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LISA Pathfinder (LPF) was a European Space Agency mission with the aim to test key technologies for
future space-borne gravitational-wave observatories like LISA. The main scientific goal of LPF was to
demonstrate measurements of differential acceleration between free-falling test masses at the sub-femto-g
level, and to understand the residual acceleration in terms of a physical model of stray forces, and
displacement readout noise. A key step toward reaching the LPF goals was the correct calibration of the
dynamics of LPF, which was a three-body system composed by two test-masses enclosed in a single
spacecraft, and subject to control laws for system stability. In this work, we report on the calibration
procedures adopted to calculate the residual differential stray force per unit mass acting on the two
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test-masses in their nominal positions. The physical parameters of the adopted dynamical model are
presented, together with their role on LPF performance. The analysis and results of these experiments show
that the dynamics of the system was accurately modeled and the dynamical parameters were stationary
throughout the mission. Finally, the impact and importance of calibrating system dynamics for future
space-based gravitational wave observatories is discussed.

DOI: 10.1103/PhysRevD.97.122002

I. INTRODUCTION

The LISA Pathfinder satellite [1,2] (LPF) was a technol-
ogy demonstrator for future space-borneGravitationalWave
(GW) observatories, such as LISA [3]. It aimed to measure
the relative displacement ΔxðtÞ between two freely falling
test masses using heterodyne laser interferometry, and to
demonstrate that the fluctuations of the differential stray
force per unit mass, ΔgðtÞ, acting on the two TMs in their
nominal positions were below 30 fm s−2=

ffiffiffiffiffiffi
Hz

p
in the milli-

hertz frequency band. Such a level of residual acceleration
would allow LISA to detect and distinguish the GW signals
originating from sources in the 0.1 mHz to 100 mHz band
[3]. The main objective of the LPFmission was not to detect
GW but rather to test key technologies for LISA, and to
measure, model, and eventually subtract the main contri-
butions to ΔgðtÞ.
The LPF satellite was launched on the 3rd of December,

2015 to the L1 Lagrange point, with its science operations
starting on March 1st, 2016. During its first four month of
science operations, called nominal phase, it showed an
unprecedented performance of differential acceleration
noise, reaching amplitude spectral density (ASD) levels
of S1=2Δg ≃ 5.57� 0.04 fm s−2=

ffiffiffiffiffiffi
Hz

p
between 1 and 10 mHz

[4], well below the primary goal of the mission. Nominal
operations ended on June 25th, 2016, when the NASA
experiments on the spacecraft commenced operations. In
this second phase, guided by NASA scientists, a set of
colloidal thrusters, instead of the cold gas thrusters used
during the nominal phase, were used to control the space-
craft and several experiments were performed in order to
characterize the behaviour of those new thrusters. On the
7th of December 2016 NASA operations finished, and an
LPF mission extension phase started, demonstrating an
even better differential acceleration noise performance
reaching S1=2Δg ≃ 1.74� 0.05 fm s−2=

ffiffiffiffiffiffi
Hz

p
above 2 mHz

and S1=2Δg ≃ ð6� 1Þ × 10 fm s−2=
ffiffiffiffiffiffi
Hz

p
at 20 μHz [5]. The

extension phase ran until the 18th of July 2017 when the
satellite was finally passivated.
Accurate identification and calibration of the system

dynamics of LPF were vital to the understanding and
optimization of the measurement of ΔgðtÞ. Indeed, the LPF
satellite requires control loops to keep operating in a stable
configuration and for this on-purpose forces are constantly
applied on one TM and the spacecraft. The consequent
forces per unit mass perturb the geodesic motion of the

TMs. Furthermore, the local gradient fields surrounding the
TMs, generate forces per unit mass by means of their
coupling to the TMs displacement, which again perturb the
geodesic motion of the TMs. All those effects can be
estimated and subtracted. For this purpose, during the
mission, a series of experiments to estimate the dynamical
free parameters of LPF were designed and performed on
board. They consisted of injections of high signal-to-noise-
ratio calibration modulations of the dynamical control set-
points, in order to excite the relative motion of the test
masses and spacecraft. While their design aimed to
characterize the dynamical environment of the LPF, their
secondary purpose was to investigate the stability and
stationarity of the controllers and actuators.
A further correction of theΔg datawas required for effects

of the noninertial platform at very low frequencies.
Measurements ofΔxðtÞ are performedwith an optical bench
attached to the spacecraft frame, whose rotational motion
introduces fictitious forces, both due to misalignments and
to the centrifugal force, most relevantly at frequencies
around 0.1 mHz. Correction for these effects substantially
improved the noise performance of the instrument.
In this work, we report on the procedure andmethodology

that were followed in order to derive theΔgðtÞ quantity, and
we discuss the impact of this measurement to the case of a
grand-scale observatory such as LISA. Section II describes
the dynamics of the system and introduces all the possible
dynamical sources of force noise that contribute to the
overall ΔgðtÞ noise budget. In Sec. III the system identi-
fication experiments performed on-board the satellite are
described, and the data analysis methodology is explained.
Wepresent two approaches; First,we overview the computa-
tionally cheap method we utilized during operations, in
order to get a first reliable estimation of the dynamics of the
system. Second, we report on the technique employed to
perform a global fit on the complete data set of the system
identification experiments performed during the mission. In
this case, we define a model of the forces gradient inside the
satellite, which depends on the various configurations of the
instrument. This approach aims to estimate the background
components of that gradient which can not be modelled and
parametrized. The experiments reported here are those
performed along the sensitive x-axis joining the two test
masses, the only one relevant for the requirements ofΔgðtÞ.
Section IV introduces and explains the complementary and
independent low frequency calibration of ΔgðtÞ, related to
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the appearance of inertial forces in the rotating frame of
LPF. Section V presents the main results of all performed
calibrations, and finally, Sec. VI discusses the findings of
this analysis, together with their impact on future space-
borne gravitational wave observatories. All the analysis
presented in this work, has been performed using the
dedicated data analysis toolbox, LTPDA [6].

II. LPF DYNAMICS

The main instrument on-board LPF, the LISA
Technology Package [7,8], comprises two cubic test-
masses and their enclosures, and the optical metrology
system (OMS) [9–12]. The test-masses and their surround-
ings form the gravitational reference sensor (GRS), which
consists of the vacuum enclosure and the electrode housing
[13]. For each test-mass, the electrode housing serves both
as a capacitive position sensor in all 6 degrees-of-freedom,
and as an electrostatic force actuator. The OMS is respon-
sible for the sensitive scientific measurement of the mis-
sion. It measures Δx½t�≡ x2½t� − x1½t�, the differential
displacement between the two test-masses along the joining
x-axis, via means of heterodyne laser interferometry (see
Fig. 1 for details). The OMS also uses differential wave-
front sensing to measure the differential angles between the
two test masses Δη½t�≡ η2½t� − η1½t� and Δϕ½t�≡ ϕ2½t�−
ϕ1½t�. The OMS has a second interferometer which mea-
sures x1, the position of TM1 relative to the spacecraft
frame, η1 and ϕ1 the angles of the first test-mass relative to
the spacecraft. During the nominal and extension phase of
operations the controllers operated the satellite in a specific
drag-free scheme: driven by the error signal of the x1

interferometer, the spacecraft was commanded via the so-
called drag-free control loop to follow the first test-mass
(or henceforth TM1) by applying forces with its μ-Newton
thrusters. At the same time, the second test-mass (TM2)
was electrostatically controlled via the so called suspension
loop to follow TM1 by keeping their distance fixed with a
soft suspension of unity gain bandwidth near 1 mHz.
In this work, we define as calibration the determination

of the purely dynamical parameters of the three body
system, together with the instrumental parameters, mainly
the gain coefficients of the capacitive actuators. We con-
sider the OMS readout, Δx½t�, as our reference for the
calibration. Considering the above, the equations of motion
of the TMs and spacecraft allow the differential acceler-
ation, Δgx, to be calculated as [4]

Δgx½t�≡ Δẍ½t� − gc½t� þ ω2
2Δx½t� þ Δω2

12x1½t�: ð1Þ

We introduce the term Δgx½t� to distinguish it from the
differential acceleration corrected also for the inertial
forces, which we call Δg½t�, which is the final calibrated
product (see below). The ð _Þ operator denotes the numerical
time derivative, and gc½t� is the commanded force per unit
mass acting on TM1 and TM2 respectively. It can be
described as

gc½t� ¼ λ2
Fx2

mTM2

½t − τ2� − λ1
Fx1

mTM1

½t − τ1�

¼ λ2fx2 ½t − τ2� − λ1fx1 ½t − τ1� ð2Þ

where λ1 and λ2 are the gain coefficients of the electrostatic
commanded force on TM1 and TM2, mTM1

¼ mTM2
¼

1.928� 0.001 kg is the mass of each TM, fx1 and fx2
are the electrostatically applied forces Fx1 and Fx2 per unit
mass, and τ1 and τ2 the relative delay coefficients between
the OMS and each of the GRS actuators. Different time
delays between the various data processing units on-board
are expected, but in the dynamical model of the system it is
the total relative delay between the two main read-out
subsystems that is relevant. In the drag-free scheme, Fx1 is
nominally equal to zero, because no electrostatic forces are
applied on TM1, the inertial reference along x.
In the environment of the spacecraft, a nonzero force

gradient is present on both test masses. These force
gradients can be attributed mainly to gravity, electrostatic,
and magnetic effects [14]. These gradients, or stiffnesses,
produce forces acting on the TMs in the presence of any
relative motion, and enter Eq. (1) through the ω2

j terms. ω2
2

is the stiffness of TM2 and Δω2
12 ¼ ω2

2 − ω2
1 is the differ-

ential stiffness which couples the spacecraft motion to the
differential acceleration.
Equation (1) describes a perfectly aligned system, where

the satellite is an inertial frame. However, these approx-
imations were proved to be insufficient for the case of LPF.

FIG. 1. A sketch of LPF emphasising the sensitive x-axis
measurements. The two test-masses surrounded by the electrodes
of their respective GRS, and separated by the optical bench, are
shown inside the spacecraft. The x1½t� interferometer read-out is
used to control the spacecraft to follow TM1 via the drag-free
control loop and by applying forces with the μ-Newton thrusters,
and the electrodes are driven by the electrostatic suspension
control loop to force TM2 to follow TM1.
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First of all, the unavoidable misalignment between the
TMs, the GRS and the spacecraft, generates cross-coupling
effects that introduce cross talk signals in the main
measurements. The main effect of these offsets is to couple
spacecraft acceleration motion into the interferometer out-
put, generating a “bump” in the higher frequency part of the
Δg spectrum around 20 to 100 mHz [4]. In [4] we have
subtracted this contribution by fitting a simple model which
is a linear combination of the readouts of the GRS and
differential wavefront sensing. This model depends on the
various geometrical configurations of the instrument and
can be written as

δgSC½t� ¼ b1
̈ϕ̄½t� þ b2 ̈η̄½t� þ b3 ̈ȳ½t�

þ b4 ̈z̄½t� þ b5ȳ½t� þ b6z̄½t�: ð3Þ

where the ð ¯Þ denotes the mean displacement or rotation of
both test-masses along the given coordinate ∈ fϕ; η; y; zg.
While this model performs quite well, it does not provide
a solid physical interpretation of the various underlying
cross-coupling effects, and therefore a more detailed
study is necessary in order to better understand the data
[15]. It is worth noting that this signal leakage into the
sensitive differential measurement was only visible because
of the much better than expected performance of the
interferometers [4].
Second, LPF is a rotating reference frame, and its rotation

introduces inertial forces with components along the sensi-
tive x-axis. We call the contribution of inertial forces on the
differential acceleration, grot. This term includes the con-
tribution from the centrifugal forces, gΩ, due to spacecraft
angular velocityΩwith respect to the J2000 reference frame,
and the contribution due to theEuler forces, g _Ω, coming from
a non zero spacecraft rotational acceleration, _Ω. The
centrifugal term is always present when the angular velocity

of the spacecraft is different from zero. On the contrary, the
Euler forces appear only because of a geometrical offset of
the TMs position with respect to their housing along y and z
axes. It soon became very clear during operations that these
effects needed to be taken into account in the calculation of
Δg, which from Eq. (1) can now be written as

Δg½t�≡ Δgx½t� þ δgSC½t� þ grot½t�: ð4Þ

III. SYSTEM IDENTIFICATION AND
PARAMETER ESTIMATION

In order to calibrate the dynamics of LPF described in the
previous section, the so-called system identification experi-
ments [16–18] were regularly performed during the mis-
sion. Repeated experiments were necessary both to
measure the long term stability of the system, and also
because different working configurations of the system
and/or potentially different environmental conditions could
yield different calibration parameters. These experiments
consisted of sequences of sinusoidal signal injections to
various working points. For the large majority of the cases,
we injected sinusoidal modulations into the sensitive x-axis
at frequencies between 1 and 50 mHz and amplitudes
varying between 0.7 and 10 nm to the drag-free and
suspension loops. The idea behind the design of the experi-
ments is to inject fake interferometric readouts, and let the
system react to this apparent motion of the test-masses and
spacecraft. In this way we excite the dynamics of the system
by effectively modulating the control position set-point, and
induce high signal-to-noise ratio (SNR) for each of the
dynamical parameters to be estimated. Different injection
frequencies were used to break the degeneracies between
force and readout effects, while at the same time, the
amplitudes of these injections were small enough to avoid
the excitation of nonlinearities of the system. The effect of
the guidance injections into Δx and x1 are shown in Fig. 2.

(a) (b)

FIG. 2. Sequences of injections during the system identification experiment. Left: Injection of sinusoidal signals (red) into the drag-
free loop. The response of the system, as recorded by the x1 interferometer, is shown in light blue. Right: The same philosophy applies to
the suspension loop. The measurement of the Δx interferometer is again shown in light blue.
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During the course of themission, different variations of the
same experiments were defined and run on-board the
satellite. This happened for two main reasons. The a poste-
riori knowledge of the lower than required levels of
the acceleration noise, allowed us to inject signals with
lower amplitudes, while maintaining a sufficient SNR for the
measurement of systemparameters. Second, different flavors
of the same principle of experiment were performed in order
to either target specific dynamical parameters, or to inves-
tigate the stability of the hardware. Considering the complete
set of calibration experiments, the injected frequency sweep
in each channel ranged from 0.83 up to 53.3 mHz, while the
maximum amplitude was always kept ≤1 μm. The total
duration of the nominal injections was 6 hours, while in
special cases when investigating the system stability, we
injected single frequency and very low amplitude calibration
tones into the suspension control loop that lasted ≃65 hours.

A. Fitting techniques/methodology

The nature of the experiments, and the LPF mission in
general, restricted the available analysis time during oper-
ations. The analysis team on duty had to fully analyse the
data-sets within the time-span of two days, in order to
retrieve the dynamical parameters and calibrate the Δg½t�
quantity. For that reason we adopted a fast and computa-
tionally light technique for the day-to-day analysis. First,
we can combine Eqs. (1) and (2) to rewrite them as

Δgx½t�≡ Δẍ½t� þ λ1fx1 ½t� − λ2fx2 ½t� − C1
_fx1 ½t�

þ C2
_fx2 ½t� þ ω2

2Δx½t� þ Δω2
12x1½t�; ð5Þ

where we have omitted the cross-coupling terms, and the
inertial forces contributions gΩ½t�. Eq. (5) is a linearized
form of the dynamics, where the Cj parameter corresponds
to the linearized delay coefficient multiplying the numerical

first time derivative of the applied force per unit mass,
_fxj ½t�. The Cj coefficients are equal to Cj ¼ τjλj if we
approximate the calculated applied forces as

λjfxj ½t − τj� ¼ λjðfxj ½t� − τj _fxj ½t�Þ: ð6Þ
Nominally, and for the majority of experiments performed,
therewere no commanded forces applied on TM1. But it was
necessary to included it in Eq. (5), because it was found that
fx1 ½t� was nonzero and non-negligible compared to the
intrinsic noise level. The effective commanded force onTM1

was due to imperfect digitization of the actuationwaveforms
used to apply a TM1 torque [19]. Thus, two more free
parameters had to be considered, the gain calibration
coefficient λ1, and its corresponding C1 delay coefficient.
The model described above opens the possibility of

adopting a suitable analysis scheme for operations, an
iterative reweighted least squares (IRLS) algorithm [20],
where the problem reduces to solving a set of linear equations
at each iteration. If we first identify the residuals from Eq. (5)
as rðθ⃗Þ≡ ΔgðtÞ, then the IRLS procedure, at the nth
iteration, can be written as

χ2n ¼ Ns

X
j∈Q

jr̃jðθ⃗nÞj
jr̃jðθ⃗n−1Þj

: ð7Þ

Here, r̃ represents the residuals in the frequency domain at
each frequency bin j, θ⃗ the given parameter set to be
estimated, and Ns the number of data stretches used to
perform the averaging for the computation of the power
spectral density (PSD) of the signals. For each of the
experiments this technique yielded a good quality of fit,
with the calculated residuals being compatiblewith the noise
measurements (see Fig. 3 and Sec. V).

(a) (b)

FIG. 3. Left: The spectra of the calculated residuals (in red) of the fit, compare to the induced signal in Δẍ½t� (in light blue), and an
acceleration noise measurement (in grey) performed the day prior the experiment. The particular data-set originates in the early stages of
the mission, around the 16th of April 2016. It is evident that the fit quality is good, since the residual levels match the spectrum of the
noise. Right: The comparison of time series of the signal induced in Δẍ½t� with the calculated residuals after fitting the data. In the
embedded figure, the comparison between the noise (grey) and the residuals (red) time series is shown. The time series have all been
low-pass filtered to aid comparison.
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B. Analysis of the complete data set of system
identification experiments

The system parameters of the gain actuation λj and the
delay coefficient Cj from Eq. (1) for each TM can be
considered as constants for the duration of the mission. This
assumption was based on the stationarity of the instrument,
and it was proven to be true a posteriori, from the results of
the calibration experiments (see Secs. III A and V).
The dynamical parameters of the stiffnesses ω2

j however,
depended mostly on the actuation configuration and the
gravitational balance of the instrument. If the gravity
gradient of the satellite can be assumed constant, and we
can model the dependance of the stiffness on the electro-
static actuation, then in principle it is possible to adopt a
joint fitting scheme, where all the calibration experiments
can be analyzed together. This will allow us to accurately
estimate the background stiffness ω2

j;0, which is expected to
be dominated by gravitational effects [21] and by electro-
static stiffness from the 100 kHz capacitive sensing bias
[22]. Additional stiffness from TM electrostatic charge [22]
is negative and smaller than our experimental resolution,
calculated to range between 0 and −3 × 10−9 s−2 for the
�3 pC of TM charge present during science operations.
Likewise, gravitational stiffness variations from cold gas
fuel depletion [21] are calculated to be below 10−9 s−2 over
the course of the mission. For these reasons, we treat the
background stiffness as a constant in our analysis.
LPF operates in the so-called “constant stiffness” actua-

tion configuration by which the commanded force gc can be
applied within a range of force and torque authority (maxi-
mum force and torque applicable) while keeping the electro-
static stiffness value constant. This constant value depends
only on a linear combination of the force and torque
authority. A given relative fluctuation in an applied actuation
voltage on one electrode produces a force fluctuation that is
proportional to the magnitude of applied force from that
electrode. As such, a higher level of force and torque
authority corresponds to a higher force noise induced by
the actuation subsystem because of in-band amplitude
voltage fluctuations [2]. Throughout the mission, different
levels of force and torque authority were introduced. For
example, the so-called “nominal actuation configuration”
sets themaximumforce actingonTM1 along x toFmax;1 ¼ 0,
and on TM2 to Fmax;2 ¼ 2200 pN, while the maximum
applied torques along ϕ (around the z-axis) were set to
Nmax;1 ¼ Nmax;2 ¼ 10.4 pNm.This authority levelwas set at
the beginning of the science operations as a safe one, based
on the foreseen level of static gravity field that needed to be
compensated by electrostatic actuation. However, given the
level of gravitational balancing measured on board, which
was consistently below 50 pN throughout the entire science
phase of the mission [4,5], the authority level was gradually
reduced to reach the values of fFmax;1 ¼ 0;Fmax;2 ¼ 50 pN;
Nmax;1 ¼ 1.5 pNm;Nmax;2 ¼ 1 pNmg, reducing in turn the

actuation noise. Therefore, the electrostatic component of the
stiffness should depend on the constant stiffness actuation
configuration, and on the x and ϕ maximum actuation
authorities, but not on the time-variable applied force and
torque commands. Considering the above, a simplified
model for the stiffness can be defined as:

ω2
j;tot ¼ ω2

j;0 þ αxjFmax;j þ αϕj
Nmax;j: ð8Þ

The αxj coefficient couples to the x force authority to give x
stiffness component, and can be written as [23]

αxj ¼ −λ2V 1

mTMj

∂2C�
X∂x2

∂C�
X∂x
; ð9Þ

where C�
X ≡ CX þ CX;h represents the total X electrode

capacitance, the first contribution being the capacitance
from electrode to TM and the second capacitance from
the electrode to the grounded guard ring surfaces. λV
represents a nominal miscalibration factor of the nominal
applied voltages, calculated to be λV ¼ 1.066� 0.002 from
a known voltage reference mismatch in the actuation feed-
back circuitry. The αϕj

coefficient couples to the ϕ force
authority to give the stiffness along the x-axis, and should be
given by

αϕj
¼ −λ2V 1

mTMj

∂2C�
X∂x2 − 4

�
∂C�

X∂x

�
2

Ctot

∂C�
X∂ϕ

: ð10Þ

The expected values for the αxj and αϕj
coefficients

were calculated from Eqs. (9) and (10) to be around
−320 kg−1m−1 and −26500 kg−1 m−2 respectively [23].
The above simplified and global model of the stiffnesses

of the systemwould, in principle, allow for a joint-fit analysis
of the complete data set of all system identification experi-
ments performed over the entire duration of the mission.
Thus, the background stiffness ω2

j;0, which includes all the
effects other than the electrostatic ones, can be considered as
a free parameter, with a common value for all the experi-
ments from the beginning to the end of the mission.
At the same time, the parameters depending on the

geometrical orientation of the three bodies of the system
need to be taken into account. One such parameter is the
δifo which describes the signal leakage from the x1½t�
measurement to Δx½t�. Although this effect is classified
as a read-out cross-coupling and not as a dynamical
parameter, it is necessary to include it in the fit in order
to subtract all the signal induced, and perform goodness-of-
fit tests to the resulting residuals. It is worth to mention that
non-negligible correlation between the δifo and the bi
parameters appearing in Eq. (3) is expected. The effect
described from δifo is associated to the motion of the SC
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with respect to the optical bench, and this relation is
currently under study [15]. The δifo parameter could take
different values when the TMs are realigned, intentionally
or not. Such realignments can occur due to grabbing and
rereleasing the TMs after dropping to safe mode of
operation, or due to considerable changes of temperature
gradients inside the satellite environment. We then have
δifo ≡ δifo;k, where k refers to the different “geometrical
orientation epochs” of the three-body system. We can then
rewrite Eq. (5) in a very similar way as

Δgx½t�¼Δẍ½t�−λ2fx2 ½t�þλ1fx1 ½t�þω2
2;totΔx½t�þΔω2

totx1½t�
−C1

_fx1 ½t�þC2
_fx2 ½t�−δifo;kẍ1½t�: ð11Þ

where

Δω2
tot ¼ ω2

2;tot − ω2
1;tot

¼ ω2
2;0 þ αx2Fmax;2 þ αϕ2

Nmax;2

− ðω2
1;0 þ αx1Fmax;1 þ αϕ1

Nmax;1Þ: ð12Þ

In Eq. (11) we have assumed common λj, Cj, and ω2
j;0 for

all the experiments, while only the orientation depended
δifo;k varies through the mission duration. After comparing
the various events that caused rotation and displacement of
the TMs, we concluded that k ¼ f1; 2; 3; 4g, adding three
additional parameters to be estimated. It is worth mention-
ing that, in order to verify this procedure, we have repeated
the analysis described here for a smaller set of m experi-
ments, by assuming different λj;m and Cj;m coefficients,
which yielded very similar results.
In total, we averaged over 13 of the 22 available

experiments of this kind, over the ∼2 years duration of
the nominal and extension operations of the mission. We
chose to exclude from the fit the experiments that were too
short (<6 h) to be sensitive enough to the stiffness
parameters.
Finally, the time-dependencies of the levels of the noise

need to be considered. For example, the Brownian noise
contribution, visible at frequencies from 1 mHz to
∼30 mHz, was observed to decrease with time [4]. For
that reason, when forming the noise weighted inner product
between two real time series a and b [24]

ðajbÞ ¼ 2

Z
∞

0

df½ã�ðfÞb̃ðfÞ þ ãðfÞb̃�ðfÞ�=S̃nðfÞ; ð13Þ

that enters the Gaussian likelihood as

πðyjθ⃗Þ ¼ C × e−
1
2
ðrðθ⃗Þjrðθ⃗ÞÞ ¼ C × e−χ

2=2; ð14Þ

the power spectrum of the noise SnðfÞ needs to be
calculated from a noise measurement with the system in
the same configuration, and close in time, to the relevant

calibration experiment n. Considering all the above, since
the different experiments are independent, and without any
overlap, we can approach the parameter estimation part of
the analysis by assuming a joint likelihood scheme [25],
defined as

ΛtotðΘÞ ¼
XNexp

i

log ðπðyijθ⃗i;MiÞÞ; ð15Þ

where yi is the data-set of the i-th experiment, and θ⃗i ∈ Θ
the corresponding parameter set, withΘ being the complete
parameter set. The πðyijθ⃗i;MiÞ is the corresponding like-
lihood function for the given data set yi and modelMi. The
remaining caveat to consider is the possible nonstationar-
ities of the noise for each of the i experiments. Presence of
spurious data, such as glitches or noise bursts, could cause
biased estimation of the parameters. This is addressed if we
adopt a likelihood function with longer tails, to properly
account for the uncertainty of the noise model of each of the
experiments, such as in [26,27]. With the proper assump-
tions we can also utilize a marginalized likelihood formu-
lation where all the noise FFT coefficients are marginalized
out of the expression, like in [20]. Even if the data in most
cases were of high quality, without any outliers [4], we have
sampled the posterior distributions for all cases with
Markov Chain Monte Carlo algorithms [25], and found
that all implementations yielded consistent results within
the one-σ margin. With the estimated parameters (see
Table I, and Sec. V for details), we were able to subtract
all the signal power induced, yielding a satisfactory fit with
the residuals being compatible with the noise for all of the
experiments analysed. The contribution of each term
appearing in Eq. (11) is shown in Fig. 4, together with
the final calibrated Δgx½t� product.

TABLE I. Parameter estimation results for the joint fit scheme,
assuming common gain coefficients λj and background stiff-
nesses ω2

j;0 for each of the system calibration experiments
considered in the fit (see Sec. V for a detailed explanation).

Parameter Estimated� σ

λ1 1.0748� 0.0001
λ2 1.0776� 0.0001
ω2
1;0 (s−2) −ð3.99� 0.07Þ × 10−7

ω2
2;0 (s−2) −ð4.19� 0.04Þ × 10−7

C1 (s) 0.149� 0.004
C2 (s) 0.186� 0.004
αx1 (kg−1 m−1) −345� 9

αϕ1
(kg−1 m−2 × 103) −28.2� 0.9

αx2 (kg−1 m−1) −317� 6

αϕ2
(kg−1 m−2 × 103) −27.4� 0.8

δifo;1 ð−2.2� 0.2Þ × 10−5

δifo;2 ð−1.40� 0.06Þ × 10−5

δifo;3 ð−2.09� 0.06Þ × 10−5

δifo;4 ð1.91� 0.08Þ × 10−5
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IV. INERTIAL CORRECTION

During the LPF science operations, it was soon recog-
nized that S1=2Δgx , the ASD of Δgx½t� as calculated in the
previous section, exhibited a noise fluctuation below
0.5 mHz which exceeded the contribution from the
expected dominant actuation noise. In order to understand
the origin of this noise excess, it is important to point out
that the estimation of Δgx in Eq. (11) produces a time series
which reintroduces all the external forces acting on the TMs
at low frequencies that were suppressed by the action of the
electrostatic suspension loop. As already stated in Sec. II,
inertial forces due to the noisy rotation of the spacecraft act
on the TMs and the effect of these forces is expected to
appear below 0.5 mHz.
The appearance of the inertial forces is directly linked to

the fixed orbital attitude maintained by the spacecraft in
order to keep the solar panel pointing toward the Sun and the
communication antenna toward the Earth. The spacecraft
attitude is maintained at very low frequency by means of the
error signal of an autonomous star tracker (AST) which
tracks the movement of the spacecraft with respect to the
fixed stars in the camera field. This error signal indirectly
feeds, through the so called attitude control loop, the
μ-Newton thrusters that command the spacecraft to slowly
rotate with respect to the fixed stars. An instrumental read-
out noise of the AST could produce a noisy rotation of the
spacecraft, which in turn makes the inertial forces appearing
in the relative acceleration signal between the TMs, Δgx.

A. The inertial contribution to Δgx
In a rotating frame, three apparent force contributions on

a test body can arise: the centrifugal force, the force

associated to the Coriolis effect and the Euler force. In
the case of LPF the designed control scheme ensures that
when no excitation signals are being injected there is no
appreciable relative velocity between spacecraft and TMs.
For this reason the Coriolis effect does not significantly
affect the data. However, both centrifugal forces and Euler
forces appeared to contribute significantly to the very low
frequency ASD of the acceleration noise.
In the case of the LPF three-body system, the accel-

eration of one TM due to inertial forces and measured
by a rotating reference frame attached to the spacecraft is
given by

ẍ½t� ¼ ð _Ω⃗½t� × r⃗þ Ω⃗½t� × ðΩ⃗½t� × r⃗ÞÞ · x̂ ð16Þ

where Ω⃗ is the spacecraft angular velocity with respect to
J2000 reference frame and r⃗ is the position vector of one
TM with respect to the reference frame attached to LPF
with the origin in the center of the optical bench. For the
sake of clarity, from now on the time dependency of the
angular velocity and acceleration will not be shown
explicitly unless there is a strong need to show this
dependence. For each TM, the only contribution to Δgx
is that coming from the x̂ component of the acceleration as
in Eq. (16). Assuming the direction from the center of the
optical bench toward TM1 as the positive direction in the
chosen refence system, it is possible to write for TM1 and
TM2, respectively,

ẍ1½t�¼−ðΩ2
ϕþΩ2

ηÞx1þð− _ΩϕþΩηΩθÞy1þð _ΩηþΩϕΩθÞz1
ð17Þ

FIG. 4. Spectra of the breakdown of the differential acceleration noise between the two TMs. Starting from the raw measurement of
Δẍ½t� (blue), we calculate Δgx½t� (black) from Eq. (4) using the parameters from Table I. The data plotted here refer to a noise
measurement performed between 17/05/2017 and 23/05/2017, while the ASD was computed by assuming 35 data stretches overlapped
by 50%. The applied force on TM1 along x (green curve) is nominally zero, however for this particular run compensating voltages acting
on the electrodes around TM1, caused a non-zero x force. The cross-coupling contribution originating from the SC jitter is also shown
for comparison (grey). See text for details.
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ẍ2½t� ¼ −ðΩ2
ϕ þ Ω2

ηÞx2 þ ð− _Ωϕ þ ΩηΩθÞy2
þ ð _Ωη þΩϕΩθÞz2 ð18Þ

where fx1; y1; z1g and fx2; y2; z2g represent the coordi-
nates of TM1 and TM2 in the defined reference system, and
Ωϕ, Ωη and Ωθ are the angular velocities around the axes z,
y and x, respectively.
The contribution of the inertial forces to Δgx can be

written as the differential acceleration between the two TMs

grot½t� ¼ ẍ2 − ẍ1 ¼ −ðΩ2
ϕ þΩ2

ηÞðx2 − x1Þ
þ ð− _Ωϕ þΩηΩθÞðy2 − y1Þ
þ ðþ _Ωη þΩϕΩθÞðz2 − z1Þ: ð19Þ

In the case of perfect alignment and centering between
the axis joining the center of the twoTMs and the optical axis
of the interferometer, x2 − x1 is equal to 0.376 m,
that is the distance, d, between the two TMs, a known
quantity by design and on-groundmeasurements.Moreover,
y2 − y1 ¼ z2 − z1 ¼ 0 m. This would reduce the acceler-
ation noise contribution due to inertial forces to

grot½t� ¼ −ðΩ2
ϕ þΩ2

ηÞd ¼ gΩ½t�; ð20Þ

that is just the centrifugal contribution.
Any misalignment between the axis joining the two TMs

and the interferometric x-axis will still give x2 − x1 equal to
d, but we will now have y2 − y1 equal to δy and z2 − z1 to
δz, that is the relative offsets of the two TMs along y and z.
A new equation for the inertial forces contributing to Δgx
can be written as

grot½t� ¼ −ðΩ2
ϕ þΩ2

ηÞd − _Ωϕδyþ _Ωηδz

þΩηΩθδyþ ΩϕΩθδz ð21Þ

The terms of order Ω2 compose the centrifugal contribu-
tion, while those proportional to _Ω form the Euler force
contribution. The noise in the angular velocity, Ω, is
typically of the order of 10−7 rad s−1=

ffiffiffiffiffiffi
Hz

p
, while δy

and δz are expected to be of the order of 10−5–10−6 m.
Thus any misalignment of the TMs which multiplies
Ω2 can be neglected to the first order in Δg. However,
the terms coming from the Euler force, that is proportional
to the angular acceleration, which in turn can reach also
10−10 − 10−11 rad s−2=

ffiffiffiffiffiffi
Hz

p
, are not negligible to the first

order. This has been verified by on-board measurements.
The final calibrated Δg½t� in the band 0.1–20 mHz can be

calculated by subtracting from Eq. (11) the first order
expression for grot given by

grot½t� ¼ gΩ½t� þ g _Ω½t�
¼ −ðΩ2

ϕ½t� þΩ2
η½t�Þd − _Ωϕ½t�δyþ _Ωη½t�δz ð22Þ

B. The sub mHz Δgx calibration

As already stated in the previous subsection, the only
known quantity in Eq. (22) is d, the distance between the
two TMs. A measurement of the spacecraft angular velocity
Ω is available on-board LPF through the AST quaternions
time series. However, at sub-mHz frequencies the relative
measured angular velocity is too noisy. Any direct use of
this quantity to correct Δgx through Eq. (22), would make
the AST read-out noise dominate. Away to calculateΩ that
is not affected by AST noise is to combine different
measurements of the angular velocity for different fre-
quency bands. For instance, the sub-mHz fluctuating part of
the spacecraft angular velocity can be calculated using the
applied electrostatic torques on the TMs along ϕ, η and θ.
Along these degrees of freedom, the TMs are electrostati-
cally controlled to follow the rotation of the spacecraft. This
electrostatic control is driven by the angular rotation of the
TMs measured by the on-board interferometers through the
differential wavefront sensing read out. The angles are
measured with respect to a reference attached to the optical
bench, which in turn is rigidly attached to the spacecraft. It
is then a very precise measurement of the time variation of
the angular relative position of the TMs and the spacecraft,
an in-loop quantity, which is translated into an applied
torque. Then, from the applied torque, which is available
from telemetry, it is possible to recover by time integration
and high pass filters the fluctuating part of the spacecraft
angular rotation, Ωnoise. It is also possible to calculate the
DC part of the angular velocity, ΩDC, by lowpass filtering
the angular velocity as measured by the quaternions and
fitting it to a polynomial to remove the noise due to the read
out. All together, Ω ¼ Ωnoise þ ΩDC gives an estimation of
the spacecraft angular velocity which is free of the AST
read out noise. With this signal the subtraction of the
centrifugal force term given by −ðΩ2

ϕ½t� þΩ2
η½t�Þd from

Δgx can be performed directly.
The other quantity that needs to be measured is the

angular acceleration, _Ω. In this case, the applied torque to
the TMs is already a good estimation of the angular
acceleration. However, neither δy nor δz are known, and
a fit to recover them is necessary. The analysis is performed
in the frequency domain using the technique explained in
Sec. III A, by fitting the Euler contribution to Δgx þ gΩ,
which is the calibrated differential acceleration noise of
eq. (11) already corrected for the centrifugal contribution.
The Euler force term can be rewritten in terms of applied
torques on the TMs as

g _Ω½t� ¼ − _Ωϕδyþ _Ωηδz ¼ d

�
−
Nϕ

Izz
δϕþ Nη

Iyy
δη

�
ð23Þ

whereNϕ andNη are the applied torques around z and y, Izz
and Iyy the respective TMs momenta of inertia and δϕ ¼
δy=d and δη ¼ δz=d the corresponding misalignment
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angles. δϕ and δη are the free parameters of the fit. It was
discovered that for three different periods of operations,
three different misalignment values of the optical axis and
the TMs joining axis must be considered. The change
of the parameters corresponds to particular manoeuvres on
the spacecraft which physically changed the position of the
TMs. A global fit of the Euler force term to Δg½t� þ gΩ½t�
has been performed, using for each period data from
different noise stretches. In this way a statistically valid
estimation of the parameters value has been recovered for
the three periods assumed (see Table II). These values are
then used to directly subtract the effect of angular accel-
eration from all the acceleration noise data during the LPF
mission. It is important to point out that the effect of the
Euler force in ΔgxðtÞ is observationally indistinguishable
from that of the actuation crosstalk between the applied
torque on the test mass and the applied force along the
sensitive x-axis. The origin of such a crosstalk has to be
seen in the possible imperfections of the commanded
voltages on the single electrodes which transform a pure
torque signal in a torque plus a small force. The effect is in
principle present for any rotational degree of freedom but is
expected to be more pronounced for the torque around ϕ
because of the geometry of the system. Indeed, the same
electrodes are used to apply a force on x and a torque
around ϕ. However, the observation that the roll of the
spacecraft is very high when the subtraction of the Euler
force fromΔgx þ gΩ is bigger points to the fact that this last
effect is by far the dominant one.
To illustrate the significance of the inertial contribution

subtraction, we report the effect of it on Δgx½t� in Fig. 5 for
the same data-set used in Fig. 4. For this noise data it is
evident that for the low frequency part of the spectrum the
subtraction is important and needed to reach the LISA
requirement in that frequency band. It is also worth noting
that for some other data segments the effect is less
pronounced, as we would expect from the different rota-
tional states of the spacecraft.

V. RESULTS

The results presented in Table I show that the calibration
gain coefficient of the force per unit mass applied to TM2 is
found to be λ2 ¼ 1.0776� 10−4 by the joint analysis
scheme described in Sec. III. This figure is in agreement
with themeanvalue of the coefficient taken from the analysis
of each system identification experiment individually,

λ2ind ¼ 1.080� 0.003. The comparison of the two strategies
of estimating the λ2 is shown in Fig. 6 from which it is
possible to deduce that the fluctuations of the calibration
coefficient are always within about 0.5% for the complete
duration of the LPF mission. However, the reduced chi-
square for a weighted average is equal to χ2red ≃ 90, which is
too high to claim the stationarity of λ2. The nature of this
fluctuation in λ2 is not understood; it could be related to

TABLE II. Parameter estimation results for the fit of Euler force
(see Sec. IV for details).

Estimated� σ
before from after

Parameter 19 June 2016 19 to 25 June 2016 25 June 2016

δϕ (mrad) −0.47� 0.03 −0.40� 0.03 −0.39� 0.02
δη (mrad) −0.066� 0.007 −0.032� 0.003 −0.137� 0.003

FIG. 5. Spectra of the breakdown of the differential acceleration
noise between the two TMs at very low frequencies. Below
0.5 mHz the effect of inertial forces on the acceleration noise is
evident. Blue curve is the ASD of Δgx½t� calibrated as in Sec. III
(see Fig. 4), while the ASD was computed by assuming 15 data
stretches overlapped by 50%. From that curve we pass to the
black one after subtracting the time series corresponding to the
centrifugal term ASD (red curve) and the Euler force term ASD
(green curve).

FIG. 6. The λ2 coefficient as estimated by analyzing each
experiment individually (dots, with 1σ errorbars), in comparison
to the value estimated assuming common value for all the
experiments (dashed line). The shaded area represents the
estimated error of λ2 (see Table I for reference).
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some true change over time, an incompleteness in our
dynamical model (perhaps from a crosstalk term excited
in the system identification experiments), or a residual
nonlinearity in the voltage actuator that manifests itself in
a gain that varies slightly with the exact applied force.
The value of the gain calibration coefficient of the forces

acting on TM1 was estimated to be very slightly, but
significantly, smaller than λ2, by roughly 0.3% (see
Table I). This difference could be explained by the
machining tolerances within the electrode housing, with
gap differences of order 10 μm, but also by voltage
reference differences of the ADC in the feedback loop
which are separate and independent for the two electrode
housing. We note also that the statistical weight in
extracting λ1 is almost exclusively due to a single data
segment where the TM1 actuator was turned on, from 0 to
4 nN, and not from a designed experiment dedicated to its
calibration. For that reason the measurement of λ1 can not
be considered as robust as that for λ2.
The background residual stiffness is found to be

ω2
1;0 ¼ −ð3.99� 0.07Þ× 10−7 s−2 for TM1 and ω2

2;0 ¼
−ð4.19�0.04Þ×10−7 s−2 for TM2, with their difference
being compatible with zero within their error. The total
background stiffness is estimated as the sum of the linear
gravity gradient, the electrostatic stiffness from the
100 kHz capacitive sensing bias and the maximum allo-
cated stiffness from test mass charge. Finite element
calculations [21] showed that the linear gravity gradients
were expected to be of the order of −3.5 × 10−7 s−2 for
TM1 and −3.6 × 10−7 s−2 for TM2. The electrostatic stiff-
ness from the 100 kHz capacitive sensing bias is estimated
to be ≃ − 6.4 × 10−8 s−2 and the largest charge values
during these measurements is roughly −3 × 10−9s−2. The
total background stiffness is thus expected to be roughly
≃ − 4.2 × 10−7 s−2 for TM1 and ≃ − 4.3 × 10−7 s−2 for
TM2, consistent with the measured values to within 10%.
The estimates of the αxj and αϕj

are in agreement with
their expected values as reported in Sec. III B, following
Eqs. (9) and (10). In particular, for TM1, and TM2 we found
that αx1¼−345�9kg−1m−1 and αx2 ¼−317�6 kg−1m−1

with a predicted value for αxj of −320 kg−1m−1. Similarly
we find αϕ1

¼ð−28.2�0.9Þ×103kg−1m−2, and αϕ2
¼

ð−27.4�0.8Þ×103kg−1m−2, with a predicted value for
αϕj

of −26.5 × 103 kg−1 m−2.
The values of the total stiffness ω2

j;tot calculated by the
theoretical model of the stiffnesses of Eq. (8) using
the numerical values of Table I, is in agreement with the
estimated values of the stiffnesses by analyzing each
experiment independently (see Sec. III A), proving that
both methods of identifying the stiffness parameters are
consistent. This is shown, as an example, for ω2

2 in Fig. 7,
where the results from the two different approaches are
plotted with respect to the maximum force Fmax;2. This
agreement confirms that the electrostatic component of the

stiffnesses can be calculated from the simple model of
Eq. (8), and can be used with confidence for calibration
purposes in future space-based GW observatories.
The cross-coupling coefficient δifo;k describes the

physical effect of signal leakage of x1ðtÞ to ΔxðtÞ. This
cross-coupling is known to be affected, to some extend, by
test-mass alignment [15], and is therefore different, as
expected, for each of the k geometrical configurations of
the instrument (or set-points). Estimates by numerical
simulations of the optical bench including manufacturing
tolerances, predicted an RMS value of ≃6.3 × 10−5 and
upper and lower limits to be ≃� 17 × 10−5 [28]. Results in
Table I show values of this cross-coupling coefficient much
closer to zero, indicating that the interferometer was indeed
very well aligned during operations. Nevertheless, a deeper
investigation is necessary in order to associate and cross-
validate the numbers of Table I with the interferometer’s
alignment, as well as to further investigate the correlation of
δifo;k to the cross-talk parameters originating from the SC
jitter (see Sec. II).
The low frequency spectrum of Δgx was found to be

significantly affected by the inertial forces caused by the
noisy rotation of the spacecraft. Nevertheless, we were able
to directly subtract the centrifugal forces, and to fit out the
Euler force contribution. This evidently improved the
spectrum of Δgx below 0.5 mHz. However, Fig. 5 shows
a residual f−1 noise tail at those frequencies and below,
which is not totally explained by the full noise model
reported in [5] and suggests that either the model needs to
be improved, or that there is an unknown low frequency
noise source. Furthermore, it was not possible to totally
disentangle the intrinsic degeneracy between the effect of a

22  (
s-2

)

Individual analysis

Joint fit scheme

FIG. 7. The measured ω2
2 stiffness parameter versus the various

maximum force authority configurations along the x-axis. The
red squares represent the reconstructed values of ω2

2;tot, as
calculated from Eq. (8) and the results from Table I, while the
black dots represent the ω2

2;tot values estimated by analyzing each
experiment separately.
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TM misalignment, producing a Euler force due to angular
acceleration, and that due to electrostatic actuation cross-
talk. However, there is evidence that during periods of
strong roll of the spacecraft the effect of the subtraction is
more pronounced, suggesting that the major part of the
effect is really due to the Euler force contribution.

VI. DISCUSSION

We have performed a set of calibration experiments on-
board the LPF satellite. The aim of these experiments was
to determine the dynamics of the three-body system and to
investigate the stationarity and performance of the hard-
ware. Two different data analysis strategies were adopted.
First, during mission operations we performed χ2 fits on
each of the experiments, which were reliable and computa-
tionally cheap. Secondly, by assuming a generalized model
on the stiffnesses depending on the actuation authority, we
were able to adopt a joint fitting scheme on the complete set
of all calibration experiments performed over the full
duration of the mission. Both approaches yielded consistent
results, and the dynamical parameters were estimated to be
in agreement with the expected values. Wewere also able to
determine the contribution due to inertial forces and to
subtract them from the calibrated Δgx for the mission
duration. This has improved significantly the low frequency
spectrum of the acceleration noise. The full calibration Δg
procedure has proved essential for LPF to reach the
exceptional noise levels shown in [4]. Moreover, it was
the baseline starting point for many other investigations
performed on board LPF.
Space-borne GW detectors such as LISAwill inherit the

hardware technology directly from the LPF mission, and
the same type of calibration experiments could, in princi-
ple, be applied to the three spacecrafts configuration as
well. Indeed, for the case of LISA, any differential force
between two free falling TMs that cannot be associated to
an actual stray force acting on the TMs could be entangled
with GW signals, and therefore it will be necessary to
estimate and subtract it. However in LISA, unlike in LPF,
all the TMs will be drag-free along their x-axis, so there will
be no intentional electrostatic force applied on the TMs
along the sensitive x-axis. Thus for a fully functioning
LISA constellation operating in science mode, a gain
actuator calibration along x is not needed.
However, in addition to normal operation of LISA, there

are potential fall-back cases, such as the failure of one optical
link, where a TM could be electrostatically suspended along
x, and therefore calibration of the applied x force would
be necessary in order to save the scientific outcome of
the observatory. Calibrating the electrostatic force along the
x-axis in LISA has one major difference with respect to the
LPF case. Indeed, the induced force signals will propagate
through the long arms of the constellation, thus requiring the
full LISA interferometric read out system of time delay
interferometry (TDI) [29] to be employed. However the

principle of the measurements is exactly the same, that of
stimulating the system via injecting large modulation
signals. Even if there are no electrostatic forces on the
TMs along the sensitive x-axes, all the TMs will be
electrostatically suspended on the remaining degrees of
freedom in order to control each spacecraft to follow the two
TMs it encloses. For those degrees of freedom an actuator
calibration would be necessary, and the calibration experi-
ments could, in-principle, follow the same philosophy as the
ones performed for LPF (described in Sec. III). Moreover,
there will still be force gradients present in the environment
of the satellites in the sameway as they were present in LPF.
In order to characterize these gradients, an injection along x
into the drag-free control loop, or an out of the loop force
stimulus on the satellites would be necessary to estimate the
stiffness, so a calibration experiment along the sensitive axes
on the same line of those described in this paper will be
needed as well.
Regarding the possible appearance of inertial forces

acting on the TMs, a first analysis shows that the incidence
of those types of contribution in LISA should be mitigated
by the LISA attitude control, which operates with respect to
the far away spacecraft laser source. The precision of the
angular measurement in this case should be of the order of
nrad=

ffiffiffiffiffiffi
Hz

p
, while for the AST was of the order of

mrad=
ffiffiffiffiffiffi
Hz

p
[4]. However, further investigation on the

possible impact of inertial forces on LISA is also ongoing.
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