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Motivated by the desire for highly accurate numerical computations of compact binary spacetimes in the
era of gravitational wave astronomy, we reexamine hyperbolicity and well-posedness of the initial value
problem for popular models of general relativistic fluids. Our analysis relies heavily on the dual-frame
formalism, which allows us to work in the Lagrangian frame, where computation is relatively easy, before
transforming to the desired Eulerian form. This general strategy allows for the construction of compact
expressions for the characteristic variables in a highly economical manner. General relativistic hydro-
dynamics, ideal magnetohydrodynamics, and resistive magnetohydrodynamics are considered in turn. In
the first case, we obtain a simplified form of earlier expressions. In the second, we show that the flux-
balance law formulation used in typical numerical applications is only weakly hyperbolic and thus does not
have a well-posed initial value problem. Newtonian ideal magnetohydrodynamics is found to suffer from
the same problem when written in flux-balance law form. An alternative formulation, closely related to that
of Anile and Pennisi, is instead shown to be strongly hyperbolic. In the final case, we find that the standard
forms of resistive magnetohydrodynamics, relying upon a particular choice of “generalized Ohm’s law,” are
only weakly hyperbolic. The latter problem may be rectified by adjusting the choice of Ohm’s law, but we
do not do so here. Along the way, weak hyperbolicity of the field equations for dust and charged dust is also
observed. More sophisticated systems, such as multifluid and elastic models, are also expected to be
amenable to our treatment.
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I. INTRODUCTION

The first multimessenger observation of gravitational
waves from a binary neutron star merger in Ref. [1] marks
the beginning of a new era in astronomy. One of the main
tasks of numerical relativity in the coming years will thus be
in the accurate construction and modeling of gravitational
waveforms fromsuch spacetimes. Thiswork is of coursewell
underway, see, for example, Ref. [2], but from the point of
view of accuracy suffers from a number of problems in
practice and in principle. As a consequence, numerical
relativity simulations of binary neutron star systems are less
accurate than those of binary black holes. The principal cause
of this difference is presumably the fact of shock formation in
the fluid. For this, sophisticated methods can be employed,
see, for example, Refs. [3,4] for introductions to shock-
capturing methods in numerical relativity, but ultimately
there is no avoiding the fact that a loss of differentiability
means forfeiting accuracy. Since shocks are only expected to
occur slightly beforemerger, wemay expect that up until that
point the quality of the neutron star datawould be comparable
to thevacuumcase. This is also not the case, partially because
the additional computational cost of the fluid forces the use of
lower resolution but also because the singular nature of the
fluid equations at the stellar surface, and the numerical hacks
to treat this, serves as a constant source of error.

A mathematically pure approach to the problem would
be to first give a proper analysis of the initial free boundary
value problem for the full system consisting of the Einstein
equations coupled to fluid matter. Unfortunately, such an
analysis has not been undertaken for the standard form of
the fluid equations in use in numerical relativity, although
see Refs. [5,6] for interesting work in this direction. Our
view is that this question deserves much more attention.
After all, no numerical approximation can converge if the
continuum partial differential equation (PDE) problem
being approximated is ill posed. Such an analysis is,
however, fiendishly difficult, not least because even the
standard expressions for the characteristics of the relativ-
istic Euler equations are complicated [7]. An alternative
approach would be to switch completely to smoothed-
particle hydrodynamics [8], although the mathematically
inclined might ask similar questions also in that context.
Therefore, as a first step in this direction, we reexamine

this basic question of hyperbolicity of general relativistic
hydrodynamics (GRHD) and, relying heavily on insights
from the dual-foliation and slightly more general dual-frame
(DF) formalisms, as presented in Refs. [9–11], exploit
structure in the field equations that simplify the resulting
expressions. Consequently, we use the samemethodology to
give a characteristic analysis of the standard form of general
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relativistic magnetohydrodynamics (GRMHD) and resistive
general relativistic magnetohydrodynamics (RGRMHD) as
used in numerical relativity.
The paper is structured as follows. In Sec. II, for

motivation, we explain the basic treatment of the stellar
surface in numerical relativity and give examples of the
consequent issues.We then give a brief reviewof the relevant
PDEs theory and DF formalism as used in the paper.
Section III contains our hyperbolicity analysis of GRHD,
and Sec. IV contains that of GRMHD. In Sec. V, we
investigate the hyperbolicity of RGRMHD. We conclude
in Sec. VI. We work in 3þ 1 dimensions; geometric units
with c ¼ G ¼ 1 and the summation convention are used
throughout. The calculations were performed primarily with
xTensor for Mathematica [12]; our notebooks are available
in Ref. [13].

II. MOTIVATION AND THEORY OVERVIEW

A. Stellar surfaces

In most numerical approaches for the treatment of
relativistic hydrodynamics, the “Valencia” formulation
[14] of the governing equations is employed [15–18].
This formulation is based on the use of two sets of variables:
the primitive variables, such as the rest mass density ρ, the
pressure p, and the fluid three-velocity vi, and the corre-
sponding conserved variables [3]. In practice, the flux-
balance law PDE for the latter set is used for the time
evolution. However, the primitive variables are also required
for the flux calculation. The conserved variables can be
expressed as simple functions of the primitives, whereas the
inverse is usually done by a numerical root finding pro-
cedure [15,19]. A fundamental problem of this approach is
that this mapping is singular for ρ → 0. Therefore, a low
density “atmosphere” is introduced as a threshold to avoid
ρ ¼ 0 in numerical schemes. Typically, this floor value is
chosen to be around 8–12 orders of magnitude smaller than
the maximum density of the star. Although an artificial
atmosphere allows robust simulations of various neutron star
setups, it does not constitute a satisfactory solution to the
underlying problem. Furthermore, an artificial atmosphere
poses a new problem for high-order schemes. In Fig. 1, the
convergence results from the simulation of a single sta-
tionary, nonrotating neutron star [Tolman-Oppenheimer-
Volkoff (TOV) solution] are shown.
In this simulation, a discontinuous Galerkin (DG)

method of polynomial order N ¼ 3 is employed. For the
top panel result, only the star interior with analytical outer
boundary conditions was evolved. Almost perfect pointwise
fourth-order convergence can be observed, as expected.
However, if stellar surface and artificial atmosphere are
added as in a realistic simulation of the entire star, the
convergence order rapidly decreases (middle panel), leaving
behind no clear systematic behavior. The application of
shock-capturing techniques, like the weighted essentially

non-oscillatory (WENO) limiting methodology [20–22],
partially cures this problem (bottom panel), and conver-
gence in the L1 norm does look somewhat better, although
still not satisfactory. In any case, this strategy can only be
seen as a workaround, which is clearly restricting the
potential of high-order methods. It is possible that with a
proper analysis it will turn out that full neutron star solutions
have only a very limited level of regularity and that high-
order schemes will never be of huge use in this context. In
any case, it would be desirable to know so, since then the
focus for developing numerical methods could be placed
squarely on obtaining at least low-order convergence while
maintaining perfect scalability.
As mentioned in the Introduction, such a “proper analy-

sis” would require a treatment of the general relativistic
initial free boundary value problem for the fluid models
treated in numerical relativity. Presently, we are unable to
do so, in part because of the algebraic complexity of the
expressions involved in even the simplest hyperbolicity
analysis of these models. This motivates us in what follows
to revisit that question and look for structure in the equations
that may not have been spotted or used in the past.

B. PDE analysis

In this subsection, we introduce our notation and explain
the key points in showing whether or not a system of PDEs
is strongly hyperbolic. We are concerned purely with first-
order PDE systems. The statements are taken primarily
from Ref. [23], with only slight adjustment for our needs.

1. Well-posedness of hyperbolic equations

We start by considering a quasilinear system of evolution
PDEs, with given time coordinate t, of the form

FIG. 1. Pointwise convergence order (color coding) for TOV
star simulations with a DG scheme. Top: Only the interior of the
star is simulated with a pure DG method and analytic outer
boundary conditions. The stellar surface (dashed line) is not
inside the numerical domain. Middle: Realistic setup of the entire
star including its surface. It is surrounded by a low density
atmosphere ρatm ¼ 10−8ρmax. A pure DG method is used for the
simulation. Bottom: Realistic setup of the entire star including its
surface. The DG method is extended by a WENO-5 limiting
procedure.
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∂tU ¼ Apðxμ;UÞ∂pUþ Sðxμ;UÞ; ð1Þ

where in this subsection p stands for a spatial component
index. We call U the state vector, and ApðU; xμÞ, the
coefficient matrices of the spatial derivatives, are referred to
as the principal matrix, although these are a number of
matrices equal to the spatial dimensionality. The initial
value problem (IVP) for (1) is called well posed if it admits
a unique solution that depends continuously, in a suitable
norm, on the initial data. The particular norm will not
concern us in the present work. The source vector Sðxμ;UÞ
contains all nonprincipal terms. These terms will not
contribute to our PDE analysis whatsoever and, when they
are included, are present only for completeness. From now
on, the dependence of the principal matrix on both the
solution and the coordinates xμ will be suppressed in our
notation. Let si be a spatial 1-form normalized so that
ðm−1Þijsisj ¼ 1, with ðm−1Þij an arbitrary symmetric uni-
formly positive definite matrix which is permitted to
depend upon the solution. Contracting the principal matrix
with si, we call the resulting matrix

Ps ≡As ¼ Apsp; ð2Þ

the principal symbol of the PDE system (1) (in the si-
direction). At each point in spacetime, the system (1) is
called:

(i) weakly hyperbolic, if for each such si the eigenval-
ues of Ps are real;

(ii) strongly hyperbolic, if the system is weakly hyper-
bolic and for each such si the principal symbol has a
complete set of eigenvectors written as columns in
a matrix Ts and there exists a constant K > 0,
independent of si, such that,

jTsj þ jT−1
s j ≤ K; ð3Þ

(iii) strictly hyperbolic, if the system is weakly hyper-
bolic and if for each si the eigenvalues are distinct;

(iv) symmetric hyperbolic, if there exists a symmetric
positive definite symmetrizer H, independent of si,
such that HAp is symmetric for each p.

Note that if the eigenvectors depend continuously on si

then condition (3), which will typically be the case in
physical systems, with the matrix norm j·j is automatically
fulfilled. In that case, proving strong hyperbolicity at a
point requires then showing that the principal symbol Ps

has only real eigenvalues and a complete set of eigenvec-
tors; i.e. Ps is diagonalizable. If a system is strictly and/or
symmetric hyperbolic, it is also strongly hyperbolic
[23,24]. Since the principal symbol is solution dependent,
we note that the precise level of hyperbolicity is, too. For
linear constant coefficient problems, strong hyperbolicity
is equivalent to well-posedness of the IVP. In the more
general case, strong hyperbolicity at each point is a

necessary condition for well-posedness; additional smooth-
ness conditions are needed to guarantee well-posedness.
We are interested in the present study in establishing
hyperbolicity of relativistic fluid models in an efficient
manner.

2. Characteristic variables

Given a strongly hyperbolic system in the form of (1)
with principal symbol Ps and matrix of right eigenvectors
Ts, the diagonalized form of Ps with its eigenvalues on the
diagonal is given by

Λs ¼ T−1
s PsTs: ð4Þ

We introduce the orthogonal projector to si, that is,
m⊥j

i ¼ δji − ðm−1Þjksksi, and, in this subsection, use
capital letters A, B, C to denote projected component
indices. We call the components of the transformed state
vector dμÛ ¼ T−1

s ∂μU the characteristic variables in direc-
tion si. The d symbol here symbolizes the fact that the
matrix T−1

s , which is generally both position and solution
dependent, is not to be commuted with the partial deriva-
tive. In practice, we may think of the characteristic
variables as being constructed from perturbations to the
solution. When presenting them, we will employ a notation
like δφ to denote some derivative of a component φ of the
state vector. The characteristic variables have the property
that they satisfy particularly simple equations of motion if
we ignore derivatives transverse to ŝi ¼ ðm−1Þijsj and the
lower-order source terms,

dtÛ ¼ ΛsdŝÛþ ðT−1
s AATsÞdAÛþ T−1

s S: ð5Þ

In the linear constant coefficient approximation, dropping
the aforementioned terms leaves just decoupled advection
equations propagating with speeds determined by the
eigenvalues of Ps.

3. General relativity with matter

In this paper, we will study different types of matter in
full general relativity (GR). We are interested in solutions to
the IVP for the Einstein equations,

Gμν ¼ 8πTμν; ð6Þ

which contain derivatives up to second order in space and
time for the metric components gμν on the left-hand side
with the energy-momentum tensor Tμν as a source term on
the right-hand side. These equations are supplemented
with additional evolution equations for the matter variables.
The latter may be fluid and/or electromagnetic variables,
depending on the physical system under consideration.
To treat the metric variables, we may proceed to use a
first-order reduction and construct a suitably hyperbolic
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reformulation of the Einstein equations. In this way, one
can write the principal symbol schematically as

Ps ¼
�

Ps
g Ps

g×m

Ps
m×g Ps

m

�
; ð7Þ

with the principal symbols for the metric Ps
g and matter

variables Ps
m. If the evolution equations for the matter

variables contain no second-order derivatives of the metric,
the matrix Ps

m×g can be set to zero by replacing first
derivatives with reduction variables. If furthermore the
energy-momentum tensor contains no derivatives of the
fluid variables, the equations of motion of which we
assume to be first order, we have Ps

g×m ¼ 0, and the
statement above that Tμν serves as a source term is justified
from the PDEs point of view. In such a case, we may
perform the characteristic analysis separately for Ps

g and
Ps
m. Thus, taking a strongly hyperbolic first-order formu-

lation for the metric variables, one needs only to study the
properties of Ps

m. In the following, the index m will be
dropped. We assume such a minimal coupling throughout
the work.
In the following sections, we write the equations of

motion in various forms similar to (1), but for convenience
instead of the partial derivative operator ∂μ, we use the
spacetime covariant derivative∇, the Lie derivative Ln, and
various other operators to be introduced momentarily. The
assumption of minimal coupling allows us to ignore first
derivatives of the metric that appear in these expressions by
implicitly assuming that they are replaced by the metric
reduction variables. This approach is appropriate for any
minimally coupled metric-based theory of gravity. Note
that care is sometimes needed in avoiding violating the
condition, which may render the analysis appropriate only
in the Cowling approximation, in which the metric is
simply given and only the matter variables must be evolved.

C. Dual-frame formalism

In this subsection, we give a brief review of the DF
approach of Refs. [9,10]. Since only some quantities and
relations of the formalism will be given, Ref. [9] is required
reading for deeper insights and a full understanding of the
construction. Note that, despite the naming of the formal-
ism, we will in fact here use two frames, only one of which
defines a coordinate tensor basis.

1. Index notation

Throughout the paper, we use the latin letters a − e as
abstract indices. We also use p as an abstract index, placing
it always on the spatial derivative appearing on the right-
hand side of our first-order PDE system. The inverse four-
metric gab is the only object permitted to raise and lower
indices. Greek indices run from 0 to 3 and denote the
components of tensors in the coordinate basis associated

with our coordinates xμ ¼ ðt; xiÞ. Latin indices i − k run
from 1 to 3 and stand for the spatial components in the same
basis. The symbol ∂a stands for the flat covariant derivative
naturally defined by xμ. Indices n, N, u, V, S,Q1,Q2, s, q1,
q2, s, q1, q2, and z label contraction in that slot with na or
na and so on, respectively. We take capital latin letters A−C
as abstract indices denoting the application of the projec-
tion operators Q⊥ or q⊥, to be defined later. Similarly, we
use indices A − C and Â − Ĉ to denote the application of
the projection operator q⊥ over a vector or dual vector,
respectively. This will become clear later. For products of
different projectors, we write for instance q⊥a

B̂
Q⊥B

c ≡
q⊥a

b
Q⊥b

c. Please note that in our notebooks [13] the index
notation convention differs somewhat from that used here
(see README.txt accompanying the notebooks).

2. Basic idea and objects

The basic idea of the DF approach is to describe a region
of spacetime in two different frames, called the lower- and
the uppercase frames. In this paper, the lowercase frame is
Eulerian, that is, a coordinate frame associated with
coordinates xμ, as is standard in numerical relativity. It
consists of the four vectors ∂a

μ. The associated coframe
is ∇axμ. Associated with the lowercase frame is also the
usual future pointing timelike unit normal to spatial slices
of constant t, which is, as usual, denoted by na. Tensors
orthogonal to na are called lowercase spatial, or just
lowercase. The uppercase frame consists of a future
pointing timelike unit vector Na, which in our application
will be identified with the fluid four-velocity ua, plus any
three linearly independent vector fields orthogonal to Na.
The latter vectors will be chosen for convenience. Tensors
orthogonal to Na are called uppercase spatial, or just
uppercase. We also employ a further frame, consisting
of na plus three linearly independent lowercase vectors
which are to be fixed as and when required. The future
pointing unit vectors of the lower- and uppercase frames
can be mutually 3þ 1 decomposed as

na ¼ WðNa þ VaÞ; Na ¼ Wðna þ vaÞ; ð8Þ

with the Lorentz factor W ¼ ð1 − VaVaÞ−1=2 ¼
ð1 − vavaÞ−1=2 ¼ ð1þ v̂av̂aÞ1=2. The vectors va ¼ v̂a=W
and Va are the boost vectors orthogonal to na and Na,
respectively. We also define projection operators by

γba ¼ δba þ nbna; ðNÞγba ¼ δba þ NbNa; ð9Þ

which are obviously orthogonal to their associated normal
vectors, γbanb ¼ 0, ðNÞγbaNb ¼ 0. The projection operator
γba becomes the natural induced metric γab on slices of
constant twhen both indices are lowered. We call ðNÞγab and
γab the upper- and lowercase spatial metrics, respectively.
Projecting the uppercase spatial metric with γba yields
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gab ≔ γcaγ
d
b
ðNÞγcd ¼ γab þ v̂av̂b; ð10Þ

with inverse

ðg−1Þab ¼ γab − vavb; ð11Þ
which we call the boost metric and inverse boost metric,
respectively. In the same way but projecting the lowercase
projector γba with ðNÞγba, we define the uppercase boost
metric and its inverse,

ðNÞgab ≔ ðNÞγcaðNÞγdbγcd ¼ ðNÞγab þW2VaVb;
ðNÞðg−1Þab ¼ ðNÞγab− VaVb: ð12Þ

These various relations are collected in Table I.
The vector na is by construction hypersurface orthogo-

nal. The lapse function α, shift vector βa, and time vector
ta ≡ ∂a

t are defined and related via

α ¼ ð−∇at∇atÞ−1
2; na ¼ −α∇at;

βa ¼ γabtb ¼ ta − αna: ð13Þ

The spacetime metric can be expanded in the lowercase
frame as

gμν ¼
�−α2 þ βkβ

k βi

βj γij

�
; ð14Þ

with inverse

gμν ¼
�
−α−2 α−2βi

α−2βj γij − α−2βiβj

�
: ð15Þ

The intrinsic covariant derivative operator, defined by
projection of the spacetime covariant derivative acting on
spatial tensors, is denoted by D and has connection Γ.
Finally, the extrinsic curvature Kab is defined using the
standard numerical relativity sign convention, by

Kab ¼ −γca∇cnb: ð16Þ

In the present work, we need not define any such connection
variables associatedwith the uppercase frame, since itwill be
used exclusively in an algebraic manner to simplify the
various matrices that appear in our analysis. The key idea is
that by using theDF formalismwemayexpress the equations
of motion in a Lagrangian frame that is, for fluid matter,
in some sense preferred. This allows us to exploit structure
in the field equations that is otherwise not obvious and
consequently makes the computation necessary to analyze
hyperbolicity relatively straightforward.

3. 2 + 1 decomposition

In our analysis, we not only split the equations in
a 3þ 1 manner against the future pointing unit timelike
vectors na and Na, but we furthermore decompose the two
spatial projectors γab and ðNÞγab against various arbitrary
unit spatial vectors. The spatial vectors and associated
orthogonal projectors are collected together in Table II.
Please note that gcbq⊥b

a is not symmetric. Therefore, we
distinguish between the abstract indices A and Â of q⊥
when applied on a tensor.

4. PDE notation and characteristic analysis

Starting from a four-dimensional formulation of a quasi-
linear first-order system,

Aa∂aUþ S ¼ 0; ð17Þ

we may 3þ 1 split the equations against Na or na by
inserting δba ¼ ðNÞγba − NbNa ¼ γba − nbna between Aa

and the derivative operator ∂a. We then obtain two

TABLE II. Summary of the various unit spatial vectors appearing in our 2þ 1 decomposed equations, plus their
associated projection operators.

Uppercase Lowercase Lowercase

Unit normal vector Na na na

Spatial 1-form Sa sa sa
Spatial vector Sa ¼ ðNÞγabSb ŝa ¼ ðg−1Þabsb sa ¼ γabsb
Norm SaSa ¼ 1 saðg−1Þabsb ¼ 1 sasa ¼ 1

Orthogonal projector Q⊥b
a ¼ ðNÞγba − SbSa

q⊥b
a ¼ γba − ŝbsa q⊥b

a ¼ γba − sbsa
Index notation Q⊥B

A
q⊥B

Â
q⊥B

A

TABLE I. Overview of the relationship between the upper- and
lowercase quantities.

Uppercase Lowercase

Unit normal
vector

Na ¼ Wðna þ vaÞ na ¼ WðNa þ VaÞ

Boost vector Va va ¼ v̂a=W
Lorentz factor W ¼ ð1 − VaVaÞ−1=2 W¼ð1−vavaÞ−1=2
Projector ðNÞγab ¼ gab þ NaNb γab ¼ gab þ nanb
Boost metric ðNÞgab≔ ðNÞγabþW2VaVb gab≔γabþ v̂av̂b
Inverse boost
metric

ðNÞðg−1Þab¼ðNÞγab−VaVb ðg−1Þab¼γab−vavb
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potentially equivalent evolution systems for U in terms of
na and Na. These are

An∂nU ¼ Aaγba∂bUþ S;

AN∂NU ¼ AaðNÞγba∂bUþ S: ð18Þ

To denote clearly the properties of the matrices, we make
the following definitions:

An ≡An; Aaγba ≡Ab; Abnb ¼ 0;

AN ≡BN; AaðNÞγba ≡Bb; BbNb ¼ 0: ð19Þ

Let Sa be an arbitrary unit uppercase spatial vector against
Na, so SaSa ¼ 1, SaNa ¼ 0, and let sa be an arbitrary
lowercase spatial 1-form against na, sana ¼ 0, normalized
against the inverse boost metric saðg−1Þabsb ¼ 1. The
eigenvalue problems of these systems in directions sa
and Sa read

lnλððAnÞ−1As − 1λÞ ¼ 0;

lNλNððBNÞ−1BS − 1λNÞ ¼ 0; ð20Þ

with principal symbols ðAnÞ−1As and ðBNÞ−1BS, left
eigenvectors lnλ and lNλN , and eigenvalues λ and λN for
lowercase and uppercase, respectively. Please note that we
place on the lowercase eigenvalues no index n. The
eigenvalues will in general depend on the spatial vector
chosen to obtain the principal symbol. Dependencies on
spatial vectors will sometimes be explicitly indicated by
square brackets.
Introducing the four-vectors ϕa, ϕ̃a, we could also write

the eigenvalue problems as

lnλA
aϕa ¼ 0; ϕa ¼ −λna þ sa;

lNλNA
aϕ̃a ¼ 0; ϕ̃a ¼ −λNNa þ Sa: ð21Þ

D. Frame independence of strong hyperbolicity

In Ref. [9], it is shown that strong hyperbolicity is
unaffected by a switch of coordinates, provided that the
boost vector is sufficiently small. Following that result, we
will prove that strong hyperbolicity is independent of the
choice of frame, provided that a specific estimate on
the boost vector is satisfied. This estimate will depend
on the maximum eigenvalue of the system. We start with
the system of equations for the state vector U in the
uppercase frame,

∂NU ¼ Bp∂pUþ S; ð22Þ

and suppose that it is strongly hyperbolic there, so that there
is a complete set of (left) eigenvectors in all uppercase
spatial directions. Expressing Na and ðNÞγba in terms of the
lowercase quantities, the same system can be written as

Wð1þ BVÞ∂nU

¼ ½Baðγpa þ v̂pVaÞ − ð1þ BVÞv̂p�∂pUþ S; ð23Þ

where we have to first investigate the invertibility of
An ¼ Wð1þ BVÞ. Let the uppercase boost vector be
written as Va ¼ jVjSaV with norm jVj ¼ ðVaVaÞ1=2 and
unit vector SaV in the direction of Va. Since BSV is
diagonalizable with diagonal form ΛSV , it has a complete
set of right eigenvectors written as columns in the matrix
TSV and TSV is invertible. Performing a similarity trans-
formation, we obtain

ðTSV Þ−1ð1þ BVÞTSV ¼ 1þ jVjΛSV ; ð24Þ

and invertibility of 1þBV is guaranteed if for each
eigenvalue λN½SaV � the inequality

1þ jVjλN½SaV � > 0 ð25Þ

for arbitrary unit SaV holds. This condition will be guaran-
teed by assumption in the proof that follows.
Let Sa be an arbitrary unit uppercase spatial vector. The

eigenvalue problem in direction Sa corresponding to the
PDE system in (22) in the upper frame can be written as

lNλNðBS − 1λN½Sa�Þ ¼ 0; ð26Þ

where lNλN is the uppercase left eigenvector for the principal
symbol BS with eigenvalue λN½Sa�.
The eigenvalue problem for direction sa in the lower

frame for the PDE system (23) may be written as

lnλð1þBVÞ−1½BS − ð1þBVÞðv̂s þWλÞ� ¼ 0 ð27Þ

for lowercase left eigenvector lnλ with eigenvalue λ. The
associated principal symbol is

Ps ¼ 1

W
½ð1þBVÞ−1BS − 1v̂s�; ð28Þ

and the lowercase spatial 1-form sa is related to the
uppercase one by sa ¼ Sa þW2VSðNa þ VaÞ; see also
Table III. The projectors given in Table II satisfy
q⊥a

b ¼ ðg−1ÞacQ⊥cdγ
d
b.

Introducing the modified lowercase left eigenvector
Ln

λ ¼ lnλð1þBVÞ−1 and collecting terms of B, we rewrite
Eq. (27) as

Ln
λ ½BS−Vðv̂sþWλÞ − 1ðv̂s þWλÞ� ¼ 0: ð29Þ

By defining the new uppercase unit spatial vector

Saλ ½Sb; λ� ≔
1

N
ðSa − Vaðv̂s þWλÞÞ; ð30Þ
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with normalization,

N ¼ ½ðSa − Vaðv̂s þWλÞÞðSa − Vaðv̂s þWλÞÞ�1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2ðλ −WVSÞ2 þ 1þ ðVSÞ2W2 − λ2

q
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2ðλþ vsÞ2 þ 1þ ðvsÞ2 − λ2

q
; ð31Þ

we finally arrive at the eigenvalue problem

Ln
λ

�
BSλ − 1

1

N
ðv̂s þWλÞ

�
¼ 0; ð32Þ

for the redefined lowercase left eigenvector Ln
λ, principal

symbol BSλ , and eigenvalue ðv̂s þWλÞ=N in the direction
of Saλ . The relation WVS ¼ −vs follows by using relations
given in Tables I and III. The lowercase eigenvalue problem
(32) for fixed λ is the same eigenvalue problem as for the
uppercase system for eigenvalue ðv̂s þWλÞ=N in (26)
where the spatial direction Sa is replaced by Saλ. Therefore,

1

N
ðv̂s þWλÞ ¼ λN½Saλ � ð33Þ

must hold.
Equation (33) is a strong result, since we are now able to

calculate the lowercase frame eigenvalues from knowledge
of the uppercase results. Nevertheless, solving for λ may be
hard since both N and λN contain polynomials in λ. The
lowercase left eigenvector to eigenvalue λ is then simply
given by

lnλ ½sb� ¼ lNλN ½Saλ �ð1þBVÞ; ð34Þ

and the right eigenvectors are given by

rnλ ½sb� ¼ rNλN ½Saλ �: ð35Þ

The proof is as follows. We know that for arbitrary unit
spatial Sa the principal symbol PS has:
(1) real eigenvalues λN,
(2) a complete set of left and right eigenvectors obeying

jTSj þ jT−1
S j ≤ K, where TS is the matrix of right

(or left) eigenvectors written as columns (or rows)
and K is independent of Sa.

We assume furthermore that:
(3) all uppercase eigenvalues fulfill the inequality

1 − jλNjjVj > 0, for all uppercase unit spatial Sa.
This assumption automatically guarantees the condition
(25) for the invertibility of 1þ BV .
The lowercase eigenvalues are real.—We start by

showing that the lowercase system is at least weakly
hyperbolic. By use of (33), we obtain

λ ¼ W3VSð1 − λ2NÞ þ λNW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2Nð1=W2 − 1þ ðVSÞ2Þ

p
W2ð1 − λ2Nð1 − 1=W2ÞÞ

ð36Þ

for given λN. The only danger is that the terms within the
square root are negative, but considering these, we have

1þ λ2Nð1=W2 − 1þ ðVSÞ2Þ ¼ 1 − λ2NðjVj2 − ðVSÞ2Þ
≥ 1 − λ2NjVj2 > 0; ð37Þ

where we have used assumptions (1) and (3). Therefore, all
lowercase eigenvalues are real.

The lowercase eigenvectors are linearly independent.—
Take a lowercase eigenvalue λwith algebraic multiplicity k.
Then, by Eq. (33), the corresponding uppercase eigenvalue
λN½Saλ � has also algebraic multiplicity k. Thus, by assump-
tions (2), which ensures that we can find k linearly
independent eigenvectors to the associated eigenvalue
problem (32), and (3), which guarantees the invertibility
of 1þ BV , and the use of Eq. (34), we know that we can
find k linearly independent lowercase left eigenvectors in
the eigenspace of λ. This statement holds also for the right
eigenvectors. Therefore, the lowercase principal symbol is
diagonalizable.
Show necessary regularity conditions.—Let us label the

left and right eigenvectors and eigenvalues, making dupli-
cates to account for their multiplicity if necessary, with an
index, writing lλðiÞ , rλðiÞ , and λðiÞ, respectively. Please note
that only in this proof indices i, j label characteristic
quantities and do not stand for spatial tensor basis compo-
nents. We denote Ts as the matrix of lowercase right
vectors, where the ith column of Ts is rλðiÞ . We order so that

the ith row of T−1
s is lλðiÞ . Thus, lλðiÞrλðjÞ ¼ δij. By Eqs. (34)

and (35), we can express for each i the lowercase
eigenvectors lλðiÞ ; rλðiÞ as lN

λNðiÞ
½SaλðiÞ �ð1þ BVÞ and rN

λNðiÞ
½SaλðiÞ �,

respectively. The uppercase principal symbol is diagonaliz-
able by assumption (2), so for each i, we may extend each
such left or right eigenvector with the remaining linearly
independent eigenvectors of the uppercase principal sym-
bol for spatial vector SaλðiÞ. We denote by TSλðiÞ

the matrices

TABLE III. The relationship between upper- and lowercase unit
spatial vectors.

Uppercase Lowercase

Unit normal vector Na na

Boost vector Va va

Spatial vector Sa ¼ ðNÞγabSb ŝa ¼ ðg−1Þabsb
Spatial 1-form Sa ¼ sa ¼

sa þ vsna Sa þW2VSðNa þ VaÞ
ðNÞγabðg−1Þbcsc γbaSb

REVISITING HYPERBOLICITY OF RELATIVISTIC FLUIDS PHYS. REV. D 97, 123009 (2018)

123009-7



of those completed sets of eigenvectors expanding the
chosen rN

λNðiÞ
½SaλðiÞ � (and lN

λNðiÞ
½SaλðiÞ �) written as columns (rows).

The chosen ith right (left) eigenvector is placed in the ith
column (row). By assumption (2), we then have

jT−1
SλðiÞ

j þ jTSλðiÞ
j ≤ KðiÞ ð38Þ

for each i.
Define now the square diagonal quadratic matrix DðiÞ,

which has in the ith entry of its diagonal 1 and otherwise
zeros,

DðiÞ ≔ diagð0;…; 0|fflfflffl{zfflfflffl}
i−1 times

; 1; 0;…; 0Þ;
X
i

DðiÞ ¼ 1:

Their norm is jDðiÞj ¼ maxjyj¼1jyðiÞj ¼ 1, where yðiÞ is the
ith component of y. Then, with the above definitions,

Ts ¼
X
i

TSλðiÞ
DðiÞ;

T−1
s ¼

X
i

DðiÞT−1
SλðiÞ

ð1þBVÞ; ð39Þ

and we can give the estimate

jT−1
s j þ jTsj ≤

X
i

ðjT−1
SλðiÞ

jj1þBV j þ jTSλðiÞ
jÞ

≤
X
i

ðjT−1
SλðiÞ

j þ jTSλðiÞ
jÞmaxf1; j1þ BV jg

≤
X
i

KðiÞmaxf1; j1þ BV jg≡ K: ð40Þ

In the first step, we inserted (39) for the matrices and used
the submultiplicity of the norm. In the second, we estimated
the prefactors, and finally, in the last step, we used
assumption (2) given by (38) for each i. We thus arrive
at the inequality (3), which together with the above
properties gives strong hyperbolicity in the lowercase
frame.
Multiplicity and degeneracies.—The definition of strong

hyperbolicity does not require that the multiplicity of the
eigenvalues be constant as the spatial direction is varied.
In the literature on relativistic fluids, special cases in which
the algebraic multiplicity of a particular eigenvalue
increases when looking in particular special directions
are called degeneracies of the system. All such possible
degeneracies must be taken into account in the demon-
stration of strong hyperbolicity since diagonalizability
of the principal symbol is required in all directions.
Note that the relationship between the occurrence of
degeneracies in the uppercase and lowercase systems is,
however, not trivial. The key point is that when

transforming from the lowercase system to the associated
uppercase eigenvalue problem (32) we consider the latter
only for a fixed eigenvalue. For different eigenvalues, we
naturally assign different uppercase eigenvalue problems.
Therefore, it may be that, for example, uppercase degen-
eracies always occur in pairs, while the same is not true in
the lowercase frame. Indeed, we will see that this is the case
for a particular formulation of GRMHD. The relationship
between the degeneracies plays no role in the foregoing
proof of the equivalence of strong hyperbolicity across the
two frames.
Discussion.—All systems we study in relativistic phys-

ics will satisfy, by construction, that the boost velocities va
are always smaller than the speed of light. We will
furthermore immediately reject any equation of state that
results in wave speeds, that is, eigenvalues of the principal
symbol, that are greater than the speed of light. This is
reasonable in the current study since we are concerned
exclusively with relativistic fluid models. On the other
hand, however, one should not get the false impression that
this must always be the case in relativistic physics. Theories
with gauge freedom, such as the electromagnetism and
GR, do admit hyperbolic formulations with superluminal
speeds. In GR, the obvious example of such a gauge is the
popular moving-puncture family. In that case, when the
boost vector becomes too large, uppercase strong hyper-
bolicity will not be sufficient to guarantee the same in the
lowercase frame, since the crucial inequality jλNjjVj < 1
can be violated. In fact, since GRMHD also inherits some
gauge freedom from the Maxwell equations, the same
could be said for that model. Such subtleties will not affect
us in practice.

E. Variable independence of strong hyperbolicity

LetU be a state vector for which the principal symbol Ps
U

is diagonalizable for each unit spatial 1-form sa. Let V be
another state vector of the same dimension, the components
of which depend smoothly on the components of U.
Derivatives of the two state vectors are then related by
the Jacobian J,

∂aV ¼ J∂aU: ð41Þ

The principal symbol for V is then

Ps
V ¼ JPs

UJ
−1: ð42Þ

Since this transformation is nothing more than a similarity
transformation, the eigenvalues remain the same, and the
(left) right eigenvectors for V are just modified by a matrix
multiplication with the (inverse) Jacobian. Thus, as is well
known, strong hyperbolicity is independent of the choice of
evolved variables. Note that, during the hyperbolicity
analysis, one choice of variables may make the practical
computations very much easier than another.
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F. Recovering the eigenvalues and eigenvectors
of the lowercase frame

In this subsection, we explain how we use the results of
Sec. II D. As mentioned before, the upper frame will be
chosen as the frame of a comoving observer with the fluid,
so we take

Na ≡ ua; ðuÞγab ¼ gab þ uaub; ð43Þ

with the four-velocity of the fluid ua. Despite that we are in
the fluid frame or so-called Lagrangian frame, we never set
one of the boost vectors to zero.
Since we obtain all our results using computer algebra, it

is convenient to introduce a basis to obtain scalar quantities
as entries in the matrices. The various basis vectors are
given in Table IV. Given a spatial vector sa of unit
magnitude with respect to some metric, we consider a
set fsa; q1a; q2ag forming a right-handed orthonormal basis
with respect to the same metric.
Let Sa be an arbitrary unit uppercase spatial vector.

Given a strongly hyperbolic system of PDEs in the form of
Eq. (22) with Na ≡ ua, we write the principal symbol as
PS. We denote the known eigenvalues of PS by λu½Sa� and
the known complete set of left eigenvectors, obtained by
Eq. (26), by luλu ½Sa�. Then, the lowercase eigenvalues are
given by Eq. (33), and the lowercase left eigenvectors lnλ for
eigenvalue λ are given by Eq. (34), that is, for a specific
choice of a basis,

lnλ js ¼ luλu ½Saλ �jSð1þBV jSÞ
¼ luλu ½Saλ �jSλTλð1þBV jSÞ
¼ luλu ½Saλ �jSλð1þ BV jSλÞTλ; ð44Þ

and the lowercase right eigenvectors rnλ are obtainable by

rnλ js ¼ ruλu ½Saλ �jS
¼ ðTλÞ−1ruλu ½Saλ �jSλ ð45Þ

for given uppercase right eigenvector ruλu ½Saλ �. We denote by
Tλ the transformation matrix between bases associated to
Sa and Saλ on the level of eigenvectors and matrices.

Two opportunities to obtain the lower eigenvectors are
possible: Either we take the uppercase principal symbol
BSλ jS in a basis associated to Sa and calculate for given
λu½Saλ � the new uppercase eigenvectors or we take the
uppercase eigenvectors to BSjS in a basis associated to
Sa and make the replacement S → Sλ ¼ ðSaλ ; Q1

a
λ ; Q2

a
λÞT

which naturally defines a SO(3)-transformation R. Using
the first way, the left and right eigenvectors are given by the
formulas in the first line of Eqs. (44) and (45). However, the
principal symbol might lose its easy form, which could be
especially crucial for a high number of evolved variables.
Therefore, we chose the second procedure in our notebooks
[13], where the second (and/or third) lines of Eqs. (44) and
(45) are used to obtain the lower eigenvectors.
The recovery will be explicitly shown for the system

of GRMHD in Sec. IV. For the analysis of GRHD, the
procedure is given in the corresponding notebook [13] but
not in the paper.
For the sake of clarity, we finally want to relate all

our explanations with the covariant form of characteristic
analysis using the vector ϕa and the eigenvalue problem as
in (21). Taking the four-vector of the form ϕa ¼ −λna þ sa
with λ ¼ λ½sb� and writing the lowercase vectors in terms of
ua, Va, and Sa, we obtain

ϕa ¼ −λna þ sa

¼ −λðWua þWVaÞ þ Sa þW2VSðua þ VaÞ
¼ ðW2VS −WλÞua þ Sa þ ðW2VS −WλÞVa

¼ Nð−λu½Sbλ �ua þ SλaÞ
∝ −λu½Sbλ �ua þ Sλa: ð46Þ

The last step is done since ϕa is defined up to an arbitrary
scalar factor and we always consider unit spatial vectors for
the characteristic analysis.

III. HYPERBOLICITY OF GRHD

We now start applying the formalism of the last section
to concrete examples of fluid matter models. We begin with
the simple case of an ideal fluid. Because a full character-
istic analysis has been nicely given in Ref. [7], the
calculations here serve first as a sanity check in a nontrivial
example but second as a proof of principle that the DF
approach to the analysis results in an economic treatment.
Thus, we consider the energy-momentum tensor of an
ideal fluid,

Tab ¼ ρ0huaub þ pgab; ð47Þ

with the four-velocity of the fluid elements ua, rest mass
density ρ0, specific enthalpy h, and pressure p. The specific
enthalpy h can be expressed in terms of ρ0, p and the
specific internal energy ε as

TABLE IV. Overview of the upper- and lowercase basis vectors.

Uppercase Lowercase

Unit normal vector Na Na na na

Spatial 1-form Sλa Sa sa sa
Spatial vector Saλ Sa ŝa sa

Orthogonal basis 1-forms Q1
λ
a; Q2

λ
a Q1a; Q2a q1a;q2a q1a; q2a

Orthogonal basis vectors Q1
a
λ ; Q2

a
λ Q1

a; Q2
a q̂a

1 ; q̂
a
2 q1a; q2a

Normalized/orthogonal via ðuÞγab ðuÞγab ðg−1Þab γab
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h ¼ 1þ εþ p
ρ0

: ð48Þ

The evolution equations of the system are the conservation
of energy momentum

∇aðTabÞ ¼ 0 ð49Þ

and the conservation of particle number

∇aðρ0uaÞ ¼ 0: ð50Þ

Projecting Eq. (49) along and perpendicular to the fluid
four-velocity ua, we get the equations

ρ0h∇aua þ ua∇aðρ0 þ ερ0Þ ¼ 0 ð51Þ

and

ρ0hðuÞγcbua∇aub þ ðuÞγca∇ap ¼ 0; ð52Þ

respectively. We choose an arbitrary equation of state
(EOS) of the form

p ¼ pðρ0; εÞ: ð53Þ

Equations (50)–(53) provide us with six equations for the
six unknown quantities ðρ0; ε; p; v̂aÞ. By (53), we only
need to evolve the state vector U ¼ ðp; v̂a; εÞT. The
components of U, expanded in our lowercase (Eulerian)
tensor basis, may be viewed as a slightly modified version
of the primitive variables ρ0, ε; vi commonly used in the
literature. The characteristic analysis will be performed on
the system of equations (50)–(52), the state vector U, in
particular in a non-flux-balance law form. Since there is no
gauge freedom in the system, the analysis applies unam-
biguously even after a change of variables, for example, to
the conservative variables D; τ; Si defined in, for example,
Ref. [15]. This is assured by the proof in Sec. II E.

A. Lowercase formulation

We split Eqs. (50)–(52) now against na and γab to get a
system of first-order partial differential equations for the
variables ðp; v̂a; εÞ. Doing so, it is easy to show that the
system of equations can be rewritten as

Lnp ¼ ðc2s − 1ÞW2
csv

aDap − c2sρ0h
W2

cs

W
ðg−1ÞabDav̂b

þ c2sρ0hW2
csðg−1ÞabKab; ð54Þ

γbaLnv̂b ¼ −
1

Wρ0h
ðγca þ c2sW2

csv
cvaÞDcp − vcDcv̂a

þ c2sW2
csvaðg−1ÞbcDbv̂c − c2sW2

csðg−1ÞbcKbcv̂a

−WDa ln α; ð55Þ

Lnε ¼
p
ρ20h

W2
cs

W2
vaDap −

p
ρ0

W2
cs

W
ðg−1ÞabDav̂b

− vaDaεþ
p
ρ0

W2
csðg−1ÞabKab; ð56Þ

with Wcs ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2sv2

p
, where cs is the local speed of

sound and

c2s ¼
1

h

�
χþ p

ρ20
κ

�
; χ¼

�∂p
∂ρ0

�
ε

; κ¼
�∂p
∂ε

�
ρ0

: ð57Þ

Unless otherwise stated, we consider only matter or EOS
with speed of sound 0 < cs ≤ 1. As one can see, we have
used the Lie derivative Ln along the timelike unit normal
vector na instead of ∂t and have written the covariant
derivative Da associated to the intrinsic metric γab instead
of ∂i, but as discussed in Sec. II, this makes no difference to
our analysis. Writing the system (54)–(56) as a vectorial
equation of the form

AnLnU ¼ ApDpUþ S; ð58Þ

we can identify

An ¼

0
B@1 0 0

0 γba 0

0 0 1

1
CA;

Ap ¼

0
BB@
ðc2s − 1ÞW2

csv
p −c2sρ0h

W2
cs

W ðg−1Þpc 0

− 1
Wρ0h

fpa c2sW2
csðg−1Þpcva −vpγca 0

p
ρ2
0
h
W2

cs
W2 vp − p

ρ0

W2
cs

W ðg−1Þpc −vp

1
CCA;

ð59Þ

with shorthand fpa ¼ γpa þ c2sW2
csv

pva and can write the
source vector here as

S ¼

0
B@

c2sρ0hW2
csðg−1ÞabKab

−c2sW2
csðg−1ÞbcKbcv̂a −WDa ln α

p
ρ0
W2

csðg−1ÞabKab

1
CA: ð60Þ

Note that written in this form the principal parts of special
and general relativistic hydrodynamics take an almost
identical form. Let sa be an arbitrary lowercase spatial
1-form, normalized against the inverse boost metric so that
ðg−1Þabsasb ¼ 1, and let q⊥b

a ≔ γba − ðg−1Þbcscsa be the
orthogonal projector. Recalling the definition of ŝa ¼
ðg−1Þabsb given in Table II, we write γab ¼ ŝasb þ q⊥a

b.
Inserting this relation into (58) and expanding leads to

ðLnUÞŝ;Â ≃ PsðDŝUÞŝ;B̂; ð61Þ
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with the principal symbol Ps ¼ As ¼
0
BBBBBB@

W2
csðc2s − 1Þvs −W2

cs
W c2sρ0h 0B 0

−W2þc2sðvsÞ2W2
cs

W3ρ0h
−W2−c2sW2

cs
W2 vs 0B 0

− c2sW2
cs

Wρ0h
vÂv

s c2sW2
csvÂ −vsq⊥B

Â 0Â

pW2
cs

W2ρ2
0
hv

s −pW2
cs

Wρ0
0B −vs

1
CCCCCCA: ð62Þ

The symbol “≃” denotes equality up to transverse principal
and source terms. For any derivative operator δ and vector
za, we write ðδv̂Þz ≡ zaδv̂a, and for the state vector,
ðδUÞŝ;Â ¼ ðδp; ðδv̂Þŝ; ðδv̂ÞÂ; δεÞT . As explained earlier in
Sec. II C, we introduce here furthermore the indices A and
Â, which are abstract but which indicate application of the
orthogonal projector q⊥b

a, meaning zÂ ¼ q⊥a
Âza and

zA ¼ q⊥A
bzb for any object z. Then, for example, we

get γabðδv̂Þa ¼ sbðδv̂Þŝ þ q⊥A
bðδv̂ÞÂ.

Before we proceed with the characteristic analysis, a
comment should be made. By the use of v̂a in the state
vector, the inverse boost metric arose in the principal part
(59). By taking sa normalized by ðg−1Þab, we were able to
get rid of this complication in the principal symbol, which
became “easy,” in the sense that it is highly structured. The
principal symbol as well as the eigenvalues and eigenvec-
tors for a state vector ðp; va; εÞ can be found in the
Appendix. Since we normalize the spatial 1-form sa against
the inverse boost metric, the eigenvalues and vectors take a
form that is slightly modified in comparison with the
literature, but these differences are purely superficial.
Solving the characteristic polynomial, one gets the five

real eigenvalues

λð0;1;2Þ ¼ −vs;

λð�Þ ¼ −
1

1− c2sv2

�
ð1− c2sÞvs �

cs
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− c2sv2⊥

q �
; ð63Þ

with the shorthand v2⊥ ≔ vAvÂ.
Please note that all eigenvalues in this paper have the

opposite sign in comparison to the literature by our
definition of the principal symbol. In the one-dimensional
limit, i.e., v⊥ ¼ 0, the eigenvalues λð�Þ reduce to

λð�Þ ¼ −
vs �Wcs
1� csvs

W

;

which, as noted elsewhere [25], is just the special relativ-
istic addition of two velocities multiplied with W. Due to
our choice of a three-basis normalized by the inverse boost
metric, the eigenvalues are slightly different as compared to
the results in the Appendix.
The left eigenvectors of the principal symbol with our

variable choice for the respective eigenvalues fλð0;1;2Þ; λð�Þg
are

�
− p

c2sρ20h
0 0A 1

	
;

�
1
ρ0h

v̂Ĉ 0 q⊥A
Ĉ 0

	
;�

�
ffiffiffiffiffiffiffiffiffiffiffi
1−c2sv2⊥

p
csρ0h

1 0A 0

	
; ð64Þ

respectively. The associated right eigenvectors are

0
BBB@

0

0

0B̂

1

1
CCCA;

0
BBB@

0

0

q⊥C
B̂

0

1
CCCA;

0
BBBBB@

c2sρ20h
p

� csρ0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− c2sv2⊥

p
− c2sρ0

p v̂B̂
1

1
CCCCCA; ð65Þ

respectively. Since there is a complete set of eigenvectors
for each sa which depend furthermore continuously on sa,
the system is strongly hyperbolic. The characteristic
variables corresponding to the speeds fλð0;1;2Þ; λð�Þg are
given by

Û0 ¼ δε −
p

c2sρ20h
δp; ÛÂ ¼ ðδv̂ÞÂ þ 1

ρ0h
v̂Âδp;

Û� ¼ ðδv̂Þŝ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2sv2⊥

p
csρ0h

δp: ð66Þ

B. Dust

A special case for the equation of state (53) is that of
dust, in which the pressure is identically zero everywhere,
p≡ 0, and the energy density coincides with the rest mass
density, ε ¼ 0. It follows that the fluid elements then follow
timelike geodesics and that the conservation of the number
of particles (50) is automatically fulfilled by the conserva-
tion of energy momentum in equation (49). For the analysis
of hyperbolicity, we use in this subsection U ¼ ðρ0; v̂aÞ as
the state vector.
Using Eqs. (51) and (52) with ε ¼ p ¼ 0 and splitting

the equations against na and γab, the PDE system can be
written as

Lnρ0 ¼ −vaDaρ0 −
ρ0
W

ðg−1ÞabDav̂b þ ρ0ðg−1ÞabKab;

γbaLnv̂b ¼ −vbDbv̂a −WDa ln α: ð67Þ

Using again an arbitrary spatial 1-form sa as in Sec. III A,
one ends up with the principal symbol Ps for ðδUÞŝ;Â as

Ps ¼

0
B@−vs − ρ0

W 0B

0 −vs 0B

0Â 0Â −vsq⊥B
Â

1
CA; ð68Þ

which evidently contains a Jordan block. The principal
symbol is thus missing an eigenvector. The system is only
weakly hyperbolic, and hence the IVP is ill posed.
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C. Uppercase formulation

We start again with Eqs. (50), (51), and (52) but split
them against ua and ðuÞγba. Using the definition of the local
speed of sound (57), we derive after some algebra the
following PDEs for the components of the state vector:

∇up ¼ −c2sρ0hðuÞγbdðg−1Þdc∇bv̂c

− c2sWρ0hðuÞγbdðg−1Þdc∇bnc; ð69Þ

ðuÞγabðg−1Þbc∇uv̂c ¼ −
1

ρ0h
ðuÞγba∇bp

−WðuÞγabðg−1Þbc∇unc; ð70Þ

∇uε ¼ −
p
ρ0

ðuÞγbdðg−1Þdc∇bv̂c

−
Wp
ρ0

ðuÞγbdðg−1Þdc∇bnc: ð71Þ

Here, we have used the relationship ðuÞγabðg−1Þbc ¼
ðuÞγðg−1Þabγbc. Proceeding as when splitting against the
lowercase frame, we write the system (69)–(71) as an
equation for the state vector U,

Bu∇uU ¼ Bp∇pUþ S; ð72Þ

and identify

Bu ¼

0
B@ 1 0 0

0 ðuÞγabðg−1Þbc 0

0 0 1

1
CA ð73Þ

and

Bp ¼

0
B@

0 −c2sρ0hðuÞγpdðg−1Þdc 0

− 1
ρ0h

ðuÞγpa 0 0

0 − p
ρ0

ðuÞγpdðg−1Þdc 0

1
CA: ð74Þ

The source vector is written as

S ¼

0
B@

−c2sWρ0hðuÞγbdðg−1Þdc∇bnc

−WðuÞγabðg−1Þbc∇unc

−Wp
ρ0

ðuÞγbdðg−1Þdc∇bnc

1
CA: ð75Þ

It is straightforward to verify that 1þ BV is invertible for
all vava < 1. Therefore, as long as the various speeds in the
system are not superluminal, that is, jλj ≤ 1, expected since
we are considering here a fluid model with no gauge
freedom, by the argument of Sec. II D, we may analyze
strong hyperbolicity equivalently in the upper- or lowercase
frames.

Let Sa be an arbitrary uppercase spatial vector,
normalized against ðuÞγab so that SaSa ¼ 1, and let Q⊥b

a ¼
ðuÞγba − SbSa be the orthogonal projector. Decomposing
ðuÞγab against Sa and using relations in Table III to sa, we
write Eq. (72) as

ð∇uUÞŝ;Â ≃ PSð∇SUÞŝ;B̂; ð76Þ

with principal symbol

PS ¼ BS ¼

0
BBB@

0 −c2sρ0h 0B 0

− 1
ρ0h

0 0B 0

0A 0A 0BA 0A

0 − p
ρ0

0B 0

1
CCCA: ð77Þ

Since the uppercase projector is pushed through the lower-
case inverse boost metric, we have SaSbðg−1Þbcðδv̂Þc ¼
Saŝcðδv̂Þc ¼ Saðδv̂Þŝ, and for the orthogonal projec-
tor, Q⊥A

bðδv̂ÞÂ ¼ Q⊥A
b
ðuÞγAcðg−1Þcdðδv̂Þd.

By employing the uppercase frame, the principal symbol
has become much simpler than before, see (62), exhibiting
now essentially the same shape as that of a simple wave
equation. In the present example, the extra structure is not
required to complete the analysis, because in practice,
computer algebra tools can already manage the more
complicated form. In more sophisticated models, however,
additional structure may become crucial if we wish to
perform such an analysis. An obvious question to ask is:
why is the uppercase form of the principal symbol so much
cleaner? The reason, which in hindsight is obvious, is that
the four-dimensional form of the fluid equations of motion
contains the fluid four-velocity, and so any frame adapted
to that fact naturally annihilates many terms in the principal
symbol, uncovering the beautiful structure of (77). The five
eigenvalues of PS are

λð0;1;2Þ ¼ 0; λð�Þ ¼ �cs; ð78Þ

with the corresponding left eigenvectors�
− p

c2sρ20h
0 0A 1

	
;

�
0 0 Q⊥A

C 0
	
;�

∓ 1
csρ0h

1 0A 0
	
; ð79Þ

right eigenvectors

0
BBB@

0

0

0B

1

1
CCCA;

0
BBB@

0

0

Q⊥C
B

0

1
CCCA;

0
BBBBB@

c2sρ20h
p

∓ csρ0
p

0B

1

1
CCCCCA; ð80Þ

and characteristic variables
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Û0 ¼ δε −
p

c2sρ20h
δp; ÛA ¼ ðδv̂ÞÂ;

Û� ¼ ðδv̂Þŝ ∓ δp
csρ0h

: ð81Þ

Using the recovery procedure described in Sec. II F gives
the same results for eigenvalues and eigenvectors and
characteristic variables as in our lowercase analysis. For
details, see the notebooks [13] that accompany the paper.

IV. HYPERBOLICITY OF GRMHD

In this section, we investigate whether or not two
different formulations of GRMHD are strongly hyperbolic.
The field equations will be expressed for a set of eight
variables corresponding to those evolved numerically.
The first characteristic analysis for RMHD was done by
Ref. [26]. They worked covariantly and considered an
augmented system of ten evolved variables, assuming
implicitly a “free-evolution” style [24] to treat the two
additional algebraic constraints, uaua ¼ −1; uaba ¼ 0,
thus introduced, as well as the Gauss constraint besides.
The analysis was then reviewed and expanded in Ref. [27].
The conclusion was that the augmented formulation of
RMHD is strongly hyperbolic. Another augmented system
for RMHD using ten variables was later derived in
Ref. [28]. On the basis of Ref. [26], several authors,
e.g., Refs. [29,30], reexamined the characteristic analysis
and treated degeneracies. In particular, a very detailed
discussion is given in Ref. [30].
For numerical implementation, a flux-balance law form

of the equations was needed, as shocks can arise, and used
in slightly different forms by, for example, Refs. [29–35].
A detailed overview is given in the review of Ref. [3]. In the
flux-balance law form considered here, a total of eight
variables including the magnetic field are evolved. It is
important to stress that changing the number of variables
can cause a breakdown of hyperbolicity, so in general, it is
not enough to know that there is some good form of the
system being treated. Rather, it is required that the
particular formulation being employed should itself be
at least strongly hyperbolic. The analysis of Ref. [27]
therefore does not necessarily apply to the system in use in
applications.
Our analysis begins with two observations that motivate

a careful reconsideration of GRMHD. First, when numeri-
cal schemes to treat GRMHD are constructed, one some-
times sees that the longitudinal component of the magnetic
field is ignored in evaluating the fluxes. This is ultimately
because the approximation works by repeated application
of a one-dimensional scheme, which is of course a
perfectly legitimate approach. It is, however, easy to
overlook the fact that when performing hyperbolicity
analysis we are not free to discard any variable and must
find a complete set of eigenvectors of the principal symbol,

including that associated with the Gauss constraint. We
must therefore be careful not to be misled by tricks that
apply only to the method, rather than the system of
equations itself.
Second, even if we can show strong hyperbolicity for a

formulation of GRMHD that requires the evolution of only
eight variables, we still may not claim that the flux-balance
law formulation used in applications satisfies the same
property. Like the field equations of GR and electrody-
namics, those of GRMHD have a gauge freedom, which,
from the free-evolution point of view is just the freedom to
add combinations of the constraint to the evolution equa-
tions. Different choices of this addition affect the level of
hyperbolicity of the formulation.
Neither of these subtleties has been completely taken

care of by the earlier analyses, and indeed a first indication
that the system of GRMHD used, for example, in
Refs. [33,36] differs from that used in the analysis of
Ref. [26] is the fact that the eigenvalues associated with the
Gauss constraint differ between the two systems. In
Ref. [26], the “entropy eigenvalue” is found with multi-
plicity 2. Of these, one corresponds to the Gauss constraint.
In Ref. [36], for the system of eight variables, the entropy
eigenvalue has only multiplicity 1, and the constraint
eigenvalue is zero. We suppose that the reason these points
have not been carefully unraveled before is chiefly that the
lowercase principal symbol of GRMHD is a complicated
matrix of which the structure is very difficult to spot.
Remarkably, there is enough structure in the symbol so that
the calculation of the eigenvalues and eigenvectors is
possible in closed form, but the expressions are very long.
For example, before developing the DF approach to the
problem, which we will see simplifies matters greatly, we
attempted a brute force treatment; the magnetosonic
eigenvalues arrived with more than 104 terms.
This section is structured as follows. In Sec. IVA,

we recapitulate the basic definitions and equations for
GRMHD following Refs. [27,30]. Afterward, we 3þ 1
decompose the PDEs and derive the evolution equations,
where in each multiples of the Gauss constraint are
manually added (see Sec. IV B). We then analyze the
characteristic structure of the principal symbol, taking all
constraint addition coefficients to zero, which forms a set of
PDEs that is in some sense analogous to the set of equations
in Ref. [26], but with their algebraic constraints explicitly
imposed; see Sec. IV C. In Secs. IV D and IV E, we do the
analysis in the upper- and lowercase frames and give some
comments about how the eigenvectors have to be rescaled
to take account of degeneracies. Finally, in Sec. IV F, we
take a different choice of constraint addition coefficients to
obtain a set of equations equal to the flux-balance law
system, comparing explicitly with Ref. [36], and show that
this formulation of GRMHD which is used in numerical
relativity is only weakly hyperbolic.
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A. Basics of GRMHD

In this subsection, we give a brief review about the
basic definitions and equations of GRMHD following
Refs. [27,30]. However, this will be done in a primarily
mathematical fashion, suppressing some important physi-
cal insights and statements. We use Lorentz-Heaviside units
for electromagnetic quantities with ε0 ¼ μ0 ¼ 1 through-
out, where ε0 is the vacuum permittivity (or electric
constant) and μ0 is the vacuum permeability (or magnetic
constant).

1. Faraday tensor and Ohm’s law

We start by introducing the Faraday electromagnetic
tensor field (or for short field strength tensor) Fab. For a
generic observer with four-velocity Na, the field strength
tensor and its dual can be expressed via the electric and
magnetic four-vectors, Ea, Ba, as

Fab ¼ NaEb − NbEa þ ϵabcdNcBd;
�Fab ¼ NaBb − NbBa − ϵabcdNcEd; ð82Þ

with the Levi-Cività tensor,

ϵabcd ¼ −
1ffiffiffiffiffiffi−gp ½abcd�; ð83Þ

where g is the determinant of the spacetime metric gab,
½abcd� is the completely antisymmetric Levi-Cività sym-
bol, and 2�Fab ¼ −ϵabcdFcd holds. We use here the sign
convention of Ref. [37]. Both the electric and magnetic
fields satisfy the orthogonality relations EaNa ¼ BaNa ¼ 0.
Using the field strength tensor and its dual, Maxwell’s

equations are written as

∇�
bF

ab ¼ 0; ∇bFab ¼ J a: ð84Þ

According to Ohm’s law (see Sec. V), the electric four-
current J a can be expressed as

J a ¼ ρelua þ σFabub; ð85Þ

with the proper charge density ρel measured by the
comoving observer with ua and σ the electric conductivity.

2. Ideal MHD condition

In the limit of infinite conductivity σ but finite current,
the electric field ea measured by the comoving observer ua,
has to vanish,

ea ¼ Fabub ≡ 0: ð86Þ

This equality holds by use of expression (82) taking
Na ¼ ua, Ba ¼ ba and Ea ¼ ea.

3. Energy-momentum tensor

The total energy-momentum tensor of magnetohydro-
dynamics (MHD) is expressed as the sum of the ideal
fluid part,

Tab
fluid ¼ ρ0huaub þ gabp; ð87Þ

plus the standard electromagnetic energy-momentum tensor,

Tab
em ¼ FacFb

c −
1

4
gabFcdFcd: ð88Þ

Using the ideal MHD condition (86) and expressing the
field strength tensor via (82), the electromagnetic energy-
momentum tensor in terms of the magnetic field is

Tab
em ¼

�
uaub þ 1

2
gab

�
b2 − babb; ð89Þ

and the total energy-momentum tensor is given by

Tab ¼ ρ0h�uaub þ p�gab − babb; ð90Þ

with h� ¼ hþ b2=ρ0 and p� ¼ pþ b2=2. In Eq. (89), we
used as a shorthand b2 ¼ baba.

4. Covariant PDE system of GRMHD

The equations of GRMHD are the conservation of the
number of particles

∇aðρ0uaÞ ¼ 0; ð91Þ

the conservation of energy-momentum

∇bTab ¼ 0; ð92Þ

and the Maxwell equations

∇b
�Fab ¼ 0: ð93Þ

B. 3 + 1 decomposition of the PDE system

The 3þ 1 decomposition needs a bit more care since we
have a constrained system. For convenience, we will use
ðuÞγba; ua to decompose the equations given in Sec. IVA 4.
Afterward, we will add to each equation some parametrized
combination of the Gauss constraint. A concrete choice
of the constraint addition parameters results in a set of
evolution equations which we call a formulation of
GRMHD. We will focus here on two specific formulations.
The first of these is essentially that of Ref. [26], but without
the artificial expansion of variables through the definition
of the algebraic constraints uaua ¼ −1 and uaba ¼ 0,
which are satisfied a priori in our approach. The second
formulation corresponds to the flux-balance law system
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used in numerics by Refs. [30,36]. We arrive at the second
by matching the values of the formulation parameters
with the literature to obtain the desired form of the field
equations. We also want to stress that we neither consider in
this work formulations using the magnetic four-potential
instead of the magnetic field as in Refs. [38,39] nor systems
with divergence cleaning as in Ref. [35].
The eight equations determining the time evolution of

the GRMHD system are

∇aðρ0uaÞ ¼ 0; ðuÞγab∇cTbc ¼ 0;

ub∇cTbc ¼ 0; ðuÞγab∇c
�Fbc ¼ 0; ð94Þ

together with an equation of state p ¼ pðρ0; εÞ and the
Gauss constraint

0 ¼ uc∇b
�Fbc ¼ ðuÞγbc∇bbc: ð95Þ

The magnetic four-vector ba can be split in the lowercase
as

naba ¼ −ðvab̂aÞ; γabbb ¼ b̂a; ð96Þ

and we have ba ¼ ðb̂cvcÞna þ b̂a with nab̂
a ¼ 0.

Furthermore, we introduce the Eulerian magnetic field
vector Ba as

b̂a ¼
1

W
gabBb ¼ 1

W
Ba þ ðBbv̂bÞva;

Ba ¼ Wðg−1Þabb̂b ¼ Wb̂a − ðb̂cv̂cÞva; ð97Þ

where the lowercase Gauss constraint reads

γab∇aBb ¼ 0: ð98Þ

Taking Eq. (94), a straightforward calculation similar to
that for GRHD in Sec. III C provides evolution equations
for the pressure,

∇up ¼ −c2sρ0hðuÞγdcðg−1Þce∇dv̂e þ SðpÞ

þ ωðpÞððuÞγdcðg−1Þce∇d⊥be þ SðcÞÞ; ð99Þ

the boost vector,

ðuÞγabðg−1Þbc∇uv̂c¼−
�
bdba
ρ20hh

�þ
ðuÞγda
ρ0h�

�
∇dp

þ 2

ρ0h�
ðuÞγ½babd�ðuÞγbcðg−1Þce∇d⊥be

þSðv̂Þa þωðv̂Þ
a ððuÞγdcðg−1Þce∇d⊥beþSðcÞÞ;

ð100Þ

the magnetic field,

ðuÞγabðg−1Þbc∇u⊥bc ¼ 2ðuÞγabðuÞγ½bcbd�ðg−1Þce∇dv̂eþSð⊥bÞ
a

þωð⊥bÞ
a ððuÞγdcðg−1Þce∇d⊥beþSðcÞÞ;

ð101Þ

and finally the specific internal energy,

∇uε ¼ −
p
ρ0

ðuÞγdcðg−1Þce∇dv̂e þ SðεÞ

þ ωðεÞððuÞγdcðg−1Þce∇d⊥be þ SðcÞÞ: ð102Þ

By Eq. (95), we also obtain the Gauss constraint

ðuÞγac∇abc ¼ ðuÞγdcðg−1Þce∇d⊥be þ SðcÞ: ð103Þ

The sources are given by

SðpÞ ¼ −c2sWρ0hðuÞγdcðg−1Þce∇dne;

Sðv̂Þa ¼ −WðuÞγabðg−1Þbe∇une þ
2W
ρ0h�

ðuÞγ½babe�Vbbd∇dne;

Sð⊥bÞ
a ¼ 2WðuÞγabðuÞγ½bcbd�ðg−1Þce∇dne

þ 2WðuÞγe½aVb�bb∇une;

SðεÞ ¼ −
Wp
ρ0

ðuÞγdcðg−1Þce∇dne;

SðcÞ ¼ ðWVdbe −WðbcVcÞðuÞγdeÞ∇dne:

The auxiliary magnetic vector ⊥bc is defined by the
relation

ðuÞγacðg−1Þcd∇b⊥bd ≔ ðuÞγacðg−1Þcd∇bb̂d

þ Vabdðg−1Þde∇bv̂e: ð104Þ

As usual, square brackets around indices denote antisym-
metrization, so that 2v̂½abb� ¼ v̂abb − v̂bba. In the system
(99)–(102), we already added multiples of the Gauss

constraint (103) connected to coefficients ωðpÞ;ωðv̂Þ
a ;ωð⊥bÞ

a ,
and ωðεÞ.

C. Prototype algebraic constraint free formulation

In the following subsections, we proceed with the
characteristic analysis for the prototype algebraic constraint
free formulation of Eqs. (99)–(102) by setting ωðpÞ ¼ 0,

ωðv̂Þ
a ¼ 0, ωð⊥bÞ

a ¼ 0, and ωðεÞ ¼ 0. The resulting system
is connected to the augmented system of equations in
Ref. [26] as follows: take the equations of Ref. [26], project
the momentum equation and the evolution equation for the
magnetic field with ðuÞγab orthogonal to the four-velocity of
the fluid, change the evolved variables to ðp; v̂a;⊥ba; εÞ,
and replace the derivative of p in the evolution equation for
the magnetic field using the evolution equation for p. After
this, one obtains our principal symbol. The fact that Anile
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and Pennisi [26] work exclusively in RMHD is of no
consequence, since in our notation the principal symbol in
GRMHD is fundamentally the same as that of RMHD.
As previously mentioned, the equations become very

lengthy in the lowercase frame. As such, we were not able
to find a choice of variables in which the principal symbol
takes a nice and easy form. Nevertheless, by applying
the strategy of Sec. II F, we were able to derive for the
prototype system all lowercase characteristic quantities,
such as eigenvalues, eigenvectors, and characteristic var-
iables, which are displayed in Sec. IV E, including a
discussion of degeneracies that may occur. Our analysis
of the flux-balance law formulation of GRMHD is given
afterward in Sec. IV F.

D. Uppercase formulation

Writing Eqs. (99)–(102) with ωðpÞ ¼ 0, ωðv̂Þ
a ¼ 0,

ωð⊥bÞ
a ¼ 0, and ωðεÞ ¼ 0 in a vectorial form with state

vector U ¼ ðp; v̂a;⊥ba; εÞT,

Bu∇uU ¼ Bp∇pUþ S; ð105Þ

we identify

Bu ¼

0
BBB@

1 0 0 0

0 ðuÞγabðg−1Þbc 0 0

0 0 ðuÞγabðg−1Þbc 0

0 0 0 1

1
CCCA; ð106Þ

and the uppercase spatial part

Bp ¼

0
BBB@

0 −c2sρ0hðuÞγpcðg−1Þce 0 0

fpa 0 lpea 0

0 2ðuÞγabðuÞγ½bcbp�ðg−1Þce 0 0

0 − p
ρ0

ðuÞγpcðg−1Þce 0 0

1
CCCA; ð107Þ

with shorthands

lpea ¼
2

ρ0h�
ðuÞγ½babp�ðuÞγbcðg−1Þce;

fpa ¼ −
�
bpba
ρ20hh

� þ
ðuÞγpa
ρ0h�

�
ð108Þ

and source vector S ¼ ðSðpÞ; Sðv̂Þa ; Sð⊥bÞ
a ; SðεÞÞT. A straight-

forward calculation shows that 1þ BV is invertible for
all VaVa < 1.

1. 2+ 1 decomposition

Let Sa be an arbitrary unit spatial 1-form and Q⊥b
a be

the associated orthogonal projector. Let sa and q⊥b
a be

their lowercase projected versions (see Tables II and III).

Decomposing ðuÞγba and γba against Sa and sa, respectively,
Eq. (105) can be written as

ð∇uUÞŝ;Â ≃ PSð∇SUÞŝ;B̂; ð109Þ

with the principal symbol PS ¼ BS ¼
0
BBBBBBBBBB@

0 −c2sρ0h 0B 0 0B 0

− ðbSÞ2þρ0h
ρ2
0
hh� 0 0B 0 − bB

ρ0h�
0

− bSbA
ρ2
0
hh� 0A 0BA 0A

bS
ρ0h�

Q⊥B
A 0A

0 0 0B 0 0B 0

0A −bA bSQ⊥B
A 0A 0BA 0A

0 − p
ρ0

0B 0 0B 0

1
CCCCCCCCCCA
:

ð110Þ

The characteristic polynomial Pλ for the principal symbol
(110) can be written as

Pλ ¼
λ2

ðρ0h�Þ2
PAlfvén Pmgs; ð111Þ

with the quadratic polynomial for Alfvén waves

PAlfvén ¼ −ðbSÞ2 þ λ2ρ0h� ð112Þ

and the quartic polynomial for magnetosonic waves

Pmgs ¼ ðλ2 − 1Þðλ2b2 − ðbSÞ2c2sÞ þ λ2ðλ2 − c2sÞρ0h: ð113Þ

Solving (111) provides us with different kinds of speeds of
waves propagating in the Sa-direction. All speeds are real,
and the system is strongly hyperbolic, as will be seen later.
The entropic waves have speed

λðeÞ ¼ 0: ð114Þ

The constraint waves have the same speed, given by

λðcÞ ¼ 0: ð115Þ

The Alfvén waves are given by solving PAlfvén ¼ 0, which
results in the two different speeds

λða�Þ ¼ � bSffiffiffiffiffiffiffiffiffi
ρ0h�

p : ð116Þ

Solving the quartic equation Pmgs ¼ 0, we obtain four
different speeds of the magnetosonic waves, two slow
magnetosonic waves,
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λðs�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζS −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2S − ξS

qr
; ð117Þ

and two fast magnetosonic waves,

λðf�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζS þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2S − ξS

qr
; ð118Þ

where we employ the shorthands

ζS ¼ ðb2 þ c2s ½ðbSÞ2 þ ρ0h�Þ
2ρ0h�

; ξS ¼ ðbSÞ2c2s
ρ0h�

: ð119Þ

Please note that the index “S” in ζS and ξS is not a
contraction with a vector but rather a reminder that we used
for 2þ 1 decomposition the vector Sa. Since ðbSÞ2 ≤ b2

and c2s ≤ 1, all eigenvalues have absolute value smaller than
or equal to one, and relation jλujjVj < 1, required for
application of the formalism of Sec. II F, is satisfied for all
boost velocities. Thus, we are allowed to use the recovering
procedure for arbitrary boost velocities.
The left eigenvectors corresponding to λðeÞ; λðcÞ; λða�Þ,

and λðm�Þ with m ¼ s; f being

�
− p

c2sρ20h
0 0A 0 0A 1

	
;

�
0 0 0A 1 0A 0

	
;�

0 0 ∓ ðSÞϵACbC
ffiffiffiffiffiffiffiffiffi
ρ0h�

p
0 −ðSÞϵACbC 0

�
;�

ρ0h�ðλðm�ÞÞ2−b2
c2sρ0h

ðbSÞ2−ρ0h�ðλðm�ÞÞ2
λðm�Þ

bSbA
λðm�Þ

0 bA 0

�
; ð120Þ

respectively. We defined the antisymmetric uppercase
two and three Levi-Cività tensors as ðSÞϵAB ¼ SdðuÞϵdAB ¼
ucSdQ⊥A

a
Q⊥B

bϵ
cdab. The right eigenvectors can be

obtained by inverting of the matrix of left eigenvectors
or by solving the eigenvalue problem and can be
expressed as

0
BBBBBBBBB@

0

0

0B

0

0B

1

1
CCCCCCCCCA
;

0
BBBBBBBBB@

0

0

0B

1

0B

0

1
CCCCCCCCCA
;

0
BBBBBBBBB@

0

0

∓ ðSÞϵBCffiffiffiffiffiffiffi
ρ0h�

p bC

0

−ðSÞϵBCbC

0

1
CCCCCCCCCA
; ð121Þ

for entropy, constraint, and Alfvén waves, and

0
BBBBBBBBBBBB@

c2sρ20h
p

− ρ0λðm�Þ
p

ρ0λðm�Þ
pbSb2⊥

½ðbSÞ2 þ ρ0h�ððλðm�ÞÞ2 − 2ζSÞ�bB
0

ρ0
b2⊥p

½b2 þ ρ0h�ððλðm�ÞÞ2 − 2ζSÞ�bB
1

1
CCCCCCCCCCCCA

ð122Þ

for the four magnetosonic waves with m ¼ s; f. We
introduced in the magnetosonic eigenvectors the orthogonal
magnetic field vector ba⊥¼ Q⊥a

bbb with b2⊥¼ba⊥b⊥a ¼bAbA.
For the moment, we have a complete set of eigenvectors for
real eigenvalues. Nevertheless, we have to check if any of the
eigenvalues may change their multiplicity and, if so, whether
or not a complete set of eigenvectors is still available. The
situation where a priori distinct eigenvalues coincide and
their muliplicities change is called a degenerate state or for
short a degeneracy. To show strong hyperbolicity of the
system, we have to show that for each possible degenerate
state a complete set of eigenvectors still exists. For the
augmented system of RMHD, this was already described in
Refs. [26,27,29,31]. A full accountwas furthermore given by
Ref. [30]. We also want to mention that in the Appendix of
Ref. [29] the eigenvalues and right eigenvectors in the fluid
rest frame are given for seven variables in a one-dimensional
analysis of RMHD. They are obtained by explicitly setting
(locally) the spatial entries of the four-velocity to zero, which
is ultimately quite similar to our approach.

2. Degeneracy analysis of the uppercase

For the prototype algebraic constraint free formulation of
GRMHD, just as in the augmented system of Ref. [26], two
different types of degeneracies can occur. For degeneracy
type I, bS is equal to zero, whereas for degeneracy type II,
the magnetic field four-vector is parallel to Sa, so that ba⊥ ¼
Q⊥a

bbb ¼ 0 holds. To describe the different situations
properly, we write the magnetic field four-vector as

ba ¼ bSSa þ ba⊥; b2 ¼ ðbSÞ2 þ b2⊥: ð123Þ
First, we note that the polynomials (112) and (113) have
solutions

bS

λ






ða�Þ

¼ �
ffiffiffiffiffiffiffiffiffi
ρ0h�

p
; ð124Þ

bS

λ






ðm�Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρ0hþ b2

c2s

�
þ ρ0h

�
1 −

1

c2s

� λ2ðm�Þ
1 − λ2ðm�Þ

vuut

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbSÞ2 þ

�
ρ0hþ b2

c2s

�
− ρ0h�

λ2ðm�Þ
c2s

s
; ð125Þ

which are well defined even for degeneracies.
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For a type I degeneracy in the uppercase where bS ¼ 0

and b2 ¼ b2⊥, the eigenvalues become

λðeÞ ¼ λðcÞ ¼ λða�Þ ¼ λðs�Þ ¼ 0;

λðf�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2sρ0h

p ffiffiffiffiffiffiffiffiffi
ρ0h�

p ; ð126Þ

and

bS

λ






ðs�Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0hþ b2

c2s

s
;

bS

λ






ðf�Þ

¼ 0 ð127Þ

hold.
For type II degeneracy, namely when ba⊥ ¼ 0 and

b2 ¼ ðbSÞ2, we have

λðs�Þ ¼ λ�ðaÞ ¼ � jbSjffiffiffiffiffiffiffiffiffi
ρ0h�

p ; λðf�Þ ¼ �cs; if c2s >
ðbSÞ2
ρ0h�

;

λðf�Þ ¼ λ�ðaÞ ¼ � jbSjffiffiffiffiffiffiffiffiffi
ρ0h�

p ; λðs�Þ ¼ �cs; if c2s <
ðbSÞ2
ρ0h�

ð128Þ
and get

bS

λ






ðm�≠a�Þ

¼ � bS

cs
;

bS

λ






ðm�¼a�Þ

¼ �
ffiffiffiffiffiffiffiffiffi
ρ0h�

p
: ð129Þ

To classify the corresponding waves with equal speed
properly (see Refs. [29,30]), we defined λ�ðaÞ with λ

þ
ðaÞ ≥ λ−ðaÞ

such that λ�ðaÞ ¼ λða�Þ for bS ≥ 0 or λ�ðaÞ ¼ λða∓Þ for bS < 0

holds. The special case ðbSÞ2 ¼ c2sρ0h� is called a type II0

degeneracy where λðs�Þ ¼ λ�ðaÞ ¼ λðf�Þ ¼ �cs. Note that
type I and type II degeneracies may occur simultaneously,
in which case we recover the pure GRHD decoupled from
the magnetic field evolution as a limiting case. On the
other hand, since we insist that cs > 0, it is not possible for
type I and type II0 degeneracies to occur simultaneously.

3. Renormalized uppercase left eigenvectors

We rescale the Alfvén and magnetosonic eigenvectors in
a way analogous to Ref. [30]. The procedure can also be
found in the provided notebook [13]. The rescaled eigen-
vectors are

entropy∶
�
− p

c2sρ20h
0 0A 0 0A 1

�
;

constraint∶
�
0 0 0A 1 0A 0

�
;

Alfvén∶
�
0 0 �ðSÞϵAC

ffiffiffiffiffiffiffiffiffi
ρ0h�

p b⊥C
jb⊥j 0 ðSÞϵAC b⊥C

jb⊥j 0

�
;

ð130Þ

the magnetosonic left eigenvectors which have eigenvalues
closer to the Alfvén eigenvalues,�

Hðλ2−1Þ
ρ0h

ð1− c2sÞHλ
�
bS
λ

	
bA⊥
jb⊥j 0

bA⊥
jb⊥j 0

	
ðm�Þ

; ð131Þ

and the other two magnetosonic left eigenvectors,�
1

c2sρ0h
ð1−c2sÞλ
c2sðλ2−1Þ

�
bS
λ

	
FA 0 FA 0

	
ðm�Þ

; ð132Þ

with abbreviations

H ¼ jb⊥j
c2s − λ2ðm�Þ

; ð133Þ

FA ¼ bA⊥
ðρ0h�λ2ðm�Þ − b2Þ ; ð134Þ

where for type II and even for type II0 degeneracy we take
Q1

a and Q2
a such that in the degenerate limit we have

b⊥C
jb⊥j

¼ 1ffiffiffi
2

p ðQ1C þQ2CÞ; ð135Þ

H ¼ 0; ð136Þ

FA ¼ 0A: ð137Þ

Here, some comments are in order. In Eqs. (135)–(137), we
are just making a canonical choice for how to represent the
complete set of eigenvectors under a type II or type II0
degenerate limit. Note that for type II degeneracies H and
FA vanish automatically. For type II0 degeneracies, depend-
ing on how the limit is taken, their values may not vanish,
but the form (131) and (132) with H ¼ FA ¼ 0 can
nevertheless be obtained by taking appropriate linear
combinations of the resulting eigenvectors.

4. Renormalized uppercase right eigenvectors

The right eigenvectors are obtained in the same way and
with the same abbreviations. The entropy, constraint, and
Alfvén eigenvectors are given by0
BBBBBBBBB@

0

0

0B

0

0B

1

1
CCCCCCCCCA
;

0
BBBBBBBBB@

0

0

0B

1

0B

0

1
CCCCCCCCCA
;

0
BBBBBBBBB@

0

0

�ðSÞϵBC bC
jb⊥j

0

ðSÞϵBC
ffiffiffiffiffiffiffiffiffi
ρ0h�

p bC
jb⊥j

0

1
CCCCCCCCCA
; ð138Þ

the magnetosonic eigenvectors corresponding to the eigen-
values closer to the Alfvén eigenvalues are
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0
BBBBBBBBBB@

c2sρ0hH

−Hλ

−
�
bS
λ

	
b⊥B
jb⊥j

0
ρ0h

ðλ2−1Þ
b⊥B
jb⊥j

p
ρ0
H

1
CCCCCCCCCCA

ðm�Þ

; ð139Þ

and the other two magnetosonic eigenvectors are

0
BBBBBBBBB@

c2sρ0h

−λ

c2sð1 − λ2Þ
�
bS
λ

	
FB

0

c2sρ0hFB
p
ρ0

1
CCCCCCCCCA

ðm�Þ

; ð140Þ

respectively.

5. Characteristic variables

The characteristic variables valid for all degeneracies are

Ûe ¼ δε −
p

c2sρ20h
δp; Ûc ¼ ðδ⊥bÞŝ;

Ûa� ¼ �ðSÞϵAC
ffiffiffiffiffiffiffiffiffi
ρ0h�

p b⊥C
jb⊥j

ðδv̂ÞÂ þ ðSÞϵAC
b⊥C
jb⊥j

ðδ⊥bÞÂ;

Ûm1� ¼
Hðλ2ðm1�Þ − 1Þ

ρ0h
δpþ ð1 − c2sÞHλðm1�Þðδv̂Þŝ

þ
�
bS

λ

�
ðm1�Þ

bA⊥
jb⊥j

ðδv̂ÞÂ þ bA⊥
jb⊥j

ðδ⊥bÞÂ;

Ûm2� ¼ 1

c2sρ0h
δpþ ð1 − c2sÞλðm2�Þ

c2sðλ2ðm2�Þ − 1Þ ðδv̂Þŝ

þ
�
bS

λ

�
ðm2�Þ

FAðδv̂ÞÂ þ FAðδ⊥bÞÂ; ð141Þ

with fm1;m2g equal to fs; fg or ff; sg. Note that, since the
resulting similarity transform matrix TS and inverse T−1

S
always exist and have bounded components, the regularity
condition (3) is fulfilled. This shows that the prototype
algebraic constraint free system is in the uppercase strongly
hyperbolic. Since all the eigenvalues have absolute values
smaller than or equal to 1, the system must also be strongly
hyperbolic in the lowercase frame.

E. Lowercase formulation

We know already that the prototype algebraic constraint
free formulation is strongly hyperbolic. Nevertheless, the

lowercase eigenvalues and eigenvectors would be impor-
tant if we were to employ the system numerically, and
therefore we derive them in this subsection.

1. Recovering the lowercase quantities

To obtain the lowercase eigenvalues and eigenvectors as
well as the characteristic variables, we use the procedure
described in Sec. II F. The recovery will be done in
several steps.
Step one.—First of all, we take the calculated uppercase

eigenvalues (114)–(118) and replace the vector Sa by
Saλ ¼ ðSa −Wðλ −WVSÞÞ=N, whereby we obtain the
new uppercase eigenvalues

λuðeÞ ¼ 0; ð142Þ

λuðcÞ ¼ 0; ð143Þ

λuða�Þ ¼ � bSλffiffiffiffiffiffiffiffiffi
ρ0h�

p ; ð144Þ

λuðs�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζSλ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2Sλ − ξSλ

qr
; ð145Þ

λuðf�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζSλ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2Sλ − ξSλ

qr
; ð146Þ

where we used the shorthands

ζSλ ¼
ðb2 þ c2s ½ðbSλÞ2 þ ρ0h�Þ

2ρ0h�
; ξSλ ¼

ðbSλÞ2c2s
ρ0h�

; ð147Þ

and the magnetic field vector in the new direction Saλ
becomes

bSλ ¼ baSλa ¼
1

N
ðbS −WðbaVaÞðλ −WVSÞÞ; ð148Þ

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWλ −W2VSÞ2 þ 1þ ðVSÞ2W2 − λ2

q
: ð149Þ

Wewant to reiterate that the relationWVS ¼ −vs holds and
is used at several points in this paper.
Step two.—We calculate now the lowercase eigenvalues

by use of Eq. (33), that is,

1

N
Wðλ −WVSÞ ¼ λu½Saλ �: ð150Þ

For example, taking λu½Saλ � ¼ λuðeÞ ¼ 0, we arrive with the
lowercase entropy wave speed λðeÞ ¼ WVS, the normali-
zation factor N becomes unity, and Sa and Saλ are identical.
Step three.—We now transform the uppercase left

eigenvectors for Saλ in the lowercase left eigenvectors for
the state vector,
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ðδUÞŝ;Â ¼ ðδp; ðδv̂Þŝ; ðδv̂ÞÂ; ðδ⊥bÞŝ; ðδ⊥bÞÂ; δεÞT:

The transformation is λ dependent and therefore has to be
done in each eigenspace independently. We take Eq. (44),
that is,

lnλ js ¼ luλu ½Saλ �jSλð1þ BV jSλÞTλ; ð151Þ

where we use the eigenvectors luλu ½Sa�jS explicitly written in
(120) and replace all basis vectors with the ones associated
with Saλ . The matrices ð1þ BV jSÞ and ð1þ BV jSλÞ for
bases S ¼ ðSa;Q1

a; Q2
aÞ and Sλ ¼ ðSaλ ; Q1

a
λ ; Q2

a
λÞ can be

found in the notebook [13].
To obtain the basis transformation Tλ, we need to give a

little more details: writing Saλ in the basis S, we get

Sλa ¼ cSSa þ c1Q1
a þ c2Q2

a;

cS ¼
1þ ðW2VS −WλÞVS

N
;

c1 ¼
ðW2VS −WλÞVQ1

N
;

c2 ¼
ðW2VS −WλÞVQ2

N
: ð152Þ

This relation defines a rotation of the basis, so we are able
to build a transformation matrix which is an element of
SO(3). By denoting Q1

a
λ and Q2

a
λ as rotated basis vectors

Qa
1 and Qa

2 , respectively, the rotation matrix is given by

R ¼

0
BBB@

cS c1 c2

−c1
cSc21þc2

2

c2
1
þc2

2

ðcS−1Þc1c2
c2
1
þc2

2

−c2
ðcS−1Þc1c2

c2
1
þc2

2

c2
1
þcSc22
c2
1
þc2

2

1
CCCA; ð153Þ

such that 0
B@ Saλ

Q1
a
λ

Q2
a
λ

1
CA ¼ R

0
B@ Sa

Q1
a

Q2
a

1
CA: ð154Þ

Since R ∈ SOð3Þ, we may transpose to invert RT ¼ R−1.
The associated lowercase bases obey the same transforma-
tion, since we just have to multiply Eq. (154) with γba. The
transformation matrix is taken to be Tλ ¼ diagð1;R;R; 1Þ.
The derivative of the state vector transforms like

1ð∇zUÞS ¼ TT
λ ð∇zUÞSλ ð155Þ

for any vector za.
Step four.—For a last step, we have to calculate the right

eigenvectors by Eq. (45), so we arrive with

rnλ js ¼ TT
λ r

u
λu
½Saλ �jSλ : ð156Þ

For this, we will take the right eigenvectors ruλu ½Sa�jS given
in (122) and replace the basis vectors.

2. Definitions and formulas

Let us first define some new relations and quantities:

a ≔ Nλu ¼ Wλ −W2VS ¼ Wλþ v̂s;

B ≔ NbaSλa ¼ bS − ðbaVaÞa
¼ bS þ ðbaVaÞWðVSW − λÞ;

G ≔ 1þ ðVSÞ2W2 − λ2;

N2 ¼ a2 þ G: ð157Þ
These definitions are motivated by those in Refs. [26,30] in
regard to the covariant approach of characteristic analysis
shown by Eq. (46).
In analogy to the uppercase, we write the magnetic field

four-vector as

ba ¼ bSλSaλ þ ba⊥; b2 ¼ ðbSλÞ2 þ b2⊥; ð158Þ
with

jb⊥j2 ¼ b2 − ðbSλÞ2 ¼ ba⊥b⊥a : ð159Þ
Please note that we nevertheless still use capital letters for
contraction with Q⊥, e.g., bA⊥ ¼ Q⊥A

aba⊥. In general,
bS⊥ ≠ 0 is not vanishing. These definitions are taken for
all lowercase characteristic quantities. Since ba⊥ is orthogo-
nal to Saλ , we use the relation bS⊥ ¼ aðba⊥VaÞ several times.

3. Entropy wave

Taking λu ¼ 0 as in (142), we arrive at the lowercase
eigenvalue

λðeÞ ¼ WVS: ð160Þ
In this case, we have N ¼ 1 and Saλ ¼ Sa, and the left and
right eigenvectors for entropy waves remain the same,�

− p
c2sρ20h

0 0A 0 0A 1
	
; ð161Þ

�
0 0 0B 0 0B 1

	
T
: ð162Þ

4. Constraint wave

Taking λu ¼ 0 as in (143), we arrive at the lowercase
eigenvalue

λðcÞ ¼ WVS: ð163Þ
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In this case, we have N ¼ 1 and Saλ ¼ Sa, and the left and
right eigenvectors for constraint waves become�

0 ðbCVCÞ −bSVA 1 0A 0
	
; ð164Þ

�
0 0 0B 1 0B 0

	
T
; ð165Þ

respectively.

5. Alfvén waves

For Alfvén waves, we obtain by taking (144) the
lowercase eigenvalues

λða�Þ ¼
bS þ VSW2½ðbaVaÞ �

ffiffiffiffiffiffiffiffiffi
ρ0h�

p �
W½ðbaVaÞ �

ffiffiffiffiffiffiffiffiffi
ρ0h�

p � : ð166Þ

They coincide up to a minus sign and factor W (due
to our choice of the spatial vector) with the literature [30].
The already rescaled left and right eigenvectors to
λða�Þ are

0
BBBBBBBBBBBBB@

� ðSÞϵBCffiffiffiffiffiffiffi
ρ0h�

p VBbC⊥
jb⊥j

bSðSÞϵBC
bB⊥VC

jb⊥j

ððbaVaÞ �
ffiffiffiffiffiffiffiffiffi
ρ0h�

p ÞðuÞϵAbc
NSbλða�Þ

bc⊥
jb⊥j

0

−ðSÞϵAB

�
bB⊥
jb⊥j �

jb⊥jVBffiffiffiffiffiffiffi
ρ0h�

p
�

0

1
CCCCCCCCCCCCCA

T

ð167Þ

and

0
BBBBBBBBBBBBB@

0

bSffiffiffiffiffiffiffi
ρ0h�

p ðSÞϵAC
bA⊥VC

jb⊥j

ðbbVbÞ�
ffiffiffiffiffiffiffi
ρ0h�

pffiffiffiffiffiffiffi
ρ0h�

p ðuÞϵBac
NSaλða�Þ

bc⊥
jb⊥j

�bSðSÞϵAC
bA⊥VC

jb⊥j

ð ffiffiffiffiffiffiffiffiffi
ρ0h�

p � ðbbVbÞÞðuÞϵBac
NSaλða�Þ

bc⊥
jb⊥j

0

1
CCCCCCCCCCCCCA
; ð168Þ

respectively.

6. Magnetosonic waves

The uppercase slow and fast magnetosonic eigenvalues
are defined in (145) and (146). Inserting one of these
eigenvalues into Eq. (150), one can show after some
manipulations (given in the notebook [13]) that the

lowercase magnetosonic eigenvalues are solutions of the
quartic equation

N 4¼ρ0h

�
1

c2s
−1

�
a4−

�
ρ0hþ

b2

c2s

�
a2GþB2G¼0; ð169Þ

whereN 4 is the same polynomial as obtained by Ref. [26].
We have computed analytic expressions for the magneto-
sonic eigenvalues. Explicitly written out, however, they are
rather long, and hence a numerical computation relying on
the characteristic information may be better served by using
some root finder.
The rescaled left and right magnetosonic eigenvectors

with eigenvalues closer to the Alfvén speeds can be
expressed as

0
BBBBBBBBBBBBB@

− G
ρ0h

ðba⊥VaÞ
jb⊥j

�
B
a

	
− ð1−aVSÞG

ρ0h
F

aða2 þ GÞ
�
ð1 − c2sÞF þ

h�
B
a

	
þ ðbaVaÞ

i ðba⊥VaÞ
jb⊥j

	
ða2 þ GÞ

h�
B
a

	
þ ðbaVaÞ

i
bA⊥
jb⊥j

0

a bS⊥VA

jb⊥j þ ð1 − aVSÞ bA⊥
jb⊥j

0

1
CCCCCCCCCCCCCA

T

ðm�Þ

ð170Þ

and

0
BBBBBBBBBBBBB@

−c2sρ0hGða2 þ GÞF
G
�
B
a

	
bS⊥
jb⊥j þ að1 − aVSÞGF

G
�
B
a

	
b⊥B
jb⊥j − a2GFVB

ða2 þ GÞ ρ0h
jb⊥j b

S⊥
ða2 þ GÞ ρ0h

jb⊥j b
⊥
B

− p
ρ0
ða2 þ GÞGF

1
CCCCCCCCCCCCCA

ðm�Þ

: ð171Þ

The remaining two left and right magnetosonic lowercase
eigenvectors are given by

0
BBBBBBBBBBBB@

− G
ρ0h

�
B
a

	
ðCaVaÞþ ð1−aVSÞ

c2sρ0hða2þGÞ�
1− 1

c2s

	
a
Gþaða2þGÞ

h�
B
a

	
þðbaVaÞ

i
ðCbVbÞ

ða2þGÞ
h�

B
a

	
þðbaVaÞ

i
CA

0

aCSVAþð1−aVSÞCA
0

1
CCCCCCCCCCCCA

T

ðm�Þ

ð172Þ
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and 0
BBBBBBBBBBBB@

ρ0h�
B
a

	
GCS − að1−aVSÞ

c2sða2þGÞ�
B
a

	
GCB þ a2

c2sða2þGÞVB

ða2 þ GÞρ0hCS
ða2 þ GÞρ0hCB

p
c2sρ0

1
CCCCCCCCCCCCA

ðm�Þ

: ð173Þ

Here, we took the definitions

Ca ¼ ba⊥
a2ρ0h − Gb2

;

F ¼ jb⊥j
c2sða2 þ GÞ − a2

; ð174Þ

where for type II and type II0 degeneracies we take

Ca ¼ 0; F ¼ 0; ð175Þ

and

b⊥C
jb⊥j

¼ 1ffiffiffi
2

p ðQ1
λ
C þQ2

λ
CÞ: ð176Þ

7. Degeneracies in lowercase GRMHD

In the lowercase frame, the degeneracy analysis is
performed just as in the uppercase setting. One has only
to replace the vector Sa by Saλ and the corresponding
orthogonal basis vectors as well. We then have for type I
degeneracy that baSλa is equal to zero. In this case,
the entropic wave, the constraint wave, the two Alfvén
waves, and the two slow magnetosonic waves propagate at
the same speed (λðeÞ ¼ λðcÞ ¼ λða�Þ ¼ λðs�Þ ¼ −vs). For
type II degeneracy, the tangential magnetic field vector,
ba⊥ ¼ Qλ⊥a

bbb, Qλ⊥a
b ¼ ðuÞγab − SaλS

λ
b, vanishes. In this

case, one of the Alfvén waves and one of the magnetosonic
waves of the appropriate class (here denoted by a super-
script as in Ref. [30]) have the same speed (λþðaÞ ¼ λþðsÞ or
λ−ðaÞ ¼ λ−ðsÞ or λþðaÞ ¼ λþðfÞ or λ−ðaÞ ¼ λ−ðfÞ). In the type II0

degeneracy, one Alfvén wave and the slow and fast
magnetosonic waves of the appropriate class travel at the
same speed (λþðaÞ ¼ λþðsÞ ¼ λþðfÞ or λ

−
ðaÞ ¼ λ−ðsÞ ¼ λ−ðfÞ). In the

uppercase, we have for type II and type II0 degeneracies that
both Alfvén speeds are degenerate at the same time.
Replacing Sa by Saλ leads to different SO(3)-transformations
for different values of λ. Therefore, in the lowercase, this
cannot be fulfilled in general. A more detailed description
and derivation can be found in Ref. [40].

8. Characteristic variables

The characteristic variables valid for all degeneracies are

Û0 ¼ δε −
p

c2sρ20h
δp;

Ûc ¼ ðδ⊥bÞŝ þ ðbAVAÞðδv̂Þŝ − bSVAðδv̂ÞÂ;

Ûa� ¼ �
ðSÞϵBCffiffiffiffiffiffiffiffiffi
ρ0h�

p VBbC⊥
jb⊥j

δpþ bSðSÞϵBC
bB⊥VC

jb⊥j
ðδv̂Þŝ

þ ððbaVaÞ �
ffiffiffiffiffiffiffiffiffi
ρ0h�

p
Þ
NSbλða�Þb

c⊥
jb⊥j

ðuÞϵAbcðδv̂ÞÂ

−
�
bB⊥
jb⊥j

� jb⊥jVBffiffiffiffiffiffiffiffiffi
ρ0h�

p
�

ðSÞϵABðδ⊥bÞÂ; ð177Þ

for entropy, constraint, and Alfvén waves, and

Ûm1� ¼ −
�

G
ρ0h

ðba⊥VaÞ
jb⊥j

�
B
a

�
þ ð1 − aVSÞG

ρ0h
F
�
δp

þ aða2 þ GÞð1 − c2sÞF ðδv̂Þŝ
þ N2

��
B
a

�
þ ðbaVaÞ

��
bS⊥
jb⊥j

ðδv̂Þŝ þ
bA⊥
jb⊥j

ðδv̂ÞÂ
�

þ
�
a
bS⊥VA

jb⊥j
þ ð1 − aVSÞ bA⊥

jb⊥j
�
ðδ⊥bÞÂ;

Ûm2� ¼
� ð1 − aVSÞ
c2sρ0hða2 þ GÞ −

G
ρ0h

�
B
a

�
ðCaVaÞ

�
δp

þ
�
1 −

1

c2s

�
a
G
ðδv̂Þŝ

þ N2

��
B
a

�
þ ðbaVaÞ

�
ðCSðδv̂Þŝ þ CAðδv̂ÞÂÞ

þ ðaCSVA þ ð1 − aVSÞCAÞðδ⊥bÞÂ; ð178Þ

for magnetosonic waves, with fm1;m2g equal to fs; fg or
ff; sg. The functions on the right-hand side of Ûm� are
evaluated with the corresponding eigenvalue.

F. Weak hyperbolicity of the flux-balance law
formulation of GRMHD

We want now to analyze whether or not the flux-balance
law formulation of GRMHD as in Ref. [33] is strongly
hyperbolic. To do so, we need to find the values for the
formulation parameters such that a linear combination of
Eqs. (99)–(102) is equal to the system in the form of
Refs. [30,41], up to the use of the same evolved variables.
In fact, several flux-balance law formulations exist, but
remarkably, in our variables, they differ only by a linear
combination of the conservation of particle number
equation.
To reproduce the flux-balance law formulation given in

Ref. [36], we worked in computer algebra and found the
linear combination of our equations that reproduced the
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flux-balance ones. This was done ignoring all derivatives of
the normal vector na. In our analysis, we may ignore all
derivatives of the normal vector anyway since they only
contribute to the source vector and do not affect the
principal part. The coefficients are then

ωðpÞ ¼ κ

ρ0
ðbcVcÞ; ωðv̂Þ

a ¼ 1

ρ0h
ba;

ωð⊥bÞ
a ¼ −Va; ωðεÞ ¼ 1

ρ0
ðbcVcÞ: ð179Þ

Proceeding in the same way as for the previous formu-
lation, the principal symbol PS becomes0
BBBBBBBBBBBB@

0 −c2sρ0h 0B κ
ρ0
ðbcVcÞ 0B 0

− ðbSÞ2þρ0h
ρ2
0
hh� 0 0B bS

ρ0h
− bB

ρ0h�
0

− bSbA
ρ2
0
hh� 0A 0BA

bA
ρ0h

bS
ρ0h�

Q⊥B
A 0A

0 0 0B −VS 0B 0

0A −bA bSQ⊥B
A −VA 0BA 0A

0 − p
ρ0

0B 1
ρ0
ðbcVcÞ 0B 0

1
CCCCCCCCCCCCA
;

ð180Þ

the characteristic polynomial is then of the form

Pλ ¼
1

ðρ0h�Þ2
λðλþ VSÞPAlfvénPmgs; ð181Þ

where PAlfvén and Pmgs coincide with the polynomials given
earlier in Eqs. (112) and (113). As expected, the eigenvalue
associated with the constraint has changed from zero, in the
previous formulation, to −VS. Therefore, new degeneracies
have to be considered, for example, when the constraint and
entropic speeds collide. This occurs when VS ¼ 0, in which
case we find that the principal symbol is not diagonalizable.
Hence, the system is only weakly hyperbolic and has an ill-
posed IVP. To get an intuitive idea of what precisely goes
wrong, we may consider the left eigenvectors associated
with the entropy and constraint waves in generic directions
and then consider a limiting direction withVS→0. These are�

− pρ0
c2sρ20h−κp

VS

ðbcVcÞ 0 0A 1 0A
c2sρ30h

c2sρ20h−κp
VS

ðbcVcÞ
	

and �
0 0 0A 1 0A 0

	
;

respectively, with eigenvalues λðeÞ ¼ 0 and λðcÞ ¼ −VS.
Both right eigenvectors can be found in our scripts but
are suppressed here because the constraint eigenvector is
quite lengthy. Taking the limit VS → 0, we immediately

arrive at the conclusion that the geometric multiplicity is
only 1 as the two vectors become coincident. The eigen-
vector can not be rescaled as for the earlier degeneracies
since only some entries in the left entropy eigenvector
become zero; the limit of the principal symbol is truly
problematic. This degeneracywas unfortunately overlooked
in Ref. [36], although there the focus was rather on the
convexity of the system as opposed to hyperbolicity.
Nevertheless, we have explicitly checked in our notebooks
[13] that, taking the lowercase matrices from Ref. [36] and
deriving the left eigenvectors of the entropy and constraint
waves, the exact same problem is present. Deriving the right
constraint eigenvector in the lowercase frame is muchworse
than in the uppercase, however, sowe only evaluated the left
ones.Wewant to stress that using thematrices of Ref. [36] is
a completely independent calculation and underlines the
weak hyperbolicity of the system. Somewhat interestingly,
in theNewtonian limit, the flux-balance formulation, see, for
example, Refs. [42,43], suffers from the same degeneracy
and is also only weakly hyperbolic.
It should be explicitly noted that in more than one spatial

dimension the condition VS ¼ 0 will certainly be satisfied
everywhere in space for some Sa. One should therefore
avoid thinking that the breakdown of hyperbolicity happens
only on a set of measure zero in spacetime. Rather the
generic situation is that when the flow is nontrivial there are
specific bad directions everywhere in spacetime which
obstruct the well-posedness of the initial value problem.
The fact that only specific directions are problematic may
make the effect in numerical work hard to identify. In
particular, many tests of GRMHD are focused on one-
dimensional (nonsmooth) solutions, and by construction,
such experiments are insensitive to the breakdown identified
here. This will be studied in greater detail in future work.
We stress again that the result does not automatically

apply to formulations evolving the magnetic four-potential
[38,39] nor systems with divergence cleaning [35]. It would
naturally be desirable to perform a similar analysis for
those systems also.

V. HYPERBOLICITY OF RGRMHD

In this section, we want to investigate the evolution
equations used in the literature for RRMHD [44–48] and
[49–53] describing RGRMHD and show that these two
systems are weakly hyperbolic and therefore have ill-posed
IVPs. In this section, we will use the lowercase frame
exclusively. As in Sec. IV, we use Lorentz-Heaviside units
where vacuum permittivity and vacuum permeability are
equal to 1. We start by deriving the equations of motion for
the state vector U.

A. Equations of RGRMHD

As with earlier, we want to derive the evolution equa-
tions and are primarily concerned with their mathematical
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structure. Interesting physical facts, particularly those
related to Ohm’s law, will be sidelined in our discussion.

1. Augmented Maxwell equations

As in the beginning of the last section about GRMHD,
we take the following definition of the field strength tensor
for a generic Eulerian observer with four-velocity na,

Fab ¼ naEb − nbEa þ ϵabcdncBd; ð182Þ
�Fab ¼ naBb − nbBa − ϵabcdncEd; ð183Þ

with the Levi-Cività tensor,

ϵabcd ¼ −
1ffiffiffiffiffiffi−gp ½abcd�; ð184Þ

the Levi-Cività symbol ½abcd�; ½0123� ¼ 1 and

ϵabcdna ¼ ϵbcd ¼ 1ffiffiffi
γ

p ½bcd�; ð185Þ

where we follow the definition and convention by Ref. [37].
Please note that in this convention 2�Fab ¼ −ϵabcdFcd
holds.
To control the constraints during the evolution, the

augmented scalar fields ψ and ϕ are introduced, see for
example [45,47,53], and hence the Maxwell equations
become

∇bðFab − gabψÞ ¼ J a −
1

τ
naψ ; ð186Þ

∇bð�Fab − gabϕÞ ¼ −
1

τ
naϕ: ð187Þ

Note that in the literature the notation κ ¼ τ−1 is normally
employed. The electric four-current is split against na and
γba defined by

J a ≔ qna þ Ja; naJa ¼ 0: ð188Þ

Proceeding with a 3þ 1 decomposition of (186) and
(187) using (188), we arrive at the equations

γabLnEb ¼ ϵabcDbBc − γabDbψ þ SaðEÞ; ð189Þ

γabLnBb ¼ −ϵabcDbEc − γabDbϕþ SaðBÞ; ð190Þ

Lnψ ¼ −DaEa −
1

τ
ψ þ q; ð191Þ

Lnϕ ¼ −DaBa −
1

τ
ϕ; ð192Þ

with sources

SaðEÞ ¼
1

α
Bcϵ

abcDbαþ KEa − Ja;

SaðBÞ ¼ −
1

α
Ecϵ

abcDbαþ KBa:

The constant τ is the timescale for the exponential driving
of Eqs. (191) and (192) toward the constraints

DaEa ¼ q; ð193Þ
DaBa ¼ 0; ð194Þ

respectively. The three-current Ja is given by generalized
Ohm’s law; see below. We must to stress that, although Ja

is inside the ‘source’ term, it could contain derivatives of
the evolved variables. Such terms would then of course
contribute to the principal part.
As a consequence of the antisymmetry of the field

strength tensor, we have additionally a conservation law
for the electric charge, ∇aJ a ¼ 0, that is in the 3þ 1
language

Lnq ¼ −γabDaJb −
1

α
JbDbαþ Kq: ð195Þ

2. Energy-momentum tensor

The energy-momentum tensor Tab of RGRMHD con-
tains an ideal fluid component,

Tab
mat ¼ ρ0huaub þ pgab; ð196Þ

plus the standard electromagnetic energy-momentum
tensor,

Tab
em ¼ FacFb

c −
1

4
gabFcdFcd; ð197Þ

with a field strength tensor defined in (182). Writing Fab in
terms of Ea and Ba, we obtain

Tab
em ¼ 1

2
ðBcBc þ EcEcÞðγab þ nanbÞ

− BaBb − EaEb þ ðnaϵbcd þ nbϵacdÞEcBd: ð198Þ

3. Generalized Ohm’s law

The generalized Ohm’s law provides us with an expres-
sion for the spatial current Ja. Explanations about the
physical validity and form of Ja can be found in the
literature [53,54]. We consider here an equation for Ja

which is of the form

Ja ¼ qva þ J̃a; J̃a ¼ J̃aðp; vb; ε; Ec; BdÞ; ð199Þ
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where J̃a contains no derivatives of the matter and
electromagnetic variables nor second-order or higher
derivatives of the metric tensor. This fairly general choice
of Ja includes the particular form used in the literature
mentioned above, that is,

Ja ¼ qva þWσðEa þ ϵabcvbBc − ðvbEbÞvaÞ; ð200Þ

where σ is the conductivity of the fluid and is permitted to
be an arbitrary function of the evolved variables besides the
charge density q.

4. Hydrodynamical equations

To obtain the evolution equations for p, va, and ε, we
take the conservation of the number of particles and the
conservation of energy momentum,

∇aðρ0uaÞ ¼ 0; ð201Þ

∇aðTabÞ ¼ 0; ð202Þ

and proceed with the 3þ 1 split. After combining the
equations, using the Maxwell equations and introducing the
speed of sound, we arrive at the evolution equation for
the pressure,

Lnp ¼ ðc2s − 1ÞvpW2
csDpp − c2sρ0hW2

csγ
pcDpvc

− c2ðEbvbÞγpcDpEc − c2ðBbvbÞγpcDpBc

þ ðc1Ep − c2ϵbdpBbvdÞDpψ

þ ðc1Bp þ c2ϵbdpEbvdÞDpϕþ SðpÞ; ð203Þ

for the fluid velocity,

γbaLnvb ¼ −
1

W2ρ0h
ðγpa þ ðc2s − 1ÞW2

csv
pvaÞDppþ

�
c2sW2

cs

W2
vaγpc − vpγca

�
Dpvc

þ 1

W2ρ0h
ðEa þ c2ðEbvbÞvaÞγpcDpEc þ

1

W2ρ0h
ðBa þ c2ðBbvbÞvaÞγpcDpBc

þ 1

W2ρ0h
ðγad þ c2vavdÞϵbdpBbDpψ −

1

W2ρ0h
ðγad þ c2vavdÞϵbdpEbDpϕ

− c5vaEpDpψ − c5vaBpDpϕþ SðvÞ; ð204Þ

and for the internal specific energy,

Lnε ¼
pW2

cs

W2ρ20h
vpDpp −

pW2
cs

ρ0
γpcDpvc − vpDpε

− c4ðEbvbÞγpcDpEc − c4ðBbvbÞγpcDpBc

þ ðc3Ep − c4ϵbdpBbvdÞDpψ

þ ðc3Bp þ c4ϵbdpEbvdÞDpϕþ SðεÞ; ð205Þ

with sources

SðpÞ ¼ c1ðEbJbÞ þ c2ϵbcdBbJcvd

þW2
csc

2
sρ0hðg−1ÞbcKbc;

SðvÞ ¼ 1

W2ρ0h
ðγad þ c2vavdÞϵbdeBbJe

− c5ðEdJdÞva −
1

α
ðg−1Þca Dcα

− c2s
W2

cs

W2
ðg−1ÞbcKbcva − Kbcvbvcva;

SðεÞ ¼ c3ðEbJbÞ þ c4ϵbcdBbJcvd

þW2
csp

ρ0
ðg−1ÞbcKbc; ð206Þ

where we have employed the shorthands,

c1 ¼
W2

cs

W2ρ0
ðκW2 þ c2sðW2 − 1Þρ0Þ;

c2 ¼ W2
cs

�
κ

ρ0
þ c2s

�
;

c3 ¼
W2

cs

W2ρ20h
ðpðW2 − 1Þ þ ðχ − χW2 þ hW2Þρ0Þ;

c4 ¼
W2

cs

W2ρ20h
ðpW2 þ ðχ − χW2 þ hW2Þρ0Þ;

c5 ¼
W2

cs

W2ρ20h
ðκ þ ρ0Þ: ð207Þ

The system of Eqs. (203), (204), (205), (189), (190), (191),
(192), and (195) is identical to the system of evolution
equations in Ref. [53], as was explicitly checked up to
source terms.

B. Analysis with evolution of q

In this subsection, we want to analyze the characteristic
structure of equations used in Refs. [45–49]. As always, we
2þ 1 decompose the equations, this time using an arbitrary
unit spatial 1-form sa, sasa ¼ 1; sana ¼ 0 and denote the
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orthogonal projector by q⊥b
a ≔ γba − sbsa. Taking the

state vector to be U ¼ ðp; va; ε; q; Ea; Ba;ψ ;ϕÞT , we write
Eqs. (203), (204), (205), (195), (189), (190), (191), and
(192) for the 14 components of U in matrix form:

AnLnU ¼ ApDpUþ S: ð208Þ

The form of the matrices is easily obtained from the system
of equations and so is not explicitly given. A simple 2þ 1
decomposition of this equation yields the principal symbol
in the form

Ps ¼ As ¼
�
A6×6 B6×8

08×6 C8×8

�
; ð209Þ

where B6×8 contains the coefficients of spatial derivatives
with respect to the variables ðEa; Ba;ψ ;ϕÞ in the time
evolution of ðp; va; ε; qÞ. The matrix C8×8 is the submatrix
of the electromagnetic variables ðEa; Ba;ψ ;ϕÞ. The matrix
A6×6 can be written as

A6×6 ¼
�
A5×5 05×1
A1×5 −vs

�
; ð210Þ

with A5×5 ¼ Ps
HD the principal symbol of the pure hydro-

dynamical sector, explicitly given by (A3) and

A1×5 ¼
�
− ∂Js

∂p −sc ∂Js
∂vc −q⊥B

A
∂Js
∂vA − ∂Js

∂ε
	
: ð211Þ

Since the principal symbol (209) is block triangular, the
eigenvalues are given by those of A6×6 and C8×8, these are

A6×6∶ λ ¼ −vs; ðmultiplicity 4Þ;
λ ¼ λð�Þ; ½see ðA4Þ�; ð212Þ

C8×8∶ λ ¼ �1; ðmultiplicity 4Þ: ð213Þ

Continuing the characteristic analysis, it can be shown that
only 13 eigenvectors exist. The eigenspace of the eigen-
value λ ¼ −vs, with algebraic multiplicity 4, has only
geometric multiplicity 3. For example, the linearly inde-
pendent right eigenvectors can be chosen as0

BBBBBBBBB@

0

0

0B

1

0

08×1

1
CCCCCCCCCA
;

0
BBBBBBBBB@

0

0

0B

0

1

08×1

1
CCCCCCCCCA
;

0
BBBBBBBBB@

0

0

ðsÞϵBCq⊥C
A
∂Js
∂vA

0

0

08×1

1
CCCCCCCCCA
; ð214Þ

where we defined the antisymmetric lowercase two-Levi-
Cività tensor for sa as ðsÞϵAB ¼ ncsdq⊥A

aq⊥B
bϵ

cdab. This

result is contrary to an earlier analysis presented in
Ref. [55]. The earlier analysis is erroneous since the three
vectors called rλH0

corresponding to λ ¼ −vs are not
eigenvectors. The explicit error is that the ninth component
of these vectors may not be zero, since they produce cross-
terms with the AqH (corresponding to our A1×5 part of the
principal symbol). To substantiate our result, we performed
a Jordan decomposition of the principal symbol (209). The
Jordan normal form J½Ps� of (209) can be written as

J½Ps� ¼ diagðλðþÞ; λð−Þ; Jvs ;−12vs;−14; 14Þ; ð215Þ

with

Jvs ¼
�−vs 1

0 −vs

�
; ð216Þ

and confirms that Ps is not diagonalizable. Therefore, the
system of equations is weakly hyperbolic and has an ill-
posed IVP.
It should be mentioned that for the special subcase

J̃a ≡ 0 the system is strongly hyperbolic. More generally, if
J̃a does not depend on vb (more precisely, if ∂Js

∂vA vanishes
identically), then the system is strongly hyperbolic. For the
current in Eq. (200), these two cases coincide.

C. Analysis without evolution of q

Next, we consider the system but suppress the q variable.
This analysis is for the system of equations used in
Refs. [50–53]. We set ψ to zero, the set of equations
reduces to 12 evolution equations (203), (204), (205),
(189), (190), and (192) for the components of the state
vector U ¼ ðp; va; ε; Ea; Ba;ϕÞT, and Eq. (191) becomes
the standard Gauss constraint DaEa ¼ q. This equation is
not a constraint in the PDE sense; it is now rather the
definition used to obtain q.
Since now we do not evolve q by the conservation of

charge equation (195), we have to replace all q’s by DaEa.
Therefore, in Eqs. (203), (204), (205), and (189), we
replace Ja by use of Eq. (199) with

Ja ¼ vaγpcDpEc þ J̃a; ð217Þ

where the first term will contribute to the principal symbol.
Writing the system of equations in matrix form and

decomposing against sa, sasa ¼ 1, and q⊥b
a, we obtain

AnLnU ¼ ApDpUþ S; ð218Þ

with the principal symbol

Ps ¼ As ¼
�
A5×5 B5×7

07×5 C7×7

�
: ð219Þ
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Again, B5×7 contains the coefficients of spatial derivatives
with respect to the variables ðEa; Ba;ϕÞ in the time
evolution of ðp; va; εÞ, and A5×5 ¼ Ps

HD is the principal
symbol of the pure hydrodynamical sector, explicitly given
in (A3). The matrix C7×7 is the submatrix of the electro-
magnetic variables ðEa; Ba;ϕÞ, explicitly given by

C7×7 ¼

0
BBBBBBBBBB@

−vs 0 0 0 0 0 0

−vq1 0 0 0 0 −1 0

−vq2 0 0 0 1 0 0

0 0 0 0 0 0 −1
0 0 1 0 0 0 0

0 −1 0 0 0 0 0

0 0 0 −1 0 0 0

1
CCCCCCCCCCA
: ð220Þ

The 12 eigenvalues of (219) are given by the ones of
A5×5 and C7×7; these are

A5×5∶ λ ¼ −vs; ðmultiplicity 3Þ;
λ ¼ λð�Þ; ½see ðA4Þ�; ð221Þ

C7×7∶ λ ¼ �1; ðmultiplicity 3Þ;
λ ¼ −vs; ðmultiplicity 1Þ: ð222Þ

As in the previous case, the eigenspace of the eigenvalue
λ ¼ −vs with algebraic multiplicity 4 has only geometric
multiplicity 3. A set of right eigenvectors is0

B@ 02×1
1

09×1

1
CA;

0
B@ 03×1

1

08×1

1
CA;

0
B@ 04×1

1

07×1

1
CA: ð223Þ

The Jordan normal form J½Ps� of (219) is given by

J½Ps� ¼ diagðλðþÞ; λð−Þ;−12vs; Jvs ;−13; 13Þ; ð224Þ

with

Jvs ¼
�−vs 1

0 −vs

�
: ð225Þ

Therefore, the system of equations is also only weakly
hyperbolic when the charge density variableq is not evolved.
The result also holds for ϕ ¼ 0, so that equation (192)
reduces to the usual constraint DaBa ¼ 0, and we evolve
the 11 variables ðp; va; ε; Ea; BaÞ. In this case, a pair of
eigenvalues λ ¼ �1 changes to the single eigenvalue λ ¼ 0.
For the special subcase J̃a ≡ 0, the system is strongly

hyperbolic. This happens because in that case q is alge-
braically related to the rest mass density ρ0 and may thus be
seen as a source term. Then, the algebraic multiplicity of
λ ¼ −vs changes to 3, and a complete set of eigenvectors

can be found. From the physical point of view, the
relevance of this model to compact binaries is, however,
unclear to us. Note that we have not considered in this
section general formulations of RGRMHD and that our
calculations apply only to those formulations implemented.
It is possible that these systems can be cured by a carefully
chosen constraint addition.
A final comment is reserved for the special case of charged

dust. In this model, p ¼ ε ¼ 0, and the charge density is
proportional to the mass density with constant of proportion-
ality equal to the specific charge. The system of equations for
variables ðρ0; vi; Ei; BiÞ decouples into two parts: first, the
evolution equations for ðρ0; viÞ, which were already found to
be weakly hyperbolic in Sec. III B, and second the electro-
magnetic equations, which can be given in a symmetric
hyperbolic form; seeRef. [37]. Thewhole system is thus only
weakly hyperbolic. In Ref. [56], it is shown that a different
formulation of charged dust using ðvi; Ei; BiÞ as variables is
strongly hyperbolic. In the authors’ system, ρ0 is obtained by
the Gauss constraint equation relating the divergence of the
electric field with the charge density. Under this treatment,
however, the minimal coupling condition with the gravita-
tional field equations, see Eq. (7), breaks. Therefore, away
from the Cowling approximation, the full coupled system
must be considered fresh.

VI. CONCLUSION

Motivated by applications in numerical relativity, and in
particular by the wish for the computation of accurate
gravitational waveforms in compact binary spacetimes, we
have revisited hyperbolicity of several popular relativistic
fluid models. Our main technical achievement has been to
bring about the DF formalism [9,10] to these matter models
in a systematic way. This allowed us to arrive at a tractable
form of even GRMHD, which is notorious for its compli-
cated characteristic structure. The key idea was to use a
Lagrangian frame in the analysis. In this frame, the principal
symbol takes the simplest possible form and can be easily
analyzed. Afterward, we could translate the results into the
desired frame using the developed formalism.
Along the way, we arrived at several disconcerting

results. That a commonly used formulation of GRMHD,
plus those of RGRMHD, is only weakly hyperbolic is
clearly a huge shortcoming that must be overcome if we are
ever to obtain numerical results with meaningful error
estimates for binary systems involving magnetic fields. One
might wonder why the problem has not been discovered
earlier on the basis of numerical work. The effect of ill-
posedness on the errors in approximation is a subtle issue,
however, and without very careful convergence testing can
be easily overlooked, particularly when considering very
complicated data. One aspect of this is that canonical test
beds often focus on one-dimensional tests, which would
not be suitable for identifying the issue identified for
GRMHD. That said, it is important to realize that, although
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we are motivated by numerical applications, the analysis
presented here is for the continuum PDE system. Thus, no
numerical method, no matter how sophisticated, can
circumvent our results, and therefore the equations do
have to be altered. An obvious step in this direction would
be to use our prototype algebraic constraint free formu-
lation of GRMHD, which is at least strongly hyperbolic.
This formulation cannot be written in flux-balance law
form, but it fails only by the addition of constraint terms, so
there is reason to be optimistic that existing codes can be
easily modified to overcome this worst possible problem of
ill-posedness of the IVP. There is hope that formulations
using the four-potential, or those with divergence cleaning,
are strongly hyperbolic. Thus, another possibility would be
to affirm this and, if so, move wholesale to such systems.
For RGRMHD, more work is needed.
We started the paper by stressing the well-known fact that

the stellar surface is also a terrible problem in numerical
relativity. Even in the case ofGRHD,which does not have the
same problems as flux-balance law GRMHD, the formally
singular nature of the surface prevents clean convergence in
simulations of even the most simple spacetimes. We expect
that before this problem can be solved a much deeper
understanding of the underlying initial free boundary value
problemwill be needed. So far, nothing in our treatment does
anything whatsoever to alleviate this. We do think, however,
that by carefully choosing the complete uppercase frame it
may be possible to make progress by building on the present
work. Sadly, this remains a distant goal.
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APPENDIX: GRHD USING THE
BOOST VECTOR

It holds that

γbaLnv̂b ¼ Wgb
aLnvb þ v̂aKcdv̂cv̂d: ðA1Þ

Using the state vector U ¼ ðp; va; εÞ and an arbitrary unit
spatial 1-form sa with sasa ¼ 1; sana ¼ 0, and denoting the
orthogonal projector by q⊥b

a ≔ γba − sbsa, the system of
equations reads

ðLnUÞs;A ≃ PsðDsUÞs;B; ðA2Þ

and the principal symbol Ps is given by0
BBBBBBBB@

W2
csðc2s−1Þvs −W2
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cs

W2ρ0h
vsvA

c2sW2
cs

W2 vA −vsq⊥B
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; ðA3Þ

with eigenvalues for material and acoustic waves

λð0;1;2Þ ¼ −vs;

λð�Þ ¼ −
1

1 − c2sv2

�
ð1 − c2sÞvs

� cs
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c2sv2Þ − ð1 − c2sÞðvsÞ2

q �
; ðA4Þ

respectively. They coincide with the literature [7]. The
corresponding left eigenvectors are given by�

− p
c2sρ20h

0 0A 1
	
;�

1
W2ρ0h

vC vsvC ð1 − ðvsÞ2Þq⊥A
C 0
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�
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csρ0hW

1 0A 0

	
: ðA5Þ

For the same variables and order, the right eigenvectors are0
BBB@

0

0

0B

1

1
CCCA;

0
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q⊥C
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0

1
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and0
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1
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in agreement with the ones given in Ref. [7] up to the
chosen set of variables and the spatial vector sa. The
characteristic variables corresponding to the speeds
fλð0;1;2Þ; λð�Þg are given by

Û0 ¼ δε −
p

c2sρ20h
δp;

ÛA ¼ ðδvÞA þ vsðvAðδvÞs − vsðδvÞAÞ þ
1

ρ0hW2
v̂Aδp;

Û� ¼ ðδvÞs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c2sv2Þ − ð1 − c2sÞðvsÞ2

p
csρ0hW

δp: ðA8Þ
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