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We consider the cosmological dynamics of a scalar field in a potential with multiple troughs and peaks.
We show that the dynamics of the scalar field will evolve from light dark matter–like behavior (such as that
of a light axion) to a combination of heavy dark matter–like and dark energy–like behavior. We discuss the
phenomenology of such a model, explaining how it can give rise to the cosmological constant as well as
how it can decouple the dark sector densities between the time of recombination and today, for both the
homogeneous background and perturbations. The final form of the dark matter is axionlike, but with
abundance and primordial isocurvature modes taking very different values from traditional, axionic, dark
matter.
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I. INTRODUCTION

Scalar fields have played an important role in modern
theoretical cosmology. They have been at the heart of
inflationary cosmology, driving the accelerated expansion
at early times [1]. They have been invoked as a plausible
candidate for dark matter, in the form of an axion or
axionlike particles [2–5]. And they are the leading candi-
date for dark energy, replacing the cosmological constant as
the dominant energy source at late times [6,7].
The standard approach has been to consider models that

have some fundamental underpinning. Typically, this
involves choosing a potential VðϕÞ for the scalar field, ϕ,
with a simple analytic form, with one or a few minima or
with a certain degree of periodicity. The resulting dynamics
is often relatively simple: the dynamics of the scalar field is
either monotonic (used for inflation and dark energy) or
oscillatory (used for dark matter). It would make sense,
however, to countenance the possibility thatVðϕÞ is rich and
structured, with many different scales and minima. Such a
complex potential can easily arise if one considers multiple
scalar fields, or in higher-dimensional universe, with many
extra dimensions and highly intricate topologies [8]. A
particularly interesting analogy that can be considered is
with spin glasses in which multiple minima can lead to rich
dynamics and complex phenomena [9]. In this paper,wewill
explore the possibility that, at late times, a cosmological
scalar field is embedded in a theory that has a high degree of
complexity and show that novel dynamics can emerge.
We will consider a scenario with 1 degree of freedom,

i.e., one scalar field, that resides in an effective potential
with structures on different scales. Its origin may be in a
multidimensional field space, such as the string landscape

or axiverse [2,10], but for the purpose of this paper, we
will model it as VðϕÞ. This can be viewed as focusing on
the lightest direction in the multifield space. It is also
known that, under certain symmetries, a multiscalar field
theory can relax to lower-dimensional dynamics (for an
interesting example involving scale symmetry, see
Refs. [11,12]). An example of the type of potential we
are envisaging can be seen in Fig. 1, in which successive
“zoom ins” of the potential close to what looks like the
global minimum reveals a rich structure of local minima.
This zoom in naturally occurs for a cosmological scalar
field oscillating along the potential, since the expansion of
the Universe forces the oscillation to damp. As a conse-
quence, the oscillating scalar eventually gets trapped in
one of the local minima of the substructure. We will show
that this picture corresponds to a Universe with dark
matter occasionally splitting into a mixture of dark matter
plus dark energy and explore its phenomenological and
cosmological consequences.

II. TWO-COSINE MODEL

Let us consider a minimally coupled real scalar field with
an action,

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R−

1

2
gμν∂μϕ∂νϕ−VðϕÞþLm

�
; ð1Þ

where Lm is the Lagrangian for other matter fields. If we
restrict ourselves to a homogeneous and isotropic space-
time, with ds2 ¼ −dt2 þ a2ðtÞðdr⃗Þ2, we arrive at the Klein-
Gordon equation ϕ̈þ 3H _ϕ ¼ −V 0 and the Friedmann
equation 3M2

PlH
2 ¼ ρϕ þ ρm. Here, an overdot is derivative

with regard to t, H ¼ _a=a, and V 0 ¼ dV=dϕ, and ρϕ ¼
V þ _ϕ2=2 is the scalar field energy density. Two salient*takeshi.kobayashi@sissa.it

PHYSICAL REVIEW D 97, 121301(R) (2018)
Rapid Communications

2470-0010=2018=97(12)=121301(6) 121301-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.121301&domain=pdf&date_stamp=2018-06-29
https://doi.org/10.1103/PhysRevD.97.121301
https://doi.org/10.1103/PhysRevD.97.121301
https://doi.org/10.1103/PhysRevD.97.121301
https://doi.org/10.1103/PhysRevD.97.121301


regimes should be highlighted. If V ≃m2ϕ2=2 andm ≫ H,
then ϕ will be oscillatory, and ρϕ ∝ 1=a3; the scalar field
will evolve as a cold dark matter component. If V ≃ V0 and
V0 ≫ _ϕ2, then ρϕ will play the role of a cosmological
constant, and, if further ρm ≪ ρϕ, we have H ≃ constant.
As the simplest potential that exhibits structures on

different scales, let us consider a potential consisting of
two cosines:

VðϕÞ¼V0þm2f2
�
1−cos

�
ϕ

f

�
þc½1−cos

�
n
ϕ

f
þδ

���
:

ð2Þ

Here, V0 is an offset with mass dimension 4; m and f are
mass scales; and c, n, and δ are dimensionless. We choose
m, f, c > 0 and n > 1. The cosðϕ=fÞ sets the global
structure, while cosðnϕ=f þ δÞ sets the substructure of the
potential. One can easily check that when cn2 ≪ 1 the
extrema of the potential are mainly set by cosðϕ=fÞ and
thus appear only around ϕ=f ¼ 0;�π;�2π;…. In such a
case, the potential is effectively a single cosine. If, on the
other hand, cn ≫ 1, the positions of the extrema are
determined by cosðnϕ=f þ δÞ. Once the scalar starts
oscillating along this potential, it will quickly get trapped
in one of the local minima of the substructure.
The case of interest for our purpose is

cn ≪ 1 ≪ cn2; ð3Þ

which implies c ≪ 1 and n ≫ 1. In such a case, the
cosðnϕ=f þ δÞ term in the potential produces extrema,
but only within the distance of Δϕ=f ∼ cn from the
extrema of cosðϕ=fÞ. Let us focus on this case and consider
the dynamics of a homogeneous scalar field along the two-
cosine potential.
Assuming that the initial position of the scalar field ϕ� is

located in the region cn < jϕ�j=f ≲ 1, then its dynamics at
the beginning is set by the cosðϕ=fÞ term in the potential,
giving the scalar an effective mass of m. Hence, the field is
initially frozen at ϕ� due to the Hubble friction whileH > m
and then starts to oscillate when H ∼m [13].

After the onset of the oscillation, it is useful to split the
scalar density as ρϕ ¼ ρvac þ ρosc, where the first term
denotes the vacuum energy ρvac ¼ VðϕglÞ at the global
minimum ϕgl of the potential and the rest we refer to as the
oscillation energy ρosc. The potential is well approximated
by a quadratic except for the tiny region within jϕj=f ≲ cn;
hence, the oscillation is approximately harmonic and
damped by the expansion of the Universe, so ρosc ∝ 1=a3.
When the oscillation amplitude ϕ̄ becomes sufficiently

small, ϕ̄=f ∼ cn, the finer structure of the potential becomes
relevant, and the scalar field eventually becomes trapped in
one of the local minima created by the cosðnϕ=f þ δÞ. (It is
also possible that the field gets trapped in the potential well
around the global minimum; however, we do not consider
such a case.) The trapping minimum, which we represent by
ϕtr, lies within the range of

2π

n
≲ jϕtrj

f
≲ cn: ð4Þ

Here, the lower bound comes from the fact that each
minimum is separated from their adjacent ones by Δϕ=f ∼
2π=n and the assumption ofϕtr ≠ ϕgl. It is not an easy task to
obtain a general prediction of the value of ϕtr within the
above range. One may expect the field to be trapped at a
minimum near the upper end jϕtrj=f ∼ cn; however, there,
the potential well is shallow, and thus the trapping proba-
bility is not necessarily high. Furthermore, ϕtr is determined
not just by the initial conditionϕ� but also by theHubble rate
during trapping. In the following discussions, we treat ϕtr as
a free parameter within the range (4). An example of the
scalar field trajectory upon trapping for a casewith jϕtrj=f ∼
2π=n is shown in Fig. 2, which we have obtained by
numerically computing the equations of motion.
After the trapping, the scalar’s effective mass increases to

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðϕtrÞ

p
∼ c1=2nm, while the field bound decreases

to f0 ¼ f=n. Hence, the oscillation energy right after the
trapping can be estimated as

ρþosc ≡ ρoscjt¼ttrþϵ ∼m2
0f

2
0 ∼ cm2f2: ð5Þ

Moreover, the trapping increases the vacuum energy by

FIG. 1. Diagram of a scalar field potential with structure. As the Universe expands and the scalar oscillation is damped, the scalar field
“discovers” more local minima of the potential.
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Δρvac ¼ VðϕtrÞ − VðϕglÞ ∼
1

2
m2ϕ2

tr: ð6Þ

By energy conservation, the oscillation energy right before
the trapping is ρ−osc ≡ ρoscjt¼ttr−ϵ ¼ ρþosc þ Δρvac, and hence
the branching ratio of the oscillation energy into the
vacuum energy is Δρvac=ρ−osc ∼ ϕ2

tr=ðϕ2
tr þ 2cf2Þ. One sees

that if jϕtrj=f ∼ 2π=n then only a tiny fraction of the
oscillation energy is converted into vacuum energy. On the
other hand, if jϕtrj=f ∼ cn, most of the oscillation energy
goes into the vacuum [14].
Viewing the oscillation energy ρosc as the dark matter of

our Universe and the vacuum energy ρvac as dark energy,
the above analyses suggest that the trapping happens when
the dark matter density redshifts down to ρDM ¼ ρ−osc. Upon
this “phase transition,” dark matter splits into a mixture of
dark energy and heavier dark matter, thus leading to an
increase in dark energy and a decrease in dark matter
energy density.

III. EFFECTIVE DESCRIPTION OF
DARK SECTOR

For a scalar field that undergoes a trapping, the time
evolution of its energy density can be approximately
described as

ρϕðaÞ ¼ VðϕglÞ þ Δρvac
�
aþ atr

a

�
3

þ ρþosc

�
atr
a

�
3

; ð7Þ

where atr is the scale factor at trapping, VðϕglÞ is the
vacuum energy (dark energy density) before the trapping,
Δρvac is the increase in the vacuum energy upon trapping,
and ρþosc is the oscillation energy (dark matter density) right
after trapping.
For the two-cosine model (2), we have derived Δρvac and

ρþosc in (6) and (5). Supposing the trapping to have
happened before today and the dark sector to consist
entirely of the scalar field, then the present-day dark energy
and dark matter densities are

ρDE0 ∼ VðϕgÞ þ
m2f2

2

�
ϕtr

f

�
2

; ρDM0 ∼ cm2f2
�
atr
a0

�
3

;

ð8Þ

where a0 denotes the scale factor today. Let us further
estimate the trapping redshift by assuming the initial
field value as jϕ�j ∼ f and the oscillation amplitude right
before the trapping as ϕ̄ ∼ jϕtrj; then, considering the
oscillation prior to trapping to be mostly harmonic gives
ðϕtr=fÞ2 ∼ ðam=atrÞ3, with am being the scale factor at the
onset of the oscillation when H ∼m. Here, am can be
computed by assuming the Universe then to be radiation
dominated and also the entropy of the Universe to be
conserved thereafter. Hence, from the present-day entropy
density, one can obtain the trapping redshift as
a0=atr ∼ 1017ðm=eVÞ1=2ðjϕtrj=fÞ2=3. (This result also
depends on the number of relativistic degrees of freedom
at am; however, this dependence is weak, and so it can be
ignored.)

IV. PARAMETER SPACE

Let us now assume that the dark energy before trapping
is zero, i.e., VðϕgÞ ¼ 0, and see whether the present-day
dark sector can be explained by the two-cosine model.
There are effectively five free parameters ðc; n;m; f;ϕtrÞ,
out of which two are fixed by normalizing the dark
sector densities (8) to their observed values: ρDE0 ≈ 3 ×
10−11 eV4 and ρDM0 ≈ 1 × 10−11 eV4 [15]. We also remind
the reader of the consistency conditions regarding the
trapping: Eqs. (3) and (4) and atr < a0. In addition, the
initial mass should be at least as large as m > 10−28 eV;
otherwise, the scalar oscillation would not start by the
matter-radiation equality of the standard big bang cosmol-
ogy. Note also that the initial field value should be sub-
Planckian, jϕ�j ∼ f < MPl; otherwise, the scalar would
drive (a secondary) inflation and dominate the Universe
before staring its oscillation.
In Fig. 3, we show the allowed parameter window for a

fixed f ¼ 1016 GeV, where the two-dimensional parameter
space is displayed in terms of m and m0. Here, the most
restrictive constraints are the first inequality of (3), the
lower bound of (4), and atr < a0. These conditions exclude
the parameter regions shown in green, red, and blue,
respectively. The remaining window capable of explaining
the observed dark matter and dark energy densities is
shown as the white region. For fixed values of the dark
sector densities and f, the trapping redshift can be written
as a function only of m; hence, we also display ztr ¼
ða0=atrÞ − 1 on the right edge of the plot. If we further
restrict ourselves to cases with trapping at jϕtrj=f ∼ 2π=n,
then we are on the boundary between the red and white
regions. Here, the dark sector of our current Universe can
arise, for instance, if the dark matter mass increases from
m ∼ 10−21 eV to m0 ∼ 10−20 eV upon trapping at ztr ∼ 5;

FIG. 2. An example trajectory of a scalar field being trapped in
a local minimum of the two-cosine potential (2).
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the other parameters in this case are fixed to c ∼ 10−17,
n ∼ 1010, f ∼ 1016 GeV, and f0 ∼ 106 GeV. Trapping
always happens after the matter-radiation equality for
f ¼ 1016 GeV; however, with decreasing f, the allowed
regions for the dark matter masses as well as the trapping
redshift ztr tend to shift toward larger values. In particular, if
f ≲ 1010 GeV, the trapping can happen at times before the
equality. We should also remark that recent studies of the
Lyman-α forest have constrained the mass of scalar dark
matter to be larger than about 10−21 eV [16–18]. However,
this bound does not directly apply to our m, since the
Lyman-α analyses assume the dark matter mass to be time-
independent after the equality.
We have also checked the stability of the trapped

minimum against quantum tunneling, focusing on cases
in which the scalar is trapped in a local minimum (false
vacuum) adjacent to the global minimum (true vacuum) and
computing the Coleman-De Luccia tunneling rate [19]. For
the parameters in Fig. 3, the lifetime of the trapped vacuum
is much longer than the age of the Universe, which is
basically due to the energy density difference between the
false and true vacua being normalized to the dark energy
and is therefore tiny.

V. AXION ABUNDANCE

After the trapping, the oscillating scalar can be inter-
preted as a collection of axionlike particles with mass m0

and “axion decay constant” f0 (although this is an abuse of
language as in the toy model under study we do not
consider any direct couplings between ϕ and other matter

fields.) Using these quantities, the ratio of the oscillation
energy to the critical density today can be written as

Ωosch2 ∼ 10−1
�

m0

10−22 eV

�
1=2

�
f0

1017 GeV

�
2

×
ðcn2Þ11=4
ðcnÞ2

�
ϕtr

f0

�
−2
: ð9Þ

If the second line is ignored, this expression is exactly the
same as for the traditional axionlike particles with initial
field displacement jϕ�j ∼ f0 (see, e.g., Eq. (3.10) of
Ref. [18]). However, the trapping gives rise to the second
line, which is guaranteed to be larger than unity from (3)
and (4). This enhancement is understood by noting that the
traditional axion density starts to redshift from its initial
value m2

0f
2
0 when the axion begins to oscillate at H ∼m0.

On the other hand, the two-cosine scalar begins to oscillate
at a later time whenH ∼mð< m0Þ, and then after a while, it
gets trapped; it is at this trapping time that the oscillation
energy becomes of m2

0f
2
0, cf. (5). (See Refs. [20,21] for

related discussions in the context of monodromy dark
matter.)

VI. INHOMOGENEITIES

Thus far, we have focused on the scalar dynamics of the
homogeneous background. However, it is also important to
consider the inhomogeneities, particularly because infla-
tion produces scalar field fluctuations on superhorizon
scales given that the scalar existed during inflation and
the inflationary Hubble rate Hinf was greater than m. The
field fluctuations give rise to isocurvature perturbations in
the dark sector [22–25]. However, we note that the existing
limits on isocurvature are mainly from measurements of the
cosmic microwave background (CMB), which constrains
dark matter isocurvature at recombination. Hence, if the
trapping happens at a later time, the dark matter isocurva-
ture at recombination was δρDM=ρDM ∼Hinf=ð2πfÞ, and
thus the isocurvature measured by the CMB would be
much smaller than what one would naively guess from the
present-day decay constant f0. This feature of the trapping,
together with the enhancement of the axion abundance (9),
allows axionlike particles to evade the various standard
cosmological consistency relations.
We should also remark that upon trapping the inhomo-

geneities may grow as the scalar oscillates along the
potential with substructure [21], which may even lead to
the formation of oscillons [26]. Moreover, the initial field
fluctuation may induce the scalar to be trapped in different
local minima in different patches of the Universe. This
would lead to the formation of domain walls, which are
likely to annihilate each other due to the energy density
difference between the various vacua. These walls may not
have disappeared by today, but they do not necessarily
dominate the Universe if the trapping happened at a low

FIG. 3. Dark matter mass before trapping (m) and after (m0)
that can explain the dark matter and dark energy of our Universe,
for the case of f ¼ 1016 GeV. The allowed region is shown in
white, while the colored regions are excluded from the consis-
tency conditions of cn < 1 (green), jϕtrj=f > 2π=n (red), and
ztr > 0 (blue). The right edge of the plot shows the redshift of the
trapping. For a smaller f, the allowed region shift toward larger
values of the masses and redshift.
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redshift. Moreover, inhomogeneous trapping gives rise to
inhomogeneous dark energy. We also mention that in
regions of the Universe where the dark matter density is
high, such as inside galaxies, the scalar may be untrapped
and oscillate along the global potential, leading to dark
matter properties different from those in the intergalactic
space. All these features can provide smoking-gun signals
of the scenario.

VII. CONCLUSIONS

Let us then recapitulate and summarize the broad
features of this model. If we first focus on the dark matter
associated with the emergent dark energy, we can see that it
was lighter in the past, with density larger compared to a
naive extrapolation from its present-day value. In particular,
if the trapping happened between recombination and today,
this would have given rise to apparent discrepancies
between cosmological measurements using the CMB and
low-redshift probes. From this point of view, it would be
very interesting to study the implications of our scenario for
the recent tensions in the measurements of σ8 and H0

[27,28]. We also note that if the initial dark matter mass
were ultralight this would have an effect on structure
formation with a greater suppression of small scale struc-
ture in the past as compared to today. Dark matter
becoming heavier can also shorten its lifetime and thus
may lead to enhanced signals in indirect searches.
Furthermore, when viewing the dark matter as a collection
of axionlike particles, we showed that naive estimates of the
abundance and isocurvature modes based on the axion’s
current mass and decay constant will most likely be wrong
—we expect a larger abundance today, as well as a far
smaller isocurvature mode arising at early times.
With regard to the dark energy, we find that it was

smaller in the past. There are two possibilities that should
be considered. The first is that the true, global, minimum
(or minima) of the potential is (are) exactly zero. Then, the
fact that trapping minima generically occur near the global

minima would naturally lead to a small cosmological
constant, in the sense that the field would be accidentally
caught in a wrinkle close to where V ≃ 0. In this picture, the
question of why the dark matter and dark energy densities
are of the same order today can be rephrased as follows:
why did the trapping happen at the right time? From this
point of view, it would be important to explore microscopic
realizations of the trapping to see how the trapping time is
constrained in explicit models. (A multicosine model may
be constructed using the clockwork mechanism [29,30].)
Another possibility is that the global minima are negative
and so the global vacuum structure is anti-de Sitter space. In
this case, the complexity of the potential would be one way
of explaining why we could live in such a Universe with
what is effectively a positive cosmological constant. We
also note that the increasing dark energy, when averaged
over time, gives rise to an equation of state w < −1; such a
behavior is preferred by some recent observations [31].
In this paper, we have presented an intriguing possibility,

that complex potential might lead to a small cosmological
constant from an energy difference between its global and
local minima and that dark energy and dark matter might be
intertwined. A more thorough analysis is required to check
if this is truly viable, i.e., if it leads to the distances and
growth rates that are consistent with current observations.
We leave this for future work.
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