)* + poh* (112)

and the quartic polynomial for magnetosonic waves

ngs = (’12 - 1)(/12b2 - (bS)ch) +12(ﬂ“2 - C?)Poh- (113)
Solving (111) provides us with different kinds of speeds of
waves propagating in the S?-direction. All speeds are real,
and the system is strongly hyperbolic, as will be seen later.
The entropic waves have speed

Ay = 0. (114)

The constraint waves have the same speed, given by

Ae) =0. (115)
The Alfvén waves are given by solving P e, = 0, which
results in the two different speeds

bS
Mar) = t——m

Voo™

Solving the quartic equation P, =0, we obtain four
different speeds of the magnetosonic waves, two slow
magnetosonic waves,

(116)
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Ass) = £4/Cs = /65 = &s, (117)
and two fast magnetosonic waves,
ﬂ(fi):i\/Cs+\/C§—~fs, (118)
where we employ the shorthands
b* + 2[(b%)? + poh b5)*c?
2poh poh

Please note that the index “S” in (g and &g is not a
contraction with a vector but rather a reminder that we used
for 2 + 1 decomposition the vector $¢. Since (b%)? < b?
and ¢? < 1, all eigenvalues have absolute value smaller than
or equal to one, and relation |1,||V| < 1, required for
application of the formalism of Sec. II'F, is satisfied for all
boost velocities. Thus, we are allowed to use the recovering
procedure for arbitrary boost velocities.

The left eigenvectors corresponding t0 Ay, A(c)s A(at)s
and A1) with m = s, f being

(< 000000 1) (000100 0),

<0 0 F OAChoy/poh™ 0 —OACh, 0>,

<ﬂoh*(/1(mi))2—b2 (65)2=poh* (Ame))*  pSpA

cipoh A(mt) Am)

bA 0), (120)

respectively. We defined the antisymmetric uppercase
two and three Levi-Civita tensors as (Sed? = §,Wed48 —
U8, A, 18,4 The right eigenvectors can be
obtained by inverting of the matrix of left eigenvectors
or by solving the eigenvalue problem and can be
expressed as

0 0 0
0 0 0
F <S)€BC bC
0p ’ 0p ’ Ioult ’ (121)
0 1 0
0z 0p _(S)eBch
1 0 0

for entropy, constraint, and Alfvén waves, and

cpgh

P
_ PoAm)

P

Ami *
I:fb§sz [(65) + poh* ((Am))* — 2¢s)|bg (122)
0
e [b? +/)Oh*((/1(m:t))2 —2(s)]bg
lp

1

for the four magnetosonic waves with m =s,f. We
introduced in the magnetosonic eigenvectors the orthogonal
magnetic field vector b4 =L, b? with b3 =b% bt =b"b,.
For the moment, we have a complete set of eigenvectors for
real eigenvalues. Nevertheless, we have to check if any of the
eigenvalues may change their multiplicity and, if so, whether
or not a complete set of eigenvectors is still available. The
situation where a priori distinct eigenvalues coincide and
their muliplicities change is called a degenerate state or for
short a degeneracy. To show strong hyperbolicity of the
system, we have to show that for each possible degenerate
state a complete set of eigenvectors still exists. For the
augmented system of RMHD, this was already described in
Refs. [26,27,29,31]. A full account was furthermore given by
Ref. [30]. We also want to mention that in the Appendix of
Ref. [29] the eigenvalues and right eigenvectors in the fluid
rest frame are given for seven variables in a one-dimensional
analysis of RMHD. They are obtained by explicitly setting
(locally) the spatial entries of the four-velocity to zero, which
is ultimately quite similar to our approach.

2. Degeneracy analysis of the uppercase

For the prototype algebraic constraint free formulation of
GRMHD, just as in the augmented system of Ref. [26], two
different types of degeneracies can occur. For degeneracy
type I, b° is equal to zero, whereas for degeneracy type II,
the magnetic field four-vector is parallel to $¢, so that b =
Q] 4, b =0 holds. To describe the different situations
properly, we write the magnetic field four-vector as

b = bS58 + b4, b? = (b5)? +b3.  (123)
First, we note that the polynomials (112) and (113) have
solutions

bS

Z| =+/poh' (124)

il

(a)
b ( b? 1\ A
R T
A (m) C% C% l_ﬂ%mi)
b2 A
—i\/<b5>2+ (o425 ) = oot S22 (125)

which are well defined even for degeneracies.
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For a type I degeneracy in the uppercase where b5 = 0
and b*> = b2, the eigenvalues become

Ae) = Me) = Aat) = Asx) = 0,

:I: \/ b2 + C%poh

Ax) = N (126)
and
bS b? bS
(s%) \/ Cs (f+)
hold.

For type II degeneracy, namely when b9 =0 and
b* = (b%)?, we have

A =1t + Lal A =4 if ¢2 (bS)Z
(s2) = 4@ = N (f+) = E£C5, 1 Cy > ool
bS| (bS)Z
Ay = A5, = | , A =+c,, ifcl<
(f+) (a) Vool (s£) Cs» MG polt*
(128)
and get
bS bS bS
A (mt+at) Cs A (mE=at)

To classify the corresponding waves with equal speed
properly (see Refs. [29,30]), we defined /1?;) with /Iz;) > /I(‘a)
such that /1?;) = Afas) for b* >0 or /1?;) = Aag) for b5 <0
holds. The special case (b5)? = c2pyh* is called a type II'
degeneracy where Ay = A(l;) = A(t+) = *c,. Note that
type I and type II degeneracies may occur simultaneously,
in which case we recover the pure GRHD decoupled from
the magnetic field evolution as a limiting case. On the
other hand, since we insist that ¢, > 0, it is not possible for

type I and type II' degeneracies to occur simultaneously.

3. Renormalized uppercase left eigenvectors

We rescale the Alfvén and magnetosonic eigenvectors in
a way analogous to Ref. [30]. The procedure can also be
found in the provided notebook [13]. The rescaled eigen-
vectors are

entropy : <—% 00t o0 0 1>,
constraint (0 004 1 04 0),

4. = bt bl .
Alfvén: <() 0 +8)AC /poh™ ﬁ 0 (S)eACﬁ 0>’

(130)

the magnetosonic left eigenvectors which have eigenvalues
closer to the Alfvén eigenvalues,

(H(ﬂz—l)
poh

— 2 B\ P .
(=eyra ($)gy 0 5y 0),.: (3D

and the other two magnetosonic left eigenvectors,

1 (=2 (b5 A A
<czp0h i (A)J-" 0 F o)(mi), (132)
with abbreviations
by
H T (133)
c\—i(mi)
bA
FAe— L (134)
(Poh*ﬂ%mﬁ - bz)

where for type II and even for type II' degeneracy we take
0,% and Q,“ such that in the degenerate limit we have

bt 1

W:%(Qw‘Fch)’ (135)
H =0, (136)
FA =07 (137)

Here, some comments are in order. In Egs. (135)—(137), we
are just making a canonical choice for how to represent the
complete set of eigenvectors under a type II or type II'
degenerate limit. Note that for type II degeneracies H and
JFA4 vanish automatically. For type II' degeneracies, depend-
ing on how the limit is taken, their values may not vanish,
but the form (131) and (132) with H =F4 =0 can
nevertheless be obtained by taking appropriate linear
combinations of the resulting eigenvectors.

4. Renormalized uppercase right eigenvectors

The right eigenvectors are obtained in the same way and
with the same abbreviations. The entropy, constraint, and
Alfvén eigenvectors are given by

0 0 0
0 0 0
C
Op Op +®epe 7 (138)
0|’ I 0 ’
0p 0p (S)€BC\/ poh”* \Z—j
1 0 0

the magnetosonic eigenvectors corresponding to the eigen-
values closer to the Alfvén eigenvalues are
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cipohH

—HA
-5 |
0 ;

_poh by

(Z=1) [b.]
P
Po (mi)

(139)

and the other two magnetosonic eigenvectors are

cspoh
-
a1 -2)(5)F
0

C%Poh}— B
p

Po (m+)

; (140)

respectively.

5. Characteristic variables

The characteristic variables valid for all degeneracies are

A p A
0. = 8¢ ——L—sp. U, = (61b).,
€ & %p%h p C ( )§
. b
U,y = £080AC /poh* = (80) 4 + SeAC (5J_b)
b, | b, |
A H(/Izm +) 1)
Uyt = — 5 Z65p 4 (1= ) HA 1) (59)
poh
bs> bt bt
+ 5 51b
(z oy Tou] O LB,
. 1 (1= ¢5)Atmy)
= 2 5’\ A
my+ C?,Doh C%(ﬂ% o 1)( U)s

(6.1b) ;. (141)

bS
+ (—) ]:A((sf))A—ﬁ-]:A
A ) (mo)

with {m;, m,} equal to {s, f} or {f, s}. Note that, since the
resulting similarity transform matrix T and inverse Tg!
always exist and have bounded components, the regularity
condition (3) is fulfilled. This shows that the prototype
algebraic constraint free system is in the uppercase strongly
hyperbolic. Since all the eigenvalues have absolute values
smaller than or equal to 1, the system must also be strongly
hyperbolic in the lowercase frame.

E. Lowercase formulation

We know already that the prototype algebraic constraint
free formulation is strongly hyperbolic. Nevertheless, the

lowercase eigenvalues and eigenvectors would be impor-
tant if we were to employ the system numerically, and
therefore we derive them in this subsection.

1. Recovering the lowercase quantities

To obtain the lowercase eigenvalues and eigenvectors as
well as the characteristic variables, we use the procedure
described in Sec. IIF. The recovery will be done in
several steps.

Step one.—First of all, we take the calculated uppercase
eigenvalues (114)—(118) and replace the vector S¢ by

§¢ = (8§ —=W(A—WV?))/N, whereby we obtain the
new uppercase eigenvalues
/1‘(’6) =0, (142)
l‘(lc) =0, (143)
PR 144
(at) — \/,O()T ? ( )
Aswy = /8, — VG5, = &s,» (145)
o N N
where we used the shorthands
b2+c b5)? + poh b5)2c?
2poh poh

and the magnetic field vector in the new direction $¢
becomes

1
bS5 = beS§t = ﬁ(bs - W(b*V,) (A= WV5)), (148)
N = /(WA= W2VS2 4 14 (VSRW2 - 2. (149)
We want to reiterate that the relation WV = —y* holds and

is used at several points in this paper.
Step two.—We calculate now the lowercase eigenvalues
by use of Eq. (33), that is,

—W(A—WVS) = 2,[59]. (150)
For example, taking 4,[S7] = Af,) = 0, we arrive with the
lowercase entropy wave speed A() = WVS, the normali-
zation factor N becomes unity, and $¢ and S¢ are identical.

Step three—We now transform the uppercase left
eigenvectors for S¢ in the lowercase left eigenvectors for
the state vector,
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(6U)s 4 = (8p. (8D)s. (8D) 4. (8LD)s. (51D)4. 82)".

The transformation is 4 dependent and therefore has to be
done in each eigenspace independently. We take Eq. (44),
that is,

Gle =13, [S7]lg (V + BY[s,)T), (151)
where we use the eigenvectors 1 [S¢][ explicitly written in
(120) and replace all basis vectors with the ones associated
with §§. The matrices (14 BY|g) and (14 BY]g ) for
bases S = (5%, 0%, 0,) and S; = (54, 015, 0,9) can be
found in the notebook [13].

To obtain the basis transformation T, we need to give a
little more details: writing S in the basis S, we get

S =csS+ 101" + 054,
1+ (WAVS —Wa)vS

CS 3
N
(W2VS — W)V
= R
! N
2y/S _ l 0,
e =WV NW W= (152)

This relation defines a rotation of the basis, so we are able
to build a transformation matrix which is an element of
SO(3). By denoting Q¢ and Q,¢ as rotated basis vectors
Of and Qf, respectively, the rotation matrix is given by

Cs Ci 2
Lo eftd oo
R = 1 c+c3 c+c3 , (153)
—c (es=D)cicy citese
2 cf+c% C%+C%
such that
a a
sa S
a J—
09 | =R| 0° (154)
0251 0,

Since R € SO(3), we may transpose to invert R” = R~
The associated lowercase bases obey the same transforma-
tion, since we just have to multiply Eq. (154) with y?,,. The
transformation matrix is taken to be T, = diag(1, R, R, 1).
The derivative of the state vector transforms like

1(V.U)s = T{(V.U)s, (155)
for any vector z“.

Step four—For a last step, we have to calculate the right
eigenvectors by Eq. (45), so we arrive with

el = TIed (8]l (156)

For this, we will take the right eigenvectors rj [S]|¢ given

in (122) and replace the basis vectors.

s

2. Definitions and formulas
Let us first define some new relations and quantities:
a:=Ni, = WA—W2VS = Wi+ 95,
B:= Nb*St = b5 — (b*V,)a

= bS5+ (b*V,)W(VSW — 2),
G:=1+ (V5)2W? =22,
N’ =a*>+G. (157)

These definitions are motivated by those in Refs. [26,30] in
regard to the covariant approach of characteristic analysis
shown by Eq. (46).

In analogy to the uppercase, we write the magnetic field
four-vector as

b =bSiSe+be, 2= (bS)2+b2,  (158)

with

b, > = b* — (b%)* = b4 bt (159)

Please note that we nevertheless still use capital letters for
contraction with 2L, e.g., b| =2A,b%. In general,
bS # 0 is not vanishing. These definitions are taken for
all lowercase characteristic quantities. Since b¢ is orthogo-
nal to ¢, we use the relation b5 = a(b4V,) several times.

3. Entropy wave

Taking 4, = 0 as in (142), we arrive at the lowercase
eigenvalue
Ay = WVS. (160)

In this case, we have N = 1 and §§ = §¢, and the left and
right eigenvectors for entropy waves remain the same,

(—%ﬂh 000 0 O 1>, (161)

(0 0 05 0 0 1)7. (162)

4. Constraint wave

Taking 4, = 0 as in (143), we arrive at the lowercase
eigenvalue

Ay = WV5. (163)
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In this case, we have N = 1 and S = §¢, and the left and
right eigenvectors for constraint waves become

(0 (bCVe) —bSVA 1 O o), (164)

(0 0 05 1 0 0>T, (165)

respectively.

5. Alfvén waves

For Alfvén waves, we obtain by taking (144) the
lowercase eigenvalues

b> + VSW2[(bV,) £ Vpoh]
WI(b*Va) £ Vpoh™]

They coincide up to a minus sign and factor W (due
to our choice of the spatial vector) with the literature [30].
The already rescaled left and right eigenvectors to
Aast) are

Aax) = (166)

VB b¢ T

(s
)630 J.

+
P o™ |
bS(S)

. bﬁvf
BC b, ]

vPoh*) bcT;:—jL
0

ety 2 )

((6°V,) £ (167)

and

. (168)

0

respectively.

6. Magnetosonic waves

The uppercase slow and fast magnetosonic eigenvalues
are defined in (145) and (146). Inserting one of these
eigenvalues into Eq. (150), one can show after some
manipulations (given in the notebook [13]) that the

lowercase magnetosonic eigenvalues are solutions of the
quartic equation

1 b?
N4—p0h(?—1>a4—<p0h+?>a2g—|—52g—0, (169)

N

where N, is the same polynomial as obtained by Ref. [26].
We have computed analytic expressions for the magneto-
sonic eigenvalues. Explicitly written out, however, they are
rather long, and hence a numerical computation relying on
the characteristic information may be better served by using
some root finder.

The rescaled left and right magnetosonic eigenvectors
with eigenvalues closer to the Alfvén speeds can be
expressed as

(m)
(170)

and

—cipohG(a® + G)F
G(E) iy + all = av$)gF
G(5) 3t - GFVy

(@ +G) 08
(¢ +G) 2 b

—i (a*> + G)GF

(171)

(m+)

The remaining two left and right magnetosonic lowercase
eigenvectors are given by

(1— aVS T
rﬂoh a +g)

bV,)| (V)
(172)

aCSvA+(1—aVs)CA

0 (m+)
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and

poh

(&)ges -

()ch+L2Hg)v

a(l- aV)
c2(a®+G)

(173)
(Cl + Q)pohCS
(a® + g)ﬂoth
\Po (m=£)
Here, we took the definitions
“ _ bY
"~ a’poh — Gb*’
b
6] (174)

- 2(a*+G)—a*’

where for type II and type II' degeneracies we take

=0, F=o0, (175)
and
b¢ 1 P P
W:ﬁ(Qlc+Q2C)- (176)

7. Degeneracies in lowercase GRMHD

In the lowercase frame, the degeneracy analysis is
performed just as in the uppercase setting. One has only
to replace the vector §¢ by S¢ and the corresponding
orthogonal basis vectors as well. We then have for type I
degeneracy that b°S% is equal to zero. In this case,
the entropic wave, the constraint wave, the two Alfvén
waves, and the two slow magnetosonic waves propagate at
the same speed (A¢) = A(¢c) = Aax) = A(sx) = —0°). For
type II degeneracy, the tangential magnetic field vector,
be =ulapb, @l =Wy _ §i81 " vanishes. In this
case, one of the Alfvén waves and one of the magnetosonic
waves of the appropriate class (here denoted by a super-
script as in Ref. [30]) have the same speed (/1@ = AZ;) or
:/1(+f) or Ay =4g). In the type II
degeneracy, one Alfvén wave and the slow and fast
magnetosonic waves of the appropriate class travel at the
same speed (/12;) = /1<+S) = /I(B or A = A5y = A)- In the
uppercase, we have for type II and type II' degeneracies that
both Alfvén speeds are degenerate at the same time.
Replacing $¢ by ¢ leads to different SO(3)-transformations
for different values of A. Therefore, in the lowercase, this
cannot be fulfilled in general. A more detailed description
and derivation can be found in Ref. [40].

- - +
Ay =4 o g

8. Characteristic variables

The characteristic variables valid for all degeneracies are

Uy = 6e — —Ls—5p

221P
Po
U, = (Mb)g + (b4V4) (6D)5 = SVA(8D) 4,
. Slege VBLE bBVC
Uy = +—=25 — "L5p 4+ b5O)epo —+— (8D),
==l o] ey, O

7 L

((bV4) £/ poh*) i(ai €Abc(5@)A

< L |bl|v3>
b.]

Vool

for entropy, constraint, and Alfvén waves, and

. G (b1V,) <B> (1-aV%G )
Ups=—-(— | +—22F )5
= (ﬂoh |b| \a poh P

+a(a®+G)(1 = 2)F(6d);

+N2K§> +(bava)} <%(5) +%(5v) )

bS A bA
+< + (1 =aV9) l)(cub)A\,
b b

s = (G 5ot () €

; (1 —i2> £ o)
LA KS) 4 (bava)} (C5(80)s + C(60))
+ (aCSVA + (1

e p(6Lb)4, (177)

—aVS)C*)(6Lb)4, (178)
for magnetosonic waves, with {m;, m,} equal to {s,f} or
{f,s}. The functions on the right-hand side of U,,. are
evaluated with the corresponding eigenvalue.

F. Weak hyperbolicity of the flux-balance law
formulation of GRMHD

We want now to analyze whether or not the flux-balance
law formulation of GRMHD as in Ref. [33] is strongly
hyperbolic. To do so, we need to find the values for the
formulation parameters such that a linear combination of
Egs. (99)—-(102) is equal to the system in the form of
Refs. [30,41], up to the use of the same evolved variables.
In fact, several flux-balance law formulations exist, but
remarkably, in our variables, they differ only by a linear
combination of the conservation of particle number
equation.

To reproduce the flux-balance law formulation given in
Ref. [36], we worked in computer algebra and found the
linear combination of our equations that reproduced the
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flux-balance ones. This was done ignoring all derivatives of
the normal vector n“. In our analysis, we may ignore all
derivatives of the normal vector anyway since they only
contribute to the source vector and do not affect the
principal part. The coefficients are then

5 1
w(p) :E(bcvc)v a)El) :7bas
Po poh
1
oS =V, 0® =—(bV,). (179)
Po

Proceeding in the same way as for the previous formu-
lation, the principal symbol PS5 becomes

0 —c2poh 08 i(bcvc) 08 0
(b5)>+poh B »S »B
T 0 0 poh “pol”
bSh, ba bs
—W OA OBA W poh*QJ—BA OA :
0 0 08 -V 08 0
0,4 —b, bSUB, -V, 08, 04
0 - ﬂﬂo 08 i (b°V,) 08 0
(180)
the characteristic polynomial is then of the form
P, = /1(’1 + VS)PAlfvéangs’ (181)

(Poh*)2

where P yjg¢n and Ppg coincide with the polynomials given
earlier in Eqgs. (112) and (113). As expected, the eigenvalue
associated with the constraint has changed from zero, in the
previous formulation, to —VS. Therefore, new degeneracies
have to be considered, for example, when the constraint and
entropic speeds collide. This occurs when VS = 0, in which
case we find that the principal symbol is not diagonalizable.
Hence, the system is only weakly hyperbolic and has an ill-
posed IVP. To get an intuitive idea of what precisely goes
wrong, we may consider the left eigenvectors associated
with the entropy and constraint waves in generic directions
and then consider a limiting direction with V5 —0. These are

VS cpihys
(_03ng0—1(17 vy O ot 1 o CEpShO—Kp (b“Vf))
and
(00 0" 1 0 o)
respectively, with eigenvalues A,y =0 and 4 = -Vs.

Both right eigenvectors can be found in our scripts but
are suppressed here because the constraint eigenvector is
quite lengthy. Taking the limit VS — 0, we immediately

arrive at the conclusion that the geometric multiplicity is
only 1 as the two vectors become coincident. The eigen-
vector can not be rescaled as for the earlier degeneracies
since only some entries in the left entropy eigenvector
become zero; the limit of the principal symbol is truly
problematic. This degeneracy was unfortunately overlooked
in Ref. [36], although there the focus was rather on the
convexity of the system as opposed to hyperbolicity.
Nevertheless, we have explicitly checked in our notebooks
[13] that, taking the lowercase matrices from Ref. [36] and
deriving the left eigenvectors of the entropy and constraint
waves, the exact same problem is present. Deriving the right
constraint eigenvector in the lowercase frame is much worse
than in the uppercase, however, so we only evaluated the left
ones. We want to stress that using the matrices of Ref. [36] is
a completely independent calculation and underlines the
weak hyperbolicity of the system. Somewhat interestingly,
in the Newtonian limit, the flux-balance formulation, see, for
example, Refs. [42,43], suffers from the same degeneracy
and is also only weakly hyperbolic.

It should be explicitly noted that in more than one spatial
dimension the condition V5 = 0 will certainly be satisfied
everywhere in space for some S,. One should therefore
avoid thinking that the breakdown of hyperbolicity happens
only on a set of measure zero in spacetime. Rather the
generic situation is that when the flow is nontrivial there are
specific bad directions everywhere in spacetime which
obstruct the well-posedness of the initial value problem.
The fact that only specific directions are problematic may
make the effect in numerical work hard to identify. In
particular, many tests of GRMHD are focused on one-
dimensional (nonsmooth) solutions, and by construction,
such experiments are insensitive to the breakdown identified
here. This will be studied in greater detail in future work.

We stress again that the result does not automatically
apply to formulations evolving the magnetic four-potential
[38,39] nor systems with divergence cleaning [35]. It would
naturally be desirable to perform a similar analysis for
those systems also.

V. HYPERBOLICITY OF RGRMHD

In this section, we want to investigate the evolution
equations used in the literature for RRMHD [44-48] and
[49-53] describing RGRMHD and show that these two
systems are weakly hyperbolic and therefore have ill-posed
IVPs. In this section, we will use the lowercase frame
exclusively. As in Sec. IV, we use Lorentz-Heaviside units
where vacuum permittivity and vacuum permeability are
equal to 1. We start by deriving the equations of motion for
the state vector U.

A. Equations of RGRMHD

As with earlier, we want to derive the evolution equa-
tions and are primarily concerned with their mathematical
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structure. Interesting physical facts, particularly those
related to Ohm’s law, will be sidelined in our discussion.

1. Augmented Maxwell equations

As in the beginning of the last section about GRMHD,
we take the following definition of the field strength tensor
for a generic Eulerian observer with four-velocity n¢,

F% = peEb — nPE® 4 ¢%¢dp By, (182)
‘F* = n*B* — n’B* — ¢“n E,, (183)
with the Levi-Civita tensor,
ebed = — [abcd], (184)
-9
the Levi-Civita symbol [abcd]; [0123] = 1 and
abced bed 1
€, = e = —[bcd), (185)
VY

where we follow the definition and convention by Ref. [37].
Please note that in this convention 2*F% = —e®<dF ,

holds.

To control the constraints during the evolution, the
augmented scalar fields y and ¢ are introduced, see for
example [45,47,53], and hence the Maxwell equations
become

1
Vi (F? = g"y) = T = —n"w, (186)

1
V(' — gt ) = —~n°g. (187)
T
Note that in the literature the notation x = 7~! is normally
employed. The electric four-current is split against n and
y?, defined by
ja = qna—f—_]a, naJ“:0. (188)
Proceeding with a 3 + 1 decomposition of (186) and
(187) using (188), we arrive at the equations

YL, EP = €™®*D,B. —y** Dy + Ste): (189)
75LaB" = =€ DyE, =y Diyp + Sy, (190)
1
Ly =—=DE* -~y +q, (191)
T
1
L, =-D,B*——4, (192)
T

with sources
1 abc
=—-B.e"’“D,a+ KE* - J¢,
a
1
S?B) = —(—XEceabCDba + KB?.

The constant 7 is the timescale for the exponential driving
of Egs. (191) and (192) toward the constraints

D.E® = q, (193)

D,B* =0, (194)
respectively. The three-current J¢ is given by generalized
Ohm’s law; see below. We must to stress that, although J¢
1s inside the ‘source’ term, it could contain derivatives of
the evolved variables. Such terms would then of course
contribute to the principal part.

As a consequence of the antisymmetry of the field
strength tensor, we have additionally a conservation law
for the electric charge, V,J7% =0, that is in the 3+ 1
language

1
L,q =—y*"D,J, ——J’D,a+ Kq. (195)
a

2. Energy-momentum tensor
The energy-momentum tensor 7% of RGRMHD con-
tains an ideal fluid component,

T = pohuu® + pg™, (196)
plus the standard -electromagnetic energy-momentum
tensor,

1
T = FeFb, —Zg“chdFCd, (197)
with a field strength tensor defined in (182). Writing F* in
terms of E¢ and B“, we obtain

1
T8h =2 (BB + E.E)(y™ + n'n”)

— BB? — E°EY + (n%"? + nPe*)E.B,. (198)

3. Generalized Ohm’s law

The generalized Ohm’s law provides us with an expres-
sion for the spatial current J“. Explanations about the
physical validity and form of J“ can be found in the
literature [53,54]. We consider here an equation for J¢
which is of the form
ja = ja(p’ Up, €, Ew Bd)7

J¢ = qv® +J¢, (199)
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where J¢ contains no derivatives of the matter and
electromagnetic variables nor second-order or higher
derivatives of the metric tensor. This fairly general choice
of J* includes the particular form used in the literature
mentioned above, that is,

J¢ = qv* + Wo(E®* + e“*v,B. — (v, E®)v),  (200)
where o is the conductivity of the fluid and is permitted to

be an arbitrary function of the evolved variables besides the
charge density gq.

4. Hydrodynamical equations

V. (pou) =0, (201)

V,(T%) =0, (202)

and proceed with the 3 + 1 split. After combining the
equations, using the Maxwell equations and introducing the
speed of sound, we arrive at the evolution equation for
the pressure,
£np = (C% - 1)UPW3\,DpP - C%ﬂohwg\ypchUc

— ¢2(EPv,)yP°D ,E, — c3(Bbv,)y"“D B,

+ (¢1EP = ¢, B,v,)D ,y

To obtain the evolution equations for p, v,, and &, we + (1 BP 4 c2¢"PEyvg)D ¢ + SP; (203)
take the conservation of the number of particles and the
conservation of energy momentum, for the fluid velocity,
b 2 2 ciW, c c
14 a‘cnvb == szoh (ypa + (Cs - I)chvpva)Dpp + W2 Uayp - UP}, a Dpvc
1 1 .
+ Wz—poh (E, + cz(E"v,,)vu)ypcD,,Ec + Wz—poh (B, + Cz(BbUh)Ua)}”“Dch
1 1
+ W (yad + CQUaUd)(:‘hdeprl// - W (yad + CZUavd)ehdpEpr¢
- ¢sv,EPD y — c50,B”D ,¢p + SV, (204)
|
and for the internal specific energy, where we have employed the shorthands,
2
pWe pwe, _ W 2 2w
— s P - sy pe P 1 = —— (&kW?* + c; (W= = 1)py),
L,e sz(z)hv D,p s yPD,v. —v"D e W2, 5
— cu(EY0,)17D, E, — c4(B'0,)y" D, B, =W <£ + cg> ,
+ (C3Ep - C4€bdeb1}d)Dpl// W2 Po
+ (¢3BP + ¢4 P Eyvg)D b + S, (205) ¢33 = Wz;; = (p(W2=1) + (= W2 + hW?)po),
0
2
with sources = Wz—/;zh (pW? + (y — yW? + hW?)py),
0
S = ¢, (EYJ bedp, J. Z
AEI) e Bt s = i (< o) (207)
+ W2 cipoh(g™") K., Po
s — (Vaa + CZUaUd>€bdeBbJe The system of Eqgs. (203), (204), (205), (189), (190), (191),
W2pyh (192), and (195) is identical to the system of evolution
4 1, . equations in Ref. [53], as was explicitly checked up to
—¢s(EVq)v, = P (@)D source terms.
W2
2 Mey o —1ND b
TS yr (@) Kpeva = Kpev"vv,, B. Analysis with evolution of ¢
Sle) — c3(EPJ}) + c4€“?ByJ vy, In this subsection, we want to analyze the characteristic
W2 structure of equations used in Refs. [45—49]. As always, we
+ P (g~ ")P°K,,., (206) 2+ 1 decompose the equations, this time using an arbitrary
Po unit spatial 1-form s,, 5,5 =1, s,n? = 0 and denote the
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orthogonal projector by 91%,:=y?, —s’s,. Taking the
state vector to be U = (p, v,, €, q, E,, By, v, ¢)T, we write
Egs. (203), (204), (205), (195), (189), (190), (191), and
(192) for the 14 components of U in matrix form:

A"L,U=A’D,U+S. (208)
The form of the matrices is easily obtained from the system

of equations and so is not explicitly given. A simple 2 + 1
decomposition of this equation yields the principal symbol

in the form
A X B X
PS:AS:< 6x6 68)7
08><6 C8><8

where B¢, contains the coefficients of spatial derivatives
with respect to the variables (E,, B,,y,¢) in the time
evolution of (p, v,, €, ¢). The matrix Cg,g is the submatrix
of the electromagnetic variables (E,, B,,y, ¢). The matrix
Ay can be written as

(209)

(210)

with As,s = P}y, the principal symbol of the pure hydro-
dynamical sector, explicitly given by (A3) and

aJ* aJ* B 0J¢ aJ*
Alxsz(_é)p —Sc o, -l A vy _§>' (211)

Since the principal symbol (209) is block triangular, the
eigenvalues are given by those of Ag,¢ and Cg,g, these are

Agys: A= —0v*, (multiplicity 4),
A=Ay, [see (A4)], (212)
Cgug: A= =1, (multiplicity 4). (213)

Continuing the characteristic analysis, it can be shown that
only 13 eigenvectors exist. The eigenspace of the eigen-
value 1 = —v*, with algebraic multiplicity 4, has only
geometric multiplicity 3. For example, the linearly inde-
pendent right eigenvectors can be chosen as

0 0 0
0 0 0
Op | 0n || Vesct LGk | (214)
| 0 0
0 1 0
OSX 1 08>< 1 OSX 1

where we defined the antisymmetric lowercase two-Levi-
Civita tensor for s, as ®OeA? = pn 5,914 q LB e%b  This

result is contrary to an earlier analysis presented in
Ref. [55]. The earlier analysis is erroneous since the three
vectors called r;, ~ corresponding to 4= —v* are not
eigenvectors. The explicit error is that the ninth component
of these vectors may not be zero, since they produce cross-
terms with the Ay (corresponding to our A, s part of the
principal symbol). To substantiate our result, we performed
a Jordan decomposition of the principal symbol (209). The
Jordan normal form J[P*] of (209) can be written as

J[Ps] = diag(/l(+>,ﬂ<_>, JU.\-, —]]ZUS, —1]4, 1]4), (215)

with
(216)

and confirms that P is not diagonalizable. Therefore, the
system of equations is weakly hyperbolic and has an ill-
posed IVP.

It should be mentioned that for the special subcase
J* = 0 the system is strongly hyperbolic. More generally, if
J? does not depend on v” (more precisely, if (‘)% vanishes
identically), then the system is strongly hyperbolic. For the
current in Eq. (200), these two cases coincide.

C. Analysis without evolution of ¢

Next, we consider the system but suppress the ¢ variable.
This analysis is for the system of equations used in
Refs. [50-53]. We set y to zero, the set of equations
reduces to 12 evolution equations (203), (204), (205),
(189), (190), and (192) for the components of the state
vector U = (p,v,, & E,, B,,¢)", and Eq. (191) becomes
the standard Gauss constraint D,E* = g. This equation is
not a constraint in the PDE sense; it is now rather the
definition used to obtain gq.

Since now we do not evolve ¢ by the conservation of
charge equation (195), we have to replace all ¢’s by D E“.
Therefore, in Egs. (203), (204), (205), and (189), we
replace J* by use of Eq. (199) with

J4=vyPD,E, + Je, (217)
where the first term will contribute to the principal symbol.

Writing the system of equations in matrix form and
decomposing against s,, s,s* = 1, and %L?,, we obtain

A"L,U=A’D, U+ S, (218)
with the principal symbol
A X B X
PS:AS:( > 57). (219)
07><5 C7><7
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Again, Bs,; contains the coefficients of spatial derivatives
with respect to the variables (E,,B,,¢) in the time
evolution of (p,v,,€), and As,s = P§ is the principal
symbol of the pure hydrodynamical sector, explicitly given
in (A3). The matrix C;,7 is the submatrix of the electro-
magnetic variables (E,, B,, ¢), explicitly given by

—»* 0 0 0 0 0 0
—p% 0 0 0 0 -1 0
—v= 0 0 0 1 0 0

Cho=| 0 0 0 0 0 0 —1|. (220
0 0 1 0 0 0 0
0 -1 0 0 0 0 0
0 0 0 -1 0 0 0

The 12 eigenvalues of (219) are given by the ones of
Asys and C,,7; these are

As5: A= =17, (multiplicity 3),

A=), [see (A4)], (221)
Cryy: A= =1, (multiplicity 3),

A= -0, (multiplicity 1). (222)

As in the previous case, the eigenspace of the eigenvalue
A = —v® with algebraic multiplicity 4 has only geometric
multiplicity 3. A set of right eigenvectors is

02><1 03><1 04><1
1|, 1. 1 (223)
09, 0g,. 1 0751

The Jordan normal form J[P*] of (219) is given by

J[PS] = diag(/l(+), /1(_), —1]21)3,‘]”.‘, —1]3, 1]3),

J _(—vs 1 )
"m0 - )

Therefore, the system of equations is also only weakly
hyperbolic when the charge density variable g is not evolved.
The result also holds for ¢ =0, so that equation (192)
reduces to the usual constraint D,B¢ = 0, and we evolve
the 11 variables (p,v,, ¢, E,, B,). In this case, a pair of
eigenvalues 4 = +£1 changes to the single eigenvalue 4 = 0.

For the special subcase J* =0, the system is strongly
hyperbolic. This happens because in that case g is alge-
braically related to the rest mass density p, and may thus be
seen as a source term. Then, the algebraic multiplicity of
A = —v* changes to 3, and a complete set of eigenvectors

(224)

with

(225)

can be found. From the physical point of view, the
relevance of this model to compact binaries is, however,
unclear to us. Note that we have not considered in this
section general formulations of RGRMHD and that our
calculations apply only to those formulations implemented.
It is possible that these systems can be cured by a carefully
chosen constraint addition.

A final comment is reserved for the special case of charged
dust. In this model, p = € = 0, and the charge density is
proportional to the mass density with constant of proportion-
ality equal to the specific charge. The system of equations for
variables (py, v;, E;, B;) decouples into two parts: first, the
evolution equations for (py, v;), which were already found to
be weakly hyperbolic in Sec. III B, and second the electro-
magnetic equations, which can be given in a symmetric
hyperbolic form; see Ref. [37]. The whole system is thus only
weakly hyperbolic. In Ref. [56], it is shown that a different
formulation of charged dust using (v;, E;, B;) as variables is
strongly hyperbolic. In the authors’ system, p, is obtained by
the Gauss constraint equation relating the divergence of the
electric field with the charge density. Under this treatment,
however, the minimal coupling condition with the gravita-
tional field equations, see Eq. (7), breaks. Therefore, away
from the Cowling approximation, the full coupled system
must be considered fresh.

VI. CONCLUSION

Motivated by applications in numerical relativity, and in
particular by the wish for the computation of accurate
gravitational waveforms in compact binary spacetimes, we
have revisited hyperbolicity of several popular relativistic
fluid models. Our main technical achievement has been to
bring about the DF formalism [9,10] to these matter models
in a systematic way. This allowed us to arrive at a tractable
form of even GRMHD, which is notorious for its compli-
cated characteristic structure. The key idea was to use a
Lagrangian frame in the analysis. In this frame, the principal
symbol takes the simplest possible form and can be easily
analyzed. Afterward, we could translate the results into the
desired frame using the developed formalism.

Along the way, we arrived at several disconcerting
results. That a commonly used formulation of GRMHD,
plus those of RGRMHD, is only weakly hyperbolic is
clearly a huge shortcoming that must be overcome if we are
ever to obtain numerical results with meaningful error
estimates for binary systems involving magnetic fields. One
might wonder why the problem has not been discovered
earlier on the basis of numerical work. The effect of ill-
posedness on the errors in approximation is a subtle issue,
however, and without very careful convergence testing can
be easily overlooked, particularly when considering very
complicated data. One aspect of this is that canonical test
beds often focus on one-dimensional tests, which would
not be suitable for identifying the issue identified for
GRMHD. That said, it is important to realize that, although
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we are motivated by numerical applications, the analysis
presented here is for the continuum PDE system. Thus, no
numerical method, no matter how sophisticated, can
circumvent our results, and therefore the equations do
have to be altered. An obvious step in this direction would
be to use our prototype algebraic constraint free formu-
lation of GRMHD, which is at least strongly hyperbolic.
This formulation cannot be written in flux-balance law
form, but it fails only by the addition of constraint terms, so
there is reason to be optimistic that existing codes can be
easily modified to overcome this worst possible problem of
ill-posedness of the IVP. There is hope that formulations
using the four-potential, or those with divergence cleaning,
are strongly hyperbolic. Thus, another possibility would be
to affirm this and, if so, move wholesale to such systems.
For RGRMHD, more work is needed.

We started the paper by stressing the well-known fact that
the stellar surface is also a terrible problem in numerical
relativity. Even in the case of GRHD, which does not have the
same problems as flux-balance law GRMHD, the formally
singular nature of the surface prevents clean convergence in
simulations of even the most simple spacetimes. We expect
that before this problem can be solved a much deeper
understanding of the underlying initial free boundary value
problem will be needed. So far, nothing in our treatment does
anything whatsoever to alleviate this. We do think, however,
that by carefully choosing the complete uppercase frame it
may be possible to make progress by building on the present
work. Sadly, this remains a distant goal.
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APPENDIX: GRHD USING THE
BOOST VECTOR

It holds that

}/baﬁnﬁb = Wg]bacnyb + f)achf)C@d' (Al)

Using the state vector U = (p, v,, €) and an arbitrary unit
spatial 1-form s, with s,s* = 1, s,n* = 0, and denoting the
orthogonal projector by 917, ==y’ —ss,, the system of
equations reads

(‘CnU)s,A ~P° (DSU)S.B’ (AZ)

and the principal symbol P* is given by

W%S (2=1)v*

_1""(0%—1)(”’\)2"‘/3‘- W%S(Cg—l)l)s OB 0

—W2 c2poh 08 0

W2poh
(w2, 2w, vl B , (A3)
“Woph U VA w2 Va —v 4 0Oa
WZ
Vli)/zp?h S _Ppors OB S
0

with eigenvalues for material and acoustic waves

/1(0,1,2) = -0,

1

sofi-am--awr). o

respectively. They coincide with the literature [7]. The
corresponding left eigenvectors are given by

(—62% 0 o 1),
sPo
(mvc v'oe (1= (v)?) e 0),

(1=cv?)=(1=c3)(v*)?
(i cspohW

(AS)

1ot o)

For the same variables and order, the right eigenvectors are

0 0
0 0
, , (A6)
0p qJ_CB
1 0
and
2p2h $\2
== (1=(v")7)
+82 ., /(1 =c20?) = (1=c2)(v*)* (1 = (v*)?
SV ( )= ( )()(()),(M)

—o (G0 /(T=?) = (1= (') ) vy
1—(v%)?
in agreement with the ones given in Ref. [7] up to the

chosen set of variables and the spatial vector s?. The
characteristic variables corresponding to the speeds

{A(0.1.2). A1)} are given by

p
cipoh

00 = 0e — op,

.
pohw? 17"

V(=) - (1-c)()
Csp0hW

Uy = (60) 4 + v° (04 (80), — vy(60),) +

U, = (6v), + 5p. (A8)
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